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Abstract: Fault markers in the landscape (scarps, offset rivers) are records of fault activity. The geomorphological 
characterization of these markers is currently a time-consuming step with expert-dependent results, often qualitative and with 
uncertainties that are difficult to estimate. To overcome those issues, we are developing a bayesian supervised machine 
learning method using convolutional neural networks (CNN) trained on a database of simulated topographic profiles across 
normal fault scarps, called ScLearn. From a topographic profile the implemented, ScLearn is able to automatically give the 
scarp heigth with an uncertainty, and to show the area of the profile containing the scarp. We apply ScLearn for the 
characterization of normal active faults in the Trans-Mexican Volcanic Belt. From this specific case study, we will explore the 
progress (computation time, accuracy, uncertainties) that machine learning methods bring to the field of morphotectonics, as 
well as the current limits (such as bias).  
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Introduction 
Fault marker characterization is necessary to understand 
past fault activity, the physical processes that govern fault 
rupture, and hence to improve seismic hazard estimates. 
Among the examples of characterization, the estimation 
of marker offset by ruptures that have reached the 
surface is a parameter directly used to estimate fault 
rates, or the spatial pattern of past ruptures, or the 
number of ruptures. Currently the estimation of this 
offset is done by empirical or semi-automatic approaches 
(i.e. Hodge et al. 2019; Wolfe et al. 2020). These methods 
are often time consuming and user dependent.  
Today, AI techniques have proven to be efficient in 
performing automatic tasks in geosciences (i.e. Ren et al. 
2020), and in particular Convolutional Neural Networks 
(CNN), a deep learning architecture specifically designed 
for processing image or series, have made it possible to 
perform automatic mapping of fractures (Mattéo et al. 
2021). Here we propose to automatize the following 
fundamental task in morphotectonics analyses by 
evaluating the ability of a CNN to characterize a normal 
fault scarp (surface offset, position). 
 
Scope  
The CNN ScLearn presented is applied to normal fault 
scarp on topographic profiles perpendicular to the fault 
(see Figure 1). The profiles are first extracted by the user 
from terrain elevation models, each one consisting in a 
series of 500 spatial points. We also assume that the fault 
is crossing in the middle of the topographic profile, and 
that the area is only sparsely anthropized. The ScLearn 
CNN estimates the total surface offset with a model 
uncertainty. Furthermore, to explain the results, we 
produce a visualization of the ScLearn CNN intermediate 

steps, providing insights of where the ScLearn CNN 
focuses its attention (i.e. the scarp area). 
 
ScLearn is trained on realistic synthetic topographic 
profile catalogs. Those synthetic are created by a 
simulator developed here. Synthetic profiles 
characteristics are therefore based on the choices made 
to simulate (see details in the methodological section). 
Here the simulator  create only one fault branch in the 
middle of the topographic profile, this fault branch 
ruptures several times creating fault scarp. At each inter-
seismic period, the scarp is subjected to some diffuse 
erosion (Figure 1), and random perturbations are also 
added to produce a realistic profile. 
 
After training on the synthetic data, ScLearn is tested on 
Mexico in the Trans-Mexican Volcanic Belt (Figure 2). This 
region is affected by more than 600 potentially active 
faults yet less than 5% have been correctly characterized 
by paleoseismological studies (Núñez Meneses et al. 
2021). In this context, a robust and automatic method to 
characterize the normal fault active scarp in a global, 
reproducible, robust (not expert-dependent) quantitative 
way is very valuable and a great step towards a better 
characterization of the region seismic hazard. To do so, 
we sampled real data across Ameca-Ahuisculco fault 
system (Figure 2). We will compare the ScLearn’s results 
with existing empirical and semi-automatic methods: 
MCSST (Monte Carlo Slip Statistics Toolkit of Wolfe et al. 
2020) and SPARTA (Scarp PARameTer Algorithm of Hodge 
et al. 2019). 
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Figure 1: Synthetic normal fault scarp produced by our simulator 
pipeline to train ScLearn. The total surface offset (in meters) is 
used as the ground truth label. 

 
Methodology 
The scarp “simulator“ pipeline: 
To train the CNN, we simulate 1000 different topographic 
profiles with random parameters (Figure 3). They have 
two slopes, one for the hanging wall and one for the 
footwall (uniform distribution between 0° and 20°). The 
simulator breaks a single fault branch, with a dip 
randomly set between 30° and 50° (unif. distribution). The 
rupture location is randomly set to ± 5% from the profile 
center (Gaussian distribution). At each rupture, a fault 
scarp is created (for a total cumulative throw in an 
uniform distribution between 0 and 50m). Then, between 
each rupture a diffusive erosion (Avouac et Peltzer 1993) 
following Smith et Bretherton (1972)’s equation is 
simulated with a random constant diffusion (uniform 
distribution between 0.5 and 10 m

2
/kyr). The seismic 

recurrence is also random, but is constrained by a throw 
velocity between 0.05 and 20 mm/yr. Once the ruptures 
are produced, we add perturbations to create a realistic 
morphology using random hyperbolas such as in Hodge et 
al., (2020) to represent trees, narrow drainage, wide 
rivers, hills. Finally, we add a Gaussian noise. The 
resolution of the profile is 500 points. Here we use 1m 
resolution.  
 

 

Figure 2: Topographic profile locations across the Ameca-
Ahuisculco fault system in the Trans-Mexican Volcanic Belt. Red 
lines are active faults from Núñez Meneses et al. (2021), light 
gray lines are 10m elevations contours, black lines are 
topographic profiles.  

 
The CNN ScLearn : 
In order to weight the final assessments of 
morphotectonic analyses, uncertainty quantification is 
crucial, in particular for the scope of probabilistic seismic 
hazard models. To address it, we estimate the model 
uncertainty in the CNN using variational Bayesian learning 
inference (Figure 3). We follow the method of Blundell et 
al. (2015) which assigns probability distribution on the 
weights of a neural network. The CNN training then 
consists in reducing the error between predicted and real 
offsets while estimating consistent uncertainties. In 
addition, we also show a visualization of the intermediate 
steps of the CNN processing (in intermediate feature 
maps) to understand better how the CNN identifies the 
fault scarp (Zeiler et al. 2014). The visualization on a 
processed profile allows making sure that the prediction 
of the surface offset has been calculated from the fault 
scarp area. This can be useful in complex areas that are at 
the limits of the application requirements. 
 
 

 

Figure 3: Synthetic normal fault scarp produced by the simulator pipeline to train ScLearn. The total surface offset is fixed as the ground truth. 



11th International INQUA Meeting on Paleoseismology, Active Tectonics and Archeoseismology (PATA), 25 – 30 September 2022, France 
 
 

INQUA Focus Group Terrestrial Processes Perturbed by Tectonics (TPPT)  
 

 

 
 
Results 
We first test our CNN model on a second simulated 
dataset: 1000 profiles created using the same simulator 
pipeline. Training the CNN on the synthetic data yields a 
mean accuracy of 4.1 m. Furthermore, we observe that 
where the predictions are correct the uncertainty bars 
(3σ) are reduced, while the distant predictions have larger 
errors allowing encompassing the actual values (Figure 4). 

 

 

Figure 4: Training of ScLearn. Labels (ground truth) and 
predictions of the last batch of training. Here uncertainty bars 
show 3σ. 
 

For validation on real data; we apply ScLearn, SPARTA and 
MCSST to 110 topographic profiles (Table 1 and Figure 5) 
extracted along the Ameca-Ahuisculco fault system. 
Empirical and semi-automatic methods are time-
consuming (several days), do not always produce results 
and the estimates depend on the user (several choices to 
make). The ScLearn CNN allows obtaining results within a 
second, for every profile, independent of the user and 
therefore reproducible. The ScLearn CNN compared to 
MCSST it gives a mean residual of 1.9m (median 0.5m) 
(and a mean 3.0m and a median 1.5m using absolute 
residual). The residual standard deviation is 4.6m. In 
addition, there is a constant variance at every level of 
scarp height. Finally, the CNN predictions overlaps MCSST 
results at 66.6 % at 3-sigma.    

 
 

Average 
surface 
offset 

Mean 
residual 

(from the 
MCSST 
value) 

Proportion of 
profiles with 
overlapping 

uncertainty bars 
for CNN and 
MCSST (3σ) 

 Comparison for all 110 profiles  

MCSST 9.0 m / 

66.6 % CNN 6.6 m 3.0 m 

   

 
Comparison for the subset of profiles (22) 

estimated by SPARTA* 

MCSST 17.3 m / 

50 % SPARTA 12.2 m 4.9 m 

CNN 11,4 m 5.6 m 

 
Table 1: Comparison between ScLearn, SPARTA and 
MCSST from 110 topographic profiles sampled across the 

Ameca-Ahuisculco fault system. * SPARTA does not give a 
prediction when the profile is too complicated. 
 
Discussions and conclusions 
ScLearn is comparable with semi-automatic methods and 
overlaps the MCSST results on 66.6% of the cases. 
Although the distribution of residuals is centered around 
0.5m (median 0.5 m and mode is 0.5 m), there are 
complicated profiles where the CNN differs from the 
MCSST, such as in Figure 6. This is due to the fact that the 
CNN has been trained by synthetic data that does not 
take into account this type of configuration: antropized 
area, with high slope in hanging wall. Although the CNN is 
automatic, it is always necessary to have an expert 
overview on the context in which the CNN can be applied 
or not. Here it depends on the fault scarp model: one 
fault branch, sparsely anthropized, hanging and footwall 
slope between 0 and 20°. However, once these conditions 
are fulfilled, the ScLearn allows gaining considerable 
expert time, to obtain reproducible results, not depending 
on the user, and to make many measurements with 
uncertainties. This provides therefore a reliable database 
on which to perform further fault analysis. This abstract 
thus shows the potential of the proof of concept of CNN 
for scarp characterization. Moreover, a future 
development will consider a larger variety of profiles in 
order to be able to estimate the scarp in much more 
contexts. A future study will also estimate other scarp 
parameters such as two fault branchs, antropized area. 
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Figure 5: Comparison with ScLearn predictions, SPARTA and MCSST estimations for the 110 topographic profiles across one segment of the 
Ameca-Ahuisculco fault system. Bars uncertainties show 3σ. 

 

 
 

 
Figure 6: Characterization of the topographic profile 29 through 
MCSST which allows to estimate a surface offset of 7 ± 0.54 m 
(2σ) meters, while the CNN predicts a value of 5.6 ± 0,59 m (2σ).  
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