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Bound states in the continuum (BICs) and long-lived resonances have become a unique way to produce the
extreme localization of light waves. In this paper, we present a theoretical demonstration of BICs and long-lived
resonances in photonic comblike structures with two semi-infinite leads, together with their existence conditions.
The comb structure is composed of connected guides of length L. The BICs correspond to localized resonances
of infinite lifetime inside the comb, without any leakage into the surrounding leads. When BICs exist within state
continua, they induce long-lived resonances for specific values of some modified lengths of the guides constitut-
ing the comb structure. This enables to regulate these resonances by means of these lengths. The obtained results
take due account of the state number conservation between the final system and the reference one constituted
by the independent comb and semi-infinite leads. This conservation rule enables to find all the states of the final
system and among them the bound in continuum ones. In addition, we present a comb structure with highly
directional outputs through two different lines. In each output line two different long-lived resonances enable
to transmit two different signals. This system enables to demultiplex two different signals through each of two
output lines. The analytical results are obtained by means of the Green’s function technique. The structures and
the long-lived resonances presented in this paper may have potential applications due to their high sensitivities
to weak perturbations, in particular in filtering, sensing, and communication technology improvements.

DOI: 10.1103/PhysRevB.108.115426

I. INTRODUCTION

Classical and quantum finite systems have discrete states.
Without dissipation, the states have an infinite lifetime. A
discrete state in interaction with a state continuum induces at
least one resonance. It may also remain a discrete bound in
continuum (BIC) state [1]. When a resonance passing band is
confined by one or two zeros it is a long-lived resonance [2–5].

Recently bound states in the continuum, also known
as trapped modes, have brought significant attention due
to their important design principle to create systems with
long-lived resonances in order to enhance photon-matter in-
teraction [6]. A BIC state can be considered as resonance
with zero linewidth in a lossless system. It resides within
the state continua but remain perfectly confined in some
parts of the system (subsystem). BICs were first predicted

by Neumann and Wigner in 1929 [1]. Since then, BICs
were found in various fields of physics such as photon-
ics [7,8], acoustics [9–11], magnonics [12], mesoscopics
[13,14], and plasmonics [15–17]. Interest in BICs also re-
sults from their potential use in many applications such as
lasers [18], filters [19,20], and sensors [21,22]. BICs can
be classified into several mechanisms based on their phys-
ical origin [6], e.g., symmetry-protected BICs, Fabry-Perot
(FP) BICs, and Freidrich-Wintgen BICs, which have been
subsequently investigated theoretically and experimentally in
different physical systems [23–26]. By slightly changing the
geometrical parameters of the system, the BIC states induce a
long-lived resonances.

The comb structure is composed of connected guides at-
tached to semi-infinite leads, see Fig. 1. A similar comb
structure appeared recently [27]. This preliminary structure
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FIG. 1. The two arm three port comb structure. The length of
each guide is indicated on the figure. The points–1, 0, and 1 are the
points of connections of the guides with each other and with the semi-
infinite leads. This is why we call them interface points. The interface
space of this structure is written shortly as M = {−1, 0, 1}.

is improved in this paper, with new symmetry breaks. The
present structure is shown here below to reveal one more
long-lived resonance as the former one. The analysis of all
physical properties is also more complete here. This system is
shown to have bound in subsystem discrete states.

No state can interact with another state through one of
its eigenfunction zero [28,29]. With the leads, some of these
states become BICs, or semi-infinite bound states in the
continuum (SIBIC) states. A SIBIC state is a state of a
semi-infinite subspace bounded within the space continuum
of another subspace [27,30]. All BIC states may induce,
after some symmetry break, long-lived resonances and SIBIC
states. These results are obtained by means of the interface
response theory [31], which enables also to deduce the state
phase shifts, the variations of the density of states, the trans-
mission, the transmission phase, and the transmission phase
time. Any final system can be build out of disconnected pieces
called reference system. The number of states is conserved in
the building process. This is the state number conservation
rule [27,28]. The results presented in this paper take due
account of the state number conservation between the final
system and the reference one constituted by the independent
comb and two semi-infinite leads. This conservation rule en-
ables to find all the states of the final system and in particular
the bound ones [28].

Another approach to systems build out of one-dimensional
pieces is known as quantum graphs [32,33]. This approach
calculates directly eigenvalues and eigenfunctions and their
continuity conditions. Interface response theory uses the
well-known Green’s function defined for the Maxwell wave
equation. This theory satisfies automatically the boundary
condition in agreement with the quantum graph theory. In-
terface response theory enables to obtain all the hidden states
of any system, thanks to the state phase and the state number
conservation.

In Sec. II, we present the interface response theory of
continuous media. In Sec. III are derived the states of
the unperturbed comb structure (Fig. 1) without the leads.
Section IV gives the results obtained for the unperturbed and
perturbed comb with two leads: BIC, SIBIC states, trans-
mission, transmission phase, state phase shift, and long-lived

transmission resonances. In Sec. V, we present a detailed
theoretical study of a quasi-one-dimensional system. The aim
of this section is to present BICs and SIBICs in a simple
system using interface response theory. Section VI is devoted
to study the highly directional outputs through two different
lines of a comb structure (Fig. 9, see below). In each output
line two different long-lived resonances enable to transmit two
different signals. This system enables to demultiplex four dif-
ferent signals, two through one output line and the two other
through another output line. The conclusions and prospective
are presented in Sec. VII.

II. INTERFACE RESPONSE THEORY
OF CONTINUOUS MEDIA

A. Overview

In this paper, we study the propagation of electromagnetic
waves in composite systems composed of one-dimensional
continuous segments (or branches) grafted on two connected
guides (see Fig. 1). This study is performed with the help of
the interface response theory [34] of continuous media, which
permits us to calculate the Green’s function of any composite
material. In what follows, we present the basic concepts and
the fundamental equations of this theory.

Let us consider any composite material contained in its
space of definition D and formed out of N different homo-
geneous pieces situated in their domains Di. Each piece is
bounded by an interface Mi, adjacent in general to j (1 �
j � J) other pieces through subinterface domains Mi j . The
ensemble of all these interface spaces Mi will be called the
interface space M of the composite material.

The elements of the Green’s function g(DD) of any com-
posite material can be obtained from [34]

g(DD) = G(DD) − G(DM )G−1(MM )G(MD)

+G(DM )G−1(MM )g(MM )G−1(MM )G(MD), (1)

where G(DD) is the Green’s function of a reference continu-
ous medium and g(MM ) the interface elements of the Green’s
function of the composite system. The inverse g−1(MM ) of
g(MM ) is obtained for any points in the space of the interfaces
M = {∪Mi} as a superposition of the different g−1

i (Mi, Mi )
[34,35] inverse of the gi(Mi, Mi ) for each constituent i of
the composite system. The latter quantities are given by the
equation

g−1
i (Mi, Mi ) = �(Mi, Mi )G

−1
i (Mi, Mi ), (2)

where

�(Mi, Mi ) = I (Mi, Mi ) + Ai(Mi, Mi ), (3)

I is the unit matrix and

Ai(X, X ′) = Vi(X
′′)Gi(X

′′, X ′)|X ′′=X , (4)

where {X, X ′′} ∈ Mi and X ′ ∈ Di.
In Eq. (4), the cleavage operator Vi acts only in the surface

domain Mi of Di and cuts the finite or semi-infinite size block
out of the infinite homogeneous medium [34]. Ai is called the
surface response operator of block i.

The new interface states can be calculated from [34]

det[g−1(MM )] = 0 (5)
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showing that if one is interested in calculating the interface
states of a composite, one only needs to know the inverse of
the Green’s function of each individual block in the space of
their respective surfaces and/or interfaces.

Moreover, if U (D) [36] represents an eigenvector of
the reference system, Eq. (1) enables one to calculate the
eigenvectors u(D) of the composite material as

u(D) = U (D) − U (M )G−1(MM )G(MD)

+U (M )G−1(MM )g(MM )G−1(MM )G(MD). (6)

In Eq. (6), U (D), U (M ), and u(D) are row vectors.
Equation (6) enables one also to calculate all the waves
reflected and transmitted by the interfaces as well as the reflec-
tion and the transmission coefficients of the composite system.
In this case, U (D) must be replaced by a bulk wave launched
in one homogeneous piece of the composite material.

B. Inverse surface Green’s functions
of the elementary constituents

We report here the expression of the Green’s function of
a homogeneous isotropic infinite dielectric medium. For the
sake of simplicity, we restrict ourselves to nonmagnetic homo-
geneous guide. We give also the inverse of the surface Green’s
function for the semi-infinite guide with a free surface and for
the finite guide of length L.

1. Green’s function of an infinite guide

The Maxwell electromagnetic wave differential equa-
tion for the electric field E enabling us to obtain electro-
magnetic waves in an infinite one-dimensional guide without
charges or electric currents is(

∂2

∂x2
− 1

c2

∂2

∂t2

)
E (x, t ) = 0, (7)

where x is the space position along the guide, t is the time,
and c is the electromagnetic wave speed within the guide.

The response function G(x, x′) of this infinite guide is
defined by(

∂2

∂x2
− 1

c2

∂2

∂t2

)
G(x, x′) = δ(x − x′)δ(t − t ′), (8)

where δ stands for the Dirac delta distribution, also known as
the unit impulse.

The corresponding response function is

G(x, x′) = eiα|x−x′ |

2iα
, (9)

where

α = 2π

λ
. (10)

λ is the photonic wavelength related to the electromagnetic
wave frequency ω by λ = 2πc/ω and i2 = −1.

2. Semi-infinite guide

One considers a semi-infinite guide with a “free surface”
located at the position x = 0 in the direction Ox of the

Cartesian coordinates. In this case [37]

g−1
s (MM ) = g−1

s (00) = iα. (11)

3. Finite guide

One considers a finite guide of length L bounded by two
free surfaces located on x = 0 and x = L in the direction Ox
of the Cartesian coordinates system. In this case [37]

g−1
L (MM ) = α

S

(−C 1
1 −C

)
=

(
g−1

L (00) g−1
L (0L)

g−1
L (L0) g−1

L (LL)

)
, (12)

where C = C(L) = cos(αL) and S = S(L) = sin(αL).
One can see that in the interface domain M corresponding

to interfaces x = 0 and x = L, the surface Green’s function is
a 2×2 square matrix. In order to study elementary electromag-
netic excitations, we calculate the surface Green’s function
for different composite systems composed of finite segments
grafted on a one-dimensional wave guide.

III. TWO ARM THREE PORT COMB STATES

The comb structure without the leads described in Fig. 1 is
composed of guides connected together. Use is made of mono-
mode guides. The photon wavelengths are large compared to
the size of the comb interface sites. Amplification and attenua-
tion can be easily introduced, if needed for comparisons with
systems made out of coaxial cables, optical fibers, or micro
and nano devices.

A. Green’s function components

Before giving the states of the comb without the leads, we
will recall briefly the expression of the Green’s function of the
different guides from which the comb structure is composed,
namely:

(i) The matrix inverse of g−1
L (MM ) [see Eq. (12)] is

given by

gL(MM ) = 1

αS

(
C 1
1 C

)
, (13)

and is the interface response matrix. The elements of this
matrix gives the interface response functions

gL(00) = gL(11) = C/(αS), (14a)

gL(01) = gL(10) = 1/(αS). (14b)

(ii) Interface response function for a backbone composed of
two guides: The inverse of the Green’s (response) function
g−1

2L (MM ) in the space of interface M = {−1, 0, 1} [Fig. 2(b)]
of two guides (of length 2L each) connected at site zero is
given by the linear superposition of the (2×2) matrices given
in Eq. (12) for each of the independent guides constituting the
backbone [28],

g−1
2L (MM ) = α

S(2L)

⎛
⎝−C(2L) 1 0

1 −2C(2L) 1
0 1 −C(2L)

⎞
⎠, (15)

where C(2L) = cos(2αL), S(2L) = sin(2αL), α = 2π/λ, and
λ is the photonic wavelength.

(iii) Interface response function for the comblike structure
without leads: The inverse of the Green’s (response) function
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FIG. 2. (a) Finite guide of length L. The point 0 (or 1) is the point
of connection of this guide with the other world. This is why we call
it interface point. The interface space for this finite guide is the two
points 0 and 1. This interface space is written shortly as ML = {0, 1}.
(b) A backbone composed of two guides. The length of each guide is
2L. The interface space for this backbone is M = {−1, 0, 1}. (c) The
same as in (b) but with two stubs of length L each, connected at the
interface points M = {−1, 0, 1}. This is the comb structure (without
the semi-infinite leads) studied in this paper.

g−1(MM ) in the space of interface M = {−1, 0, 1} of the
comb structure (without leads and in the case of δ = 0) is
given by the linear superposition of the (2×2) matrices given
in Eq. (12) for each of the independent guides constituting the
comb [Fig. 2(c)] [28],

g−1
c (MM ) = g−1

2L (MM )

+ 2

⎛
⎜⎝

g−1
L (−1,−1) 0 0

0 g−1
L (00) 0

0 0 g−1
L (11)

⎞
⎟⎠.

(16)

Using Eqs. (13) and (15), one obtains

g−1
c (MM ) = α

⎛
⎝Y1 Y3 0

Y3 Y2 Y3

0 Y3 Y1

⎞
⎠, (17)

where Y1 = −C(2L)

S(2L)
+ 2

S(L)

C(L)
, Y2 = −2

C(2L)

S(2L)
+ 2

S(L)

C(L)
,

and Y3 = 1

S(2L)
. A simple algebra leads to

|g−1
c (MM )| = α3

2SC3
(6S2 − 1)(12S2 − 5). (18)

(iv) Interface response function for the comblike structure
with the leads: The inverse of the Green’s (response) function
g−1

f (MM ) in the space of interface M = {−1, 0, 1} of the
comb structure studied in this paper is given by

g−1
f (MM ) = g−1

c (MM ) + 2

⎛
⎝0 0 0

0 g−1
s (0, 0) 0

0 0 0

⎞
⎠, (19)

where the symbol f refers to any final structure composed of
independent guides.

Using Eqs. (11) and (19), one obtains

g−1
f (MM ) = α

⎛
⎝Y1 Y3 0

Y3 Y2 + 2i Y3

0 Y3 Y1

⎞
⎠. (20)

For the case of nonzero δ, one simply repeats the above pro-
cedure and use the proper length for each guide.

The inverse of the matrix given in Eq. (20) is the inter-
face response matrix. The elements of this matrix gives the
interface response functions. A simple algebra leads to the
interface response function

g(00) = α−1C(L)[3C(2L) − 2]

2[3S(3L) − 4S(L)] + i[3C(3L) − C(L)]

= (2α)−1C(6S2 − 1)

S(12S2 − 5) + iC(6S2 − 1)
, (21)

used in the calculations of the transmission and reflection
functions.

(v) The inverse of the Green’s (response) function
g−1(MM ) in the space of interface M = {−1, 0, 1} (Fig. 1) of
the comb structure (with δ �= 0 and without the leads) is given
by the linear superposition of the (2×2) matrices given above
in Eq. (12) for each of the independent guides constituting the
comb [28],

g−1(MM ) = α

⎛
⎝a−1 b−1 0

b−1 a0 b1

0 b1 a1

⎞
⎠, (22)

where

a−1 = S[2(L − 3δ)]

C(L − 2δ)C(L − 4δ)
− C[2(L − δ)]

S[2(L − δ)]
, (23)

a0 = S(2L)

C(L + δ)C(L − δ)
− 2C(2L)S(2L)

S[2(L − δ)]S[2(L + δ)]
, (24)

a1 = S[2(L + 3δ)]

C(L + 2δ)C(L + 4δ)
− C[2(L + δ)]

S[2(L + δ)]
, (25)

b−1 = 1

S[2(L − δ)]
, (26)

and

b1 = 1

S[2(L + δ)]
. (27)

The boundary conditions are: the continuity of the wave func-
tions and the vanishing at each space point of the sum of the
outgoing first derivatives of the field [28]. The eigenfunction
derivatives produce source forces. For each eigenstate, the
sum of these forces has to vanish at each space point, con-
cerned by this state [28]. For each state, the sum of all surface
forces created by this state, has also to vanish. These condi-
tions are implicitly taken into account in the framework of
interface response theory [31].

B. States of the unperturbed comb (δ = 0)

The reference system of the unperturbed comb structure
presented in Fig. 2(c) is composed of eight independent
guides. For each finite guide of length L, the discrete states
are given by the poles of the Green’s function, namely
αS(L) = 0 [see Eq. (13)], therefore the initial states of the
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system composed of 8 independent guides are given by
(αS(L))6(αS(2L))2 = 0.

We have also for each finite guide [using Eq. (12)],
the determinant of the surface Green function is given by
|g−1

L (MM )| = −α2. Therefore, for the reference system [see
Fig. 2(c)], g−1

R (MM ) = (−α2)8 = α16. In addition, the deter-
minant of the matrix given by Eq. (17) is given by Eq. (18).

So the final states of the system without leads are given
by the state number conservation and the state phase shift
[28] to be

(αS)6(αSC)2 |g−1
c (MM )|

(α2)2(αS/C)6
= 0, (28)

that is,

αSC5[6S2 − 1][12S2 − 5] = 0. (29)

For α = 0, we have the invariant by translation state [1,1,1].
The path states of such a system without the leads are given
by SC5 = 0.

The S = 0 state eigen wavelengths are λ = 2L/n, where
n = 0, 1, 2, 3, . . .. Their state eigenvectors are localized
within the whole structure. The C5 = 0 state eigen wave-
lengths are λ = 4L/(1 + 2n). Their state eigenvector local-
izations are for three of these states within the two stubs
attached to each of the three ports of this comb. Each of them
has a specific eigenfunction zero at its corresponding port.
The fourth C = 0 state eigenvector is localized between two
nearest-neighbor ports, including one stub on each of these
two ports. It has robust zeros on these two ports. The fifth
C = 0 state eigenvector is localized between the 1 and–1 ports
including one stub on each of these two ports. It has robust
zeros on the three ports of this comb. The S2 = 1/6 states have
robust zeros on the three comb ports. The S2 = 5/12 states
have no robust zero on the comb ports.

IV. BIC, SIBIC STATES, AND TRANSMISSION

A. BIC states

According to the above results and to the BIC and SIBIC
state theorems given in our previous paper [30], the structure
of Fig. 1 has the following BIC states:

The C5 = 0 are five times degenerate BIC states, when
leads are added to the comb ports. Three of them are localized
each within two of the twin stubs of length L. They have a
robust zero on the port to which they are attached. The fourth
C = 0 BIC state is localized between two nearest-neighbor
ports including one stub attached to each of these two ports. It
has robust zeros on these two ports. The fifth C = 0 BIC state
is localized between the 1 and −1 ports including one stub on
each of these two ports. It has robust zeros on the three ports of
this comb. We have to keep in mind that any other linear sum
of these five C = 0 states is also a valid state. This analysis
also shows that on each of the three sites (−1, 0, 1), we have
a double robust zero due to two different C = 0 BIC states.
The S2 = 1/6 BIC states have also robust zeros on all three
comb ports. In order to make these BIC states pop out when
plotting the transmission curve we have to break the symmetry
of the comb structure shown in Fig. 1. As shown on Fig. 1, one
tuning parameter δ enable to change all the comb distances.

B. SIBIC states

Another important effect is that each port stub may create
one SIBIC state, when a lead is connected to this port. For
example when one lead is attached at site 1 to the symmetry
broken comb of Fig. 1, it is possible to obtain up to two SIBIC
states, as two different finite branches start from this port.
Each SIBIC state induces a transmission zero and contributes
to one long-lived resonance.

The leads attached to site 0 transform the matrix given by
Eq. (22) into

g−1(MM ) = α

⎛
⎝a−1 b−1 0

b−1 a0 + 2i b1

0 b1 a1

⎞
⎠, (30)

The determinant of the above matrix (for δ = 0) is given by

|g−1(MM )| = α3

2S2C3
(6S2 − 1)[S(12S2 − 5) + iC(6S2 − 1)].

(31)

Taking into account the state number conservation and the
BIC and SIBIC theorems (given in our previous paper [30]),
the BIC states of the final system can be confirmed to be given
by

C5(6S2 − 1) = 0. (32)

In each of the two reference semi-infinite leads there is only
one state for each value of λ [28]. Only a comb state with
nonzero eigenvector values at the connection point between
leads and comb interacts with the state continua. The connec-
tion of such a comb state with the lead states give rise to a
resonance peak within the variations of the density of states,
and the transmission curves.

C. Transmission

Equation (6) allows us to calculate the transmission coef-
ficient of the composite system depicted in Fig. 1. Consider
now an incident wave U (x) = e−iαx, launched in the left
semi-infinite lead. From Eqs. (6) and (30), one can obtain
the transmission function in the right semi-infinite lead for the
unperturbed comb, namely, t = −2iαg(0, 0), or equivalently,

t = C(6S2 − 1)

C(6S2 − 1) − iS(12S2 − 5)
. (33)

In the same way, the reflection function in the left semi-infinite
lead is given by r = 2iαg(0, 0) − 1. From the expressions of
t , one can deduce the transmission coefficient as T = |t |2.
When S(L) = ±√

1/6 or C(L) = 0 the transmission T equals
zero. The variation of T (for the unperturbed comb) vs 2L/λ

is reported in Fig. 3 (dashed plot). The eigen wavelengths of
the transmission zeros given by S(L) = ±√

1/6 and C(L) = 0
correspond to the eigenmodes of the comb without the leads.

The transmission (in dashed-plot) vs 2L/λ in dimension-
less units is drown in Fig. 3 for the unperturbed comb (δ = 0).
It repeats periodically to infinity. Note the transmission 1 due
the bulk states S(L) = 0 and S(L) = ±√

5/12. The solid line
plot presents mostly seven new very sharp long-lived reso-
nances, due to the reference seven BIC states.
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FIG. 3. Transmission (in dashed-plot) vs 2L/λ in dimensionless
units for the unperturbed comb (δ = 0), with five BIC states localized
in the comb for C5(L) = 0 and 6S2 = 1. The solid line plot (for
perturbed comb with δ = 0.025) shows mostly seven new very sharp
long-lived resonances, due to the reference seven BIC states.

In Fig. 4 we show the variation of the transmission co-
efficient (with color scale) vs 2L/λ (in dimensionless units)
and the tuning parameter δ. The sharp dip close to 2L/λ =
0.865 indicates the position of the BIC state corresponding to
S(L) = −√

1/6. This figure shows for one of the seven long-
lived resonances how the width of these resonances can be
tuned. The color code given on the right of this figure enables
to understand how this resonance decreases in function of
2L/λ.

It is well known that the eigenmodes of the system
are given by the poles of the Green’s function, or for the
transmission active ones, by the poles of the transmission

FIG. 4. Variation of the transmission coefficient (with color
scale) vs 2L/λ (in dimensionless units) and the tuning parameter
δ. The sharp dip close to 2L/λ = 0.865 indicates the position of
the BIC state corresponding to S(L) = −√

1/6. This figure shows
for one of the seven long-lived resonances how the width of these
resonances can be tuned. The color code given on the right enables
to understand how this resonance decreases in function of 2L/λ.

function t [Eq. (33)], namely,

C(6S2 − 1) − iS(12S2 − 5) = 0. (34)

This latter equation is a complex quantity, its real part gives
the position of the BIC states in the transmission and density
of states, whereas its imaginary part is related to the width
of the resonances and also here to the transmission active
states.

D. Transmission phase and state phase shift
for the unperturbed comb

The transmission phase is obtained from Eq. (33) to be

φ = tan−1

[
S(12S2 − 5)

C(6S2 − 1)

]
. (35)

Another interesting quantity is the first derivative of φ with
respect to 2L/λ, which is related to the delay time taken by the
photons to traverse the structure. This quantity, called phase
time, is defined by [38]

τφ = dφ

d (2L/λ)
. (36)

Moreover, another interesting entity that can be extracted
from the Green’s function is the bulk state phase shift η.
This bulk state phase shift between the final system (the
comb with the leads) and the reference system (the eight
independent guides and the two semi-infinite leads) is given
by [31]

η = −arg[det{g−1(MM )}]. (37)

From Eq. (31) one can deduce that

η = −tan−1

[
C(6S2 − 1)

S(12S2 − 5)

]
. (38)

In order to provide an analytical comparison of the density of
states with the phases involved in the system, we consider the
variation of the density of states (VADOS) �n(2L/λ) between
the final system depicted in Fig. 1 and the reference system
composed of the eight guides and the two semi-infinite leads.
This quantity is given by [31]

�n(2L/λ) = − 1

π

dη

d (2L/λ)
. (39)

Note that the π drops in φ and η are due to the zero values
of the denominators appearing in their respective analytical
expressions. As these denominators are not the same, the η

and φ, π drop positions are not the same.
In Fig. 5(a) we plot the bulk state phase shift vs 2L/λ for

the unperturbed structure (δ = 0.0). The two π drops (close
to 2L/λ = n, where n is an integer) are due to the loss of
two bulk states out of the four reference 12S2 − 5 ones. The
remaining two of these four states induce two resonant peaks,
as shown by the transmission curve in dashed-plot, super-
posed here. The other π drops are induced by the S(L) = 0
states and the corresponding resonances. Figure 5(b) shows
the VADOS vs 2L/λ. Note the negative delta peaks due to
the loss of S(L) = 0 and 12S2 − 5 = 0 states. We introduced
the dissipation in the system by adding a small imaginary part
to 2/λ, i.e., 2/λ becomes 2/λ ± j(0.0001). Introducing this
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FIG. 5. (a) Bulk state phase shift vs 2L/λ for the unperturbed
structure (δ = 0.0). The two π drops (close to 2L/λ = n, where n
is an integer) are due to the loss of two bulk states out of the four
reference 12S2 − 5 ones. The remaining two of these four states
induce two resonant peaks, as shown by the transmission curve in
dashed-plot, superposed here. The other π drops are induced by the
S(L) = 0 states and the corresponding resonances. (b) VADOS vs
2L/λ. Note the negative delta peaks due to the loss of S(L) = 0
and 12S2 − 5 = 0 states. We introduced the dissipation in the sys-
tem by adding a small imaginary part to 2/λ, i.e., 2/λ becomes
2/λ ± j(0.0001). Introducing this imaginary part makes the neg-
ative delta peaks show up in the VADOS plot.

imaginary part make the negative delta peaks show up in the
VADOS plot.

In Fig. 6(a) bulk state phase shift vs 2L/λ is plotted for
the perturbed structure(δ = 0.025). The π drop (at 2L/λ �
0.87) is due to the loss of one bulk state induced by one of the
12S2 = 5 reference states. The remaining one of these two
times degenerate reference states induces one resonant peak.
This π drop is associated with a maximum in the transmission
curve in dashed-plot, superposed here for agreement check.
Figure 6(b) shows the VADOS vs 2L/λ. The negative delta
pic is due to the loss of one of the 12S2 = 5 states. The dashed
curve recalls the transmission curve.

Figure 7(a) shows the transmission phase vs. 2L/λ for
the unperturbed structure. The π drops at 2L/λ = 0.5, 1.5, ...

are induced by the C = 0 SIBIC states while the other π

drops are induced by the 6S2 = 1 BIC states. The transmis-
sion phase exhibits, a phase jump at the transmission zeros.
Figure 7(b) shows the phase time vs 2L/λ. The phase time
and the VADOS are exactly the same, when one neglects
the derivatives of the π drops. This happens only when one
has two leads. We introduced the dissipation in the system
by adding a small imaginary part to 2/λ, i.e., 2/λ becomes

FIG. 6. (a) Bulk state phase shift vs 2L/λ for the perturbed
structure (δ = 0.025). The π drop (at 2L/λ � 0.87) is due to the
loss of one bulk state induced by one of the 12S2 = 5 reference
states. The remaining one of these two times degenerate reference
states induces one resonant peak. This π drop is associated with a
maximum in the transmission curve in dashed-plot, superposed here
for agreement check. (b) VADOS vs 2L/λ. The negative delta pic is
due to the loss of one of the 12S2 = 5 states. The dashed curve recalls
the transmission curve.

2/λ ± j(0.0001). Introducing this imaginary part make the
negative delta peaks show up in the phase time plot. The
dashed curve recalls the transmission one, for agreement
checks.

Figure 8(a) shows the transmission phase vs 2L/λ for the
perturbed structure (δ = 0.025). The π drops are induced by
the new SIBIC states, due to the robust zeros. This provides
one single positive peak and two negative delta ones, in the
phase time, see Fig. 8(b). Figure 8(b) shows the Phase time vs
2L/λ. The phase time and the VADOS are exactly the same,
when one neglects the derivatives of the π drops. This happens
only when one has two leads.

V. SIMPLE CASE: TWO FINITE GUIDES

In recent years, BICs in a simple cavity attracted much
interest [39–41]. In this section, we present a simple system
consisting of two finite guides grafted onto two semi-infinite
guides at a single point (point 0, see Fig. 9). This system
features BICs and SIBICs, which will be discussed in detail in
this section. The superposition at the interface point 0 of the
two reference elements (two finite guides of lengths L − δ and
L + δ) of the final finite system of Fig. 9 provides the inverse
of the g(0, 0) response function element of the final system to
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FIG. 7. (a) Transmission phase vs 2L/λ for the unper-
turbed structure. The π drops at 2L/λ = 0.5, 1.5, . . . are in-
duced by the C = 0 SIBIC states while the other π drops
are induced by the 6S2 = 1 BIC states. The transmission phase
exhibits, a phase jump at the transmission zeros. (b) Phase time
vs 2L/λ. The Phase time and the VADOS are exactly the same,
when one neglects the derivatives of the π drops. This happens
only when one has two leads. We introduced the dissipation in the
system by adding a small imaginary part to 2/λ, i.e., 2/λ becomes
2/λ ± j(0.0001). Introducing this imaginary part makes the neg-
ative delta peaks show up in the phase time plot. The dashed curve
recalls the transmission one, for agreement checks.

be [see Eq. 14(a)]

g−1(0, 0) = α

[
S(L − δ)

C(L − δ)
+ S(L + δ)

C(L + δ)

]

= 2αS(L)C(L))

C(L − δ)C(L + δ)
. (40)

The corresponding reference expression is

g−1
R (0, 0) = α2S(L − δ)S(L + δ)

C(L − δ)C(L + δ)
. (41)

The reference system states are given by

α2S(L − δ)S(L + δ) = 0. (42)

The state phase shift is obtained from the state number con-
servation rule to be

η0 = arg

( |g(00)|
|gR(00)|

)
. (43)

The above equations enable to confirm that the finite final
system states are given by

αS(L)C(L) = 0. (44)

FIG. 8. (a) Transmission phase vs 2L/λ for the perturbed struc-
ture (δ = 0.025). The π drops are induced by the new SIBIC states,
due to the robust zeros. This provides one single positive peak and
two negative delta ones, in the phase time, see (b). (b) Phase time vs
2L/λ. The Phase time and the VADOS are exactly the same, when
one neglects the derivatives of the π drops. This happens only when
one has two leads.

Equations (40) and (44) enable to find, on the interface site 0,
the eigenvectors of the states. The g−1(0, 0) is a (1×1) matrix,
so its eigenvectors u are defined by

g−1(0, 0)u = 0. (45)

So in this case, when δ �= 0, the eigenvectors are 1 for all
eigenvalues αS(L)C(L) = 0. Remark also that this matrix
diverges when C(L − δ)C(L + δ) = 0, which corresponds to
forced states of the reference system two elements. It is inter-
esting to notice, at this stage, that for these forced states, the
value of u is 0.

Let us add now the two semi-infinite leads. The inverse of
the g(0, 0) response function element of the final system is

g−1(0, 0) = α

[
2S(L)C(L))

C(L − δ)C(L + δ)
+ 2i

]
. (46)

FIG. 9. The cross system with two finite guides.
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FIG. 10. The two curves give the transmission coefficient T
function of 2L/λ. The dashed plot is for δ = 0 and L = 1. The
solid line is for δ = 0.01. Each very sharp long-lived resonance,
in the second case, is bound by transmission zeros due to two
SIBIC states 2L/λ = (1 + 2n)(L/2(L − δ)) and 2L/λ = (1 + 2n)
(L/2(L + δ)), where n is a positive integer.

The reference forced states of the guides are

C(L − δ)C(L + δ) = 0, (47)

when δ �= 0, become SIBIC eigenstates in the final sys-
tem. Their eigenfunctions can connect with one of the two
semi-infinite leads. At their interface robust zeros, they can
fulfill their derivative boundary condition only with one semi-
infinite lead. And because of their interface robust zeros, these
SIBIC states induce transmission zeros.

Let us stress here that these SIBIC states are created out
of discrete reference forced states. The forced states do not
exist as eigenstates in the reference system. They induce the
C(L) = 0 states of the open loop 2L, which become BIC
states, in the final system, when δ = 0.

Figure 10 shows such two SIBIC states localized each
within one semi-infinite lead and one finite guide. These
SIBIC states can not connect with the other lead and the
other finite guide because of their eigenfunction zeros at the
corresponding interface.

The bulk state phase shift is

η

(
2L

λ

)
= − tan−1

(
C(L − δ)C(L + δ)

S(L)C(L)

)
. (48)

The above equation enabled already to conclude that the dis-
crete S(L)C(L) = 0 states of a finite guide of length 2L are
lost in the final system. In the final system, with δ = 0, the
C(L) = 0 are BIC states, localized within the two stubs.

In the reference system, each semi-infinite lead has one
set of S(L) = 0 states. In the final system, for the sake of
state number conservation one set of S(L) = 0 states, local-
ized within the whole final system, appears. But there is no
C(L) = 0 states left in the final system, when δ �= 0.

Consider the variation of the density of states �n(2L/λ)
between the final system depicted in Fig. 9 and the refer-
ence system composed of the two finite guides and the two

FIG. 11. A simple example of bulk state phase shift and VADOS
induced by two SIBIC states. The upper solid line curve gives the
state phase shift η function of 2L/λ. The bottom curve presents the
VADOS. The transmission (dashed) curve is superposed on both.
The parameters are L = 1 and δ = 0.01. Note the π drops and the
state losses for 2L/λ = n/2, as well as the sharp corresponding peaks
within the VADOS.

semi-infinite leads. This quantity is given by [31]

�n

(
2L

λ

)
= 1

π

dη

d (2L/λ)
. (49)

The transmission function t is obtained from

t = 2iαg(0, 0), (50)

the transmission coefficient from

T = |t |2 = 4C2(L − δ)C2(L + δ)

4C2(L − δ)C2(L + δ) + S2(2L)
, (51)

and the transmission phase from

φ = tan−1

(
S(L)C(L)

C(L − δ)C(L + δ)

)
. (52)

Another interesting quantity is the first derivative of φ with
respect to 2L/λ, which is related to the delay time taken by
the photons to traverse the finite system. This quantity, called
phase time, is defined by

τφ = dφ

d (2L/λ)
. (53)

In Fig. 10, the two curves give the transmission coefficient T
function of 2L/λ. The plot in dashed plot is for L = 1 and
δ = 0. The one in solid line is for δ = 0.01. The transmission
ones are obtained when S(2L) = 0 and the transmission zeros
when C(L − δ) = 0 and C(L + δ) = 0. Each very-sharp long-
lived resonance, in the second case, is bound by transmission
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FIG. 12. A simple example of the transmission phase and the
phase time induced by two SIBIC states. The upper solid line curve
gives the transmission phase φ function of 2L/λ. The bottom solid
line curve presents the phase time τφ . The transmission T in dashed
plot is superposed on both for agreement checks. The parameters
are δ = 0.01 and L = 1. Note the π drops due to the nonparticipat-
ing to transmission SIBIC states and the peaks they induce in the
phase time.

zeros due to two SIBIC states 2L/λ = (1 + 2n)(L/2(L − δ))
and 2L/λ = (1 + 2n)(L/2(L + δ)), where n is a positive inte-
ger.

Figure 11 presents the state phase shift and the VADOS, as
simple examples of effects induced by two SIBIC states. The
upper solid line curve gives the state phase shift η function of
2L/λ. The bottom solid line curve presents the VADOS. The
transmission curve is superposed on both. The parameters are
L = 1 and δ = 0.01. Note the π drops and the state losses for
2L/λ = n/2, as well as the sharp corresponding peaks within
the VADOS.

FIG. 13. Comb demultiplexer structure with one input lead and
two output ones.

FIG. 14. The transmissions and reflection through the comb de-
multiplexer. All unperturbed branches have a length L = 1. The
perturbation δ values are here equal to δ = 0.2 for the two branches
connecting site 0 to sites 1 and −1, δ0 = 0.25 for the two stubs
attached to site 0, δ1 = 0.02 for the two stubs attached to site 1 and
δ−1 = 0.015 for the two stubs attached to site −1. Panel (a) shows
in dashed plot the transmission output through site 1 and in solid
line the output through site −1. Note that this system enables to
directionally transmit two different signals through each of the two
output lines. Panel (b) shows the corresponding reflection long-lived
resonances.

Figure 12 presents the transmission phase and the phase
time. This is a simple example of the transmission phase and
the phase time induced by two SIBIC states. The upper solid
line curve gives the transmission phase φ function of 2L/λ.
The down solid line curve presents the phase time τφ . The
transmission T is superposed on both figures. The parameters
are L = 1 and δ = 0.01. Note the π drops due to the non-
participating to transmission SIBIC states and the peaks they
induce in the phase time.

VI. DIRECTIONAL OUTPUT OF LONG-LIVED
RESONANCES

The above comb structure is now used with one input line
at site 0 and two output lines at sites 1 and −1, as shown by
Fig. 13.

Figure 14 shows the transmissions and reflection through
this comb demultiplexer. All unperturbed branches have a
length L = 1. The perturbation δ values are here equal to
δ = 0.2 for the two branches connecting site 0 to sites 1 and
−1, δ0 = 0.25 for the two stubs attached to site 0, δ1 = 0.02
for the two stubs attached to site 1 and δ−1 = 0.015 for the two
stubs attached to site −1. Figure 14(a) shows in dashed line
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plot the transmission T1 through site 1 and in solid line the
transmission T−1 through site −1. Note that this system en-
ables to directionally transmit two different signals through
each of the two output lines. Figure 14(b) shows the corre-
sponding reflection long-lived resonances.

VII. CONCLUSIONS AND PROSPECTIVE

The above simple comb structure has seven BIC states.
It may be tuned to a show seven very sharp long-lived
resonances. The number of the BIC states and long-lived
resonances may be increased by adding more arms to this
comb structure.

It may be used for the construction of a type of demul-
tiplexer able to transmit directively two independent signals
through each of two output leads. It is possible also by adding
more arms to this structure to get more than two independent
signals per output line and more different such output lines.

This paper is also a simple example of how to find all the
states, including the BIC ones, for any final system. This is

achieved with the state phase and the state number conserva-
tion between a final system and its reference one. This method
is completely general and is expected to be used in future
investigations of BIC states and long-lived resonances.

Indeed the majority of present investigations are done with
topological simulation approaches focusing on small defor-
mations and one BIC state. Although introducing the state
phase within the numerical routines is not trivial, this is ex-
pected to complete and improve their results.

Indeed the knowledge of all system BIC states, rather than
only one, enables to choose the better one for a given applica-
tion. This may help also to use several degenerate BIC states
for novel devices.
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