
HAL Id: hal-04214008
https://hal.science/hal-04214008v1

Preprint submitted on 21 Sep 2023 (v1), last revised 8 Jan 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Martin-Löf à la Coq
Arthur Adjedj, Meven Lennon-Bertrand, Kenji Maillard, Pierre-Marie Pédrot,

Loïc Pujet

To cite this version:
Arthur Adjedj, Meven Lennon-Bertrand, Kenji Maillard, Pierre-Marie Pédrot, Loïc Pujet. Martin-Löf
à la Coq. 2023. �hal-04214008v1�

https://hal.science/hal-04214008v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Martin-Löf à la Coq
Arthur Adjedj

ENS Paris Saclay, Université
Paris-Saclay

Gif-sur-Yvette, France

Meven Lennon-Bertrand
University of Cambridge

Cambridge, United Kingdom

Kenji Maillard
Inria

Nantes, France

Pierre-Marie Pédrot
Inria

Nantes, France

Loïc Pujet
University of Stockholm

Stockholm, Sweden

Abstract
We present an extensive mechanization of the metatheory
of Martin-Löf Type Theory (MLTT) in the Coq proof assis-
tant. Our development builds on pre-existing work in Agda
to show not only the decidability of conversion, but also
the decidability of type checking, using an approach guided
by bidirectional type checking. From our proof of decidabil-
ity, we obtain a certified and executable type checker for
a full-fledged version of MLTT with support for Π, Σ, ℕ,
and 𝐈𝐝 types, and one universe. Our development does not
rely on impredicativity, induction-recursion or any axiom
beyondMLTT extended with indexed inductive types and a
handful of predicative universes, thus narrowing the gap be-
tween the object theory and the metatheory to a mere differ-
ence in universes. Furthermore, our formalization choices
are geared towards a modular development that relies on
Coq’s features, e.g. universe polymorphism and metapro-
gramming with tactics.

Keywords: Dependent type system, Bidirectional typing, Log-
ical relations

1 Introduction
Self-certification of proof assistants is a long-standing and
very enticing goal. Since proof assistant kernels are by con-
struction relatively small, have a precise specification, and
are part of the trusted computing base of any software certi-
fied using them, they offer a natural target for certification.
Yet, full certification of a realistic kernel based on dependent
type theory remains a challenging goal.

The reasons are twofold. First, dependent type theory is
very expressive, allowing to formulate mathematical state-
ments with small amounts of encoding. Consequently, even
a minimalistic kernel has to be rather complex. Second, and
more critically, dependent type theory intertwines types and
computations, forcing us to prove results about computa-
tions in order to fully certify a type checker. The usual ap-
proach is to establish a normalization result and then derive
the decidability of the conversion relation, which is used to
compare types during type checking. Normalization, how-
ever, is generally difficult to prove, as it typically implies
soundness of the type system seen as a logic. Accordingly,
an important part of the work needed to fully certify a type

checker is spent on establishing meta-theoretic properties,
which are necessary to ensure termination of the type checker
but have little to do with its concrete implementation.

Acknowledging this tension leads to two radically differ-
ent approaches. On the one hand, one can simply postu-
late normalization, to better concentrate on the difficulties
faced when certifying a realistic type-checker.The most am-
bitious project to date that follows this approach is Meta-
Coq [Sozeau, Anand, et al. 2020; Sozeau, Forster, et al. 2023],
which formalizes a nearly complete fragment of Coq’s type
system and provides a certified type checker aiming for ex-
ecution in a realistic context, after extraction. On the other
hand, one can concentrate on normalization and decidabil-
ity of conversion, which are the most difficult theoretical
problems. The most advanced formalizations on that end
are Abel, Öhman, et al. [2017] andWieczorek and Biernacki
[2018]. The first, in Agda, shows decidability of conversion,
but does not provide an executable conversion checker. The
second, in Coq, certifies a conversion checker designed for
execution after extraction, but supports a type theory that is
less powerful than the former, e.g. it does not feature large
elimination of inductive types. Neither formalization pro-
vide a type checker.

Contributions. We aim to bring together and improve
on this state of the art on proof assistant certification. More
precisely, we:

• formalize a full-fledged version of Martin-Löf type
theory (MLTT) that features dependent function (Π)
and pair (Σ) types with 𝜂-laws, natural numbers 𝐍
and intensional equality 𝐈𝐝 types with large elimina-
tion, and one predicative universe;

• show decidability of both conversion and type check-
ing, refining the logical relation of Abel, Öhman, et
al. [2017];

• provide a naïve but certified and executable imple-
mentation of the type checker;

• define our model in MLTT with indexed inductive
types (i.e.we do not rely on either induction-recursion
or impredicativity), which provides a narrow upper
bound on the logical strength needed to show nor-
malization;

A. Adjedj, M. Lennon-Bertrand, K. Maillard, P.-M. Pédrot, L. Pujet

• design our development in a modular way that ac-
commodates extensions of the type theory.

The ongoing development is freely accessible onGithub [Ad-
jedj et al. 2023a], and the version referenced in this article
is available on Zenodo [Adjedj et al. 2023b]. Our formaliza-
tion spans around 30k lines of code, and we refer to it in
the text with links in blue. To help navigate it, a (file-level)
dependency graph is given in Appendix A.

Plan of the paper. Section 2 sets the context of this work,
giving a high-level tour of the theory and the metatheoreti-
cal properties we formalize. We provide a detailed compari-
son with prior work in Section 3. Section 4 presents the logi-
cal relation technique and Section 5 details some challenges
of our formalization to encode logical relations for MLTT
and establish a bound on the complexity of the normaliza-
tion proof. Section 6 explains the algorithmic aspects of typ-
ing and conversion, culminating with decidability. Section 7
details engineering aspects of the formalization, while Sec-
tion 8 explore the future opportunities created by this work.

2 MLTT and its metatheory
We take Martin-Löf type theory [Martin-Löf and Sambin
1984]—or rather the Martin-Löf logical framework, which
encompasses a whole family of type systems—as an ideal
version of the actual type system implemented by proof as-
sistants based on dependent types, such as Agda, Coq or
Lean. MLTT is presented in terms of judgements for well-
formed contexts and types (written ⊢ Γ and Γ ⊢ 𝑇), well-
typed terms (Γ ⊢ 𝑡 : 𝑇), but also conversion judgements for
types (Γ ⊢ 𝑇 ≅ 𝑇 ′), and terms (Γ ⊢ 𝑡 ≅ 𝑡′ : 𝑇) which assert
that the two sides are definitionally equal, and can be used
interchangeably. Importantly, conversion is typed: it only
makes sense to compare terms at a given type. Judgements
are derived according to typing rules that we leave out to the
formalization, see DeclarativeTyping. In our development,
we implement in this logical framework the following type
formers:

• the dependent function types Π𝑥: 𝐴.𝐵 (with a defi-
nitional 𝜂-rule);

• the dependent pair types Σ𝑥: 𝐴.𝐵 (eliminated through
projections, with a definitional 𝜂-rule);

• a universe of small types, noted Type;
• the inductive datatype of natural numbers 𝐍, with an

induction principle that allows large elimination;
• the Martin-Löf identity type 𝐈𝐝𝐴 𝑥 𝑦, and the J elim-

inator that supports large elimination;
• the empty type 𝟎 and its eliminator.

Our goal is to give a formal proof of the metatheoretical
properties thatmakeMartin-Löf type theory awell-behaved
foundation for proof assistants: consistency, canonicity and
decidability. Consistency states that there is no inhabitant of
the empty type in the empty context, i.e. that the logic is
sound. Canonicity asserts that every inhabitant of 𝐍 in an

empty context is convertible to a numeral, i.e. a succession
of successors applied to 0. Finally, typing and conversion
should be decidable, more precisely it should be decidable
whether any typing or conversion judgement is derivable.

Establishing these properties, however, is challenging. In
particular, large elimination, i.e. the possibility to construct
a type by induction, deeply intertwines the term and type
levels. This fundamental feature of inductive types inMLTT
sets this type theory apart, giving it its expressivity but com-
plexifying its metatheory. In Section 4, we present a logical
relation based on reduction to tackle this problem.

Indeed, conversion can be presented as the symmetric,
reflexive, transitive, congruence closure of a reduction re-
lation, modulo additional rules such as 𝜂-laws. Our formal-
ization uses weak-head reduction{, a deterministic1 reduc-
tion strategy that only reduces redexes at the top of a term
but not in subterms. The normal forms for this reduction
strategy, called weak-head normal forms, can be character-
ized inductively as either a canonical introduction form for
a type (e.g. 𝜆𝑥: 𝐴.𝑡 for Π, 0 or 𝑆 𝑛 for 𝐍), or a neutral term,
that is a stack of elimination forms (e.g. application 𝑛 𝑡 for Π,
or induction ind𝐍(𝑛; 𝑃 ; 𝑡) for 𝐍 for neutrals 𝑛) ultimately
stuck on a variable.The logical relation will be used to prove
two key properties: first,weak-head normalization, which as-
serts that all well-typed terms reduce to aweak-head normal
form; second, subject reduction, which stipulates that types
are invariant by reduction (if 𝑥 : 𝐴 and 𝑥 { 𝑦 then 𝑦 : 𝐴).
From these, consistency of the system can be directly de-
rived. The algorithmic presentations of typing and conver-
sion from Section 6 also heavily rely on these properties to
prove canonicity and decidability.

3 Related work
In response to the challenge of establishing metatheoretical
properties for MLTT, the literature can be divided into two
trends. On the one hand, there is a natural incentive to lever-
age the power of proof assistants to keep track of much of
the nitty-gritty details and even automate them away. On
the other hand, there is a growing interest in sophisticated
frameworks that abstract away from these details in order to
give synthetic, although mathematically challenging proofs.

Towards certified proof-assistants. TheMetaCoq pro-
ject [Sozeau, Anand, et al. 2020; Sozeau, Forster, et al. 2023]
provides a certified type checker for a type system very close
to the one underlying Coq, assuming normalization of the
formalized type theory. It is based on an untyped presen-
tation of conversion, which facilitates parts of the metathe-
oretical work, but makes it much more difficult to handle
extensionality rules, e.g. the 𝜂 rules for functions and prim-
itive records, which are currently not supported.

1For any 𝑡, there exists at most one 𝑡′ such that 𝑡 { 𝑡′.

LogRel.DeclarativeTyping.html#WfContextDecl
LogRel.DeclarativeTyping.html

Martin-Löf à la Coq

Much earlier, Barras and Werner [1997] provide a fully
certified proof assistant for the Calculus of Constructions,
even featuring a small REPL on top of the certified kernel.

Outside dependently typed proof assistants, very advanced
certification efforts have been achieved for the HOL family
with the Candle project [Abrahamsson et al. 2022].

Formalized meta-theory of dependent type systems.
In the late ’90s, Barras and Werner [1997] fully certified a
proof assistant for the Calculus of Constructions (CC). They
proved the normalization and decidability of type checking
for CC in Coq using reducibility candidates [Girard et al.
1989].Their type theory supports an impredicative universe,
but no inductive types. This allows Barras et al. to erase de-
pendency from the types in their normalization proof, and
thereby solve the interdependency puzzle without toomuch
difficulty. In his PhD thesis, Barras [1999] adds inductive
types and a hierarchy of predicative universes, and shows
decidability of type checking assuming normalization, but
to the best of our knowledge this part of his work was never
formalized. In later unpublished work, Barras [2014] shows
normalization of CC extended with natural numbers and
large elimination, as well as consistency of the Extended
Calculus of Constructions, adding a countable hierarchy of
predicative universes to CC, together withW-types. His for-
mal proof relies on realizability models built on top of an
embedding of IZF in Coq, and has been applied to establish
the metatheory of CoqMT [Wang and Barras 2013].

More recently, Wieczorek and Biernacki [2018] formally
prove the correctness of a normalization by evaluation (NbE)
algorithm in Coq, following pen-and-paper proofs by Abel
and co-authors [Abel, Coquand, andDybjer 2007; Abel, Aehlig,
et al. 2007; Abel, Coquand, and Pagano 2009; Abel 2010].
Compared to the work of Barras et al., their development
covers some primitive datatypes, namely natural numbers,
and the empty and unit types. However, it does not tackle
large elimination, the main difficulty presented by inductive
types in this setting. For their normalization proof, Wiec-
zorek et al. model types as proof-irrelevant partial equiva-
lence relations (PERs). Since the pen-and-paper definition
uses induction-recursion, which is not available in Coq, the
authors replace it with impredicative encodings, creating in
important gap in logical power between the object theory
and their meta-theory. They provide a conversion checker
designed to be run after extraction (which erases the com-
plex termination argument), but not a type checker, which
they leave as future work.

In parallel, Abel, Öhman, et al. [2017] attack a similar
problem in Agda. Rather than proving correctness of nor-
malization by evaluation in a semantic domain, they rely on
a reduction-based approach, although they nevertheless use
a typed notion of conversion which supports 𝜂 laws. More-
over, they give a proper treatment of large elimination for

the inductive type of natural numbers and its induction prin-
ciple. The definition of their logical relation is also based
on the work of Abel [2010] etc., but it relies on induction-
recursion instead of impredicativity. Similarly toWieczorek
et al., they stop after decidability of conversion, and their de-
cider is moreover not geared toward execution, neither in
Agda nor after extraction.

This work has since been extended to justify multiple ad-
ditions to MLTT [Gilbert et al. 2019; Pujet and Tabareau
2022, 2023; Abel, Danielsson, et al. 2023]. Of particular in-
terest is Pujet and Tabareau [2023], which lowers the logical
power needed for the proof by removing induction-recursion
with an encoding similar to ours. Yet, this proof still relies on
Agda’s first-class universe levels, whose meta-theory has
been relatively unexplored, but for Kovács [2022].

In his lecture at the Collège de France, Leroy [2020] re-
views these recent approaches to the certification of proof
assistants, in particular for Coq and Agda, emphasizing the
need for sharper consistency bounds as we provide here.
More broadly, the two POPLMark challenges [Aydemir et al.
2005; Abel, Allais, et al. 2019], which aim at enhancing the
general work on formalized meta-theory of type systems,
are also relevant to this work. Indeed, the AutoSubst plu-
gin for Coq [Stark et al. 2019], which has been developed in
this setting, has been directly useful to us, and further devel-
opments onmodular mechanization of metatheory [Jin et al.
2023; Delaware et al. 2013; Forster and Stark 2020] would
likely make developments such as ours much easier.

Frameworks for the meta-theory of dependent types.
In recent years, the community has shown a renewed in-
terest in higher-level proofs that pack tedious details into
convenient abstractions, and make more room for the big
picture. Such proofs have been formulated in the categori-
cal language of gluing [Coquand 2018; Bocquet et al. 2023],
as well as more sophisticated frameworks such as synthetic
Tait computability [Sterling 2021; Gratzer et al. 2019]. Ab-
straction aside, the features that set these apart from more
traditional proofs are the use of proof-relevant logical rela-
tions on the one hand, and the replacement of partial equiv-
alence relations with actual quotients on the other hand. Ac-
cordingly, proofs of normalization by gluing have a very
extensional flavor, and as such are less amenable to imple-
mentation in a proof assistant based on intensional type
theory. Moreover, the more sophisticated iterations rely on
(multi)modal type theories as internal languages for feature-
rich categories, for which mechanization is still in its in-
fancy. Finally, if the goal is to obtain a certified implemen-
tation, the connection between these abstract proofs and an
executable algorithm has yet to be explicited.

Partiality and general recursion in type theory. Con-
version checking algorithms are not structurally recursive
in their inputs, and indeed their termination argument is

https://github.com/coq-contribs/coq-in-coq/tree/master
https://github.com/coq-contribs/coq-in-coq/tree/master
https://github.com/coq-contribs/coq-in-coq/tree/master
https://github.com/coq-contribs/coq-in-coq/tree/master

A. Adjedj, M. Lennon-Bertrand, K. Maillard, P.-M. Pédrot, L. Pujet

highly complex, since it relies on normalization. Implement-
ing a conversion checker in a type theory admitting only
structural recursion, such as Coq’s, is thus challenging. The
more traditional approaches to non-structurally recursive
functions either rely on well-foundedness, encoded as an
inductive accessibility predicate; or on step-indexing, using
an extra “fuel” parameter bounding the allowed number of
recursive calls. The latter induces significant noise in the
definition, while the former makes it impossible to sepa-
rate the definition of a function from a proof of its termina-
tion/totality, and impedes computation by making it neces-
sary to compute very large accessibility proofs. Alternatives
include using co-inductive types [Capretta 2005], and the
Bove and Capretta [2005] approach, relying on an inductive
characterization of the function’s graph. A variant of the
latter is the Braga method [Larchey-Wendling and Monin
2022], which adds the extra goal of a well-behaved extrac-
tion. All of these allow to define partial functions, without
the extra complexity of carrying a fuel parameter around.
Termination (possibly only on a subset of the domain) can
be established separately from the function definition.

Our approach, based on [McBride 2015], separates the de-
scription of a recursive function from its realization using a
free monad to describe the calling graph. From this monadic
object, the fuelled, coinductive or graph-based realization
can all be easily recovered, depending on one’s goals. As
with the Bove-Capretta and Braga methods, this lets us de-
fine functions before arguing about their termination, but
without foregoing the ease of execution of the fuelled vari-
ant. This part of our development rely on a library by Win-
terhalter [2023], which implements an enhanced version of
McBride’s ideas in Coq.

4 The logical relation(s)
We establish the metatheoretical properties from Section 2
through an equivalence between two presentations ofMLTT,
a declarative presentation in the tradition of Martin-Löf’s
logical framework and an algorithmic one based on ideas
from bidirectional typing (cf Section 6). The latter is used as
an effective specification to prove the correction of the type
checking algorithm. In this section, we give a high level tour
of the logical relation techniques that we employ to relate
both presentations. We roughly follow Abel, Öhman, et al.
[2017], where a more detailed account can be found.

4.1 Metatheory through logical relations
The point of the logical relation is to build a model of depen-
dent type theory where types are interpreted as reducibility
predicates, i.e. predicates on the untyped syntax that charac-
terize well-behaved inhabitants. In order to model convert-
ibility, these reducibility predicates are additionally equipped
with a relation that we call reducible conversion, effectively
turning them into PERs on untyped terms.

The first step in the construction of our model is thus the
mutual definition of a reducibility predicate to characterize
types (type-level reducibility), together with a reducibility
predicate to characterize the inhabitants of every reducible
type (term-level reducibility), and the associated reducible
conversions. Then, we show that reducible conversions are
equivalence relations (reflexive, symmetric, transitive), that
reducibility implies weak-head normalization, is closed un-
der weakening and anti-reduction, and is irrelevant, mean-
ing that the term-level reducibility and reducible conver-
sions associated to reducibly convertible types are equiva-
lent. Next, in order to interpret the typing judgements in our
model, we need to give a semantic interpretation of contexts
and substitutions. To this end, we define the validity rela-
tion by (freely) closing reducibility under substitutions of re-
ducible terms. Finally, we prove the fundamental lemma by
induction on the typing derivations, which states that any
derivable declarative judgement is valid. Once the funda-
mental lemma is established, we obtain that any well-typed
term has a weak-head normal form classified by (the weak-
head normal form of) its type, from which we derive many
metatheoretical properties: injectivity of type constructors
(hence subject reduction), consistency and canonicity.

4.2 Three logical relations in one
The fundamental lemma is enough to establish the normal-
ization properties but proving decidability of the conversion
and of the type-checking requiresmorework.We first prove
that the algorithmic presentation is completewith respect to
derivability in the declarative system: any judgements deriv-
able in the declarative system is also derivable in the algo-
rithmic system.The completeness proof uses another logical
relation defined in terms of the algorithmic system instead
of the declarative one. In order to factor out the work, we
reuse an idea of Abel, Öhman, et al. [2017] who parameter-
ize the logical relation by an abstract conversion relation.
We expand over this idea and parameterize the definition of
the logical relation by a generic typing interface accommo-
dating both declarative and algorithmic typing.

A first instantiation of the interface with declarative typ-
ing gives us among other (weak-head) normalization and in-
jectivity of type constructors. Two more instantiations, one
with a mixed system combining declarative typing and algo-
rithmic conversion, and one with a fully algorithmic system,
let us relate the declarative and algorithmic judgements (see
Section 6.4).

4.3 Design choices for the logical relation
Our model relies on an untyped small-step reduction. That
is, even though at times we bundle big-step reduction proofs
with side-conditions that one or both sides are well-typed,
we do not ask for typing proofs at the granularity of sin-
gle reduction steps. As a result, subject reduction is a result

LogRel.LogicalRelation.html
LogRel.LogicalRelation.Reflexivity.html
LogRel.LogicalRelation.Irrelevance.html
LogRel.LogicalRelation.Transitivity.html
LogRel.LogicalRelation.Weakening.html
LogRel.LogicalRelation.Reduction.html
LogRel.LogicalRelation.Irrelevance.html
LogRel.Validity.html
LogRel.Fundamental.html
LogRel.GenericTyping.html
LogRel.DeclarativeInstance.html
LogRel.DeclarativeInstance.html
LogRel.AlgorithmicConvProperties.html
LogRel.AlgorithmicTypingProperties.html

Martin-Löf à la Coq

that becomes available late, after the fundamental lemma
has been proven.

Since this goes against the position explicitly advocated
for in [Abel, Öhman, et al. 2017], we believe that this design
choice deserves some discussion. The first reason is purely
rooted in engineering considerations. Basically, asking for
a typed reduction duplicates the definition of typing deriva-
tions into a reduction variant. These inductive types are big,
so they require a lot of boilerplate. It also makes experiment-
ing with extensions to the type theory cumbersome, since
one has to duplicate the additions in both inductive types.
Given that typing itself is already quite redundant with con-
version, this was deemed too unpractical.

Another more theoretical reason is that opting for typed
reduction hardwires a specific kind of models, or equiva-
lently a specific kind of generic typing interfaces. Since typed
reduction implies typing in the declarative system, and the
logical relation implies reduction to a normal form, it is es-
sentially asking that the resultingmodel is complete for declar-
ative typing. Nonetheless, there are instances of typing in-
terfaces that either cannot be proven complete early (i.e. be-
fore the fundamental lemma), or simply are not complete. A
typical example of the latter is the instance used to prove un-
typed weak-head normalization of well-typed terms, which
interprets all typing statements trivially.

4.4 Abstract conversion of neutrals
While reducible conversion finely characterizes the behaviour
of canonical terms, it is essentially blind to the structure
of neutral terms. Indeed, two neutrals are reducibly con-
vertible simply if they are related by an abstract notion of
neutral conversion, which is part of the generic typing in-
terface. While we can recover properties of neutrals by a
well-chosen instantiation of the interface, due to this struc-
ture neutral conversion cannot be defined mutually with
reducibility, limiting its power. Hence, the declarative in-
stance of the logical relation does not show that neutral de-
structors are injective (e.g. that if Γ ⊢ 𝑛 𝑢 ≅ 𝑛′ 𝑢′ : 𝑇 with
𝑛 and 𝑛′ neutral, then 𝑛 and 𝑢 are respectively convertible
to 𝑛′ and 𝑢′). This is the core reason why we must instanti-
ate the logical relation with algorithmic instances, to obtain
properties of algorithmic neutral comparison which we can-
not get more directly. The declarative instance also does not
imply deep normalization, again because it does not go un-
der neutrals. This is why the algorithm’s proof of termina-
tion (Section 7.2) works directly on a conversion derivation.

5 Not-so-small induction-recursion
The definitions of reducibility and validity that we outlined
in Section 4.1 are challenging to express in type theory. In
the case of reducibility, term-level reducibility is indexed
over type-level reducibility, but type-level reducibility must
depend on term-level reducibility in order to properlymodel

dependent types that contain terms. Likewise, validity for
contexts is mutually defined with validity for types and sub-
stitutions. In presence of inductive types with large elimina-
tion, these dependencies cannot be swept under the rug and
must be taken into account in our model.

In their proof, Abel, Öhman, et al. [2017] solve this depen-
dency puzzle by exploiting the powerful definition scheme
of Agda, which allows to mutually define an inductive type
with a function defined by recursion on that very type. This
feature is known as induction-recursion (IR for short) [Dyb-
jer and Setzer 2003], and is commonly used to build models
of dependent type theory. Thus, Abel et al. use IR to simul-
taneously define reducible types Γ ⊩⟨ℓ⟩ 𝐴 in context Γ by
induction, and associate an adequate reducibility predicate
Γ ⊩⟨ℓ⟩ 𝑡 : 𝐴 / ℜ𝐴 to every reducibility proof ℜ𝐴 : Γ ⊩⟨ℓ⟩ 𝐴,
by recursion on ℜ𝐴.

For instance, there is a constructor 𝔯𝔢𝔡ℕ that, given any
type 𝐴 and a proof 𝑟 : 𝐴 {∗ 𝐍 that it weak-head reduces
to 𝐍, induces a proof Γ ⊩⟨ℓ⟩ 𝐴. Correspondingly, the recur-
sive case Γ ⊩⟨ℓ⟩ 𝑡 : 𝐴 / 𝔯𝔢𝔡ℕ 𝐴 𝑟 is defined as reducibility
at the type of natural numbers Γ ⊩ℕ 𝑡. The latter asserts
that the term 𝑡 is reducible if it weak-head reduces either
to 0, to a successor S 𝑢 with Γ ⊩ℕ 𝑢 reducible at 𝐍 too,
or to a neutral term of type 𝐍 in context Γ. Note that the
recursive definition of the reducibility predicates on terms
is already needed in the simply typed setting to account for
function types 𝐴 → 𝐵 that feature a negative occurrence
of reducibility for terms in the domain.

Furthermore, reducibility is indexed by an integer ℓ that
reflects the stratification of types into universe levels: the
definition for ℓ = 0 only accounts for small types and their
inhabitants (i.e. types that do not mention any universe),
while the definition for ℓ = 1 accounts for all types, large
or small. This way, we can declare that a term is a reducible
inhabitant of the universe Γ ⊩⟨1⟩ 𝑡 : 𝐴 / 𝔯𝔢𝔡U 𝐴 precisely
when it is a reducible small type Γ ⊩⟨0⟩ 𝑡, without introduc-
ing any circularity.

In exchange for its elegance, IR introduces a serious gap
between the metatheory and the object theory, which only
supports a handful of inductive types. Even though explor-
ing normalization proofs for IR is a valuable endeavour, we
would rather go the other way and narrow this gap by re-
casting the definitions of Abel et al. to rely only on regular
indexed inductive types. In fact, this restriction is enforced
by our choice of proof assistant, since Coq does not support
induction-recursion. In exchange, Coq supports impredica-
tivity through its sort of propositions Prop, but we never
rely on impredicativity in our development2.

Removing induction-recursion. Although IR is strictly
stronger than plain indexed inductive types in general, it

2We cannot completely avoid Prop, due to its ubiquity in Coq’s standard
library, for instance via the identity type eq. But the proofs would work
just as well with a Type-valued equality.

A. Adjedj, M. Lennon-Bertrand, K. Maillard, P.-M. Pédrot, L. Pujet

Definition RedRel@{i} :=
Con -> Term -> (Term -> Type@{i}) -> Type@{i+1}.

Inductive LR@{i} : ∀ (ℓ : TypeLevel), RedRel@{i} :=
| redU : Γ ⊩U A ->
LR@{i+1} 1 Γ A (fun B => ∑ P, LR@{i} 0 Γ B P)

| redℕ : Γ ⊩ℕ A -> LR@{i} ℓ Γ A Redℕ.

Notation "Γ ⊩⟨ℓ⟩ A" := (∑ P, LR ℓ Γ A P).
Notation "Γ ⊩⟨ℓ⟩ t : A / RA" := (fst RA t).

Figure 1. Simplified excerpt of reducibility via small
induction-recursion in Coq

is possible to transform an inductive-recursive definition
into an inductive type if the codomain of the recursive part
is smaller than the universe of the inductive part—this is
known as small induction-recursion [Hancock et al. 2013].
The transformation works as follows: we first define the
codomain of the recursive part, here the reducibility pred-
icates on term, and then define an inductive predicate carv-
ing out those elements of the codomain that arise from the
evaluation of the putative inductive part of the induction-
recursion instance. The inductive part is then recovered by
packing together an element of the codomain together with
an inductive proof that it is in the image of the inductive-
recursive definition, while the recursive part just projects
out the element of the codomain, forgetting the inductive
proof.

Reducibility is not a priori an instance of small IR, as both
the term-level and type-level reducibility are defined in the
same universe to enable defining reducibility for inhabitants
of the universe in terms of type-level reducibility. However,
it turns out that it is possible to recast it as one, at the cost
of some universe level juggling: we can define type-level re-
ducibility for small types (the inductive part for ℓ = 0) in
Type1, while term-level reducibility for small types lands
in Type0. Then, type-level reducibility for large types is de-
fined in Type2, and the term-level part in Type1. Proceed-
ing in this fashion, we can define the reducibility predicate
for the universe as the type-level reducibility of small types,
while keeping the recursive part of the definition smaller
than the inductive part.

The result is presented in Fig. 1 in a Coq-inspired syntax.
Here, LR@{i} ℓ Γ A P encodes as a functional relation the
fact that P : term -> Type@{i} is the reducibility predicate
Γ ⊩⟨ℓ⟩ _ : 𝐴 / ℜ𝐴 associated to the reducibility proof ℜ𝐴
in the usual IR presentation. LR is heavily simplified com-
pared to the development, serving as an illustration device
to build up intuition. The first difference is that in addition
to term reducibility we also have two additional predicates

term -> Type@{i} and term -> term -> Type@{i}, for redu-
cible conversion of types Γ ⊩⟨ℓ⟩ 𝐴 ≅ _ / ℜ𝐴 and of terms
Γ ⊩⟨ℓ⟩ _ ≅ _ : 𝐴 / ℜ𝐴, respectively.

Furthermore, observe that the universe level of the defi-
nition depends on the level ℓ, which is not possible in Coq
since first-class universe levels are not available. Instead, we
resort to what amounts to good old-fashioned code duplica-
tion, essentially defining reducibility once for small types,
then once again for large types. Luckily, we sidestep incon-
venient copy-pasting by a mix of universe polymorphism, a
form of open recursion, and the definition of a custom in-
duction principle (see Section 7.1 for details).

This stratification is unpleasant, but we cannot hope to
eliminate it completely, because of Gödel’s incompleteness
theorem. Indeed, normalization implies consistency, and we
cannot hope to prove consistency forMLTTwith arbitrarily
many universes in a meta-theory that amounts to MLTT—
thus some codemanipulation is necessary in order to extend
the proof with one additional universe.

Abel et al. use induction-recursion a second time to define
validity.The same strategy as the one we adopt for reducibil-
ity applies to validity as well, and allows us to reformulate it
as an indexed inductive type too. As a result, we completely
remove induction-recursion, allowing a port of the proof to
plain Coq.

The gap between the object and the meta. The meta-
theory for MLTT with 𝑛 universes should ideally be MLTT
with 𝑛 + 1 universes, but unfortunately our proof requires
at least one additional universe. Indeed, our definition of re-
ducibility for 𝑛 universes requires 𝑛 + 2 universes in the
meta-theory, appearing as 𝑖 and 𝑖 + 1 in Fig. 1.3 The defini-
tion of validity also fits within these 𝑛 + 2 universes, which
means they should be sufficient for the proof to go through.
In our development, for an object theory with a single uni-
verse, we should be using 3 universes from the meta-theory
to define reducibility and validity.

This is the theory, but in practice we assume two addi-
tional universe levels that live below the universes used for
reducibility. These are used in universe polymorphic defini-
tions: since a definition must use the same number of uni-
verse variables for ℓ = 0 and ℓ = 1, we use these additional
universes to instantiate the unneeded variables for the ℓ = 0
case. In the end, our development uses 𝑛 + 4 universes to
show normalization for MLTT with 𝑛 universes.

6 An algorithmic presentation of MLTT
Although decidability of conversion is the main difficulty
in a proof that type checking is decidable, the latter does
not automatically follow from the former, except for heavily
annotated systems – see e.g. Petković Komel [2021, Propo-
sition 10.3.5]. In fact, type checking for MLTT as defined
3Since Coq does not support algebraic universes of the shape 𝑖 + 1 in
surface syntax, we need to use two levels 𝑖 < 𝑗 in the formalization.

Martin-Löf à la Coq

by Abel, Öhman, et al. [2017] is undecidable for this very
reason [Dowek 1993; Sørensen and Urzyczyn 2006].

In our development, we cover this last mile and show de-
cidability of typing with a full account of algorithmic type
checking, presented in a bidirectional fashion [Pierce and
Turner 2000; Dunfield and Krishnaswami 2021]. The main
idea of bidirectional typing is to refine typing into type in-
ference, where the type of a term is an unknown to be found,
and type checking, where the type is known, which are mu-
tually defined, both as judgement and as functions. Follow-
ing the strategy implemented e.g. by Coq, our terms con-
tain enough annotations to ensure that inference is com-
plete: every well-typed term infers a type. For instance, 𝜆-
abstractions are annotated with the type of the variable, i.e.
Church-style. We do not investigate the common alterna-
tive in the bidirectional setting, which reduces the need for
annotations by foregoing completeness of inference – some
well-typed terms can only be type checked against a given
type, because they do not contain enough type information
by themselves.

Of course, algorithmic type checking relies on an algorith-
mic conversion. Ours is strongly inspired by the one of Abel,
Öhman, et al. [2017], but puts more emphasis on its implicit
bidirectional character. Indeed, our definition of algorithmic
conversion is also decomposed into twomutually defined re-
lations: general conversion checking, which is “checking” in
the sense that it takes a type as input in order to compare the
two terms; and a special neutral comparison relation, which
is “inferring”, in the sense that a common type for the two
compared terms is synthesized while comparing them.

6.1 Algorithmic/bidirectional typing
Bidirectional typing, as an inductive predicate, is defined in
AlgorithmicTyping. We denote type inference as Γ ⊢ 𝑡 ▷ 𝑇 ,
and type checking as Γ ⊢ 𝑡◁𝑇 . Each declarative typing
rule for a term constructor gives rise to a corresponding rule
for type inference, which ensures completeness of inference.
For instance, the algorithmic rule for application is

infApp
Γ ⊢ 𝑓 ▷h Π𝑥: 𝐴.𝐵 Γ ⊢ 𝑎◁𝐴

Γ ⊢ 𝑓 𝑢 ▷𝐵[𝑢]
Since terms might infer a type that does not exactly meet

the required constraints, two extra rules let us handle con-
version. For instance, in rule infApp above, 𝑎 might not in-
fer 𝐴, but some 𝐴′ convertible to 𝐴. This is exactly what the
only rule to derive type checking lets us do:

checKConv
Γ ⊢ 𝑡 ▷ 𝑇 Γ ⊢ 𝑇 ≅ 𝑇 ′

Γ ⊢ 𝑡◁𝑇 ′

However, it can happen that we have a constraint only
on the head constructor of the inferred type: for instance,
the type of first premise of infApp should be a Π type. In
that case, we cannot use the conversion checker to compare
the type inferred by 𝑓 with Π𝑥: 𝐴.𝐵, as neither 𝐴 nor 𝐵 are

specified.This typically happens for destructors like applica-
tion, where the head type constructor of the destructed term
is known, but no more. In this case, we use reduction on the
inferred type to expose its head constructor, and check that
it matches the expected one. This is exactly what reduced
inference, written Γ ⊢ 𝑡 ▷h 𝑇 ,4 does, corresponding to the
following rule:

infRed
Γ ⊢ 𝑡 ▷ 𝑇 𝑇 {⋆ 𝑇 ′

Γ ⊢ 𝑡 ▷h 𝑇 ′

The choice of using inference, reduced inference or check-
ing in a premise when turning a declarative rule into an al-
gorithmic one is a rather mechanical one. If the type is fully
known from earlier premises or the term under consider-
ation, we can use checking. If the type is fully unknown,
we must use inference. Finally, when the type is partly un-
known but has a prescribed shape we use reduced infer-
ence, in order to uncover said shape. In essence, this follows
what Dunfield and Krishnaswami [2021] call the “Pfenning
recipe”, with the extra complication that we rely on reduc-
tion to exhibit the shape of types.

6.2 Algorithmic conversion is bidirectional too
Theeasiest way to implement conversion checking is to fully
normalize terms to 𝜂-long deep normal forms, and compare
these for pure syntactic equality. However, this approach is
neither faithful to our logical relation, which proceeds by
iterated weak-head normalization, nor to most implementa-
tions, which also follow this lazy, stepwise approach. So we
instead implement our conversion checker and the induc-
tive relation that presents it by an interleaving of weak-head
reduction and structural comparison of head normal forms.

The entry point of algorithmic conversion, in rule checK-
Conv, is conversion between types, which is fairly straight-
forward: the two types are reduced to weak-head normal
form, and are deemed convertible if they share the same
head constructor and all their subtypes/subterms are recur-
sively convertible. However, since these weak-head normal
form might be neutral inhabitants of the universe, we must
be able to compare arbitrary neutral terms for conversion.

Algorithmic conversion of terms is subtler than for types.
Indeed, consider the declarative conversion rules for func-
tions: congruence of application and the 𝜂 rule for functions.

TeRmAppCong
Γ ⊢ 𝑓 ≅ 𝑔 :Π𝑥: 𝐴.𝐵 Γ ⊢ 𝑎 ≅ 𝑏 : 𝐴

Γ ⊢ 𝑓 𝑎 ≅ 𝑔 𝑏 : 𝐵[𝑎]

TeRmFunExt
Γ, 𝑥: 𝐴 ⊢ 𝑓 𝑥 ≅ 𝑔 𝑥 : 𝐵
Γ ⊢ 𝑓 ≅ 𝑔 :Π𝑥: 𝐴.𝐵

How should information propagate in these rules? On one
hand, the type 𝐵 in TeRmAppCong can only be obtained
from the first premise, as we cannot uniquely invert the
substitution 𝐵[𝑎]. On the other hand we would like to use
4The “h” stands for (weak-)head reduction.

LogRel.AlgorithmicTyping.html
LogRel.AlgorithmicTyping.html#infApp
LogRel.AlgorithmicTyping.html#checkConv
LogRel.AlgorithmicTyping.html#infRed
LogRel.AlgorithmicTyping.html#ConvTypeAlg
LogRel.DeclarativeTyping.html#TermAppCong
LogRel.DeclarativeTyping.html#TermFunExt

A. Adjedj, M. Lennon-Bertrand, K. Maillard, P.-M. Pédrot, L. Pujet

the information that conversion happens at a Π-type to trig-
ger TeRmFunExt. Thus, type information is useful for type-
directed rules such as TeRmFunExt, yet it is impossible to
propagate type information bottom-up through TeRmApp-
Cong. The way out is to split conversion checking in two: a
general relation to compare arbitrary terms, which takes a
type as input, and can use it to trigger type-directed rules;
and a second relation to specifically compare neutral terms,
which infers a type, propagating it upside-down rather than
bottom-up. We write the former relation Γ ⊢ 𝑡 ≅ 𝑡′ ◁𝑇 , us-
ing the same symbol as for type checking to insist on the
bidirectional intuition, and the latter as Γ ⊢ 𝑛 ∼ 𝑛′ ▷ 𝑇 .
This approach is sensible since extensionality rules are use-
less on neutrals, intuitively because 𝜂-expanding neutrals
is useless as it cannot trigger any further computation, but
only add an extra stuck layer.

Once this design decision is fixed, the rest of the defini-
tion follows straightforwardly. In the end, conversion check-
ing operates roughly as follows:

1. the two terms to compare and their type are reduced
to weak-head normal form,

2. if the type is onewith an 𝜂-rule (Π or Σ), then this rule
is applied, and the 𝜂-expanded terms are recursively
compared,

3. otherwise, if the two terms start with the same canon-
ical constructor, it is stripped and its subterms are re-
cursively compared,

4. finally, if the two terms are neutrals, they are com-
pared using neutral comparison.

Neutral comparison structurally traverses the two neutrals
to find the variable on which they are stuck, gets its type
from the context, and then uses that type information to
recursively compare the other subterms with general con-
version. If the variable is not the same, or the neutrals do
not have the same structure, they are not convertible.

6.3 Bundled algorithmic typing: invariants as an
induction principle

There is an important caveat to algorithmic typing as de-
fined in AlgorithmicTyping: it is not, in general, equivalent
to declarative typing.The reason is the waywe treat “bound-
aries” of judgements (e.g. Γ and 𝑇 in Γ ⊢ 𝑡 : 𝑇). In declara-
tive typing, whenever Γ ⊢ 𝑡 : 𝑇 holds, ⊢ Γ and Γ ⊢ 𝑇 do
too. This is enforced at the leaves of derivation trees, with
rules like the following one for variables:

wfVaR
⊢ Γ (𝑥: 𝑇 ∈ Γ)

Γ ⊢ 𝑥 : 𝑇

While this is sensible for a specification, it would be algo-
rithmically much too costly, as it would mean re-checking
the whole context at every leaf of the derivation. Instead,

implementations maintain context well-formation as an in-
variant, rather than enforcing it: contexts are only ever ex-
tended with types which are known to be well-formed, but
never fully checked.

More generally, algorithmic judgements have three kinds
of arguments: inputs, outputs and a subject. From the algo-
rithmic point of view, both inputs and the subject are argu-
ments of the function.The difference lies in what we assume
about them: inputs are assumed to be well-formed before
calling the function, while it is the function’s role to ensure
the subject is valid. For instance, in type inference Γ ⊢ 𝑡▷𝑇 ,
Γ is an input, 𝑡 is the subject, and 𝑇 is an output. The invari-
ant to maintain is twofold. First, when a function is called,
its inputs must already be known to be well-formed. Second,
when it returns positively, both its subject and output must
also be well-formed. This idea, originally due to McBride
[2018], and later dubbed “McBride discipline” in Lennon-
Bertrand [2021, 2022], imposes clear constraints on how to
design sensible bidirectional typing rules.

Most properties of algorithmic judgements only holdwhen
their inputs are well-formed, and thus the invariant preser-
vation must appear in proofs. In Lennon-Bertrand [2021],
only soundness is shown directly for bidirectional typing, all
other properties are shown on the declarative side and then
transported to the bidirectional one.Thus, theMcBride disci-
pline is treated in an ad-hoc way, by carefully crafting the in-
duction predicate for soundness to bake well-formation in-
variants in. Here, however, we need to show multiple prop-
erties of our algorithmic judgements, each needing their in-
duction. The approach of modifying induction predicates
would thus be inconvenient, becausewewould have to show
the same invariant preservation over and over again in each
inductive proof. Instead, in BundledAlgorithmicTyping we
introduce bundled algorithmic judgement, and custom in-
duction principles that handle invariant preservation once
and for all.

Bundled algorithmic judgements, pack together an algo-
rithmic judgement together with its pre-condition, i.e. well-
formation of its inputs.These are the ones shown to be equiv-
alent to the declarative ones. Note that only the “main” judge-
ment is expressed algorithmically, all other ones are only
declarative. This is because at this stage we have very few
properties of algorithmic judgements, and it would thus be
too difficult to construct these fields if they were expressed
algorithmically. For declarative judgements, on the contrary,
we can already rely on the declarative instance of the logical
relation to give us powerful theorems.

While these bundled judgements are not inductively de-
fined, they satisfy induction principles (BundledConvInduc-
tion and BundledTypingInduction). These trade a weaker
conclusion – with extra well-formation hypotheses – for in-
duction steps which are easier to prove, by having access
to extra hypotheses. Concretely, in the induction step corre-
sponding to infApp, on top of the induction hypotheses, one

LogRel.AlgorithmicTyping.html
LogRel.DeclarativeTyping.html#wfVar
LogRel.BundledAlgorithmicTyping.html
LogRel.BundledAlgorithmicTyping.html#Bundled algorithmic judgements
LogRel.BundledAlgorithmicTyping.html#BundledConvInduction
LogRel.BundledAlgorithmicTyping.html#BundledConvInduction
LogRel.BundledAlgorithmicTyping.html#BundledTypingInduction

Martin-Löf à la Coq

also knows that Γ is well-typed (pre-condition to the con-
clusion), and that moreover Γ ⊢ 𝑓 :Π𝑥: 𝐴.𝐵, Γ ⊢ Π𝑥: 𝐴.𝐵
and Γ ⊢ 𝑎 : 𝐴 (post-conditions of the premises).

We show these induction principles by regular induction
on the unbundled algorithmic judgements. This amounts to
showing once and for all invariant preservation, i.e. that pre-
conditions to recursive calls are always satisfied provided
pre-conditions of the conclusion and post-conditions of pre-
vious recursive calls. As a nice side-product, since part of
the post-condition of the algorithmic judgements is their
undirected counterparts, we get soundness of the bundled
algorithmic judgements, for free.

6.4 Properties of algorithmic typing
Using bundled induction, we are able to show most prop-
erties of algorithmic conversion in AlgorithmicConvProp-
erties. In particular, it is a partial equivalence relation, it is
stable under conversion of the type (that is, if Γ ⊢ 𝑡 ≅ 𝑡′ ◁𝑇
and Γ ⊢ 𝑇 ≅ 𝑇 ′, then Γ ⊢ 𝑡 ≅ 𝑡′ ◁𝑇 ′), and neutral com-
parison implies conversion, at any type.

Stability under conversion requires injectivity of type con-
structors: we must know that we can use the same rule for
𝑇 ′ that was used for 𝑇 , so if e.g. 𝑇 reduces to a Π type,
then 𝑇 ′ should too, with recursively related domain and
codomain to invoke induction hypotheses.

Inclusion of neutral comparison in conversion requires
normalization. Indeed, if a type supports an 𝜂 rule, this rule
is applied systematically. Hence, we can go from neutral to
comparison only at types without extensionality rules. We
thus need to know that this cannot go forever, i.e. that the
type normalizes and so that it cannot produce Π or Σ type
constructors forever.

Yet, we cannot show at this stage that bundled judgements
form an instance of generic typing. To do so, we would need
a mixed form of transitivity: if Γ ⊢ 𝑇 ≅ 𝑇 ′ (algorithmi-
cally) and Γ ⊢ 𝑇 ′ ≅ 𝑇 ″ (declaratively), then Γ ⊢ 𝑇 ≅ 𝑇 ″

(algorithmically). The natural proof idea is that if the rule
for algorithmic conversion is e.g. congruence of Π, then by
injectivity also 𝑇 ″ must reduce to a Π-type since it is con-
vertible to 𝑇 ′, and so the same rule applies. However, when
we reach the base case of neutral types, we are stuck: as
explained in Section 4.4, the logical relation does not show
that neutrals are injective!

Instead, we first inhabit an “intermediate” instance of gene-
ric typing, where conversion is taken to be (bundled) algo-
rithmic, but typing is declarative. For this instance we can
show all the required properties at that stage. By the fun-
damental lemma, we obtain completeness of bundled algo-
rithmic conversion.This is enough to establish properties of
algorithmic typing (AlgorithmicTypingProperties) and in-
habit a third, fully algorithmic instance, concluding that al-
gorithmic typing is complete. Once we show that algorith-
mic typing is decidable (Section 7.2), we obtain that type
checking is decidable for declarative typing.

7 Engineering aspects
Wedetail in this section some aspects of our implementation
strategy that could inform future formal developments: first,
the technical challenges to encode small induction recursion
in Coq; second, a report on our use of a recent library for
manipulating partial functions; and third, the impact of tac-
tics and automation on our development.

7.1 Encoding small induction-recursion, in practice
Section 5 explains the high-level strategy to implement a
logical relation for MLTT using small induction-recursion.
Here, we explain some implementation details that onemust
tackle in order to effectively encode small induction-recursion.

Avoiding code duplication. Compared to what is pre-
sented in Section 5, we generalize the type of LR to

LR@{i} : forall (ℓ : TypeLevel),
(forall ℓ', ℓ' < ℓ -> RedRel@{i}) -> RedRel@{i+1}

where 𝑖 is quantified over by prenex universe polymorphism
and the additional parameter is a form of open recursion
call. Although in practice we only care about levels 0 and 1,
we can define non-uniformly the logical relation for every
closed numeral with a single inductive definition for LR.

This allows sharing the definition of the logical relation
by packing our two definitions of reducibility into a uni-
verse polymorphic container, whose universe level does not
depend on ℓ but can be instantiated to either level.

Using the logical relation. Once the logical relation is
suitably encoded, we should avoid the specificities and intri-
cacies of the encoding when proving properties. In particu-
lar, the induction principle automatically derived by Coq
is unsuitable. This is due to the wish to only ever manipu-
late the complete, packed presentation of the logical relation
when proving properties, but also to nested inductive occur-
rences in the definition of the logical relation, for which Coq
lacks support when deriving induction principles. Thus, we
show by hand a custom induction principle, which hides our
encoding: users should never directly deal with it, but only
interact with the logical relation through its encapsulation
in the induction principle. In particular, the induction prin-
ciple allows us to prove our lemmas on reducibility for all
levels at once by making them universe polymorphic. Tac-
tics also adapt to this custom induction principle, providing
a proving experience very similar to what one would have
with an induction recursion scheme supported directly by
the proof assistant.

Proving properties of the logical relation. The prop-
erties of the logical relation presented in Section 4.1 need
to be proved in a precise order visible in the dependency
graph of the corresponding files Appendix A. Some prop-
erties would a priori need a mutual definition at types and
terms levels: for instance reflexivity of reducible conversion

LogRel.AlgorithmicConvProperties.html
LogRel.AlgorithmicConvProperties.html
LogRel.AlgorithmicConvProperties.html#completeness of bundled algorithmic conversion
LogRel.AlgorithmicConvProperties.html#completeness of bundled algorithmic conversion
LogRel.AlgorithmicTypingProperties.html
LogRel.AlgorithmicTypingProperties.html#algorithmic typing is complete
LogRel.AlgorithmicTypingProperties.html#algorithmic typing is complete

A. Adjedj, M. Lennon-Bertrand, K. Maillard, P.-M. Pédrot, L. Pujet

at type 𝐈𝐝𝐴 𝑥 𝑦 require reflexivity proofs of reducible con-
version for the subterms 𝑥 and 𝑦. We cut these dependencies
by throwing in additional data in the logical relation that
turns out to be redundant once we proved all the properties.
We need to be careful that this additional data preserve the
irrelevance of the logical relation with respect to reducible
conversion. Indeed, irrelevance turns out to be the most dif-
ficult property to establish. In particular, we generalize the
statement of the irrelevance of the logical relation so that
it also encompasses cumulativity with respect to universe
levels, and symmetry and transitivity of type conversion.

7.2 An executable type checker, in Coq
Open recursion. The idea of our implementation, based

on Winterhalter [2023], is to describe the calling graph of
our algorithm, in the “open recursion” fashion. That way,
we can use different approaches to execution, depending on
our goals: a fuelled version can be efficiently run inside Coq,
since it does not need to compute proofs; while a graph-
based version leads to a certified total type checking func-
tion check, albeit onewhich should not be runwithout proof
erasure. Moreover, this approach allows defining functions
before arguing about their termination, which means we
can run a certified sound type checker returning valid type
derivations without yet having proven its termination. 5

Concretely,Winterhalter [2023] provides a type orec A B C
of computations returning values of type C using open re-
cursive call of type ∀ (x : A), B x. This type also allows
undefined computations and calls to previously defined par-
tial functions which is crucial to scale to a library consisting
of multiple functions. As part of our development, we con-
tributed a small extension to this calling mechanism that
lower the required universe levels in the definition at the
cost of making explicit the functions that can be called. The
type ∇ x : A. B, defined as ∀ (x : A), orec A B (B x), rep-
resents open dependent partial functions from A to B.

Defining the partial functions. To define our partial
functions in the most streamlined way, and to support ef-
fective reasoning about them, we rely on a wealth of tech-
niques.The type orec A B describes the open recursionmonad
supporting the generic operations rec, call and undefined.
However, some of the functions we want to use also natu-
rally involve an exception monad, for instance type infer-
ence should return either a type or an error. This means
that to write proper monadic code, we must combine the
exception and open recursion monad, and allow to call a
function using only one of the two monadic structure (re-
duction, which uses only open recursion monad but cannot
error, or context access, which can error but is structurally
recursive) inside the combined monad.

5This is visible in the dependency graph in Appendix A, where Functions
only depends on the AST of terms, and Soundness only depends on the
definition of AlgorithmicTyping, but not on the logical relation.

A nice aspect of the open recursion approach is its nat-
ural support for modularity. Because we do not close the
recursion loop immediately, we are free to separately de-
scribe mutually defined functions. For instance, conversion
checking corresponds to six mutually-defined routines, cor-
responding to the six conv_state tags. We can define sep-
arately the six corresponding functions (conv_ty, conv_ne,
etc.), before finally combining them in the conv function.
While we do this manually, encoding mutual recursion by
non-mutual recursion with a tag, it might be interesting to
explore the possibility to integrate such a mechanism di-
rectly into Winterhalter [2023].

The implementations themselves follow closely the algo-
rithmic judgements. Only reduction is more complex: we
implement a stack machine to be able to handle reduction
under weak-head contexts.This machine is in essence a sim-
plification of MetaCoq’s. However, since we do not need
to show its termination while defining it, we avoid the very
complex dependent lexicographic order modulo a relation
needed there [Winterhalter 2020, Chapters 21-23].

Reasoning on partial functions. We wish to establish
three properties of our partial checking functions, namely

• soundness: if the function returns without raising an
error, then the corresponding judgement is derivable;

• completeness: if the corresponding judgement is deriv-
able, then the function always returns a positive re-
sult;

• termination: the function always returns a result (ei-
ther a positive one or an error) when called on inputs
satisfying its precondition.

To prove Soundness, we use functional induction, induc-
tion principles tailored to the functions’ calling graphs. A
nice aspect of open recursion is that it makes it easy to
perform this generically: a functional induction principle,
which we can use out of the box, is part of Winterhalter
[2023]. Since our functions directly follow the structure of
the algorithmic judgements, establishing their soundness is
straightforward, taking only a few lines of Ltac code – the
difficult work is soundness of the algorithmic judgements
with respect to the declarative ones. The only slightly sub-
tle proof is for reduction, because of the stack machine used
in the implementation.

Completeness is proven by bundled induction on algo-
rithmic typing. Again, the main subtlety is in dealing with
reduction. Indeed, because reduction cannot error, its com-
pleteness already encompasses termination, and we need to
rely on a somewhat complex order, whosewell-foundedness
is established by normalization. Moreover, we need to show
that whenever reduction throws an undefined error we are
indeed in an unreachable branch. This means reasoning on
the structure ofwell-typed stacks, to show that these branches
correspond to ill-typed terms. Consequently, reduction is

LogRel.Decidability.html#check
LogRel.Decidability.Functions.html#wh_red
LogRel.Decidability.Functions.html#wh_red
LogRel.Decidability.Functions.html#ctx_access
LogRel.Decidability.Functions.html
LogRel.Decidability.Soundness.html
LogRel.AlgorithmicTyping.html
LogRel.Decidability.Functions.html#conv_state
LogRel.Decidability.Functions.html#conv_ty
LogRel.Decidability.Functions.html#conv_ne
LogRel.Decidability.Functions.html#conv
LogRel.Decidability.Soundness.html
LogRel.Decidability.Completeness.html

Martin-Löf à la Coq

only complete when called on well-typed terms, and accord-
inglywe need bundled induction to have this invariant avail-
able whenever reduction is called.

The last challenge is Termination of the conversion check-
ing algorithm. We show that whenever Γ ⊢ 𝑡 ≅ 𝑢◁𝑇 , then
conversion checking terminates on the inputs Γ, 𝑡, 𝑢′ and
𝑇 , for any well-typed 𝑢′ (unrelated with 𝑢). In essence, the
structure of the proof of Γ ⊢ 𝑡 ≅ 𝑢◁𝑇 implicitly contains a
derivation of deep normalization of 𝑡, including the relevant
𝜂-expansions, and we induct on that structure. Then, by re-
flexivity we know that any well-typed term 𝑡 is convertible
to itself, which provides the derivation we need. Termina-
tion of type-checking is easy, since it is structural.

Executing partial functions. From our functions, we
can derive two implementations, with different purposes.
The first is a fuelled implementation, which computes effi-
ciently by induction on its extra natural number argument.
Some examples are included in Execution, where we use the
fuelled checker and its soundness to derive typing deriva-
tions by reflexion. Note how this only relies on soundness
of the functions, but not on their completeness or termina-
tion. The second is the total implementation, which lets us
derive a type checker with the type one expects for a proper
decision procedure, in Decidability.

7.3 Automation and its limitations
AutoSubst. We rely on the OCaml implementation of

AutoSubst 2 [Stark et al. 2019; Dapprich 2021] to deal with
all the aspect of raw syntax, define untyped renamings and
substitutions, generating boilerplate lemmas for these, and
provide tactical support to discharge equational obligations.
We heavily use the auto-generated lemmas typically through
the asimpl tactic, a decision procedure for equations in the
substitution calculus, which greatly alleviate the burden of
these tedious goals. Still, there is room for improving Au-
toSubst and its use.

First, on top of raw renamings (functions nat -> term),
we use an inductive notion of well-typed weakenings. Such
a weakening can be turned into a renaming, but the cohab-
itation of the two notions makes the development cumber-
some, and forces us to redefine AutoSubst’s built-in asimpl
to a tactic bsimpl which deals with this discrepancy. This
problem partly stems from our formalization choices, rather
than purely from AutoSubst, but it was unclear to us how
to seamlessly combine inductive reasoning on weakenings
with AutoSubst’s renamings.

Second, the asimpl/bsimpl tactics, while providing useful
decision procedures, have some practical limitations. They
rely on setoid_rewrite, which quickly becomes slow, even
on the not so large goals we have to handle, and become the

performance bottleneck in a number of proof scripts. More-
over, they are only able to work on equations without ex-
istential variables (evars). This somewhat negates the oth-
erwise powerful mechanism of evars, which lets one avoid
giving a value upfront, rather refining it as one goes along
with the proof.

Type-classes and tags. As mentioned in Section 4.2, our
logical relation is defined over a generic family of typing
(and conversion, reduction, etc.) judgements.This is not only
theoretically useful, but also doubles as a notational device,
as we attach notations to the type classes for the generic
judgements, in the Math Classes style [Spitters and Van
Der Weegen 2011].

However, disambiguation between the different judgement
families cannot be type-directed: all our typing judgements
have the same type! Instead, we rely on a system of tags, in-
habitants of a distinguished type tagwith a single construc-
tor mkTag. Each time we introduce a new family of judge-
ments we also introduce an associated new opaque inhabi-
tant of tag, and crucially keep the instances wrapped in a
module. When working on this specific instance, this mod-
ule can be imported, bringing the required instance in con-
text. Similarly, whenworking generically, as usual with type
classes, we introduce a hypothetical instance and tag. If there
is only one specific or generic instance in context, it is safe to
use the unqualified notation for typing Γ |- t : T, which
will find the unique instance available. If, however, multi-
ple instances are available (typically, when working with
both the declarative and algorithmic systems), we use a dif-
ferent notation with an explicit tag Γ |-[de] t : T, which
will find the only instance with the corresponding tag, here
the declarative one. This strategy is similar to that used by
Allamigeon et al. [2023], to solve a similar disambiguation
problem in the context of canonical structures.

Automation. We use tactics to provide for judgement-
independent notions, e.g.we use a single irrelevance tactic
to use lemmas stating that one of the logical relation judge-
ment is irrelevant in some of its parameters, or a boundary
tactic to obtain “boundary” conditions of judgement, for in-
stance to deduce from Γ |- t : T that also Γ |- T. An im-
portant part of the work achieved by the definition of the
logical relation consist in its generalization of typing con-
texts through Kripke-style quantifications over renamings
and substitutions, and we use instantiation tactics to auto-
matically apply lemmas to the relevant hypotheses. Finally,
to handle goals easily solved by using properties of a generic
typing judgements, we provide gen_typing tactic, which per-
forms a crude proof search. While these tactics already go
some way in making proof writing higher level and more

LogRel.Decidability.Termination.html
LogRel.Decidability.Execution.html
LogRel.Decidability.html

A. Adjedj, M. Lennon-Bertrand, K. Maillard, P.-M. Pédrot, L. Pujet

robust, we feel like there is a lot of space for designing tac-
tics which are more powerful, robust and predictable. A typ-
ical issue with gen_typing, for instance, is that it either suc-
ceeds quickly or fails excruciatingly slowly, resulting in brit-
tleness in the face of proof changes.

8 Future work
8.1 Extensions and improvements

Universes. It should be possible to add more universes
to obtain a hierarchy of arbitrary finite length, and we see
no theoretical obstacle in doing so, although there might be
some practical metaprogramming challenges in the defini-
tion of the logical relation. Going beyond this and tackling a
full countable hierarchy requires a different approach. If we
want to stay in axiom-free Coq and keep avoiding induction-
recursion, the natural candidate is to use impredicativity.
However, in Coq the impredicative sort Prop comes with
restrictions, and it is currently unclear to us whether these
restrictions would break a naïve port of our development to
a logical relation in Prop.

Inductive types. Our current formalization only handles
rather simple inductive types, namely𝐍, and 𝐈𝐝.While these
already encompass the main difficulties posed by inductive
types, a natural extensionwould be to addW types: together
with 𝐈𝐝, Σ, Π and a few base types, these can encode all in-
dexed inductive types [Hugunin 2020; Awodey et al. 2012],
which would really narrow the gap between our object and
metatheory to a difference in universes. A more ambitious
step would be to consider a general inductive scheme, as
used in virtually any realistic system, and in MetaCoq, in-
stead of particular examples.

Less naïve algorithms. Our current algorithm is a naïve
one, closely following the logical relation. An interesting
improvement would be to implement term-directed exten-
sionality rules [Abel and Coquand 2007]. Lennon-Bertrand
[2022, Chapter 6] shows that once one has access to the
meta-theory of the unoptimized, algorithmic variant, the
proof of equivalence is straightforward. On the bidirectional
side, we mentioned in Section 6 the common pattern, used
for instance in the kernel of Agda [Norell 2007], of trad-
ing lighter annotations – typically, unannotated abstraction
– against incomplete inference – some terms only check.
While this makes type inference in general incomplete, type
checking should stay decidable in a suitable sense. We be-
lieve that adapting our formalization to that setting is not
only possible, but would be a very interesting endeavour.

Automation. On the practical side, we feel like there is a
lot of room to improve automation, taking inspiration from
the rich Coq ecosystem. Indeed, the main difficulty for a
proof by logical relations is in the setup of the relation, but

most proof obligations are rather repetitive and unsurpris-
ing. While our tactics already relieve us from quite a bit of
this tedious work, they are far from alleviating all the pain.

Integration in MetaCoq. While there is no formal re-
lation between the present work and MetaCoq, we hope
that in the future we will be able to connect the two, show-
ing that the normalization axiom of MetaCoq is provable
at least for a subset of the language. This is challenging, be-
cause there is still a significant gap between the two sys-
tems: we use typed conversionwhileMetaCoq’s is untyped,
MetaCoq uses pattern-matching and (guarded) fixpoints in-
stead of recursors. The techniques we deploy to implement
our type checker in Section 7.2 should be useful inMetaCoq
too, delimiting further the portion of the code that depends
on normalization.

8.2 Applications
Although our development is centered on MLTT, its modu-
larity makes it amenable to study other type theories.

Definitional functor laws. An ongoing parallel project
building on this work extends MLTT with definitional func-
tor laws for the map operation on lists: map id l ≡ l and
map (f o g) l ≡ map f (map g l). In particular, the proofs
of normalization and decidability adapt with relatively little
changes on the original formalization.

Strict propositions and TTobs. Pujet and Tabareau [2023]
were the first to attempt removing induction-recursion from
their normalization proof, in order to provide a conservativ-
ity result for their theory TTobs: every numeric function that
is definable in it can also be defined in MLTT. Yet, they still
rely on first-class universe levels, a feature of Agda with lit-
tle theoretical investigation. Moreover, they cannot restrict
Agda’s positivity checker to only allow for ”standard” in-
ductive definitions, and as a matter of fact we had to signif-
icantly amend their inductively defined logical relation to
have it accepted by Coq. Thus, it would be natural to solid-
ify the conservativity result of Pujet and Tabareau [2023] by
porting their development of TTobs to our setting.

Variants ofMLTT and the multiverse. An enticing po-
tential application of this work, beyond the implementation
of various extension, is the ability to explore the interactions
of multiple extensions. This could take the shape of adding
multiple universes in order to delimit potentially incompat-
ible extensions, e.g. with uniqueness of identity proofs such
as TTobs and univalence such as some variant of homotopy
type theory or cubical type theories, and study which in-
teractions are sound, in the sense that they preserve the
metatheorems established in this formalization.

References
Andreas Abel. 2010. “Towards Normalization by Evaluation for the 𝛽𝜂-

Calculus of Constructions.” In: Functional and Logic Programming, 10th

Martin-Löf à la Coq

International Symposium, FLOPS 2010, Sendai, Japan, April 19-21, 2010.
Proceedings (LectureNotes in Computer Science). Ed. byMatthias Blume,
Naoki Kobayashi, and Germán Vidal. Vol. 6009. Springer-Verlag, 224–
239. isbn: 978-3-642-12250-7.

Andreas Abel, Klaus Aehlig, and Peter Dybjer. 2007. “Normalization by
Evaluation for Martin-Löf Type Theory with One Universe.” In: Proceed-
ings of the 23rd Conference on the Mathematical Foundations of Program-
ming Semantics (MFPS XXIII), New Orleans, LA, USA, 11-14 April 2007
(Electronic Notes inTheoretical Computer Science). Ed. byMarcelo Fiore.
Vol. 173. Elsevier, 17–39.

Andreas Abel, Guillaume Allais, Aliya Hameer, Brigitte Pientka, Alberto
Momigliano, Steven Schäfer, andKathrin Stark. 2019. “POPLMark reloaded:
Mechanizing proofs by logical relations.” Journal of Functional Program-
ming, 29, e19. doi: 10.1017/S0956796819000170.

Andreas Abel and Thierry Coquand. 2007. “Untyped Algorithmic Equality
for Martin-Löf’s Logical Framework with Surjective Pairs.” Fundamenta
Informaticae, 77, 4, 345–395. TLCA’05 special issue. http://fi.mimuw.ed
u.pl/abs77.html#15.

Andreas Abel, Thierry Coquand, and Peter Dybjer. 2007. “Normalization
by Evaluation for Martin-Löf Type Theory with Typed Equality Judge-
ments.” In: 22nd IEEE Symposium on Logic in Computer Science (LICS
2007), 10-12 July 2007, Wroclaw, Poland, Proceedings. ”IEEE Computer
Society Press”, 3–12. doi: 10.1109/LICS.2007.33.

Andreas Abel, Thierry Coquand, and Miguel Pagano. 2009. “A Modular
Type-Checking Algorithm for Type Theory with Singleton Types and
Proof Irrelevance.” In: Typed Lambda Calculi and Applications. Ed. by
Pierre-Louis Curien. Springer Berlin Heidelberg, Berlin, Heidelberg, 5–
19.

Andreas Abel, Nils Anders Danielsson, and Oskar Eriksson. Aug. 2023. “A
Graded Modal Dependent Type Theory with a Universe and Erasure,
Formalized.” Proc. ACM Program. Lang., 7, ICFP, Article 220, (Aug. 2023),
35 pages. doi: 10.1145/3607862.

Andreas Abel, JoakimÖhman, andAndrea Vezzosi. Dec. 2017. “Decidability
of Conversion for Type Theory in Type Theory.” Proc. ACM Program.
Lang., 2, POPL, Article 23, (Dec. 2017), 29 pages. doi: 10.1145/3158111.

OskarAbrahamsson,MagnusO.Myreen, RamanaKumar, andThomas Sewell.
2022. “Candle: A Verified Implementation of HOL Light.” In: 13th Inter-
national Conference on InteractiveTheorem Proving (ITP 2022) (Leibniz In-
ternational Proceedings in Informatics (LIPIcs)). Ed. by June Andronick
and Leonardo de Moura. Vol. 237. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, Dagstuhl, Germany, 3:1–3:17. isbn: 978-3-95977-252-5.
doi: 10.4230/LIPIcs.ITP.2022.3.

Arthur Adjedj, Meven Lennon-Bertrand, Kenji Maillard, Pierre-Marie Pé-
drot, and Loïc Pujet. 2023a. Logical Relation for MLTT in Coq. https://gi
thub.com/CoqHott/logrel-coq. (2023).

[SW]Arthur Adjedj, Meven Lennon-Bertrand, Kenji Maillard, Pierre-Marie
Pédrot, and Loïc Pujet, Martin-Löf à la Coq version cpp24-submission,
Sept. 2023. doi: 10.5281/zenodo.8367154, uRl: https://doi.org/10.5281/z
enodo.8367154.

Xavier Allamigeon, Quentin Canu, Cyril Cohen, Kazuhiko Sakaguchi, and
Pierre-Yves Strub. 2023. “Design patterns of hierarchies for order struc-
tures.” working paper or preprint. (2023). https://hal.inria.fr/hal-040088
20.

Steve Awodey, Nicola Gambino, and Kristina Sojakova. 2012. “Inductive
Types in Homotopy Type Theory.” In: Proceedings of the 2012 27th An-
nual IEEE/ACMSymposium on Logic in Computer Science (LICS ’12). IEEE
Computer Society, 95–104. isbn: 9780769547695. doi: 10.1109/LICS.201
2.21.

Brian Aydemir et al.. 2005. “Mechanized metatheory for the masses: the
POPLmark challenge.” In: International Conference on Theorem Proving
in Higher Order Logics. Springer, 50–65.

Bruno Barras. 1999. “Auto-validation d’un système de preuves avec familles
inductives.” Ph.D. Dissertation.

Bruno Barras. 2014. “Semantical Investigations in Intuitionistic Set Theory
and Type Theories with Inductive Families.” Habilitation thesis. (2014).
http://www.lsv.fr/~barras/habilitation/.

Bruno Barras and Benjamin Werner. 1997. “Coq in Coq.” (1997). http://ww
w.lix.polytechnique.fr/Labo/Bruno.Barras/publi/coqincoq.pdf.

Rafaël Bocquet, Ambrus Kaposi, and Christian Sattler. 2023. For theMetathe-
ory of Type Theory, Internal Sconing Is Enough. (2023). arXiv: 2302.05190
[cs.LO].

Ana Bove and Venanzio Capretta. 2005. “Modelling general recursion in
type theory.” Mathematical Structures in Computer Science, 15, 4, 671–
708. doi: 10.1017/S0960129505004822.

Venanzio Capretta. July 2005. “General Recursion via Coinductive Types.”
Logical Methods in Computer Science, Volume 1, Issue 2, (July 2005). doi:
10.2168/LMCS-1(2:1)2005.

Thierry Coquand. 2018. “Canonicity and normalisation forDependent Type
Theory.” CoRR, abs/1810.09367. arXiv: 1810.09367.

Adrian Dapprich. 2021. “Generating Infrastructural Code for Terms with
Binders using MetaCoq and OCaml.” Bachelor Thesis. Saarland Univer-
sity.

BenjaminDelaware, BrunoC. d. S. Oliveira, and TomSchrijvers. 2013. “Meta-
theory à la carte.” In: The 40th Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL ’13, Rome, Italy -
January 23 - 25, 2013. Ed. by Roberto Giacobazzi and Radhia Cousot.
ACM, 207–218. isbn: 978-1-4503-1832-7. doi: 10.1145/2429069.2429094.

Gilles Dowek. 1993. “The undecidability of typability in the Lambda-Pi-
calculus.” In: Typed Lambda Calculi and Applications. Ed. byMarc Bezem
and Jan Friso Groote. Springer Berlin Heidelberg, Berlin, Heidelberg,
139–145.

Jana Dunfield and Neel Krishnaswami. May 2021. “Bidirectional Typing.”
ACM Computing Surveys, 54, 5, Article 98, (May 2021), 38 pages. doi:
10.1145/3450952.

Peter Dybjer and Anton Setzer. 2003. “Induction-recursion and initial alge-
bras.” Annals of Pure and Applied Logic, 124, 1-3, 1–47. doi: 10.1016/S01
68-0072(02)00096-9.

Yannick Forster and Kathrin Stark. 2020. “Coq à la carte: a practical ap-
proach to modular syntax with binders.” In: Proceedings of the 9th ACM
SIGPLAN International Conference on Certified Programs and Proofs, CPP
2020, NewOrleans, LA, USA, January 20-21, 2020. Ed. by Jasmin Blanchette
and Catalin Hritcu. ACM, 186–200. isbn: 978-1-4503-7097-4. doi: 10.11
45/3372885.3373817.

Gaëtan Gilbert, Jesper Cockx, Matthieu Sozeau, and Nicolas Tabareau. Jan.
2019. “Definitional Proof-Irrelevancewithout K.” Proceedings of the ACM
on Programming Languages. POPL’19 3, POPL, (Jan. 2019), 1–28. doi: 1
0.1145/329031610.1145/3290316.

Jean-Yves Girard, Paul Taylor, and Yves Lafont. Apr. 1989. Proofs and Types.
Cambridge University Press, (Apr. 1989). isbn: 0521371813.

Daniel Gratzer, Jonathan Sterling, and Lars Birkedal. July 2019. “Imple-
menting a Modal Dependent Type Theory.” Proc. ACM Program. Lang.,
3, ICFP, Article 107, (July 2019), 29 pages. doi: 10.1145/3341711.

PeterHancock, ConorMcBride, Neil Ghani, LorenzoMalatesta, andThorsten
Altenkirch. 2013. “Small Induction Recursion.” In: Typed Lambda Calculi
and Applications. Ed. by Masahito Hasegawa. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 156–172.

Jasper Hugunin. 2020. “Why Not W?” In: 26th International Conference on
Types for Proofs and Programs, TYPES 2020, March 2-5, 2020, University of
Turin, Italy (LIPIcs). Ed. byUgo de’Liguoro, Stefano Berardi, andThorsten
Altenkirch. Vol. 188. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
8:1–8:9. isbn: 978-3-95977-182-5. doi: 10.4230/LIPIcs.TYPES.2020.8.

Ende Jin, Nada Amin, and Yizhou Zhang. June 2023. “Extensible Metathe-
oryMechanization via Family Polymorphism.” Proc. ACMProgram. Lang.,
7, PLDI, Article 172, (June 2023), 25 pages. doi: 10.1145/3591286.

https://doi.org/10.1017/S0956796819000170
http://fi.mimuw.edu.pl/abs77.html#15
http://fi.mimuw.edu.pl/abs77.html#15
https://doi.org/10.1109/LICS.2007.33
https://doi.org/10.1145/3607862
https://doi.org/10.1145/3158111
https://doi.org/10.4230/LIPIcs.ITP.2022.3
https://github.com/CoqHott/logrel-coq
https://github.com/CoqHott/logrel-coq
https://doi.org/10.5281/zenodo.8367154
https://doi.org/10.5281/zenodo.8367154
https://doi.org/10.5281/zenodo.8367154
https://hal.inria.fr/hal-04008820
https://hal.inria.fr/hal-04008820
https://doi.org/10.1109/LICS.2012.21
https://doi.org/10.1109/LICS.2012.21
http://www.lsv.fr/~barras/habilitation/
http://www.lix.polytechnique.fr/Labo/Bruno.Barras/publi/coqincoq.pdf
http://www.lix.polytechnique.fr/Labo/Bruno.Barras/publi/coqincoq.pdf
https://arxiv.org/abs/2302.05190
https://arxiv.org/abs/2302.05190
https://doi.org/10.1017/S0960129505004822
https://doi.org/10.2168/LMCS-1(2:1)2005
https://arxiv.org/abs/1810.09367
https://doi.org/10.1145/2429069.2429094
https://doi.org/10.1145/3450952
https://doi.org/10.1016/S0168-0072(02)00096-9
https://doi.org/10.1016/S0168-0072(02)00096-9
https://doi.org/10.1145/3372885.3373817
https://doi.org/10.1145/3372885.3373817
https://doi.org/10.1145/329031610.1145/3290316
https://doi.org/10.1145/329031610.1145/3290316
https://doi.org/10.1145/3341711
https://doi.org/10.4230/LIPIcs.TYPES.2020.8
https://doi.org/10.1145/3591286

A. Adjedj, M. Lennon-Bertrand, K. Maillard, P.-M. Pédrot, L. Pujet

András Kovács. 2022. “Generalized Universe Hierarchies and First-Class
Universe Levels.” In: 30th EACSL Annual Conference on Computer Sci-
ence Logic (CSL 2022) (Leibniz International Proceedings in Informat-
ics (LIPIcs)). Ed. by Florin Manea and Alex Simpson. Vol. 216. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 28:1–
28:17. isbn: 978-3-95977-218-1. doi: 10.4230/LIPIcs.CSL.2022.28.

Dominique Larchey-Wendling and Jean-François Monin. 2022. “The Braga
method: Extracting certified algorithms from complex recursive schemes
in Coq.” In: PROOF AND COMPUTATION II: From Proof Theory and Uni-
valent Mathematics to Program Extraction and Verification. World Scien-
tific, 305–386.

Meven Lennon-Bertrand. 2022. “Bidirectional Typing for the Calculus of
Inductive Constructions.” Ph.D. Dissertation. Nantes Université.

Meven Lennon-Bertrand. 2021. “Complete Bidirectional Typing for the Cal-
culus of Inductive Constructions.” In: 12th International Conference on
Interactive Theorem Proving (ITP 2021) (Leibniz International Proceed-
ings in Informatics (LIPIcs)). Ed. by Liron Cohen and Cezary Kaliszyk.
Vol. 193. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. isbn: 978-
3-95977-188-7. doi: 10.4230/LIPIcs.ITP.2021.24.

Xavier Leroy. Feb. 13, 2020.Coq en Coq. slides https://xavierleroy.org/CdF/2019-
2020/8.pdf; Literature review between 50’ and 60’. (Feb. 13, 2020). https:
//youtu.be/nuLJ5S9qh-I.

Per Martin-Löf and Giovanni Sambin. 1984. Intuitionistic TypeTheory. Stud-
ies in Proof Theory 1. Napoli: Bibliopolis.

ConorMcBride. Aug. 6, 2018. “Basics of Bidirectionalism.” Blog post. (Aug. 6,
2018). https://pigworker.wordpress.com/2018/08/06/basics-of-bidirecti
onalism/.

Conor McBride. 2015. “Turing-Completeness Totally Free.” In: Mathemat-
ics of Program Construction. Ed. by Ralf Hinze and Janis Voigtländer.
Springer International Publishing, Cham, 257–275.

Ulf Norell. Sept. 2007. “Towards a practical programming language based
on dependent type theory.” Ph.D. Dissertation. Department of Computer
Science and Engineering, Chalmers University of Technology, (Sept. 2007).

Anja Petković Komel. 2021. “Meta-analysis of type theories with an appli-
cation to the design of formal proofs.” Ph.D. Dissertation. University of
Ljubljana.

Benjamin C. Pierce and David N. Turner. Jan. 2000. “Local Type Inference.”
ACM Transactions on Programming Languages and Systems, 22, 1, (Jan.
2000), 1–44. doi: 10.1145/345099.345100.

Loıc̈ Pujet and Nicolas Tabareau. Jan. 2023. “Impredicative Observational
Equality.” Proc. ACM Program. Lang., 7, POPL, Article 74, (Jan. 2023), 26
pages. doi: 10.1145/3571739.

Loıc̈ Pujet and Nicolas Tabareau. 2022. “Observational Equality: Now for
Good.” Proc. ACM Program. Lang., 6, POPL, Article 32, 27 pages. doi:
10.1145/3498693.

Morten Heine Sørensen and Pawel Urzyczyn. 2006. Lectures on the Curry-
Howard isomorphism. Studies in Logic and the Foundations of Mathe-
matics. Vol. 149. Elsevier Science.

Matthieu Sozeau, Abhishek Anand, Simon Boulier, Cyril Cohen, Yannick
Forster, Fabian Kunze, Gregory Malecha, Nicolas Tabareau, and Théo
Winterhalter. Feb. 2020. “The MetaCoq Project.” Journal of Automated
Reasoning, (Feb. 2020). doi: 10.1007/s10817-019-09540-0.

Matthieu Sozeau, Yannick Forster, Meven Lennon-Bertrand, Jakob Botsch
Nielsen, Nicolas Tabareau, and Théo Winterhalter. Apr. 2023. “Correct
and Complete Type Checking and Certified Erasure for Coq, in Coq.”
Preprint. (Apr. 2023). https://inria.hal.science/hal-04077552.

Bas Spitters and Eelis VanDerWeegen. 2011. “Type classes formathematics
in type theory.”Mathematical Structures in Computer Science, 21, 4, 795–
825. doi: 10.1017/S0960129511000119.

Kathrin Stark, Steven Schäfer, and Jonas Kaiser. 2019. “Autosubst 2: rea-
soning with multi-sorted de Bruijn terms and vector substitutions.” In:
Proceedings of the 8th ACM SIGPLAN International Conference on Cer-
tified Programs and Proofs, CPP 2019, Cascais, Portugal, January 14-15,

2019. Ed. by Assia Mahboubi and Magnus O. Myreen. ACM, 166–180.
isbn: 978-1-4503-6222-1. doi: 10.1145/3293880.3294101.

Jonathan Sterling. Nov. 2021. “First Steps in Synthetic Tait Computability:
The Objective Metatheory of Cubical Type Theory.” Ph.D. Dissertation.
Carnegie Mellon University, (Nov. 2021). doi: 10.5281/zenodo.6990769.
Doctoral thesis of Jonathan Sterling, Carnegie Mellon University.

Qian Wang and Bruno Barras. 2013. “Semantics of Intensional Type The-
ory extended with Decidable EquationalTheories.” In: Computer Science
Logic 2013 (CSL 2013), CSL 2013, September 2-5, 2013, Torino, Italy (LIPIcs).
Ed. by Simona Ronchi Della Rocca. Vol. 23. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 653–667. isbn: 978-3-939897-60-6. doi: 10.423
0/LIPIcs.CSL.2013.653.

Paweł Wieczorek and Dariusz Biernacki. 2018. “A Coq Formalization of
Normalization by Evaluation for Martin-Löf Type Theory.” In: Proceed-
ings of the 7th ACM SIGPLAN International Conference on Certified Pro-
grams and Proofs (CPP 2018). Association for Computing Machinery,
Los Angeles, CA, USA, 266–279. isbn: 9781450355865. doi: 10.1145/316
7091.

Théo Winterhalter. 2023. “Composable partial functions in Coq, totally for
free.” In: 29th International Conference on Types for Proofs and Programs.

Théo Winterhalter. 2020. “Formalisation and meta-theory of type theory.”
Ph.D. Dissertation. Université de Nantes.

https://doi.org/10.4230/LIPIcs.CSL.2022.28
https://doi.org/10.4230/LIPIcs.ITP.2021.24
https://youtu.be/nuLJ5S9qh-I
https://youtu.be/nuLJ5S9qh-I
https://pigworker.wordpress.com/2018/08/06/basics-of-bidirectionalism/
https://pigworker.wordpress.com/2018/08/06/basics-of-bidirectionalism/
https://doi.org/10.1145/345099.345100
https://doi.org/10.1145/3571739
https://doi.org/10.1145/3498693
https://doi.org/10.1007/s10817-019-09540-0
https://inria.hal.science/hal-04077552
https://doi.org/10.1017/S0960129511000119
https://doi.org/10.1145/3293880.3294101
https://doi.org/10.5281/zenodo.6990769
https://doi.org/10.4230/LIPIcs.CSL.2013.653
https://doi.org/10.4230/LIPIcs.CSL.2013.653
https://doi.org/10.1145/3167091
https://doi.org/10.1145/3167091

Martin-Löf à la Coq

A Dependency graph of the library

	Abstract
	1 Introduction
	2 MLTT and its metatheory
	3 Related work
	4 The logical relation(s)
	4.1 Metatheory through logical relations
	4.2 Three logical relations in one
	4.3 Design choices for the logical relation
	4.4 Abstract conversion of neutrals

	5 Not-so-small induction-recursion
	6 An algorithmic presentation of MLTT
	6.1 Algorithmic/bidirectional typing
	6.2 Algorithmic conversion is bidirectional too
	6.3 Bundled algorithmic typing: invariants as an induction principle
	6.4 Properties of algorithmic typing

	7 Engineering aspects
	7.1 Encoding small induction-recursion, in practice
	7.2 An executable type checker, in Coq
	7.3 Automation and its limitations

	8 Future work
	8.1 Extensions and improvements
	8.2 Applications

	A Dependency graph of the library

