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aCentro de F́ısica Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa,
1749-016 Lisboa, Portugal;
bInstitut Lumière Matière, CNRS Université Claude Bernard Lyon 1, 69622 Villeurbanne,
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ABSTRACT
This paper addresses the theoretical foundations of pedestrian models for crowd dy-
namics. While the topic gains momentum, widely different mathematical approaches
are actually in use, even if we only consider continuous agent-based models. To clar-
ify their underpinning, we first rephrase the common hierarchical decomposition into
strategic, tactical, and operational levels and show the practical interest in preserv-
ing the continuity between the latter two levels by working with a floor field, rather
than way-points. Turning to local navigation, we clarify how three archetypical ap-
proaches, namely, reactive models, anticipatory models based on the idea of times
to collision (exemplified by the recently proposed ANDA model), and game theory,
differ in their extrapolation of future trajectories, and insist on the oft-overlooked
distinction between processes pertaining to decision-making and mechanical effects
in dense settings. The differences are illustrated with a comparison of the numerical
predictions of instances of these models in the simple scenario of head-on collision
avoidance between agents, by varying the walking speed and the reaction times,
notably.
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1. Introduction

Many breakthroughs in modern science have hinged on a reshuffling of the mathe-
matical framework in use. For instance, the ability of modern statistics to account
for the regularities of human physical features or social events [1, 2] can hardly
be dissociated from the mathematical handling of errors and uncertainties and the
then-emerging theories of probabilities [3]; similarly, the theoretical revisitation of
the foundations of economics by von Neumann and Morgenstern [4] has been instru-
mental for the progress of modern economics. Transportation Science has largely
benefited from the advances in these two disciplines.

Presently, within the field of transportation, modelling pedestrian dynamics is
a topic that gains more and more traction, due to both its practical relevance for
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crowd safety [5] and flow management, and its theoretical intricacy [6, 7]. But at
the same time, little thought has been dedicated to the soundness of its conceptual
foundations. In fact, one almost takes for granted that pedestrian models should
retain the formal structure in place in the fields that inspired them.

Thus, models originating from the field of algorithmic robotics (or computer
graphics) typically rely on the notion of velocity obstacles, i.e., the set of all velocities
leading to a collision before a predefined time horizon [8, 9, 10], and the idea that
the chosen velocity should not belong to this set. What matters most is to reach a
target while avoiding collisions at all costs. In this sense, mathematical proofs are
often given to guarantee the absence of collisions, at least in some regimes [11].

Shifting the emphasis from global maneuverability to individual choice,
economists and econometricians have employed the structure of discrete-choice mod-
els to find which step is optimal [12] and adequately calibrate their model [13]; each
agent then chooses to make a step which optimises a utility function depending on
various factors. The idea of optimal steps was also taken up in the optimal-step
model [14], from a more pragmatic standpoint.

By contrast, physicists have propounded a line of models that keep the formal
structure of Newton’s second law and handle interactions between pedestrians in
the same way as mechanical forces. This is the case for the celebrated social force
model [15] and its countless extensions and variants [16, 17, 18]. Contacts and col-
lisions between agents are then possible, particularly at high density, so that these
models are frequently used to study evacuations; besides, they heavily (arguably,
too heavily) rely on these contact forces to reproduce the collective flow of crowds
[19]. Moussaid et al. insisted on the more heuristic nature at play in pedestrians’
decisions of motion, thereby slagging off the deterministic mechanical picture and
putting forward simple heuristic rules instead, but they still resorted to a similar
force-based equation in which the heuristic pseudo-force is summed with mechanical
forces [20].

This study, which extends the short report in [21], is aimed at delving into the
structural foundations of agent-based pedestrian models and clarifying their impli-
cations and differences. For that purpose, starting from a very broad perspective,
Sec. 2 revisits the hierarchical decomposition into levels of description, showing that
it can be misguiding to adhere to the distinction between the tactical level and the
operational one too tightly. Then, we address the description of local navigation,
and notably the interface between walking choices and mechanical contacts in dense
settings, which is a singularity of crowds. After introducing three archetypal models
for operational pedestrian dynamics in Sec. 3, we expose the differences in their
numerical predictions in Sec. 4, with an emphasis on the simple scenario of head-on
collision avoidance between agents.

2. A deep dive into the foundations of pedestrian agent-based models

2.1. Levels of description of pedestrian dynamics

In this section, we will enquire into the mathematical underpinning and conceptual
relevance of splitting the modeller’s task into a strategic level (where do I want to
go and when? ), a tactical level (what route do I take to reach this goal? ) and an
operational level (how do I interact with the human and built environment locally,
en route? ), using the terminology of [22]; these levels are illustrated in Fig. 2.1. We
will question the practical implications of the stark distinction that is made between
the tactical and operational levels. This mathematical clarification will directly pave
the way for different modelling options, differing by the extent to which the future
is anticipated.

First note that the foregoing levels of description may be coupled to some extent,
but mostly rely on a coarse-grained vision of the lower levels. For instance, should I
contemplate enjoying a day at the beach in a far-away island, my ultimate strategic
decision may be influenced by my (tactical) knowledge of approximately how much it
costs to fly there, in human, financial, and environmental terms. Once the strategic
decision has been made, the agent will articulate the operational dynamics of local
navigation with the route choice operated at the tactical level.

Thanks to its intuitive formulation and practical convenience, the foregoing de-
composition has been widely applied. Nonetheless, to grasp its possible limitations,
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Figure 2.1. Schematic illustration of the different levels of description used in pedestrian modelling. Drawn
using DeepAI.org.

it is useful to make the definition sharper by phrasing it in mathematical terms,
namely, in space-time Ω× [0, T ], where Ω ⊂ R3 is the available geometric space and
[0, T ] is the time window under consideration. The evolution of a crowd of N agents
is then represented by a set of N trajectories rj(t), for j = 1...N and t ∈ [0, T ]. From
this perspective, for each agent, a strategic choice consists in selecting a target region
Tj in spacetime. The tactical choice then comes down to selecting a path route Rj ,
i.e., a class of ‘equivalent’ trajectories that lead to the target Tj , while navigation
at the operational level will lead to the materialisation of only one trajectory rj(t)
in this class.

2.2. Selection of an optimal path

Once the strategic decision is made, agent j has to select one route among all the
possibilities RT0 that match the agent’s goal. The selected route will be that which
minimises a generalised cost Cj . Thus, the tactical choice can be regarded as an
optimisation problem over a time window [0, T ], viz.,

min
routes RT0

Cj [R
T
0 ] [TACTICAL] (1)

where the route cost is defined operationally as a minimum over all trajectories rj
belonging to that route,

Cj [R
T
0 ] = min

rj∈RT0

∫ T
t
cj [rj(t

′),r−j(t
′)]︸ ︷︷ ︸

running cost

dt
′
+CTj [rj(T )]︸ ︷︷ ︸

terminal cost

[OPERATIONAL]. (2)

Here, the running cost cj depends on agent j’s trajectory as well as the other
agents’ trajectories r−j = (r1, ...,rj−1,rj+1, ...,rN ); the minimiser is the trajectory
that is selected operationally. For concreteness, below, we will study simple running
costs that just penalise large speeds and the spatial proximity to another agent with
a repulsive potential.

Noteworthily, the tactical choice of Eq. 1 is fully entangled with the operational
selection of Eq. 2. Adding to this complexity is the dependence of the individual
costs Cj on the other agents’ trajectories r−j . This is why the optimisation problem
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does not boil down to finding the local minimum of a function, but is a game
[4] between different players, the agents, each intent on optimising their cost but
unable to control the opponents’ decisions. In other words, the minimisation should
be understood in the sense of a Nash equilibrium [23], i.e., agent j’s ‘optimal’ choice
is conditioned on the fact that the the other agents’ trajectories rk, k 6= j, are also
optimal for them.

Not only does this process make the model computationally complex, but one
may also question its realism: Pedestrians are unable to accurately foresee the others’
trajectories; at best can they try to predict them, so that r−j in Eq. 2 should be

replaced by its prediction r̃
(j)
−j by agent j.

More pragmatically, one can treat future costs (say, beyond δt) using coarse-
grained estimates, viz.,

Cj [RT0 ] = Cj [Rδt0 ] + Cj [RTδt] (3)

≈ min
rj∈Rδt0

∫ δt

0

cj [rj(t
′),r−j(t

′)]dt′ + C̃j [rj(δt)], (4)

where C̃j [rj(δt)] is an approximate assessment of the future cost beyond δt, that
is assumed to depend only on the position rj(δt) reached at that time. Note, in
anticipation, that if δt is small the trajectories can be considered linear, i.e., ∀k 6=
j, rk(t) ' rk(0) + vk(0)t, so that the minimisation of Eq. 4 will ultimately reduce
to a dynamical equation of motion: at each time t, each agent j has to select an
optimal velocity v?j .

Quite interestingly, these abstract considerations surreptitiously led to the substi-
tution of the remaining cost Cj [RTδt] in the equation of motion by a floor field C̃j(r),
i.e., a real-valued function Ω→ R that quantifies how attractive a given location r
is effectively, for every class of agents. In principle, it should exactly match the cost
of the optimal route from r to the target location over the time window [δt, T ], but
in practice this cost may be assessed roughly, notably in view of the proximity of r
to the goal or via an Eikonal equation, traditionally used in ray tracing algorithms,
in which the cost of walking through a given zone plays the role of an index of
refraction [24]. We believe that this is a sensible approach and we will show that,
indeed, models premised on it can be effective.

Alternative approaches to split the tactical and operational layers

This storage of floor fields makes the tactical-operational connection seamless, but
it is relatively memory-consuming, say around a few megabytes per agent type for
a 100 m× 100 m space with a 10 cm resolution. This used to be an issue in the past,
but this is no longer so with any modern computer.

Perhaps due to this historic reason, floor fields have seldom been used in contin-
uous models, which generally handle the tactical route planning of Eq. 1 separately
from, and prior to, the local navigation of Eq. 2. The tactical layer then feeds the
operational one with a preferred velocity [25] or intermediate ‘way-points’ (glocal
description) [10, 26, 27]. (This articulation, we will argue, is by no means seamless;
see Sec. 4.1.) In this approach, routes R are defined as paths in the visibility graph
of the environment, in which two areas are linked if they are directly connected and
mutually visible. Route planning favours the route with the shortest distance or, in a
dynamic approach, the one with the shortest travel time based on current densities.
Then, this route is represented as a series of way-points, or intermediate goals, or
midway destinations (which notably go around large obstacles). Compared to the
floor field, local navigation will then be guided towards the next way-point (e.g., by
making the agent’s desired velocity point to it), rather than surf on a space-covering
map.

We claim that this presents several drawbacks. Firstly, conceptually, it introduces
an arbitrary frontier between various types of obstacles, the larger ones being ac-
counted for in route planning while the smaller ones are only considered for local
navigation [Fig. 2.2(a-b)]. Topologically, this distinction does not exist, as the only
way to discriminate trajectories is the homotopy class to which they belong, i.e.,
whether two trajectories can be smoothly deformed into one another without cross-
ing an obstacle or a no-go area. From this perspective, routes should be considered as
homotopy classes, within which the optimal trajectory member is then determined
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at the operational level.
Secondly, more pragmatically, as soon as discrete way-points are introduced, i.e.,

already at the tactical level, then the preferred route is immediately set in stone,
leaving no alternative. Not only is it unclear why this tactical prescription for static
obstacle avoidance should differ from pedestrian avoidance [Fig. 2.2(b-c)], but in
addition the choice between alternatives is fixed too early. Consider a situation in
which an agent faces a dilemma between two almost equivalent paths, one going left
and the other going right, the latter being less favourable by a very slight margin.
Adhering to the above decomposition, the route planner will select the left path and
set intermediate goals along it. Should a counter-walking pedestrian unexpectedly
obstruct the left path, the simulated agent will somewhat deviate from their planned
local navigation, but still aim to go left, whereas in reality (s)he would opt for the
right path in this circumstance. In other words, the degeneracy reflecting the quasi-
equivalence of two, or more, options is lifted too early because of this decomposition.

Figure 2.2. Route choice spans a continuum of decisions, from (a) actual routes to (b) obstacle avoidance,

or even (c) pedestrian avoidance.

2.3. Modelling local navigation

Irrespective of the way in which pedestrian routes are implemented (via a road-map
or a floor field as in Eq. 4), local pedestrian navigation will also require responding
to the motion of neighbouring pedestrians. Naturally, the reason why these are
more difficult to handle than static obstacles is that they are moving. Thus, in
spacetime, they are not cylinders (invariant by translation along the time axis),
but non-overlapping winding tubes (or tunnels) whose furtherances the agent has
to predict in order to steer appropriately; see Fig. 2.3. This is dealt with by the
integral extending into the future (in Eq. 2) in the game-theoretical approach, but
at the expense of heavy computations (which prompted the development of mean-
field versions of this approach [23, 28]).

At the other extreme, one may choose to determine each agent’s next velocity on
the sole basis of their current neighours’ positions [29], as illustrated in Fig. 2.3(a).
This leads to a reactive equation of motion akin to that of a driven passive particle
[30], subject to distance-based interactions with its neighbours.

This alluringly simple approach, however, jettisons all the prediction capabilities
of the agents (the other agents are then handled similarly to static obstacles, rep-
resented by time-invariant cylinders in space-time). To restore them partly while
keeping in check the computational cost, methods based on the anticipated time
to collision (TTC) have been put forward and validated empirically [31]. More pre-
cisely, the TTC is computed as the first time in the future at which a collision is
expected if the neighbouring agents keep their current velocities. An expression for
the TTC-based interaction energy was derived by Karamouzas and colleagues [31],
in the form of a cut-off power law. In space-time, basing the potential on the TTC
(which is a function of current positions and velocities) comes down to prolonging
the other agents’ past trajectories as cylinders invariant along their current velocity
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vector vi [Fig. 2.3(b)].

Figure 2.3. Schematic differences between different stems of agent-based models, highlighting their distinct
extrapolations of the future. In this spacetime depiction, agents’ trajectories are represented as tubes.

2.4. Mechanics of locomotion and physical contacts

Pedestrian motion occupies a singular position among transport systems in that
physical contacts can occur in close-to-normal flows at high densities. Thus, in ad-
dition to choices, mechanical effects need to be taken into account. In this respect,
the motion of pedestrian i (as a physical body of mass m and position ri), averaged
over a stepping cycle, is governed by Newton’s law of motion, viz.,

mr̈i = m
u?i − ṙi
τmech

+
∑
j 6=i

F c
j→i +

∑
w∈walls

F c
w→i, (5)

where F c
j→i and F c

w→i denote contact forces exerted by neighbouring pedestrians
and walls, respectively. The first term of Eq. 5, which represents the controllable
part of the acceleration [25] or the damped self-propelling force of an active particle,
indicates that the desired velocity u?i is not reached instantly, but only after char-
acteristic time τmech (a fraction of a second in free space) due to the cyclic human
gait or the limited friction with the substrate. Importantly, τmech only depends on
locomotion and mechanical interactions, but on no account on the reaction time.

To elucidate this distinction between this mechanical relaxation time and the
psychological reaction time, let us consider the example of a pedestrian walking on
solid ground versus skating on an ice rink. While the reaction time of the pedes-
trian in both situations is the same, τmech will be longer on the ice rink due to the
more slippery surface; the skater will thus need more time to adjust their move-
ments accordingly. To extrapolate to an even broader context, one may contrast the
mechanical response time of a boat with that of a ground vehicle. Notably, τmech

is substantially higher for the former, reflecting the specifics of moving on water.
These two examples from a broader context highlight the relevance of coupling the
mechanical layer centred on Eq. 5 with a decision-making layer determining u?i ,
which is consistent with the early insight of [25], but quite generally overlooked in
practice [6, 20, 29, 31].

Alternative approaches

Indeed, in conventional force-based models [15, 29, 31], pseudo-forces are additively
inserted into Eq. 5 to account for the deviations from u?i due to the local envi-
ronment (other agents and walls). Conceptually, this is not satisfactory, because it
puts these cognition-mediated effects on the same footing as mechanical forces, in
particular subjecting them to the same relaxation time scale τmech. The conflation
of mechanical and decisional processes is facilitated in practice by the fact that the
cognitive reaction time τψ involved in walking is of the same order of magnitude
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as τmech and that both (cognitive and mechanical) processes take place within the
confines of the same physical entity; the pedestrian. The confusion is much more
conspicuous, but of the same nature, if one considers, instead of a pedestrian, a
remote-controlled boat, for which τψ � τmech, and the control operator and the
system are spatially separated.

3. Presentation of different types of models

After clarifying the conceptual foundations of major frameworks for agent-based
pedestrian modelling and their differences, we aim to illustrate their implications in
simulations and, for that purpose, this Section introduces archetypal examples for
each of the three lines of models under consideration.

3.1. Game-theoretical model

In Sec. 2.2, we argued that the agent’s selection of a path, in interaction with
their environment, can be handled as the optimisation of a generalised cost function
(Eq. 2), subject to the concomitant path choices of other agents, hence a competition
between the agents. This defines a ‘game’ in the mathematical sense [32]. While this
assumption did not restrict the generality of the reasoning, here, to put forward a
concrete, minimalistic model, we make further simplifications: we assume that all
agents have the same type of cost function and that it takes the following simple
form

Cj
(
rj |r−j

)
=

∫ t+T

t

(
αv2 +

∑
j 6=i

V (||rij(t)||)
)
dt′ + CTj (rj(T )), (6)

where the term αv2 in the integrand penalises large speeds, V is a simple repulsive

distance-based potential, e.g., an exponential function V (r) = V0 exp
(
− r/rc

)
, and

the terminal cost CTj (r) = ±Kx, drives the agent to its goal (here going left or
right). As the scale of the cost Cj does not affect the position of its minimum, it
can be rescaled so that α = 1. Besides, for an isolated agent, V = 0, the cost Cj in
Eq. 6 is minimised for a speed v = K/2; therefore, the parameter K can be set to
2vd, where vd is the agent’s preferential speed.

The game-theoretical problem is thus well defined. To find a Nash equilibrium,
we solve Eq. 6 by splitting the cost Cj into a short-term part over a time window

[t, t+ dt] and the remaining cost u(v, t+ dt) = infv
∫ t+T
t+dt
· · ·+CTj depending on the

position rj reached at time t+dt. This leads to Hamilton-Jacobi-Bellman equations
for u, after neglecting higher-order terms:

0 =
∂u

∂t
+
∑
j 6=i

V (||rij(t)||)−
1

4
(∇u)2, (7)

with boundary condition u(r, T ) = CTj (rj). Equation 7 is solved numerically over
space and time. At each time step (dt = 0.05 s), assuming that the other agent’s
trajectory (hence rij) is known, the optimal velocity is calculated as v? = −1

2
∇ru,

after solving for u(r, t) in Eq. 7 using an Euler finite-difference scheme in space and
time, and starting from t = T ; the amplification of numerical instabilities in the
computation of derivatives is mitigated by smoothing the u-fields with a Gaussian
kernel (with standard deviation 0.05 m). Supposing that no inertia is at play, the
agent updates his or her position with r(t+ dt) = r(t) + v? dt.

We then proceed iteratively, starting from initial guesses of the two agents’ tra-
jectories ri(t) and rj(t), and then updating i and j alternatively, until convergence.
Note that initial guesses help to reach equilibrium trajectories faster but may con-
strain their shapes, as several Nash equilibria may exist. On the other hand, we have
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checked that the algorithm is robust to variations of dt and that the aforementioned
rescaling of the cost by α has no impact.

3.2. ANticipatory Dynamics Algorithm (ANDA)

The above optimisation of a full trajectory in relation with the rest of the crowd
may become computationally costly for a crowd. To achieve a trade-off between this
account of anticipation and numerical tractability, we turn to anticipatory mod-
els, and in particular the ANDA algorithm introduced in [24], which consists of a
decision-making layer and a mechanical layer (given by Eq. 5). The desired velocity
u?i

1 entering this equation is obtained from the decision-making layer as the ve-
locity that minimises a cost function E[u] comprising several contributions (Eq. 8).
We will briefly recall the main features of this function; for a detailed presentation
of the model, the reader is referred to [24].

E[u] = Ebiomech + EFF + Einertia + Eprivate−space + Eanticipation (8)

In free space, only the bio-mechanical contribution Ebiomech, measuring the (em-
pirical) physiological cost of walking at a given speed u = ||u|| [33], the static floor
field EFF exposed in Section 3 (evaluated at the position that would be reached
at the next time step with the test velocity u), and the quadratic penalty Einertia

for changing velocities too abruptly are active. In uniform motion (i.e., no inertial
effect), the chosen velocity is then directed along the gradient of EFF and its magni-
tude vpref minimises the sum of the first two contributions, as illustrated in Fig. 3.2.
Accordingly, if one knows an agent’s free-walking speed vpref , the slope of the floor
field can directly be obtained and the model contains no adjustable parameter at
this point.

EFloor-Field

+ EFloor-Field

Ebiomech

Ebiomech  

Speed (m/s)

E
n
e
rg

y
 (

a
.u

.)

Figure 3.1. Variations of the bio-mechanical cost Ebiomech (based on the data from [33]) and of the floor field

EFF with the test speed; by definition, the preferential speed vpref minimises the sum of these two contributions.

On top of these three contributions, for pedestrians walking alone (no groups),
interactions with the built environment and the crowd generate two new terms, re-
flecting two distinct types of repulsive interactions at play in pedestrian dynamics.
The first one, Eprivate−space, is based on the separation distance between an agent
and their neighbours, with a short-ranged repulsive strength decaying with distance,
which is familiar to physicists; it reflects the desire of people to preserve a private
space around themselves, whose extent may vary between individuals and between
cultures (as studied by the field of proxemics). Beyond these concerns for private
space, pedestrians also pay particular attention to the risk of future collisions and
adapt their trajectories to avoid them. Karamouzas et al. demonstrated, using em-
pirical data sets, that these effects are much more readily described using a new
variable, the anticipated time to collision (TTC), than distances [31].

In the ANDA model, we have kept this TTC-based energy, Eanticipation, except
that non-physical collisions between private spaces are also taken into account (which
results in a smoother profile) and only the most imminent collision is considered.

1We use u instead of v to highlight that the actual velocity v may differ from the one chosen by the agent,
u.
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Figure 3.2. General functional diagram of the ANDA model.

This search for an optimal velocity u?i minimising E[ui] is done every τψ seconds,
which corresponds to the aforementioned cognitive reaction time. The actual velocity
is then computed using the mechanical equation of motion, Eq. 5. In particular, it
may happen that the selected desired velocity u?i leads to a collision within τψ and
thus activates repulsive mechanical forces, an issue that we will not elaborate on
here because the examples chosen below include no physical contacts.

Incidentally, the cost E[ui] involves not only the test velocity ui of agent i, but
also the velocities uj of the other agents, in particular i’s neighbours. Here, we posit
that for these other agents the velocity to take into account is the current one, viz.,
uj = vj(t), which comes down to assuming that agent i furthers the other agents’
trajectories on the basis of the velocities that he or she currently observes. This
assumption departs from what is typically done to determine equilibrium points
in game theory, where each agent considers a situation in which the other agents’
choices are also optimal for them. Nevertheless, to lowest order in δuj = uj(t +
δt)−uj(t), the difference is transparent, insofar as a first-order expansion of E[ui]
only involves terms in δui and in δuj , j 6= i (no cross terms), and the latter do not
affect the minimiser’s value u?i .

Overall, the model follows the functional diagram outlined in Fig. 3.2. There are
only a few parameters (4 to 6, depending on how they are counted) that can be
freely adjusted, including the spatial extent and the strength of the repulsion from
the private space and the penalty for abrupt velocity changes.

3.3. Näıve social-force model

Finally, going all the way down the scale of complexity, we consider a reactive
agent-based model. A classic paradigm of this category of models, the celebrated
Social-Force-Model (SFM), hypothesizes that the local rules of navigation in a crowd
system can be formalized by only using a mechanical layer identical to Eq. 5, which
combines three different forces [29]. Formally, a pedestrian i who wants to move in
a particular direction êi at a desired speed vd, is attracted to this destination by
a driving force fDi which describes the adaptation of his/her current velocity ṙi to
his/her desired one as:

fDi =
vd − ṙi

τ
(9)

where τ is the time needed for the velocity adjustment (τ = 0.4 s below). Impor-
tantly, in this expression both vd and τ are parameters that remain constant over
time, regardless of the conditions in which the pedestrian is found. Herein lies the
main difference with the ANDA model, where, as explained above, the decisional
layer provides the optimal value for the desired speed.

As pedestrian i moves through the space, s/he is repelled by other pedestrians
j under the effect of a social force fSij = −∇Vij(rij) that mimics the interpersonal
distances desired by people when walking. Thus, the ideal path that an isolated
pedestrian would follow is permanently modulated by his/her tendency to move
away from other individuals. For this purpose, here we use a long-range repulsive
function decaying with distance, here Vij(rij) = V0 exp(−rij/rc), following [29] (note
that a more sophisticated potential had been proposed in the first paper on SFM).
Finally, physical contacts between agents might happen. To prevent pedestrians from
overlapping either with each other or with walls, contact forces fCij are introduced
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(but of little use for what follows).
Thus, at each instant t, the acceleration of a pedestrian is given by the sum of

the internal and external forces to which (s)he is subjected, leading to an evolution
of his/her speed as:

mi r̈i = fDi +
∑
j 6=i

fSij(t) +
∑
j 6=i

fCij(t) (10)

This ordinary differential equation is solved numerically with time step dt = 0.05 s.

4. Numerical comparison of the output in specific settings

After highlighting the conceptual discrepancies between the modelling branches, we
will now make use of numerical simulations of the paradigmatic models exposed
in the previous section to compare their output. While the scenarios under study
could be multiplied ad infinitum, an emphasis will here be put on the simple, but
ubiquitous task of binary collision avoidance, which allows for intuitive interpretation
of the results.

4.1. Local navigation around complex static obstacles

Before turning to collision avoidance between distinct pedestrians, we study the
avoidance of a static obstacle.

As mentioned above, this avoidance choice has an impact on the homotopy of
the trajectory, which likens it to a tactical decision. However, in practice, the avoid-
ance of small obstacles is often deferred to the operational module. In this case, the
usual method consisting in first overlooking these small obstacles and prescribing
the desired velocity towards an intermediate goal, and then taking the obstacles
into account via repulsive pseudo-forces may fail drastically when these obstacles
are of complex shape. This is illustrated with the simplified SFM in Fig. 4.1(a,c).
Technically speaking, the obstacle was made of adjacent columns, each exerting
the same repulsion as a static agent, ‖V Sij ‖ = V0 exp(−r/rc)), with V0 = 10 and
rc = 1 m. We observe that the agent is blocked ahead of the obstacle. Lowering the
repulsion to V0 = 2 is not conducive to a more realistic response for concave obsta-
cles: the agent then succeeds in entering the concave shape but gets trapped in it
[Fig. 4.1(c)]. Other agent-based models prescribing desired velocities independently
of the obstacles would fail similarly [24].

On the other hand, within ANDA, the recourse a floor field V (r) (or, more
generally, to a value function u(r, t) in game-theoretical approaches) sweeps away the
distinction between local navigation and tactics. The extensive information about
the geometry contained in the floor field naturally guides the agent around the
obstacle, irrespective of its shape [Fig. 4.1(b,d).

4.2. Frontal collision avoidance

We now turn to collision avoidance between two pedestrians, with a particular inter-
est in the qualitative features obtained when the desired speed is varied from slowly
walking agents to people running towards one another. To simulate this scenario,
we consider a scenario similar to the experiments of Moussäıd et al. [34], with two
agents initially positioned at opposite ends of a corridor, about 10 meters away from
one another and intent on reaching the other end of the corridor. Note that, in the
three models under consideration, the increase in the desired speed reflects higher
eagerness or hurry to reach the target, rather than a leisurely jogging session.

It has been shown that a SFM with forces spatially tailored in an ad hoc way
can replicate the experimentally obtained mean trajectories for casually walking
pedestrians [34]. These trajectories are also quantitatively reproduced by the ANDA
model [24], as shown in Fig. 4.2(b).

10



(d)

(b)(a)

(c)

Figure 4.1. Avoidance of a static obstacle of convex square shape or non-convex shape. (a and c) SFM

prediction for an agent walking at vd = 1.5 m/s; the obstacle is made of adjacent columns, each generating

a potential (a) with high repulsion strength V0 = 10 or (c) low strength (V0 = 2) ; (b and d) Predictions of
ANDA, for which the floor field integrates the effect of the obstacle.

With the simple SFM introduced above, without specific tailoring of the potenial
V , the replication of the experiments is of course much poorer (Fig. 4.2, top row).
For most parameters that have been tested, collisions are observed when the desired
speed is increased. The only way to prevent a collision between the agents at all
desired speeds is to impose a strong repulsion, V0 = 10. Then, at moderate speeds,
e.g., vd = 1.5m/s, this leads to a sharp and strong detouring behaviour, represented
in Fig. 4.2(c). More interesting are however the qualitative changes that occur when
vd is further increased. As the interaction is only based on distance, the avoidance
maneuver is then undertaken when collision is really imminent, i.e., much later than
one would expect. Therefore, despite the repulsion strength, at vd = 3m/s the agents
even fail to avoid one another, even though they started 10 meters away from each
other.

The situation differs widely with ANDA: since short TTC (and not only short
distances) are heavily penalised in the selection of an optimal velocity, the agents will
start interacting farther and farther ahead as vd is increased, reflecting anticipation
of the upcoming colllision. As a matter of fact, the spatial profiles of the trajectories
in Fig. 4.2(b) do not change much when vd is varied: at higher vd, at a given distance
ahead of the collision point, the stronger TTC effect tends to be balanced by the
higher eagerness to move forward. In any even, the agents manage to avoid collision
in all these circumstances.

This also holds for the game-theoretical model, where the effect of varying vd is
however felt slightly more strongly. This is due to the proportional increase of the
cost driving the agent to its goal, which starts to dominate the repulsion with other
agents. Technically speaking, here we considered a repulsive strength V0 = 1.1, which
provides acceptable results with respect to the empirical data. This parameter was
chosen so as to minimise the distance between the experimental trajectory and the
simulated one, measured in terms of the cumulative error between each simulated
trajectory point the closest point of the real trajectory, and to reach an inter-agent
distance when passing as close as possible to the experiments. Besides, note that we
have added to the terminal cost CT a term Ky ‖y‖ (with Ky = 1.5), which pulls
agents towards the central line, in order to limit their diffusion along the y-axis.

4.3. Effects of the characteristic times of the problem: distraction,
mechanical friction, ...

Let us now underscore the differences between the different timescales characterising
pedestrian motion, which are best distinguished in ANDA.

The first timescale is the psychological reaction time τψ, depending on how often
the agents refresh their perceptions of the environment (gazing activity) and need
time to react in accordance; within ANDA, it is the time interval between updates
of the desired velocity given by the decisional layer. Obviously, this time is expected
to soar if the person is engaged in a discussion or playing with their smartphones
(texting or web-browsing, in particular).

The consequences of this are illustrated in Fig. 4.3 for binary collision avoidance.

11



(c)

(b)

A
N

D
A

S
F
M

G
A

M
E
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Figure 4.2. Collision avoidance by two counter-walking agents in a straight corridor, as a function of the
preferential speed vd. Numerical predictions based on (a) game theory, (b) ANDA, (c) SFM. The experimental

data, drawn in gray, come from [34].

While already visible at low walking speeds vd = 1 m/s, these consequences get even
more striking at vd = 2 m/s. It is enlightening to confront these results with the
experiments conducted by Murakami and colleagues [35]. In these experiments, a
series of binary collision avoidance maneuvers was performed, in which one of the
two pedestrians was sometimes asked to perform some complex activity on their
smartphone while passing their counterpart. Interestingly, compared to the baseline
with no smartphone distraction, the avoidance maneuver by distracted agent is
undertaken later, but with a larger and more sudden reaction, which is qualitatively
fully consistent with the numerical output of ANDA. Meanwhile, in the experiments,
the non-distracted agent, who could not fully rely on mutual coordination for this
avoidance, undertook a larger detour well in advance, so that the distance when
passing the distracted agent is ultimately larger on average than with two non-
distracted participants. With ANDA, it is also found that the distance when passing
tends to increase with τψ: By responding with sufficient anticipation, gradual and
limited adjustments of the velocity are sufficient, whereas abrupt detours may be
needed if a collision is perceived only when it is imminent. Even though the foregoing
comparison was limited to a very qualitative level, it can easily be understood that
the ability to model digitally distracted pedestrians is vested with special interest
in an overly connected society, where accidents due to smartphone-walking are on
the surge.

The second timescale is the mechanical relaxation time τmech. Large τmech denote
a more inertial response, which would be typical of ice-skaters or swimmers, hence a
difficulty to hold or recover one’s course if the presence of inertia is not internalised
enough (bottom of Fig. 4.3). This echoes the advice given to sailors to steer the
wheel smoothly and with anticipation.
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vd = 1.0 vd = 2.0

(a)

(c) (d)

(b)

Figure 4.3. Effect of the psychological reaction time τψ and the mechanical relaxation time τmech on the

collision avoidance between two agents in a straight corridor. First row (varying time-update) for vd = 1.0 m/s

(a) and vd = 2.0 m/s (b). Second row (varying tau-mech) for vd = 1.0 m/s (c) and vd = 2.0 m/s (d).

5. Conclusion

In summary, we have examined the conceptual foundations of continuous pedes-
trian dynamics models. Starting from a broad context, we have argued that the
articulation between the tactical and operational levels of description, which tends
to coincide with the articulation between global path planning and local navigation,
raises practical issues for modelling. While it is generally operated by defining inter-
mediate way-points, the storage in memory of a ‘tactical’ floor field covering all space
offers several advantages, particularly in the presence of obstacles or uncomfortable
areas on the preferred paths. Our investigation has focused on three major branches
of models, here dubbed reactive, anticipatory, and game-like; it has shed light on the
simplifying assumptions under which a branch reduces to another one: differing in
their predictions of the future, reactive agents, anticipative agents, and game players
extrapolate future trajectories in spacetime in the form of time-invariant cylinders,
cylinders, and flexible tubes, respectively.

For illustrative purposes, an archetypal example was chosen within each modelling
branch: a simple SFM, the ANDA model, and a game in which agents interact via a
distance-based repulsive potential. While the first one struggles to replicate head-on
collision avoidance at various walking speeds, the latter two produce fairly similar
collision-avoiding trajectories. Finally, the distinction between cognitive processes
and mechanical contacts was underscored, at odds with the frequent amalgama-
tion of the two notions in existing models. The effect of the timescales associated
with these processes on collision avoidance was studied numerically; the trends pre-
dicted by ANDA when the reaction time is increased are qualitatively similar to
those reported experimentally in [35], opening the door to numerical studies of the
crowd dynamics of people distracted by their smartphones, a topic of particular rel-
evance for pedestrian safety. More generally, the development of theoretically better
grounded models is strongly advisable when it comes to exploring emerging situa-
tions for which one cannot fully rely on the (still scarce) data at hand.
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