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Introduction

In [START_REF] Dutertre | Euler obstruction and Lipschitz-Killing curvatures[END_REF] Corollary 6.10, we proved the following relation between the Euler obstruction and the Gauss-Bonnet measure:

Eu X (0) = lim ϵ→0 Λ 0 (X ∩ B ϵ , X reg ∩ S ϵ ), ( * ) 
where (X, 0) ⊂ C n is an analytic equidimensional complex germ, X reg its regular part, B ϵ (resp. S ϵ ) is the closed ball (resp. sphere) of radius ϵ centered at 0, and Λ 0 (-, -) is the Gauss-Bonnet measure (see Definition 2.6). This relation was conjectured by Fu [START_REF] Fu | Curvature measures and Chern classes of singular varieties[END_REF]. Our proof of this result relies on a local Gauss-Bonnet formula for closed subanalytic sets (see [START_REF] Dutertre | Euler characteristic and Lipschitz-Killing curvatures of closed semialgebraic sets[END_REF]) applied to the complex analytic case, which itself relies on deep results on integral geometry of definable sets established by Fu [START_REF] Fu | Curvature measures of subanalytic sets[END_REF], Bernig and Bröcker [START_REF] Bernig | Courbures intrinsèques dans les catégories analyticogéométriques[END_REF] and Bröcker and Kuppe [START_REF] Bröcker | Integral geometry of tame sets[END_REF].

The aim of the paper is to give a new characterization of the Euler obstruction, from which Equality ( * ) will be easily deduced. Our approach is purely topological and based on stratified Morse theory [START_REF] Goresky | Stratified Morse theory[END_REF]. Let us explain it briefly. We consider first (X, 0) ⊂ R n a germ of closed definable set and a C 2 definable function f defined in an open neighborhood of the origin. We fix another continuous definable function ρ defined in a neighborhood of the origin such that ρ(0) = 0, ρ(x) > 0 for x ∈ X different from 0 and ρ is of class C 2 outside the origin (see Definition 2.7). We call such a function a distance function for (X, 0). Moreover we assume that the critical points of f |X∩{ρ=ϵ} (0 < ϵ ≪ 1) lying in {f ̸ = 0} are all stratified Morse critical points. We say that ρ is Morse adapted to f (see Definition 4.1). Our first main result (Theorem 4.7) is a formula which relates the Euler characteristic of the real Milnor fibre X ∩ f -1 (-δ) ∩ S ϵ (0 < δ ≪ ϵ) to the indices of these critical points.

Then we still consider a germ of closed definable set (X, 0) ⊂ R n and we fix ρ a distance function for (X, 0). We show that for almost all v ∈ S n-1 , ρ is Morse adapted to the function v * , where v * (x) = ⟨x, v⟩, and in Theorem 4.13, we give a formula relating the Euler characteristic of the Milnor fibre of the restriction to X of a generic linear form v * to the critical points of v * |X∩{ρ=ϵ} . Afterwards we apply these results to the case of a complex analytic germ (X, 0) ⊂ (C n , 0). First we consider an analytic function F defined in a neighborhood of the origin. Applying Theorem 4.7 to the real part f of F , we obtain in Theorem 5.2 an equality that relates the Brasselet number B F |X ,X (0) to the critical points of f on the regular part of X ∩ {ρ = ϵ}, where ρ is a distance function for (X, 0) Morse adapted to f . Then we apply Theorem 4.13 and we prove in Theorem 6.3 a formula that relates the Euler obstruction Eu X (0) to the critical points on the regular part of X ∩ {ρ = ϵ} of a generic real linear form, where ρ is a distance function for (X, 0). Equality ( * ) above is then a quick corollary of this theorem, as explained in Corollary 6. [START_REF] Brasselet | Euler obstruction and defects of functions on singular varieties[END_REF].

The paper is organized as follows. In Section 2, we give prerequisities on the topology of definable sets and functions: stratified critical points, links and real Milnor fibres. We note that Theorem 2.8 which gives a homeomorphism between the real Milnor fibre and a subset of the link is new in this full generality. We continue in Section 3 with prerequisities on the topology of complex algebraic sets: the complex link and the normal Morse datum, constructible functions, the local Euler obstruction and the Brasselet number. In Section 4, we define the notion of distance function Morse adapted to a function and prove that such distance functions always exist. Then we prove our two main results on the topology of real Milnor fibres. In Section 5 and 6, we establish our formulas for the Brassselet number and the Euler obstruction.

The author thanks Matthias Zach for interesting discussions on the curvatures of complex analytic sets that led to this work.

Topological and geometrical results on definable sets

2.1. Stratified critical points. Let us consider a closed definable set X ⊂ R n . It is equipped with a finite definable Whitney stratification X = ⊔ α∈A V α (see [START_REF] Loi | Verdier and strict Thom stratifications in o-minimal structures[END_REF][START_REF] Nguyen | A geometric proof of the existence of definable Whitney stratifications[END_REF]). Let f : R n → R be a C 2 definable function.

Definition 2.1. (1) A point p ∈ X is a critical point of f |X if it is a critical point of f |V (p) , where V (p) is the stratum that contains p. (2) If p is an isolated critical point of f |X , we define the index of f at p by ind(f, X, p) = 1 -χ(X ∩ {f = f (p) -δ} ∩ B ϵ (p)), where 0 < δ ≪ ϵ ≪ 1.
We remark that the definition of the index of f at p still makes sense if p is not a critical point of f |X , and in this case ind(f, X, p) = 0. Now, we give some lemmas that we will use later on. For the proofs we refer to [START_REF] Dutertre | On the topology of semi-algebraic functions on closed semi-algebraic sets[END_REF]. We assume that f has a finite number of critical points p 1 , p 2 , . . . , p l . Lemma 2.2. If X is compact then for any α ∈ R, we have

χ X ∩ {f ≤ α} = i:f (pi)<α ind(f, X, p i ).
Let g : R n → R be a C 2 definable function such that g -1 (0) intersects X transversally. Let us suppose that f |X∩{g≤0} admits an isolated critical point p in X ∩ {g = 0} which is not a critical point of f |X . If V denotes the stratum of X that contains p, this implies that

∇(f |V )(p) = λ(p)∇(g |V )(p),
with λ(p) ̸ = 0. We assume also that f |{g=0} is a submersion at p (this is a technical condition, necessary to apply Lemma 2.1 of [START_REF] Dutertre | On the topology of semi-algebraic functions on closed semi-algebraic sets[END_REF]).

Lemma 2.3. For 0 < δ ≪ ϵ ≪ 1, we have χ f -1 (-δ) ∩ B ϵ (p) ∩ X ∩ {g ≤ 0} = 1, if λ(p) > 0 and χ f -1 (-δ) ∩ B ϵ (p) ∩ X ∩ {g ≤ 0} = χ(f -1 -δ) ∩ B ϵ (p) ∩ X ∩ {g = 0} , if λ(p) < 0. Corollary 2.4. We have that ind(f, X ∩ {g ≤ 0}, p) = 0, if λ(p) > 0, and ind(f, X ∩ {g ≤ 0}, p) = ind(f, X ∩ {g = 0}, p), if λ(p) < 0.
We will need also the notion of stratified Morse critical points. Definition 2.5. Let p be a point in X and let V be the stratum that contains p.

(1) A generalized tangent space at p is a limit of a sequence of tangent spaces

(T q k V 1 ) k∈N , where V 1 is a stratum distinct from V such that p ∈ V 1 and (q k ) k∈N is a sequence of points in V 1 tending to p. (2)
The point p is a stratified Morse critical point of f |X if it is a non-degenerate critical point of f |V if dimV > 0 and the differential df (p) does not annihilate any generalized tangent space at p.

When p is a stratified Morse critical point of f |X , the index of f |X at p admits the following description (see [START_REF] Goresky | Stratified Morse theory[END_REF]):

ind(f, X, p) = (-1) σ(p) • ind nor (f, X, p),
where σ(p) is the Morse index of f |V at p and ind nor (f, X, p) is the normal Morse index of f |X at p. It is defined as follows:

ind nor (f, X, p) = 1 -χ X ∩ N p,V ∩ B ϵ (p) ∩ {f = f (p) -δ} , where 0 < δ ≪ ϵ ≪ 1 and N p,V is a normal slice to V at p in R n such that N p,V ∩ V = {p}.
We end this subsection with the definition of the Gauss-Bonnet measure.

Definition 2.6. The Gauss-Bonnet measure on X is defined as follows:

Λ 0 (X, U ) = 1 s n-1 S n-1 x∈U ind(v * , X, x)dv,
where U is a Borel subset of X and s n-1 is the volume of the unit sphere S n-1 .

2.2.

Local link and real Milnor fibers. Let (X, 0) ⊂ (R n , 0) be the germ of a closed definable set. For convenience, we will work with a small representative that we denote by X as well. We assume that this representative is included in an open bounded neighborhood U of 0. Let {V α } α∈A be a Whitney stratification of X. Definition 2.7. A function ρ : U → R is called a distance function for (X, 0) if it is a continuous definable function of class C 2 on U \ {0}, such that ρ -1 (0) ∩ X = {0} and ρ(x) ≥ 0 for all x ∈ X.

Let ρ i : U → R, i = 1, 2, be two distance functions for (X, 0). It is wellknown that there exists ϵ i > 0 such that for 0 < ϵ ≤ ϵ i , ρ -1 i (ϵ) intersects X transversally in the stratified sense (see [START_REF] Dutertre | Stratified critical points on the real Milnor fibre and integral-geometric formulas[END_REF], Lemma 2.1), and that the topological type of ρ -1 i (ϵ) ∩ X does not depend on ϵ. Moreover, as explained by Durfee in [START_REF] Durfee | Neighborhoods of algebraic sets[END_REF], Lemma 1.8 and Corollary 3.6, there is a neighborhood Ω of 0 in R n such that for every stratum V of X, ∇(ρ 1|V ) and ∇(ρ 2|V ) do not point in opposite direction in Ω \ {0}. Applying Durfee's argument ( [START_REF] Durfee | Neighborhoods of algebraic sets[END_REF], Proposition 1.7 and Proposition 3.5), we see that ρ -1 1 (ϵ) ∩ X, 0 < ϵ ≤ ϵ 1 , and ρ -1 2 (ϵ ′ ) ∩ X, 0 < ϵ ′ ≤ ϵ 2 , are homeomorphic. The link of X at 0, denoted by Lk(X), is the set X ∩ ρ -1 (ϵ), 0 < ϵ ≪ 1, where ρ is a distance function for (X, 0). By the above discussion, the topological type of Lk(X) does not depend on the choice of the definable distance function for (X, 0).

Let f : (R n , 0) → (R, 0) be the germ of a C 2 definable function. We denote by X f the set X ∩ f -1 (0) and by [START_REF] Bekka | Regular stratification of subanalytic sets[END_REF][START_REF] Loi | Thom stratifications for functions definable in o-minimal structures on (R, +[END_REF], we can equip X with a definable Thom stratification V = {V β } β∈B adapted to X f . This means that V is a Whitney stratification of X, X f is a union of strata and for any pair of strata (V β , V β ′ ) with V β ⊈ X f and V β ′ ⊂ X f , the Thom condition is satisfied.

As explained above, there is ϵ ′ 1 > 0 such that for 0 < ϵ ≤ ϵ ′ 1 , ρ -1 1 (ϵ) intersects X f transversally. The Thom condition implies that there exists δ ϵ > 0 such that for each δ with 0 < δ ≤ δ ϵ , ρ -1 1 (ϵ) intersects X ∩ f -1 (δ) transversally as well. Hence the set X ∩ f -1 (δ) ∩ {ρ 1 ≤ ϵ} is a Whitney stratified set equipped with the following stratification:

X ∩ f -1 (δ) ∩ V β ∩ {ρ 1 < ϵ}, X ∩ f -1 (δ) ∩ V β ∩ {ρ 1 = ϵ} ; V β ⊈ X f .
Moreover, taking ϵ ′ 1 and δ ϵ smaller if necessary, the topological types of X ∩f -1 (δ)∩ {ρ 1 ≤ ϵ} and X ∩ f -1 (δ) ∩ {ρ 1 = ϵ} do not depend on the couple (ϵ, δ). To see this, it is enough to adapt the proof of Lemma 2.1 in [START_REF] Dutertre | On the topology of non-isolated real singularities[END_REF] to the stratified case. The same fact is true for negative values of f .

Of course, we can make the same construction with ρ 2 instead of ρ 1 . But as above, there is a neighborhood Ω ′ of 0 in R n such that for every stratum W of X f , ∇(ρ 1|W ) and ∇(ρ 2|W ) do not point in opposite direction. Let us choose ϵ ′ > 0 and ϵ > 0 such that {ρ 2 ≤ ϵ ′ } ⊊ {ρ 1 ≤ ϵ} ⊂ Ω ′ . If ϵ, ϵ ′ and δ are sufficiently small then, for every stratum

V ⊈ X f , ∇(ρ 1|V ∩f -1 (δ) ) and ∇(ρ 2|V ∩f -1 (δ) ) do not point in opposite direction in {ρ 1 ≤ ϵ} \ {ρ 2 < ϵ ′ }. Otherwise, by the Thom (a f )-condition, we would find a point p in X f ∩ ({ρ 1 ≤ ϵ} \ {ρ 2 < ϵ ′ }) such that either ∇(ρ 1|W )(p) or ∇(ρ 2|W )(p) vanish or ∇(ρ 1|W )(p) and ∇(ρ 2|W )(p) point in opposite direction,
where W is the stratum of X f that contains p (see the proof of Lemma 3.7 in [START_REF] Dutertre | Stratified critical points on the real Milnor fibre and integral-geometric formulas[END_REF]). This is impossible if we are sufficiently close to the origin. Applying Durfee's argument mentioned above, we see that

X ∩ f -1 (δ) ∩ {ρ 1 ≤ ϵ} is homeomorphic to X ∩ f -1 (δ) ∩ {ρ 2 ≤ ϵ ′ } and that X ∩ f -1 (δ) ∩ {ρ 1 = ϵ} is homeomorphic to X ∩ f -1 (δ) ∩ {ρ 2 = ϵ ′ }.
The positive (resp. negative) Milnor fibre of f is the set

X ∩ f -1 (δ) ∩ {ρ ≤ ϵ} (resp. X ∩ f -1 (-δ) ∩ {ρ ≤ ϵ})
, where 0 < δ ≪ ϵ ≪ 1 and ρ is a distance function for (X, 0). The set X ∩ f -1 (±δ) ∩ {ρ = ϵ} is the boundary of the Milnor fibre. By the previous discussion, the topological type of the positive (resp. negative) Milnor fibre and the topological type of its boundary do not depend on the choice of the definable distance function for (X, 0).

Similarly we can prove that the topological types of the following set X ∩ {f ≥ δ} ∩ {ρ = ϵ} (resp. X ∩ {f ≤ -δ} ∩ {ρ = ϵ}), where 0 < δ ≪ ϵ ≪ 1 and ρ is a distance function for (X, 0), does not depend on the choice of the definable distance function. The following result relates the topology of the real Milnor fibres and these subsets of the link.

Theorem 2.8. For 0 < δ ≪ ϵ ≪ 1, the negative Milnor fibre X ∩f -1 (-δ)∩{ρ ≤ ϵ} is homeomorphic to the set X ∩ {f ≤ -δ} ∩ {ρ = ϵ}.
Proof. By the previous discussion, it is enough to prove the result when the distance function for (X, 0

) is ω(x) = x 2 1 + • • • + x 2 n .
Moreover the result is already shown in the proof of Lemma 3.2 in [START_REF] Comte | Equisingularité réelle II : invariants locaux et conditions de régularité[END_REF] when f is a linear function.

Let Y = {(x, t) ; x ∈ X, t = f (x)} be the graph of f and let ω(x, t) be defined by ω(x, t) = ω(x). It is a distance function for (Y, 0) since f (0) = 0. By the case of linear functions, we know that

Y ∩ {t = -δ} ∩ {ω ≤ ϵ} is homeomorphic to Y ∩ {t ≤ -δ} ∩ {ω = ϵ} for 0 < δ ≪ ϵ. But Y ∩ {t = -δ} ∩ {ω ≤ ϵ} is homeomorphic to X ∩ {f = -δ} ∩ {ω ≤ ϵ} and Y ∩ {t ≤ -δ} ∩ {ω = ϵ} is homeomorphic to X ∩ {f ≤ -δ} ∩ {ω = ϵ}. □ 3.
Results on the topology of complex analytic germs 3.1. The complex link and the normal Morse datum. The complex link is an important object in the study of the topology of complex analytic sets. It is analogous to the Milnor fibre and was studied first in [START_REF] Lê | Vanishing cycles on complex analytic sets[END_REF]. Let X ⊂ C n be a reduced complex analytic set of dimension d. We assume that X is included in an open set U and equipped with a Whitney stratification V = {V α } α∈A , which strata are connected. We recall first the definitions of a conormal covector, a degenerate covector and an exceptional point. Definition 3.1. Let x be a point in X and let V β be the stratum that contains it. A cotangent vector η ∈ T *

x U is conormal for X at x if η(T x V β ) = 0. The notion of generalized tangent plane (see Definition 2.5) extends to the complex setting in an obvious way. Definition 3.2. A degenerate covector of V at a point x ∈ X is a covector which vanishes on a generalized tangent plane of V at x, i.e. an element η of T *

x U such that there exists a generalized tangent plane T of V at x with η(T ) = 0. Definition 3.3. A point x in X is exceptional if the degenerate conormal vectors at x form a codimension 0 subvariety of the conormal space at x. Teissier [START_REF] Teissier | Variétés polaires, II. Multiplicités polaires, sections planes, et conditions de Whitney, Algebraic geometry[END_REF] (Prop. 1.2.1, p. 461) proved that a Whitney stratified complex analytic set does not admit exceptional points.

We can now define the complex link. Let V be a stratum of the stratification V of X and let x be a point in V . Let g : (C n , x) → (C, 0) be an analytic complex function-germ such that the differential form dg(x) is not a degenerate covector of V at x. Let N C

x,V be a normal slice to V at x, i.e. N C x,V is a closed complex submanifold of C n which is transversal to V at x and N C

x,V ∩ V = {x}. Definition 3.4. The complex link L V of V is defined by

L V = X ∩ N C x,V ∩ B ϵ (x) ∩ {g = δ}, where 0 < |δ| ≪ ϵ ≪ 1.
The normal Morse datum NMD(V ) of V is the pair of spaces

NMD(V ) = X ∩ N C x,V ∩ B ϵ (x), X ∩ N C x,V ∩ B ϵ (x) ∩ {g = δ} .
The fact that these two notions are well-defined, i.e. independent of all the choices made to define them, is explained in [START_REF] Goresky | Stratified Morse theory[END_REF].

The set X can be viewed as a real analytic set in R 2n and we can compare χ(L V ) to the normal Morse indices introduced in Section 2. Since Hom R (T x V, R) is canonically isomorphic to Hom C (T x V, C), the point x is not exceptional in the real sense. Let f : C n = R 2n → R be an analytic function such that p is a stratified Morse critical point of f |X . Such a function exists because x is not exceptional and so for almost all v in T x V ⊥ , the form v * is a non-degenerate conormal covector at x in the real sense. The form df (x) is therefore a non-degenerate conormal covector at x in the real sense and the set

X ∩ N x,V ∩ B ϵ (x) ∩ {f = f (x) -δ},
introduced in Section 2 is the lower half-link of the function f |X . By [START_REF] Goresky | Stratified Morse theory[END_REF] (Theorem I 3.9.3 and Corollary 1, Section 2.5, Part II), its Euler characteristic is equal to χ(L V ). We can conclude that ind nor (f, X, x) = 1 -χ(L V ).

3.2. Constructible functions. Let (X, 0) ⊂ (C n , 0) be a reduced complex analytic germ of dimension d in a open set U ⊂ C n . We consider a complex analytic Whitney stratification V = {V α } α∈A of X. We choose a small representative of (X, 0) such that 0 belongs to the closure of all the strata. We assume that the strata V α , α ∈ A, are connected and that the analytic sets V α , α ∈ A, are reduced. Definition 3.5. A constructible function with respect to the stratification V of X is a function ϕ : X → Z which is constant on each stratum V α . This means that there exist integers n α such that we can write

ϕ = α∈A n α • 1 Vα , where 1 Vα is the characteristic function on V α . Definition 3.6. The Euler characteristic χ(X, ϕ) of a constructible function ϕ : X → Z given by ϕ = α∈A n α • 1 Vα is defined by χ(X, ϕ) = α∈A n α χ(V α ).
Definition 3.7. Let ϕ : X → Z be a constructible function with respect to the stratification V. Its normal Morse index η(V, ϕ) along V is defined by

η(V, ϕ) = χ NMD(V ), ϕ = χ X ∩ N ∩ B ϵ (x), ϕ) -χ(L V , ϕ .

3.3.

The local Euler obstruction and the Brasselet number. We keep the notations of the previous subsection and we assume that X is equidimensional. We denote by X reg the set of regular points of X. The Euler obstruction at x ∈ X, denoted by Eu X (x), was defined by MacPherson, using 1-forms and the Nash blow-up (see [START_REF] Macpherson | Chern classes for singular algebraic varieties[END_REF] for the original definition). An equivalent definition of the Euler obstruction was given by Brasselet and Schwartz in the context of vector fields [START_REF] Brasselet | Sur les classes de Chern d'un ensemble analytique complexe[END_REF]. Roughly speaking, Eu X (x) is the obstruction for extending a continuous stratified radial vector field around x in X to a non-zero section of the Nash bundle over the Nash blow-up of X. For a recent overview on the Euler obstruction and its generalizations, see [START_REF] Brasselet | Local Euler obstruction, old and new, III[END_REF].

The Euler obstruction is a constructible function and there are two distinguished bases for the free abelian group of constructible functions: the characteristic functions 1 V and the Euler obstruction Eu V of the closure V of all strata V . Moreover, the key role of the Euler obstruction comes from the following identities (see [START_REF] Schürmann | Index formula for MacPherson cycles of affine algebraic varieties[END_REF] p.34 or [START_REF] Schürmann | Topology of singular spaces and constructible sheaves[END_REF] p.292 and p.323-324):

η(V ′ , Eu V ) = 1 if V ′ = V, (1) 
and

η(V ′ , Eu V ) = 0 if V ′ ̸ = V. (2) 
In [START_REF] Brasselet | Euler obstruction and indices of vector fields[END_REF], Brasselet, Lê and Seade study the Euler obstruction using hyperplane sections, following ideas of Dubson and Kato. Theorem 3.8 ([5], Theorem 3.1). There exists a Zariski closed set H ⊂ (C n ) * , the space of complex linear forms on C n , such that for L / ∈ H, the Euler obstruction of (X, 0) is equal to:

Eu X (0) = χ X ∩ B ϵ ∩ L -1 (δ), Eu X , where 0 < |δ| ≪ ϵ ≪ 1.
Let f : X → C be an analytic function, restriction to X of an analytic function F : U → C. We assume that f has an isolated singularity (or an isolated critical point) at 0, i.e. that f has no critical point in a punctured neighborhood of 0 in X.

In [START_REF] Brasselet | Euler obstruction and defects of functions on singular varieties[END_REF] Brasselet, Massey, Parameswaran and Seade introduced an invariant which measures, in a way, how far the equality given in Theorem 3.8 is from being true if we replace the generic linear form l with some other function on X with at most an isolated stratified critical point at 0. This number is called the Euler obstruction of a function and denoted by Eu f,X (0). The following result is the Brasselet, Massey, Parameswaran and Seade formula [START_REF] Brasselet | Euler obstruction and defects of functions on singular varieties[END_REF] that compares, in the same point, the local Euler obstruction with the Euler obstruction of a function. Theorem 3.9 ([4], Theorem 3.1). Let f : X → C be a function with an isolated singularity at 0. For 0 < |δ| ≪ ε ≪ 1 we have:

Eu X (0) -Eu f,X (0) = χ X ∩ B ϵ ∩ f -1 (δ), Eu X , where 0 < |δ| ≪ ϵ ≪ 1.
In [START_REF] Seade | Milnor Numbers and Euler obstruction[END_REF], Seade, Tibȃr and Verjovsky show that the Euler obstruction of f is closely related to the number of Morse points of a Morsefication of f , as it is stated in the next proposition. Proposition 3.10 ([35], Proposition 2.3). Let f : X → C be the an analytic function with isolated singularity at the origin. Then:

Eu f,X (0) = (-1) d n reg ,
where n reg is the number of Morse points on X reg in a stratified Morsefication of f lying in a small neighborhood of 0.

The reader may refer to [START_REF] Dutertre | Some notes on the Euler obstruction of a function[END_REF][START_REF] Ebeling | Radial index and Euler obstruction of a 1-form on a singular variety[END_REF][START_REF] Massey | Characteristic cycles and the relative local Euler obstruction, A panorama of singularities[END_REF][START_REF] Zach | A generalization of Milnor's formula[END_REF] for further works on the Euler obstruction of a function.

Let us now recall the definition of the Brasselet number, defined in [START_REF] Dutertre | Lê-Greuel type formula for the Euler obstruction and applications[END_REF] in order to get a relative version of the polar multiplicity formula for the Euler obstruction due to Lê and Teissier [START_REF] Lê | Variétés polaires locales et classes de Chern des variétés singulières[END_REF].

Definition 3.11 ([17], Definition 3.18). Let us assume that V is a Thom stratifi- cation of X adapted to X f = X ∩ f -1 (0). We define B f,X (0) by: B f,X (0) = χ X ∩ B ϵ ∩ f -1 (δ), Eu X , where 0 < |δ| ≪ ϵ ≪ 1.
The reader may refer to [START_REF] Dalbelo | Brasselet number and Newton polygons[END_REF][START_REF] Santana | Brasselet number and function-germs with a one-dimensional critical set[END_REF] for further works on the Brasselet number. In the rest of the paper, we will explain how to obtain a result in the spirit of the result of Seade, Tibȃr and Verjovsky mentioned above, i.e. how to relate the Brasselet number (and the Euler obstruction) to Morse critical points.

Stratified Morse functions on the link

4.1. The general case. Let (X, 0) ⊂ (R n , 0) be the germ of a closed definable set. For convenience, we will work with a small representative that we denote by X as well. We assume that this representative is included in an open bounded neighborhood U of 0. Let f : (R n , 0) → (R, 0) be the germ of a definable function of class C 2 . We denote by X f the set X ∩ f -1 (0). We equip X with a Thom stratification V = {V α } α∈A adapted to X f , such that 0 ∈ V α for α ∈ A.

Let ρ : U → R be a distance function for (X, 0). Let Γ f,ρ be the following polar set:

Γ f,ρ = V β ⊈X f Γ V β f,ρ = V β ⊈X f x ∈ V β ; rank ∇(f |V β )(x), ∇(ρ |V β )(x) < 2 .
Definition 4.1. We say that ρ is Morse adapted to f if (1) Γ f,ρ is a 1-dimensional C 1 defined submanifold (possibly empty) in a neighborhood of the origin, (2) there exists ϵ ρ such that for 0 < ϵ ≤ ϵ ρ , (a) the critical points of the function

f |X∩{ρ=ϵ} lying outside X f are strat- ified Morse critical points, (b) if V is a stratum of X such that V ⊈ X f and 0 < dimV < n, then at any critical point of f |V ∩{ρ=ϵ} , f |{ρ=ϵ} is a submersion.
We note that the critical points of f |X∩{ρ=ϵ} lying outside X f are exactly the intersection points of Γ f,ρ and {ρ = ϵ}. We remark that Condition (2b) is a technical condition, necessary to apply Lemma 2.1 of [START_REF] Dutertre | On the topology of semi-algebraic functions on closed semi-algebraic sets[END_REF].

The aim of this subsection is to prove the existence of Morse adapted functions. We denote by Sym(R n ) the set of symmetric n × n-matrices with real entries, by Sym * (R n ) the open dense subset of such matrices with non-zero determinant and by Sym +, * (R n ) the open subset of these invertible matrices that are positive definite. Note that these sets are semi-algebraic. For each A ∈ Sym +, * (R n ), we denote by ρ A the following quadratic form:

ρ A (x) = ⟨Ax, x⟩.
Lemma 4.2. Let V be a stratum of X \ X f of dimension greater than or equal to 2. There exists a definable set

Σ 1 V,f ⊂ Sym +, * (R n ) of positive codimension such that for A / ∈ Σ 1 V,f , (1) Γ V f,ρ A is a C 1 definable curve, (2 
) there exists ϵ A > 0 such that for 0 < ϵ ≤ ϵ A , the critical points of f |V ∩{ρ A =ϵ} are non-degenerate.

Proof. Let Y be the following definable set:

Y = (x, A) ∈ R n × Sym +, * (R n ) | x ∈ V and rank ∇f |V (x), ∇ρ A|V (x) < 2 .
Let (y, B) be a point in Y . We can suppose that around y, V is defined by the vanishing of k definable functions g 1 , . . . , g k of class C 2 . Hence in a neighborhood of (y, B), Y is defined be the vanishing of g 1 , . . . , g k and the minors

∂(g 1 , . . . , g k , f, ρ A ) ∂(x i1 , . . . , x i k+2 ) .
Furthermore, since f (y) ̸ = 0, we can assume that

∂(g 1 , . . . , g k , f ) ∂(x 1 , . . . , x k , x k+1 ) (y) ̸ = 0, in a neighborhood of y. Therefore Y is locally defined by g 1 = • • • = g k = 0 and ∂(g 1 , . . . , g k , f, ρ A ) ∂(x 1 , . . . , x k+1 , x k+2 ) = • • • = ∂(g 1 , . . . , g k , f, ρ A ) ∂(x 1 , . . . , x k+1 , x n ) = 0.
Let us write M = ∂(g1,...,g k ,f ) ∂(x1,...,x k ,x k+1 ) and for i ∈ {k + 2, . . . , n}, m i = ∂(g1,...,g k ,f,ρ A ) ∂(x1,...,x k+1 ,xi) .

If A = [a ij ] then ρ A (x) = n i=1 a ii x 2 i + 2 i̸ =j a ij x i x j ,
and so ∂ρ A ∂xi (x) = 2 n j=1 a ij x j . For i ∈ {k + 1, . . . , n} and j ∈ {1, . . . , n}, we have

∂m i ∂a ij = 2x j M.
Since y ̸ = 0, one of the x j 's does not vanish in the neighborhood of y and we can conclude that the rank of

[∇g 1 (x), . . . , ∇g k (x), ∇m k+2 (x, A), . . . , ∇m n (x, A)] is n -1 and that Y is a C 1 manifold of dimension n(n+1) 2 + 1. Now let us consider the projection π : Y → Sym +, * (R n ), (x, A) → A.
Bertini-Sard's theorem implies that the set D π of critical values of π is a definable set of dimension strictly less than n(n+1)

2

. We take Σ 1

V,f = D π . Let A be a matrix not in D π . Then π -1 (A) = Γ V f,ρ A is a C 1 definable curve. Let ϵ > 0 be such that ρ -1
A (ϵ) intersects V and π -1 (A) transversally. The critical points of f |V ∩{ρ A =ϵ} are the intersection points of {ρ A = ϵ} ∩ V and π -1 (A). Let x be one of these intersection points. Since ρ -1 A (ϵ) and V intersect transversally at x, one can assume that ∂(g1,...,g k ,ρ A ) ∂(x1,...,x k ,x k+1 ) (x) ̸ = 0. This implies that ∂(g1,...,g k ,f ) ∂(x1,...,x k ,x k+1 ) (x) ̸ = 0 because x is not a critical point of f |V and x belongs to π -1 (A). Therefore, with obvious notations, the curve π -1 (A) is defined locally around x by the vanishing of g 1 , . . . , g k and m k+1 (-, A), . . . , m n (-, A). Moreover the gradient vectors ∇g 1 (x), . . . , ∇g k (x), ∇ x m k+2 (x, A), . . . , ∇ x m n (x, A), are linearly independent. Since ρ -1 A (ϵ) intersects π -1 (A) transversally, the gradient vectors

∇g 1 (x), . . . , ∇g k (x), ∇ρ A (x), ∇ x m k+2 (x, A), . . . , ∇ x m n (x, A),
are also linearly independent. By Lemma 3.2 in [START_REF] Szafraniec | A formula for the Euler characteristic of a real algebraic manifold[END_REF], this implies that x is a non-degenerate critical point of

f |V ∩ρ -1 A (ϵ) . It is enough to take ϵ A such that for 0 < ϵ ≤ ϵ A , ρ -1
A (ϵ) intersects V and π -1 (A) transversally. □ Lemma 4.3. Let V be a stratum of X \ X f of dimension greater than or equal to 2. There exists a definable set

Σ 2 V,f ⊂ Sym +, * (R n ) of positive codimension such that for A / ∈ Σ 2 V,f , there exists ϵ ′ A such that for 0 < ϵ ≤ ϵ ′ A , the following property is satisfied: for any x ∈ (V \ V ) ∩ ρ -1
A (ϵ) ∩ {f ̸ = 0} and for any generalized tangent plane T at x coming from

V ∩ ρ -1 A (ϵ), i.e. T = lim xi→x T xi (V ∩ ρ -1 A (ϵ)) where x i ∈ V ∩ ρ -1
A (ϵ), we have dρ A (x)(T ) ̸ = 0. Proof. We consider the definable set Y defined in the previous lemma. Then Y \ Y is a definable set of dimension n(n+1)

2

. This implies that there exists a definable set Σ

2 V,f ⊂ Sym +, * (R n ) of positive codimension, such that for A / ∈ Σ 2 V,f , the set Y \ Y ∩ π -1 (A) has dimension 0. It is enough to take ϵ ′ A such that for 0 < ϵ ≤ ϵ ′ A , ρ -1
A (ϵ) intersects V transversally (in the stratified sense) and such that ϵ ′ A is strictly smaller than the minimum of the following set:

ρ A (x) ; x ∈ (Y \ Y ) ∩ π -1 (A) and ρ A (x) > 0 . □ Lemma 4.4. Let (R, 0) ⊂ (R n ,
0) be the germ of a definable set of dimension less than n. There exists a definable set Σ 3 V,f ⊂ Sym +, * (R n ) of positive codimension such that for A / ∈ Σ 3 V,f , there exists ϵ ′′ A such that for 0 < ϵ ≤ ϵ ′′ A , the critical points of f |ρ -1 A (ϵ)∩{f ̸ =0} lie outside R. Proof. Since R admits a finite definable stratification, we can assume that R is a C 2 definable manifold of dimension d with d < n. Let Z be the following definable set:

Z = (x, A) ∈ R n × Sym +, * (R n ) ; x ∈ R \ {f = 0} and rank [∇f (x), ∇ρ A (x)] < 2 .
Using the same method as in Lemma 4.2, we can prove that Z is a C 1 definable manifold of dimension n(n+1) 2 + 1 + d -n and conclude, remarking that d -n ≤ -1. □ Corollary 4.5. There exists a definable subset Σ X,f ⊂ Sym +, * (R n ) of positive codimension such that for A / ∈ Γ X,f , ρ A is Morse adapted to f .

Proof. We note that ρ A is clearly a distance function for (X, 0). By Lemmas 4.2 and 4.3, we get Conditions ( 1) and (2a). Applying Lemma 4.4 to the union of the strata of X that have dimension less than n, we obtain Condition (2b). □

Let us fix ρ a distance function for (X, 0), Morse adapted to f , and let ϵ ρ be as in Proof. We prove the constancy of the first function on a small intervall ]0, ϵ b ] as in Lemma 3.1 of [START_REF] Dutertre | Principal kinematic formulas for germs of closed definable sets[END_REF]. Keeping the notations used in Lemma 4.2 and using the computations of [START_REF] Szafraniec | A formula for the Euler characteristic of a real algebraic manifold[END_REF], we know that

(-1) σ(p) = (-1) n(n-k) sign ∂(g 1 , . . . , g k , ρ) ∂(x 1 , . . . , x k+1 ) (p) n-k × sign ∂(g 1 , . . . , g k , M k+2 , . . . , M n ) ∂(x 1 , . . . , x n ) (p) ,
where M i = ∂(f,g1,...,g k ,ρ) ∂(x1,...,x k+1 ,xi) for i = k + 2, . . . , n. This implies that the function ϵ → (-1) σ(p) is locally constant, hence constant on ]0, ϵ b ]. The constancy of the normal index follows straightfully. □ For b ∈ B, let τ (b) (resp. τ nor (b), resp. σ(b)) be the value that the function ϵ → ind(f, X ∩ {ρ = ϵ}, p) (resp. ind nor (f, X ∩ {ρ = ϵ}, p), resp. (-1) σ(p) ) takes close to the origin. Let us write B = B + ⊔ B -, where B + (resp. B -) is the set of half-branches of B on which f > 0 (resp. f < 0). The following result relates the topology of the real Milnor fibre to the above indices.

Theorem 4.7. For 0 < δ ≪ ϵ ≪ 1, we have χ f -1 (-δ) ∩ X ∩ B ϵ = b∈B - τ (b) = b∈B - σ(b) • τ nor (b).
Proof. By the results of Section 2, there exist 0 < δ ≪ ϵ ≪ 1 such that f -1 (-δ) ∩ X ∩ {ρ ≤ ϵ} has the topological of the negative Milnor fibre and such that

χ f -1 (-δ) ∩ X ∩ {ρ ≤ ϵ} = χ {f ≤ -δ} ∩ X ∩ {ρ = ϵ} .
By the Lojasiewicz inequality applied to Γ f,ρ , |f | and ρ ([7], Proposition 1.5.1), there exists a

C 1 function ψ : (R n , 0) → (R, 0) such that ψ(u) > 0 for u > 0 and such that |f (p)| ≥ ψ(ρ(p)) for p ∈ Γ f,ρ . Hence if p is a critical point of f |X∩{ρ=ϵ} such that f (p) ̸ = 0, then |f (p)| ≥ ψ(ϵ).
Therefore for δ smaller than ψ(ϵ), we have by Lemma 2.2,

χ {f ≤ -δ} ∩ X ∩ {ρ = ϵ} = p∈Γ f,ρ ∩{ρ=ϵ} f (p)<0 ind(f, X ∩ {ρ = ϵ}, p) = b∈B - τ (b).
The second equality is straightforward. □ 4.2. The case of linear functions. In this subsection, we fix a distance function ρ for (X, 0), and we prove that for almost all v ∈ S n-1 , ρ is Morse adapted to v * . We assume that X is equipped with a definable Whitney stratification V = {V α } α∈A , such that 0 ∈ V α for α ∈ A.

Lemma 4.8. There exists a definable subset Σ ⊂ S n-1 of positive codimension such that for all v / ∈ Σ, v * |X has an isolated (stratified) critical point at the origin. Proof. See [START_REF] Dutertre | Stratified critical points on the real Milnor fibre and integral-geometric formulas[END_REF], Corollary 4.2. □ Lemma 4.8 implies that for v / ∈ Σ, the partition

{V α \ {v * = 0}, V α ∩ {v * = 0} ; α ∈ A} is a Thom stratification of X adapted to X v * and that Γ v * ,ρ = α∈A x ∈ V α ; rank v, ∇(ρ |Vα )(x) < 2 \ {0}.
Lemma 4.9. Let V be a stratum of X of dimension greater than or equal to 2.

There exist ϵ 1 > 0 and a definable set

Σ 1 V ⊂ S n-1 of positive codimension such that for v / ∈ Σ 1 V , (1) Γ v * ,ρ is a C 1 definable curve, (2) 
for 0 < ϵ ≤ ϵ 1 , the critical points of v * |X∩{ρ=ϵ} are non-degenerate. Proof. See [START_REF] Dutertre | Euler obstruction and Lipschitz-Killing curvatures[END_REF], Lemma 6.4. □ Lemma 4.10. Let V be a stratum of X of dimension greater than or equal to 2. There exits a subanalytic set Σ 2 V ⊂ S n-1 of positive codimension such that for v / ∈ Σ 2

V , there exists ϵ v > 0 such that and for 0 < ϵ ≤ ϵ v , v * (T ) ̸ = 0 for any degenerate tangent plane T coming from V ∩ {ρ = ϵ}, i.e. T = lim xi→x T xi (V ∩ {ρ = ϵ}) where

x i ∈ V ∩ {ρ = ϵ} and x ∈ (V \ V ) ∩ {ρ = ϵ}.
Proof. See [START_REF] Dutertre | Euler obstruction and Lipschitz-Killing curvatures[END_REF], Lemma 6.5. □ Lemma 4.11. Let (R, 0) ⊂ (R n , 0) be the germ of a definable set of dimension less than n. There exists a definable set

Σ 3 X ⊂ S n-1 of positive codimension such that for v / ∈ Σ 3 X , there exists ϵ ′′ v such that for 0 < ϵ ≤ ϵ ′′ v , the critical points of v * |ρ -1 (ϵ) lie outside R.
Proof. The proof is the same as the one of Lemma 4. 

χ {v * = -δ} ∩ X ∩ B n ϵ = b∈B - v τ (b) = b∈B - v σ(b) • τ nor (b).
Remark 4.14. In [START_REF] Dutertre | Euler obstruction and Lipschitz-Killing curvatures[END_REF], we proved this equality when ρ is the usual euclidean distance.

Application to complex analytic germs

Let (X, 0) ⊂ (C n , 0) be a reduced complex analytic germ of dimension d > 0 in a open set U ⊂ C n . Let F : (C n , 0) → (C, 0) be an analytic function-germ. We assume that F is defined on U . We consider a complex analytic Thom stratification V = {V α } α∈A of X adapted to X F = X ∩ F -1 (0). We denote by A * the set of strata that are not contained in X F . We choose a small representative of X ⊂ U such that 0 belongs to the closure of all the strata. Let V 0 be the stratum that contains 0. We assume that the strata are connected and that for α ∈ A, the analytic set V α is reduced. We observe that V 0 = V 0 as analytic germs.

Let f = Re(F ) : (C n , 0) → (R, 0), be the real part of F . By Proposition 2.A.3 in [START_REF] Goresky | Stratified Morse theory[END_REF], the complex Milnor fibre of F |X is homeomorphic to the product of the (negative or positive) real Milnor fibre times an interval. Therefore

χ X ∩ F -1 (η) ∩ B ϵ = χ X ∩ f -1 (-δ) ∩ B ϵ = χ X ∩ f -1 (δ) ∩ B ϵ , for 0 < |η| ≪ ϵ and 0 < δ ≪ ϵ.
We can apply the methods developed in Section 4 to the real part f of F . For this, we need a Thom stratification of X adapted to X f . Since the (stratified) singular loci of F |X and f |X coincide, the following partition:

V α \ {f = 0}, V α ∩ {f = 0} ; α ∈ A * ⊔ V α ; α ∈ A \ A * is suitable.
So let ρ be a distance function for (X, 0), Morse adapted to f . Let Γ f,ρ be the relative polar set defined in Section 4 and let us decompose it in the following way: Γ f,ρ = B + ⊔ B -, where B + (resp. B -) is the set of half-branches on which f > 0 (resp. f < 0).

Let us fix a half-branch b of B -, let V be the stratum that contains b and let p be a point in b such that

τ (b) = ind(f, X ∩ {ρ = ϵ}, p), τ nor (b) = ind nor (f, X ∩ {ρ = ϵ}, p)
and σ(b) = (-1) σ(p) . Let us denote by Sϵ the sphere {ρ = ϵ}. Let N p,V ∩ Sϵ be a normal slice to

V ∩ Sϵ such that N p,V ∩ Sϵ ∩ (V ∩ Sϵ ) = {p}. Then N p,V ∩ Sϵ ∩ Sϵ is a normal slice to V such that (N p,V ∩ Sϵ ∩ Sϵ ) ∩ V = {p}. Moreover, since the form df (p) |N p,V ∩ Sϵ is non- degenerate for X ∩ Sϵ ∩ N p,V ∩ Sϵ at p, the form df (p) |N p,V ∩ Sϵ ∩ Sϵ is non-degenerate
for X ∩ Sϵ ∩ N p,V ∩ Sϵ at p as well. Therefore the set

X ∩ N p,V ∩ Sϵ ∩ S ϵ ∩ B ν (p) ∩ {f = f (p) -δ},
is the lower half-link of f |X and, as already explained in Section 3, its Euler characteristic is equal to χ(L V ) and so τ nor (b) = η(V, 1 X ) and τ

(b) = σ(b) • η(V, 1 X ).
Let us decompose Γ f,ρ more finely:

Γ f,ρ = α∈A * B + α ⊔ B - α ,
where B + α (resp. B - α ) is the set of half-branches contained in V α ∩ {f > 0} (resp. V α ∩ {f < 0}). The next theorem relates the Euler integral on the Milnor fibre of a constructible function to the indices σ(b).

Theorem 5.1. Let ϕ : X → Z be a constructible function with respect to the stratification V. For 0 < |η| ≪ ϵ ≪ 1, we have

χ X ∩ F -1 (η) ∩ B ϵ , ϕ = α∈A * η(V α , ϕ) b∈B - α σ(b) = - α∈A * η(V α , ϕ) b∈B + α σ(b).
Proof. Let us prove the first equality. Combining Theorem 4.7, the relation between the complex and real Milnor fibres and the above discussion, we get

χ X ∩ F -1 (η) ∩ B ϵ = α∈A * η(V α , 1 X ) b∈B - α σ(b), ( * )
that is the expected equality for ϕ = 1 X . Let V be a stratum of X. Then the formula is also true for

ϕ = 1 V because η(V ′ , 1 V ) = 0 if V ′ ⊈ V .
Since both sides of the equality are linear in ϕ, this gives the result. The second equality is obtained replacing f with -f and using the fact that the links of the strata are odd-dimensional. □

The following theorem is a consequence of the previous one. It gives an equality that relates the Brasselet number of F |X to the critical points of f on the regular part of the link. Theorem 5.2. Let us suppose that X is equidimensional. Let ρ be a distance function for (X, 0), Morse adapted to f . Let B + reg (resp. B - reg ) be the set of halfbranches of Γ f,ρ that are included in X reg ∩ {f > 0} (resp. X reg ∩ {f < 0}). We have

B F |X ,X (0) = b∈B - reg σ(b) = - b∈B + reg σ(b).
Proof. We remark that a half-branch b is included in X reg if and only if it is included in a top dimensional stratum V α , where α ∈ A * . We apply the previous theorem to ϕ = Eu X and use the fact that η

(V α , Eu X ) = 0 if V α is not a top dimensional stratum and that η(V α , Eu X ) = 1 if V α is a top dimensional stratum. □
The next corollary shows that the link of f |X and the Milnor fibres of f |X have the same Euler characteristic, though they may be not homeomorphic.

Corollary 5.3. For 0 < δ ≪ ϵ ≪ 1, we have χ X ∩ {f = -δ} ∩ S ϵ = χ X ∩ {f = δ} ∩ S ϵ = χ Lk(X f ) .
Proof. Let us apply Theorem 3.2 in [START_REF] Dutertre | Semi-Algebraic Functions with Non-Compact Critical Set[END_REF]. For 0 < ϵ ≪ 1, we can write

χ X ∩ {ρ = ϵ} = α∈A * η(V α , 1 X ) b∈B + α ⊔B - α σ(b) + ind g f, X ∩ {ρ = ϵ}, f -1 (0) , where ind g f, X ∩ {ρ = ϵ}, f -1 (0) = χ X ∩ {ρ = ϵ} ∩ f -1 (0) -χ X ∩ {ρ = ϵ} ∩ f -1 (-δ) ,
with 0 < δ ≪ ϵ, because X ∩ {ρ = ϵ} is compact. Moreover, applying Theorem 5.2 to each V α , we get that b∈B + α ⊔B - α σ(b) = 0. We conclude with the fact that the link of X has Euler characteristic equal to zero. □

Let us remark that all the results presented in this section hold if we replace the real part of F with its imaginary part.

Application to the Euler obstruction

Let (X, 0) ⊂ (C n , 0) be a reduced complex analytic germ of dimension d > 0 in a open set U ⊂ C n . We consider a complex analytic Whitney stratification V = {V α } α∈A of X. We choose a small representative of X ⊂ U such that 0 belongs to the closure of all the strata. Let V 0 be the stratum that contains 0. We assume that the stratum are connected and that for α ∈ A, the analytic set V α is reduced. We observe that V 0 = V 0 as analytic germs.

We fix a distance function ρ for (X, 0). By the results of Subsection 4.2, we know that there exists a subanalytic set Σ ρ ⊂ S 2n-1 of positive codimension such that for v / ∈ Σ ρ , ρ is Morse adapted to X and v * . For v / ∈ Σ ρ , let us decompose Γ v * ,ρ in the following way:

Γ v * ,ρ = α∈A B + v,α ⊔ B - v,α , where B + v,α (resp. B - v,α ) is the set of half-branches contained in V α ∩ {v * > 0} (resp. V α ∩ {v * < 0}
). The next theorem relates the Euler integral on the Milnor fibre of a generic linear form of a constructible function to the indices σ(b). We recall that if l : R 2n → R is a linear form then there exists a unique complex linear form L : C n → C such that l = Re(L). Namely if l(x, y) = Proof. The proof is similar to the one of Theorem 5.1, applying Theorem 4.13 and taking into account the fact that the discussion on the normal indices made before Theorem 5.1 applies also here. □

In order to get the formula for the Euler obstruction, we need a lemma on the genericity of linear forms. Lemma 6.2. Let (C n ) * be the space of complex linear forms on C n and let (R 2n ) * be the space of complex linear forms on R 2n . Let H be a Zariski closed subset of (C n ) * of positive codimension. Let H R = l ∈ (R 2n ) * ; ∃L ∈ H such that Re(L) = l .

Then H R is a Zariski closed subset of (R 2n ) * of positive codimension.

Proof. If H is given by the vanishing of complex polynomials G 1 , . . . , G r , then H R is defined by the vanishing of the real polynomials g 1 , . . . , g r and h 1 , . . . , h r given by g l (x, y) = Re(G l )(x, -y) and h l (x, y) = Im(G l )(x, -y). □ Theorem 6.3. Let us suppose that X is equidimensional. There exists a subanalytic subset Σ ′ ρ of positive codimension such that Σ ρ ⊂ Σ ′ ρ and for v / ∈ Σ ′ ρ , we have Eu X (0) = where B + v,reg (resp. B - v,reg ) be the set of half-branches of Γ v * ,ρ that are included in X reg ∩ {v * > 0} (resp. X reg ∩ {v * < 0}).

Proof. By Theorem 3.8, there exists a Zariski closed set H ⊂ (C n ) * such that for L / ∈ H, Eu X (0) = χ X ∩ L -1 (η) ∩ B ϵ , Eu X , for 0 < |η| ≪ ϵ ≪ 1. It is enough to take Σ ′ ρ = Σ ρ ∪ j -1 (H R ) ∩ S n-1 , where j is the canonical isomorphism between R 2n and (R 2n ) * , and apply the same proof as in Theorem 5. We are in position to give a new proof to Fu's question.

Corollary 6.4. Suppose that X is equidimensional. We have Eu X (0) = lim ϵ→0 Λ 0 X ∩ {ρ ≤ ϵ}, X reg ∩ {ρ = ϵ} .

Proof. We have Λ 0 X ∩ {ρ ≤ ϵ}, X reg ∩ {ρ = ϵ} = 1 s n-1 S n-1 p∈Xreg∩{ρ=ϵ} ind(v * , X ∩ {ρ ≤ ϵ}, p). By Hardt's theorem [START_REF] Hardt | Semi-algebraic local-triviality in semi-algebraic mappings[END_REF] and Fubini's theorem, we can write lim ϵ→0 Λ 0 X ∩ {ρ ≤ ϵ}, X reg ∩ {ρ = ϵ} 

  Definition 4.1. Let us write B the set of connected component of Γ f,ρ and let us fix such a connected component b. It is a C 1 definable connected curve included in a stratum V . A point p in b ∩ {ρ ≤ ϵ ρ } is a critical point of f |X∩{ρ=ϵ} and f |X∩{ρ≤ϵ} , where ϵ = ρ(p). Since p is a stratified Morse point, we can write ind(f, X ∩ {ρ = ϵ}, p) = (-1) σ(p) • ind nor (f, X ∩ {ρ = ϵ}, p), where σ(p) is the Morse index of f |V ∩{ρ=ϵ} and ind nor (f, X ∩ {ρ = ϵ}, p) is the normal Morse index defined in Section 2. Lemma 4.6. There exists 0 < ϵ b ≤ ϵ ρ such that for 0 < ϵ ≤ ϵ b , the functions ϵ → ind(f, X ∩ {ρ = ϵ}, p), ϵ → ind nor (f, X ∩ {ρ = ϵ}, p) and ϵ → (-1) σ(p) , are constant on ]0, ϵ b ], where {p} = b ∩ {ρ = ϵ}.
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  where v * > 0 on B + v and v * < 0 on B - v . Moreover to each b ∈ B + v ⊔ B - v ,we can assign three indices τ (b), τ nor (b) and σ(b).
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  k=1 a k dx k + b k dy k then L(z) = n k=1 (a k -ib k )dz k .Theorem 6.1. Let ϕ : X → Z be a constructible function with respect to the stratification V. Let v / ∈ Σ ρ and let L : C n → C be the complex linear form such that Re(L) = v * . For 0 < |η| ≪ ϵ ≪ 1, we haveχ X ∩ L -1 (η) ∩ B ϵ , ϕ = α∈A η(V α , ϕ)

  2. □Let us fix v / ∈ Σ ′ ρ . There exists ϵ v such that for 0 < ϵ ≤ ϵ v , every critical point of v * |X∩{ρ=ϵ} is a stratified Morse critical point. Let us fix such a critical point p and let V be the stratum that contains it. Since v * |X has no critical point on V \ {0}, there exists λ(p)̸ = 0 such that ∇(v * |V )(p) = λ(p)∇(ρ |V )(p). By the preliminaries of Section 2, ind(v * , X ∩ {ρ ≤ ϵ}, p) = ind(v * , X ∩ {ρ = ϵ}, p) if λ(p) < 0 and ind(v * , X ∩ {ρ ≤ ϵ}, p) = 0 if λ(p) > 0.Moreover, by the Curve Selection Lemma, f (p) < 0 if and only if λ(p) < 0 (see [13], Lemma 2.3). Therefore we can write lim ϵ→0 p∈Xreg∩{ρ=ϵ} ind(v * , X ∩ {ρ ≤ ϵ}, p) = b∈B -

Λ 0 X

 0 ∩ {ρ ≤ ϵ}, X reg ∩ {ρ = ϵ} = 1 s n-1 S n-1 b∈B - v,reg σ(b) = Eu X (0).

□

  

  Let us fix v / ∈ Σ ρ . As we have done previously, we can write Γ v * ,ρ = B + v ⊔ B -

		4, applying Lemma 4.9 instead
	of Lemma 4.2.	□
	Corollary 4.12. There exists a definable subset Σ ρ ⊂ S n-1 of positive codimension
	such that for v / ∈ Σ ρ , ρ is Morse adapted to v * .	
	Proof. By Lemmas 4.8, 4.9 and 4.10, we get Conditions (1) and (2a). Applying
	Lemma 4.11 to the union of the strata of X that have dimension less than n, we
	obtain Condition (3b).	□
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