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Let f : (R n , 0) → (R, 0) be a definable function germ of class C 2 and let (X, 0) ⊂ (R n , 0) be a germ of a closed definable set. We investigate topological invariants associated with f |X . In particular, we give several topological formulae for the Euler characteristics of related sets. We also relate the topology of f |X to the topology of a definable function with isolated critical point in the stratified case.

Introduction

Let f : (R n , 0) → (R, 0) be an analytic function germ with an isolated critical point at 0. The Khimshiashvili formula (see [START_REF] Khimshiashvili | On the local degree of a smooth map[END_REF]) states that

χ(f -1 (δ) ∩ B n ϵ ) = 1 -sign(-δ) n deg 0 ∇f, where 0 < |δ| ≪ ϵ ≪ 1, B n
ϵ is a closed ball of radius ϵ centered at 0, ∇f is the gradient of f and deg 0 ∇f is the topological degree of the mapping ∇f |∇f | : S n-1 ϵ → S n-1 .

As a corollary of the Khimshiashvili formula, by a result of Arnol'd [START_REF] Arnol | 'd, Index of a singular point of a vector field, the Petrovski-Oleinik inequality, and mixed Hodge structures[END_REF] and Wall [START_REF] Wall | Topological invariant of the Milnor number mod 2[END_REF] we have:

χ({f ≤ 0} ∩ S n-1 ϵ ) = 1 -deg 0 ∇f, χ({f ≥ 0} ∩ S n-1 ϵ ) = 1 + (-1) n-1 deg 0 ∇f, and 
χ({f = 0} ∩ S n-1 ϵ ) = 2 -2 deg 0 ∇f, if n is even.
Szafraniec [START_REF] Szafraniec | On the Euler characteristic of analytic and algebraic sets[END_REF] generalized the results of Arnol'd and Wall to the case of a function germ f with non-isolated singularities. In [START_REF] Szafraniec | Topological invariants of weighted homogeneous polynomial[END_REF] he improved this result for weighted homogeneous polynomials f : R n → R, constructing polynomials g 1 and g 2 with algebraically isolated critical point at the origin, which makes the topological degree of their gradient vector fields computable by the Eisenbud-Levine formula [START_REF] Eisenbud | An algebraic formula for the degree of a C ∞ map-germ[END_REF]. Note that similar results were also obtained in the homogeneous case by Bruce in [START_REF] Bruce | Euler characteristics of real varieties[END_REF]. Using Szafraniec's results, the first author gives in [START_REF] Dutertre | On the topology of non-isolated real singularities[END_REF] a generalization of the Khimshiashvili formula for non-isolated singularities: he proves that if f : (R n , 0) → (R, 0) is a definable function of class C 2 and 0 < δ ≪ ϵ, then (see [START_REF] Dutertre | On the topology of non-isolated real singularities[END_REF], Corollary 2.6):

χ(f -1 (-δ) ∩ B n ϵ ) = 1 -(-1) n deg 0 ∇g -, and 
χ(f -1 (δ) ∩ B n ϵ ) = 1 -(-1) n deg 0 ∇g + , with g -= -f -ω d , g + = f -ω d , ω(x) = x 2 1 + • • • + x 2
n and d is an integer big enough.

The main argument used to prove this result is the following relation between the topology of the real Minor fibres and the topology of the links of the sets {f ≤ 0} and {f ≥ 0} (see [START_REF] Dutertre | On the topology of non-isolated real singularities[END_REF], Lemma 2.5): if n is even, then

χ f -1 (-δ) ∩ B ϵ = χ ({f ≥ 0} ∩ S ϵ ) , and χ f -1 (δ) ∩ B ϵ = χ ({f ≤ 0} ∩ S ϵ ) , if n is odd, then χ f -1 (-δ) ∩ B ϵ = 2 -χ ({f ≥ 0} ∩ S ϵ ) , and χ f -1 (δ) ∩ B ϵ = 2 -χ ({f ≤ 0} ∩ S ϵ )
. Moreover, if f : R n → R is weighted homogeneous with ∇f (0) = 0, then

χ(f -1 (-1)) = 1 -(-1) n deg 0 ∇g 2 ,
and χ(f -1 (1)) = 1 -(-1) n deg 0 ∇g 1 , (where g 1 and g 2 are the above mentioned polynomials constructed by Szafraniec.) In this paper we generalize these results by considering a C 2 definable function germ f : (R n , 0) → (R, 0) and a germ of a closed definable set (X, 0) ⊂ R n . First we give in this general setting a version of Lemma 2.5 of [START_REF] Dutertre | On the topology of non-isolated real singularities[END_REF] mentioned above. Namely in Theorem 3.1, we prove the following equalities:

χ X ∩B n ϵ ∩{f = -δ} -χ X ∩S n-1 ϵ ∩{f = -δ} = χ Lk(X) -χ Lk(X ∩{f ≥ 0}) , χ X ∩ B n ϵ ∩ {f = δ} -χ X ∩ S n-1 ϵ ∩ {f = δ} = χ Lk(X) -χ Lk(X ∩ {f ≤ 0}
) , where 0 < δ ≪ ϵ ≪ 1 and Lk(A) is the link at the origin of the subset A. Then we give several corollaries of this result.

Afterwards, we explain how to relate the topology of f |X to the topology of a function with an isolated stratified critical point. Let ω : (R n , 0) → (R, 0) be a C 2 definable function germ such that ω(0) = 0 and ω(x) > 0 for x ̸ = 0. Assume that |f | > ω on Γ X ω,f , where Γ X ω,f is the set of points where the gradient vector fields of f and ω are collinear (in the stratified sense) and f does not vanish. Then, we show that (f ± ω) |X has an isolated critical point (in the stratified sense) and we prove the following relations (Theorem 4.6):

χ X ∩ B n ϵ ∩ {f = -δ} = χ X ∩ B n ϵ ∩ {f + ω = -δ} and χ X ∩ B n ϵ ∩ {f = δ} = χ X ∩ B n ϵ ∩ {f -ω = δ} .
We then explain how to construct a function germ ω that satisfies the condition of collinearity in the general case and in the special case of weighted homogeneous polynomials, having generalizations for the results of Szafraniec ([17], [START_REF] Szafraniec | Topological invariants of weighted homogeneous polynomial[END_REF]).

We end this introduction with a remark on the class of differentiability. All the definable functions considered are of class C 2 . Indeed, in different places of the paper, we apply the first Thom-Mather isotopy lemma, which requires functions of class C 2 . Furthermore, several results, proved in [START_REF] Dutertre | On the topology of semi-algebraic functions on closed semi-algebraic sets[END_REF][START_REF] Dutertre | Stratified critical points on the real Milnor fibre and integral-geometric formulas[END_REF][START_REF] Dutertre | On the topology of non-isolated real singularities[END_REF] and used here, are stated for functions of class C 2 , for the same reason.

The paper is organized as follows. Section 2 contains preliminaries on o-minimal structures, the Euler characteristic with compact support, stratified critical points, the real Milnor fibres and the link at the origin of a definable set. In Section 3, we study the general case of a definable function on a closed definable germ. In Section 4, we establish the relation with the topology of a function with isolated singularity.

The authors are very grateful to the referee for his/her careful reading and for suggesting valuable improvements.

Preliminaries

2.1. On o-minimal structures. We present definitions about o-minimal structures and definability. We refer to [START_REF] Coste | An introduction to o-minimal geometry[END_REF][START_REF] Van Den Dries | Tame topology and o-minimal structures[END_REF][START_REF] Van Den Dries | Geometric categories and o-minimal structures[END_REF] for a complete treatment. Definition 2.1. An o-minimal structure M expanding the ordered field of real numbers (R, +, •, >) is a collection (M q ) q∈N , where each M q is a family of subsets of R q satisfying the following axioms:

(1) For each q ∈ N, the family M q is a boolean sub-algebra of subsets of R q .

(2) For any pair of subsets A ∈ M p and B ∈ M q , A × B ∈ M p+q .

(3) Let π : R q+1 → R q be the projection on the first q factors. Given any subset A of M q+1 , its projection π(A) is a subset lying in M q . (4) The algebraic subsets of R q belong to M q .

(5) The family M 1 consists exactly of the finite unions of points and intervals.

These points imply that the smallest o-minimal structure is the structure of semi-algebraic subsets, which is contained in any other one. Another example is the structure M of globally subanalytic subsets, that is, M q consists of all sets A ⊂ R q which are subanalytic in P q (R).

Assume that such an o-minimal structure M is given for the rest of this paper.

Definition 2.2.

(1) A subset A of R q is a definable subset in the o-minimal structure

M if A ∈ M q . (2) Let A be a subset of R q , a mapping A → R r is definable if its graph is a definable subset of R q × R r .
Definable sets and mappings share a lot of properties with semi-algebraic sets and mappings. For instance, definable sets admit cell decompositions and definable Whitney stratifications. A version of Hardt's triviality theorem is valid for continuous definable mappings, as well as a version of the Lojasiewicz inequality.

2.2.

Euler characteristic with compact support. Let X ⊂ R n be a definable set. We can write it in the following way:

X = ⊔ l j=1 C j , where C j is definably homeomorphic to ] -1, 1[ dj (C j is called a cell of dimension d j ). Definition 2.3. We set χ c (X) = l j=1 (-1) dj ,
and we call it the Euler characteristic with compact support of X.

Remark 2.4. This definition of χ c does not depend on the cell decomposition. Proposition 2.5.

• If X is compact, then χ c (X) = χ(X), • χ c is multiplicative: χ c (X × Y ) = χ c (X) × χ c (Y ), • χ c is additive: χ c (X ⊔ Y ) = χ c (X) + χ c (Y ),
• χ c is invariant under (definable) homeomorphisms.

Stratified critical points and values.

From now on, X ⊂ R n denotes a closed definable set equipped with a finite definable Whitney stratification X = ⊔ a∈A S a (see [START_REF] Loi | Thom stratifications for functions definable in o-minimal structures on (R, +[END_REF][START_REF] Nguyen | A geometric proof of the existence of definable Whitney stratifications[END_REF]). Let f : R n → R be a C 2 definable function.

Definition 2.6.

(

) A point p ∈ X is a critical point of f |X if it is a critical point of f |S(p) 1 
, where S(p) is the stratum that contains p.

(2) A point c ∈ R is a critical value if there exists p ∈ f -1 (c) such that p is a critical point of f |X . (3) If p is an isolated critical point of f |X , we define the index of f at p by ind(f, X, p) = 1 -χ(X ∩ {f = f (p) -δ} ∩ B ϵ (p)), where 0 < δ ≪ ϵ ≪ 1.
Note that the notion of critical point depends on the choice of the Whitney stratification. Taking a finer one can create new critical points. But these critical points are somehow artificial, since their index is zero.

Note that ind(f, X, p) coincides with the radial index of the 1-form d(f |X ), denoted by ind X,0 df and defined by Ebeling and Gusein-Zade [START_REF] Ebeling | Radial index and Euler obstruction of a 1-form on a singular variety[END_REF]. This radial index generalizes the classical Poincaré-Hopf index for 1-forms on singular varieties. Moreover, if X = R n , by [START_REF] Khimshiashvili | On the local degree of a smooth map[END_REF], ind(f, X, p) = deg p ∇f .

The following result gives a relation between the Euler characteristic of X and the indices of the p i 's, when X is compact.

Theorem 2.7. ([7], Theorem 3.1) If X is compact and f has a finite number of critical points p 1 , . . . , p l , we have

χ(X) = l i=1 ind(f, X, p i ).
Now, we give some lemmas that we will use later on. For the proofs we refer to [START_REF] Dutertre | On the topology of semi-algebraic functions on closed semi-algebraic sets[END_REF]. We assume that f has a finite number of critical points p 1 , p 2 , . . . , p l . Lemma 2.8. If f is proper then for any α ∈ R, we have

χ({f ≥ α}) -χ({f = α}) = i:f (pi)>α ind(f, X, p i ). and χ({f ≤ α}) = i:f (pi)<α ind(f, X, p i ).
Let g : R n → R be a C 2 -definable function such that g -1 (0) intersects X transversally. Suppose that f |X∩{g≤0} admits an isolated critical point p in X ∩ {g = 0} which is not a critical point of f |X . If S denotes the stratum of X that contains p, this implies that

∇(f |S )(p) = λ(p)∇(g |S )(p)
, with λ(p) ̸ = 0. We assume also that f |{g=0} is a submersion at p. Lemma 2.9. For 0 < δ ≪ ϵ ≪ 1, we have

χ(f -1 (-δ) ∩ B ϵ (p) ∩ X ∩ {g ≤ 0}) = 1, if λ(p) > 0 and χ(f -1 (-δ) ∩ B ϵ (p) ∩ X ∩ {g ≤ 0}) = χ(f -1 (-δ) ∩ B ϵ (p) ∩ X ∩ {g = 0}), if λ(p) < 0.
Remark 2.10. As a consequence of the last lemma and the definition of the index of a critical point p, we get that

ind(f, X ∩ {g ≤ 0}, p) = 0, if λ(p) > 0, and ind(f, X ∩ {g ≤ 0}, p) = ind(f, X ∩ {g = 0}, p), if λ(p) < 0.

2.4.

Local link and real Milnor fibers. Let (X, 0) ⊂ (R n , 0) be the germ of a closed definable set. For convenience, we will work with a small representative that we denote by X as well. We assume that this representative is included in an open bounded neighborhood U of 0. Let {S a } a∈A be a Whitney stratification of X.

Let ρ i : U → R, i = 1, 2, be two continuous definable functions of class C 2 on U \ {0}, such that ρ -1 i (0) = {0} and ρ i (x) ≥ 0 for all x ∈ X. It is well-known that there exists ϵ i > 0 such that for 0 < ϵ ≤ ϵ i , ρ -1 i (ϵ) intersects X transversally in the stratified sense (see [START_REF] Dutertre | Stratified critical points on the real Milnor fibre and integral-geometric formulas[END_REF] Lemma 2.1), and that the topological type of ρ -1 i (ϵ) ∩ X does not depend on ϵ. Moreover, as explained by Durfee in [START_REF] Durfee | Neighborhoods of algebraic sets[END_REF] (Lemma 1.8 and Corollary 3.6), there is a neighborhood Ω of 0 in R n such that for every stratum S of X, ∇(ρ 1|S ) and ∇(ρ 2|S ) do not point in opposite direction in Ω \ {0}. Applying Durfee's argument ( [START_REF] Durfee | Neighborhoods of algebraic sets[END_REF], Proposition 1.7 and Proposition 3.5), we see that ρ -1

1 (ϵ)∩X, 0 < ϵ ≤ ϵ 1 , and ρ -1 2 (ϵ ′ ) ∩ X, 0 < ϵ ′ ≤ ϵ 2 , are homeomorphic. The link of X at 0, denoted by Lk(X), is the set X ∩ ρ -1 (ϵ), 0 < ϵ ≪ 1, where ρ : U → R is a continuous definable function of class C 2 on U \ {0}, such that ρ -1 (0) = {0} and ρ(x) ≥ 0 for all x ∈ X.
We will call such a function ρ a distance function to the origin. By the above discussion, the topological type of Lk(X) does not depend on the choice of the definable distance function to the origin (actually to define the link, we do not need to assume that ρ is C 2 on U \ {0}, continuity is enough).

Let f : (R n , 0) → (R, 0) be the germ of a C 2 definable function. We denote by X f the set X ∩ f -1 (0) and by [START_REF] Bekka | Regular stratification of subanalytic sets[END_REF][START_REF] Loi | Thom stratifications for functions definable in o-minimal structures on (R, +[END_REF], we can equip X with a definable Thom stratification V = {V β } β∈B adapted to X f . This means that

{V β | V β ⊈ X f } is a Whitney stratification of X \ X f and that for any pair of strata (V β , V β ′ ) with V β ⊈ X f and V β ′ ⊂ X f , the Thom condition is satisfied.
As explained above, there is ϵ ′ 1 > 0 such that for 0 < ϵ ≤ ϵ ′ 1 , ρ -1 1 (ϵ) intersects X f transversally. The Thom condition implies that there exists δ ϵ > 0 such that for each δ with 0 < δ ≤ δ ϵ , ρ -1 1 (ϵ) intersects X ∩ f -1 (δ) transversally as well. Hence the set X ∩ f -1 (δ) ∩ {ρ 1 ≤ ϵ} is a Whitney stratified set equipped with the following stratification:

X ∩ f -1 (δ) ∩ V β ∩ {ρ 1 < ϵ}, X ∩ f -1 (δ) ∩ V β ∩ {ρ 1 = ϵ} | V β ⊈ X f .
Moreover, taking ϵ ′ 1 and δ ϵ smaller if necessary, the topological types of X ∩f -1 (δ)∩ {ρ 1 ≤ ϵ} and X ∩ f -1 (δ) ∩ {ρ 1 = ϵ} do not depend on the couple (ϵ, δ). To see this, it is enough to adapt the proof of Lemma 2.1 in [START_REF] Dutertre | On the topology of non-isolated real singularities[END_REF] to the stratified case. The same fact is true for negative values of f .

Of course, we can make the same construction with ρ 2 instead of ρ 1 . But as above, there is a neighborhood Ω ′ of 0 in R n such that for every stratum W of X f , ∇(ρ 1|W ) and ∇(ρ 2|W ) do not point in opposite direction. Let us choose ϵ ′ > 0 and

ϵ > 0 such that {ρ 2 ≤ ϵ ′ } ⊊ {ρ 1 ≤ ϵ} ⊂ Ω ′ . If ϵ, ϵ ′ and δ are sufficiently small then, for every stratum V ⊈ X f , ∇(ρ 1|V ∩f -1 (δ) ) and ∇(ρ 2|V ∩f -1 (δ) ) do not point in opposite direction in {ρ 1 ≤ ϵ} \ {ρ 2 < ϵ ′ }. Otherwise, by Thom (a f )-condition, we would find a point p in X f ∩ ({ρ 1 ≤ ϵ} \ {ρ 2 < ϵ ′ }) such that either ∇(ρ 1|W )(p) or ∇(ρ 2|W )(p) vanish or ∇(ρ 1|W )(p) and ∇(ρ 2|W )(p) point in opposite direction,
where W is the stratum of X f that contains p (see the proof of Lemma 3.7 in [START_REF] Dutertre | Stratified critical points on the real Milnor fibre and integral-geometric formulas[END_REF]). This is impossible if we are sufficiently close to the origin. Applying Durfee's argument mentioned above, we see that

X ∩ f -1 (δ) ∩ {ρ 1 ≤ ϵ} is homeomorphic to X ∩ f -1 (δ) ∩ {ρ 2 ≤ ϵ ′ } and that X ∩ f -1 (δ) ∩ {ρ 1 = ϵ} is homeomorphic to X ∩ f -1 (δ) ∩ {ρ 2 = ϵ ′ }.
The positive (resp. negative) Milnor fibre of f is the set

X ∩ f -1 (δ) ∩ {ρ ≤ ϵ} (resp. X ∩ f -1 (-δ) ∩ {ρ ≤ ϵ})
, where 0 < δ ≪ ϵ ≪ 1 and ρ is a distance function to the origin. The set X ∩ f -1 (±δ) ∩ {ρ = ϵ} is the boundary of the Milnor fibre. By the previous discussion, the topological type of the positive (resp. negative) Milnor fibre and the topological type of its boundary do not depend on the choice of the definable distance function to the origin.

Functions on a stratified definable set

Let (X, 0) ⊂ (R n , 0) be the germ of a closed definable set. Let {V i } i∈I be a Whitney stratification of X. Since this stratification is locally finite, there is a finite number of strata that contains 0 in their closure. We denote them by V 0 , . . . , V t .

Let f : (R n , 0) → (R, 0) be a C 2 definable function germ. Our first result is a generalization in this situation of Lemma 2.5 in [START_REF] Dutertre | On the topology of non-isolated real singularities[END_REF].

Theorem 3.1. Let 0 < δ ≪ ϵ ≪ 1. We have: χ X ∩B n ϵ ∩{f = -δ} -χ X ∩S n-1 ϵ ∩{f = -δ} = χ Lk(X) -χ Lk(X ∩{f ≥ 0}) , χ X ∩ B n ϵ ∩ {f = δ} -χ X ∩ S n-1 ϵ ∩ {f = δ} = χ Lk(X) -χ Lk(X ∩ {f ≤ 0}) .
Proof. First we note that for ϵ > 0 sufficiently small, X ∩B n ϵ is a Whitney stratified set with the stratification

{V i ∩ Bn ϵ , V i ∩ S n-1 ϵ } i=0,...,t .
Moreover for 0 < δ ≪ ϵ ≪ 1, f -1 (±δ) intersects X ∩ B n ϵ transversally and so

X ∩ f -1 (±δ) ∩ B n
ϵ is also a Whitney stratified set with the stratification

{V i ∩ Bn ϵ ∩ f -1 (±δ), V i ∩ S n-1 ϵ ∩ f -1 (±δ)} i=0,...,t . If X ∩ {f = -δ} ∩ B n ϵ is empty for 0 < δ ≪ ϵ ≪ 1, which means that f ≥ 0 on X ∩ B n ϵ , then the result is trivial for Lk(X) = Lk(X ∩ {f ≥ 0}). Let us treat the case when X ∩ {f = -δ} ⊂ Bn ϵ , i.e. X ∩ {f = -δ} ∩ S n-1 ϵ is empty for 0 < δ ≪ ϵ ≪ 1. Let C be a connected component of X \ {0}. Then C ∩ {f = -δ} ∩ S n-1 ϵ is empty for δ ∈]0, δ ϵ [ for some δ ϵ > 0. By conic structure, C ∩ S n-1 ϵ is connected and so by continuity, either f ≥ 0 on C ∩ S n-1 ϵ or f < 0 on C ∩ S n-1 ϵ . Let γ : [0, ν[→ C be a C 1 definable arc such that γ(0) = 0. Then there exists ϵ 1 > 0 such that either f < 0 on γ(]0, ν[) ∩ B n ϵ1 , either f = 0 on γ(]0, ν[) ∩ B n ϵ1 or f > 0 on γ(]0, ν[) ∩ B n ϵ1 .
By the above observation, and taking a smaller ϵ 1 if necessary, we conclude that either

f < 0 on C ∩ B n ϵ1 or f ≥ 0 on C ∩ B n ϵ1 . Let C + (resp. C -) be the set of connected components of X \ {0} on which f ≥ 0 (resp. f < 0). Then χ({f ≥ 0} ∩ X ∩ S n-1 ϵ ) = C∈C + χ(C ∩ S n-1 ϵ ) and χ(X ∩ {f = -δ} ∩ B n ϵ ) = C∈C - χ(C ∩ S n-1 ϵ ),
for if C ∈ C -then the function -f is strictly positive on C. We conclude with the remark that

C∈C - χ(C ∩ S n-1 ϵ ) = χ(Lk(X)) - C∈C + χ(C ∩ S n-1 ϵ ). Now let us assume that X ∩ {f = -δ} ∩ S n-1 ϵ
is not empty for 0 < δ ≪ ϵ ≪ 1. Changing the distance function to the origin if necessary (see [START_REF] Dutertre | Stratified critical points on the real Milnor fibre and integral-geometric formulas[END_REF], Sections 2 and 3), we can assume that the critical points of f on (X ∩S n-1 ϵ )\{f = 0} are isolated, that they are outwards-pointing (resp. inwards-pointing) in {f > 0} (resp. {f < 0}) and that f |S n-1 ϵ is a submersion at each of these points. Let us denote them by {p 1 , . . . , p s }.

By Lemma 2.8, we can write

χ {f ≤ -δ} ∩ X ∩ S n-1 ϵ = i:f (pi)<δ ind(f, X ∩ S n-1 ϵ , p i ),
and

χ {f ≤ -δ} ∩ X ∩ B n ϵ = i:f (pi)<δ ind(f, X ∩ B n ϵ , p i ).
But, by Remark 2.10, ind(f,

X ∩ S n-1 ϵ , p i ) = ind(f, X ∩ B n ϵ , p i ) if f (p i ) < 0. There- fore χ {f ≤ -δ} ∩ X ∩ S n-1 ϵ = χ {f ≤ -δ} ∩ X ∩ B n ϵ .
Now by Lemma 2.8 applied to -f , we get:

χ {f ≤ -δ} ∩ X ∩ B n ϵ -χ {f = -δ} ∩ X ∩ B n ϵ = i:f (pi)<δ ind(-f, X ∩ B n ϵ , p i ).
Again, by Remark 2.10, ind(-f, X ∩ B n ϵ , p i ) = 0. Finally we get that

χ {f = -δ} ∩ X ∩ B n ϵ = χ {f ≤ -δ} ∩ X ∩ S n-1 ϵ .
Then we use the fact that

χ Lk(X) = χ X ∩ S n-1 ϵ = χ {f ≤ -δ} ∩ X ∩ S n-1 ϵ +χ {f ≥ -δ} ∩ X ∩ S n-1 ϵ -χ {f = -δ} ∩ X ∩ S n-1 ϵ . But the inclusion {f ≥ 0} ∩ X ∩ S n-1 ϵ ⊂ {f ≥ -δ} ∩ X ∩ S n-1
ϵ is a homotopy equivalence, and so χ {f ≥ -δ} ∩ X ∩ S n-1 ϵ = χ Lk(X ∩ {f ≥ 0} . □ Corollary 3.2. Let X have an isolated singularity at the origin. Then, if dimX is even, we have:

χ X ∩ B n ϵ ∩ {f = -δ} = χ Lk(X ∩ {f ≥ 0}) , χ X ∩ B n ϵ ∩ {f = δ} = χ Lk(X ∩ {f ≤ 0})
, and if dimX is odd, we have:

χ X ∩ B n ϵ ∩ {f = -δ} = χ Lk(X) -χ Lk(X ∩ {f ≥ 0}) , χ X ∩ B n ϵ ∩ {f = δ} = χ Lk(X) -χ Lk(X ∩ {f ≤ 0}) . Proof. The result is trivial when X is odd-dimensional, because X∩S n-1 ϵ ∩{f = -δ} is an odd-dimensional compact submanifold. If dimX is even, then Lk(X) is a compact odd-dimensional submanifold and X ∩ B n ϵ ∩ {f = -δ} is a compact odd- dimensional manifold with boundary. So χ Lk(X) = 0 and χ X ∩ S n-1 ϵ ∩ {f = -δ} = 2χ X ∩ B n ϵ ∩ {f = -δ} . □
Using the additivity of χ c , we can state the following results:

Corollary 3.3. Let 0 < δ ≪ ϵ ≪ 1.
We have:

χ c X ∩ Bn ϵ ∩ {f = -δ} = χ c Lk(X ∩ {f < 0}) , χ c X ∩ Bn ϵ ∩ {f = δ} = χ c Lk(X ∩ {f > 0}
) . Corollary 3.4. Let (Y, 0) be a germ of a closed definable set, with (Y, 0) ⊂ (X, 0). Let 0 < δ ≪ ϵ ≪ 1. We have:

χ c (X \ Y ) ∩ Bn ϵ ∩ {f = δ} = χ c Lk((X \ Y ) ∩ {f > 0}) , and χ c (X \ Y ) ∩ Bn ϵ ∩ {f = -δ} = χ c Lk((X \ Y ) ∩ {f < 0}) .
Applications. 1) Let f, g : (R n , 0) → (R, 0) be C 2 definable function germs. Applying Corollary 3.4 to the sets X ∩ {g ≥ 0} and X ∩ {f ≥ 0}, we get:

χ c (X ∩ {g < 0} ∩ {f = -δ} ∩ Bn ϵ ) = χ c Lk(X ∩ {g < 0} ∩ {f < 0}) = χ c (X ∩ {g = -δ} ∩ {f < 0} ∩ Bn ϵ ).
If we consider a C 2 definable function germ h : (R n , 0) → (R, 0), Z = X ∩{h ≤ 0} and Z ′ = X ∩ {h = 0} are closed definable sets. We have:

χ c ((Z \ Z ′ ) ∩ {g < 0} ∩ {f = -δ} ∩ Bn ϵ ) = χ c ((Z \ Z ′ ) ∩ {g = -δ} ∩ {f < 0} ∩ Bn ϵ ), obtaining that χ c (X ∩ {h < 0} ∩ {g < 0} ∩ {f = -δ} ∩ Bn ϵ ) = χ c (X ∩ {h < 0} ∩ {g = -δ} ∩ {f < 0} ∩ Bn ϵ ) = χ c (X ∩ {h = -δ} ∩ {g < 0} ∩ {f < 0} ∩ Bn ϵ )
. Then, by induction, the following result can be proved: Let f 1 , . . . , f m : (R n , 0) → (R, 0) be C 2 definable function germs. For any i, j = 1, . . . , m we have that

χ c (X ∩ {f 1 < 0} ∩ • • • ∩ {f i = -δ} ∩ • • • ∩ {f j < 0} ∩ • • • ∩ {f m < 0}) = χ c (X ∩ {f 1 < 0} ∩ • • • ∩ {f i < 0} ∩ • • • ∩ {f j = -δ} ∩ • • • ∩ {f m < 0}).
2) Let f, g : (R n , 0) → (R, 0) be C 2 definable function germs. We make the following assumption:

(R): for δ > 0 sufficiently small, (δ, 0), (-δ, 0), (0, δ) and (0, -δ) are regular values of the mapping (f, g).

Note that this assumption is satisfied if f and g have an isolated singularity at the origin or if (0, 0) is an isolated critical value of (f, g).

The following statement relates the topology of the Milnor fibres of f |{g≥0} and f |{g≤0} to the topology the Milnor fibres of g |{f ≥0} and g |{f ≤0} .

Proposition 3.5. Let 0 < δ ≪ ϵ ≪ 1. We have:

χ f -1 (-δ) ∩ {g ≥ 0} ∩ B n ϵ = χ g -1 (δ) ∩ {f ≤ 0} ∩ B n ϵ , χ f -1 (δ) ∩ {g ≥ 0} ∩ B n ϵ = χ g -1 (δ) ∩ {f ≥ 0} ∩ B n ϵ , χ f -1 (-δ) ∩ {g ≤ 0} ∩ B n ϵ = χ g -1 (-δ) ∩ {f ≤ 0} ∩ B n ϵ , χ f -1 (δ) ∩ {g ≤ 0} ∩ B n ϵ = χ g -1 (-δ) ∩ {f ≥ 0} ∩ B n ϵ .
Proof. We prove the first equality. The other equalities are deduced easily exchanging the roles of f and g and replacing f with -f .

The following relations are obtained applying Theorem 3.1:

χ S n-1 ϵ -χ Lk({g ≤ 0}) = χ g -1 (δ) ∩ B n ϵ -χ g -1 (δ) ∩ S n-1 ϵ (1) χ Lk({f ≥ 0}) -χ Lk({f ≥ 0, g ≤ 0}) = χ g -1 (δ) ∩ {f ≥ 0} ∩ B n ϵ -χ g -1 (δ) ∩ {f ≥ 0} ∩ S n-1 ϵ (2) 
The combination ( 1) -(2) gives:

χ S n-1 ϵ -χ Lk({f ≥ 0}) -χ Lk({g ≤ 0}) -χ Lk({f ≥ 0, g ≤ 0}) = χ g -1 (δ) ∩ B n ϵ -χ g -1 (δ) ∩ {f ≥ 0} ∩ B n ϵ -χ g -1 (δ) ∩ S n-1 ϵ -χ g -1 (δ) ∩ {f ≥ 0} ∩ S n-1 ϵ .
We then apply twice Theorem 3.1 and get:

χ f -1 (-δ) ∩ B n ϵ -χ f -1 (-δ) ∩ S n-1 ϵ -χ f -1 (-δ) ∩ {g ≤ 0} ∩ B n ϵ -χ f -1 (-δ) ∩ {g ≤ 0} ∩ S n-1 ϵ = χ g -1 (δ) ∩ B n ϵ -χ g -1 (δ) ∩ {f ≥ 0} ∩ B n ϵ -χ g -1 (δ) ∩ S n-1 ϵ -χ g -1 (δ) ∩ {f ≥ 0} ∩ S n-1 ϵ .
Finally, by the Mayer-Vietoris sequence, we obtain:

χ f -1 (-δ) ∩ {g ≥ 0} ∩ B n ϵ -χ f -1 (-δ) ∩ {g = 0} ∩ B n ϵ -χ f -1 (-δ) ∩ {g ≥ 0} ∩ S n-1 ϵ + χ f -1 (-δ) ∩ {g = 0} ∩ S n-1 ϵ = χ g -1 (δ) ∩ {f ≤ 0} ∩ B n ϵ -χ g -1 (δ) ∩ {f = 0} ∩ B n ϵ -χ g -1 (δ) ∩ {f ≤ 0} ∩ S n-1 ϵ + χ g -1 (δ) ∩ {f = 0} ∩ S n-1 ϵ .
Let us denote by L the left-hand side of this equality and by R the right-hand side. By Assumption (R), the Milnor fibre f -1 (-δ) ∩ {g = 0} ∩ B n ϵ is a manifold with boundary, and so,

f -1 (-δ) ∩ {g ≥ 0} ∩ B n ϵ is a manifold with corners. If n is even, f -1 (-δ) ∩ {g ≥ 0} ∩ B n ϵ is odd-dimensional.
Rounding the corners, we get:

χ f -1 (-δ) ∩ {g ≥ 0} ∩ B n ϵ = 1 2 χ f -1 (-δ) ∩ {g ≥ 0} ∩ S n-1 ϵ +χ f -1 (-δ) ∩ {g = 0} ∩ B n ϵ -χ f -1 (-δ) ∩ {g = 0} ∩ S n-1 ϵ . This implies that L = -χ f -1 (-δ) ∩ {g ≥ 0} ∩ B n ϵ . Similarly R = -χ g -1 (δ) ∩ {f ≤ 0} ∩ B n ϵ . If n is odd, we have: χ f -1 (-δ) ∩ {g ≥ 0} ∩ S n-1 ϵ = χ f -1 (-δ) ∩ {g = 0} ∩ B n ϵ = 1 2 χ f -1 (-δ) ∩ {g = 0} ∩ S n-1 ϵ ,
and so,

L = χ f -1 (-δ) ∩ {g ≥ 0} ∩ B n ϵ . Similarly R = χ g -1 (δ) ∩ {f ≤ 0} ∩ B n ϵ . □ 4.
Relation with functions with isolated critical points Let (X, 0) ⊂ (R n , 0) be the germ of a closed definable set equipped with a Whitney stratification {V i } i∈I and let f : (R n , 0) → (R, 0) be a C 2 definable function germ.

Let ω : (R n , 0) → (R, 0) be a C 2 definable function germ, with ω(0) = 0 and ω(x) > 0 for x ̸ = 0. Definition 4.1. For each stratum V i , we set

Γ Vi ω,f = x ∈ V i : f ̸ = 0, rank ∇(f |Vi ), ∇(ω |Vi ) = 1 . We set Γ X ω,f = ⊔ t i=0 Γ Vi ω,f
. We make the following assumption:

(A) : |f | > ω on Γ X
ω,f . We will explain later (Corollary 4.10 and Lemma 4.11) that such a function always exists.

Lemma 4.2. The function germs (f ± ω) |X : (X, 0) → (R, 0) have an isolated critical point (in the stratified sense) at the origin.

Proof. Let x ∈ X be a critical point of (f + ω) |X close to the origin. Then f + ω vanishes at x. Let us suppose first that x belongs to the critical set of f |X . This implies that f (x) = 0 and so x = 0 because ω(x) = 0.

Suppose that x does not belong to the critical set of f |X and V is the stratum that contains x. Then, ∇(f |V )(x) does not vanish. Let γ : [0, ν[→ Γ V ω,f be a C 1 definable arc passing through x. We have ∇(f |V )(x) = -∇(ω |V )(x), and so

(f • γ) ′ (s) = ⟨(∇f |V )(γ(s)), γ ′ (s)⟩ = -⟨(∇ω |V )(γ(s)), γ ′ (s)⟩ = -(ω • γ) ′ (s). Therefore, f (γ(s)) = -ω(γ(s)) + cst. Since ω(γ(0)) = 0, we find that f (γ(s)) = -ω(γ(s)). This is impossible for |f (γ(s))| > ω(γ(s)) on Γ X ω,f . □ Lemma 4.3. We have χ Lk(X ∩ {f ≤ 0}) = χ Lk(X ∩ {f -ω ≤ 0}) , and χ Lk(X ∩ {f ≥ 0}) = χ Lk(X ∩ {f + ω ≥ 0}) .
Proof. Let ϵ > 0 be small enough so that for all

x ∈ Γ X ω,f ∩{ω(x) ≤ ϵ}, |f (x)| > ω(x). Let Sϵ = {x ∈ X : ω(x) = ϵ}. Set N ≤ f = {x ∈ Sϵ : f (x) ≤ 0} and N ≤ f -ω = {x ∈ Sϵ : f (x) ≤ ω(x)}. For x ∈ Sϵ , we have f (x) ≤ ω(x) ⇔ f (x) ≤ ϵ and so N ≤ f ⊂ N ≤ f -ω . Furthermore, if 0 < f (x) ≤ ϵ then x / ∈ Γ X ω,f
and therefore {f (x) ≤ ϵ} ∩ Sϵ retracts by deformation to {f (x) ≤ 0} ∩ Sϵ . We get the first equality. The second one is proved in the same way. □

Lemma 4.4. We have

χ X ∩ S n-1 ϵ ∩ {f = δ} = χ Lk(X ∩ {f -ω = 0}) and χ X ∩ S n-1 ϵ ∩ {f = -δ} = χ Lk(X ∩ {f + ω = 0}) .
Proof. Let ϵ > 0 be as in the proof of Lemma 4.3. For x ∈ Sϵ , we have

f (x) = ω(x) ⇔ f (x) = ϵ.
Furthermore, if 0 < f (x) ≤ ϵ then x / ∈ Γ X ω,f and therefore {f (x) = δ} ∩ Sϵ is homeomorphic to {f (x) = ϵ} ∩ Sϵ by the Thom-Mather isotopy lemma (see Figure 1). We get the first equality. The second one is proved in the same way. □ Remark 4.5. As a consequence of Theorem 3.1, Lemma 4.4 and the Mayer-Vietoris sequence, we have that

χ X ∩ B n ϵ ∩ {f = -δ} + χ X ∩ B n ϵ ∩ {f = δ} = χ Lk(X) -χ Lk(X∩{f = 0}) +χ Lk(X∩{f -ω = 0})+χ Lk(X∩{f +ω = 0})).
If X is an algebraic set and f is a polynomial, we can apply Sullivan's theorem [START_REF] Sullivan | Combinatorial invariants of analytic spaces[END_REF], since we can choose ω polynomial (see Remark 4.9), and we recover the fact that χ X ∩ B n ϵ ∩ {f = -δ} + χ X ∩ B n ϵ ∩ {f = δ} is even, which was first proved by McCrory and Parusiński [START_REF] Mccrory | Complex monodromy and the topology of real algebraic sets[END_REF].

The following theorem gives a relation between the topology of the Milnor fibres of f |X and the ones of (f ± ω) |X .

Theorem 4.6. Let 0 < δ ≪ ϵ ≪ 1. We have The next corollary is a generalization of Corollary 2.6 of [START_REF] Dutertre | On the topology of non-isolated real singularities[END_REF]. It gives an index formula for the Euler characteristic of the Milnor fibers of any definable function on any closed definable set.

χ X ∩ B n ϵ ∩ {f = -δ} = χ X ∩ B n ϵ ∩ {f + ω = -δ} and χ X ∩ B n ϵ ∩ {f = δ} = χ X ∩ B n ϵ ∩ {f -ω = δ} .
Corollary 4.7. Let 0 < δ ≪ ϵ ≪ 1. We have χ X ∩ B n ϵ ∩ {f = -δ} = 1 -ind X,0 d(f + ω) and χ X ∩ B n ϵ ∩ {f = δ} = 1 -ind X,0 d(f -ω).
Let us explain how to construct ω in some particular cases.

General case. We keep the previous notations. Let ρ : (R n , 0) → (R, 0) be a C 2 definable function, with ρ(0) = 0 and ρ(x) > 0 for x ̸ = 0. Proof. For u > 0 small, we define β(u) by

β(u) = inf |f (p)| | p ∈ Γ X ρ,f ∩ {ρ = u} ,
and we set β(0) = 0. Note that for u > 0 small, X ∩ {ρ = u} is a Whitney stratified set since {ρ = u} intersects X transversally. A point p in Γ X ρ,f ∩{ρ = u} is a stratified critical point of f restricted to the set X ∩ {ρ = u}. Since the set of critical values of a definable function is a definable set of dimension 0, the set {f (p) | p ∈ Γ X ρ,f } is a finite subset of R. Hence β(u) > 0. By the Monotonicity Theorem [START_REF] Van Den Dries | Geometric categories and o-minimal structures[END_REF], there is ν > 0 such that β is continuous on ]0, ν]. Moreover, lim u→0 + β(u) = 0, and so β is continuous on [0, ν]. By Lemma C.5 of [START_REF] Van Den Dries | Geometric categories and o-minimal structures[END_REF], there exists a C 2 definable positive function ϕ with ϕ(0) = 0 such that 0 < ϕ(u) < β(u), for u in a neighborhood of 0. 

> ϕ • ρ on Γ X ϕ•ρ,f . Proof. Use the equality Γ X ϕ•ρ,f = Γ X ρ,f . □
Therefore we can apply our method to the functions f + ω and f -ω, with ω = ϕ • ρ. This generalizes the results of Szafraniec [START_REF] Szafraniec | On the Euler characteristic of analytic and algebraic sets[END_REF].

Weighted-homogeneous case. We assume that X is given by the vanishing of weighted-homogeneous polynomials of type (d; d 1 , . . . , d n ). We assume that f is a weighted-homogeneous polynomial of type (d; d 1 , . . . , d n ). Let p be the smallest positive integer such that 2p > d and each d i divides p. Let a i = p/d i and let

ω(x) = x 2a 1 1 2a1 + . . . + x 2an n 2an . Lemma 4.11. We have |f (p)| > ω(p) on Γ X ω,f . Proof. Let X 1 = X ∩ {ω(x) = 1}
. We can equip it with a Whitney stratification {W 1 , . . . , W t }. The diffeomorphism

X 1 ×]0, +∞[ → X \ {0} (x, λ) → λ • x = (λ d1 x 1 , . . . , λ dn x n )
induces a Whitney stratification {V 1 , . . . , V t } of X \ {0}. We just put V 0 = {0} and we obtain a Whitney stratification of X.

For λ ̸ = 0, let T λ : R n → R n be the mapping

T λ = λ • x. It is a diffeomorphism that preserves X, i.e. T λ (X) = X. Moreover for each i ∈ {1, . . . , t}, T λ (V i ) = V i . Let Σ i = (x, r, y) ∈ V i × R × R | ω(x) = r 2p , y = f (x), x ∈ Γ Vi ω,f . Let π : V i × R × R → R × R be the natural projection. If r > 0 then π(Σ i ) ∩ {r} × R = {r} × { critical values of f |Vi∩{ω=r 2p } },
and π(Σ i ) ∩ {r} × R is a finite set of points, since a semi-algebraic function has a finite number of critical values.

Let (x, r, y) ∈ Σ i and let λ ̸ = 0. We have:

λ • x ∈ V i , ∇ω(λ • x) = λ 2p-d1 ∂ω ∂x 1 (x), . . . , λ 2p-dn ∂ω ∂x n (x) , and 
∇f (λ • x) = λ d-d1 ∂f ∂x 1 (x), . . . , λ d-dn ∂f ∂x n (x) . If (u 1 , . . . , u s ) is a basis of the tangent space T x V i then (λ • u 1 , . . . , λ • u s ) is a basis of the tangent space T λ•x V i . Moreover a basis of the normal space to V i at λ • x is of the form ( 1 λ • v 1 , . . . , 1 λ • v n-s ) where (v 1 , . . . , v n-s ) is a basis of N x V i .
It is not difficult to check that for (i 1 , . . . , i n-s+2 ) ∈ {1, . . . , n} n-s+2 , ∂ω ∂xi 1 .

(λ • x) • • • ∂ω ∂xi n-s+2 (λ • x) ∂f ∂xi 1 (λ • x) • • • ∂f ∂xi n-s+2 (λ • x) λ -di 1 v 1,i1 • • • λ -di n+s-2 v 1,in-s+2 . . . . . . . . . λ -di 1 v n-s+2,i1 • • • λ -di n+s-2 v n-s+2,in-s+2 = λ 2p+d-di 1 -•••-di n+s-2 ∂ω ∂xi 1 (x) • • • ∂ω ∂xi n-s+2 (x) ∂f ∂xi 1 (x) • • • ∂f ∂xi n-s+2 (x) v 1,i1
So if (x, r, y) belongs to Σ i then (λ • x, λr, λ d y) belongs to Σ i . Hence π(Σ i ) is a finite union of curves and if (r, y) ∈ π(Σ i ) and λ ∈ R then (λr, λ d y) ∈ π(Σ i ). Since 2p > d, |y| > r 2p for every point (r, y) ∈ π(Σ i ) with y ̸ = 0, sufficiently close to 0. Then, if x ∈ Γ X ω,f is close to (0, 0) then (x, ω(x) □ Therefore we can apply our method to the functions f + ω and f -ω. This generalizes the results of Bruce [START_REF] Bruce | Euler characteristics of real varieties[END_REF] and Szafraniec [START_REF] Szafraniec | Topological invariants of weighted homogeneous polynomial[END_REF]. Example 4.12. Let X = F -1 (0) be an algebraic set with isolated singularity at the origin, where F (x, y, z, w) = x 2 + y 2 -z 2 + w 2 is a homogeneous polynomial of degree 2. Let f (x, y, z, w) = xy -z 2 + w 2 be a homogenous polynomial of degree 2 such that f |X has non-isolated singularities. According to the results above, we can take ω(x, y, z, w) = We have computed the associated signatures using Singular.

Example 4.13. Let X = F -1 (0) be an algebraic set with isolated singularity at the origin, where F (x, y, z, w) = xy-z 2 +w 2 is a homogeneous polynomial of degree 2. Let f (x, y, z, w) = x 2 + y 2 -z 2 + w 2 be a homogenous polynomial of degree 2 such that f |X has non-isolated singularities. According to the results above, we can take ω(x, y, z, w) = x 4 4 + y 4 4 + z 4 4 + w 4 4 . Then, applying Theorem 4.6 and [6, Theorem 2.1], we have:

χ X ∩ B 4 ϵ ∩ {f = -δ} = χ X ∩ B 4 ϵ ∩ {f + ω = -δ} = 1 -deg 0 ∇F -deg 0 k(F, f + ω) = 1 -1 -2 = -2 and χ X ∩ B 4 ϵ ∩ {f = δ} = χ X ∩ B 4 ϵ ∩ {f -ω = δ} = 1 -deg 0 ∇F + deg 0 k(F, f -ω) = 1 -1 + (-2) = -2.
We have computed the associated signatures using Singular.

Proof. Combine Theorem 3 . 1 and

 31 Lemmas 4.3 and 4.4 and use the fact that (f + ω) |X and (f -ω) |X have an isolated critical point at 0 ∈ X. □

Lemma 4 . 8 .

 48 There exists a C 2 -definable positive function ϕ with ϕ(0) = 0 such that for p ∈ Γ X ρ,f sufficiently close to the origin, we have |f (p)| > ϕ(ρ(p)).

1 2p)

 1 ∈ Σ i and |f (x)| = |y| > r 2p = ω(x).

x 4 4 + y 4 4 + z 4 4 + w 4 4 .

 444 Then, applying Theorem 4.6, we have:χ X ∩ B 4 ϵ ∩ {f = -δ} = χ X ∩ B 4 ϵ ∩ {f + ω = -δ} and χ X ∩ B 4 ϵ ∩ {f = δ} = χ X ∩ B 4 ϵ ∩ {f -ω = δ} .We can apply the methods developed by the first author in[START_REF] Dutertre | On the Euler characteristics of real Milnor fibres of partially parallelizable maps of (R n , 0) to (R 2 , 0)[END_REF] to compute χ X ∩ B4 ϵ ∩ {f + ω = -δ} and χ X ∩ B 4 ϵ ∩ {f -ω = δ} . Using Theorem 2.1 in[START_REF] Dutertre | On the Euler characteristics of real Milnor fibres of partially parallelizable maps of (R n , 0) to (R 2 , 0)[END_REF], we obtain:χ X ∩ B 4 ϵ ∩ {f + ω = -δ} = 1 -deg 0 ∇F + deg 0 k(F, f -ω) = 1 -(-1) -2 = 0,andχ X ∩ B 4 ϵ ∩ {f -ω = δ} = 1 -deg 0 ∇F -deg 0 k(F, f + ω) = 1 -(-1) -2 = 0. The mappings k(F, f ± ω) are defined in[START_REF] Dutertre | On the Euler characteristics of real Milnor fibres of partially parallelizable maps of (R n , 0) to (R 2 , 0)[END_REF], Section 2, p. 327.
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