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A Hybrid Linear-Nonlinear ARX Model for reliable Multi-Step
Prediction : application to SwPool Benchmark

François Gauthier-Clerc1,2,3, Hoel Le Capitaine2,4, Fabien Claveau2,3, Philippe Chevrel2,3

Abstract— We present a hybrid ARX model that is useful for
system identification of nonlinear models. Our motivation is to
combine the advantages of linear and nonlinear models in the
context of extrapolation outside of the training dataset. The pro-
posed method uses a residual hybridization approach to ensure
a large linear contribution. Based on this hybrid ARX model,
the proposed learning method is evaluated using the available
operating data of a specific aquatic center. The results obtained
on this benchmark are compared to those of traditional linear
and nonlinear identification, showing that the hybrid approach
achieves both the accuracy of the pure nonlinear model and the
consistency of the linear ARX model. Our approach provides a
promising solution for nonlinear identification, particularly for
dynamical systems partially explainable by a linear model. As
in the strictly linear case, the proposed model can be learned
from a small volume of data, but can be enriched to improve
prediction accuracy. Its potential use for data-based predictive
control is particularly useful.

I. INTRODUCTION

Climate change is a global concern that has prompted
governments and industries to prioritize reducing greenhouse
gas emissions. The retrofitting of existing plants with more
efficient and cost-effective technologies is one way to achieve
this goal. Using software retrofit is a particularly attractive
approach, as it does not require significant capital investment
and can provide quick returns on investment. Black box
system identification and model-based control are powerful
tools that can aid in this endeavor. Unlike physics-based
approaches, black box models do not require expert knowl-
edge and model adaptation based on sensors configuration.
Instead, they rely on collected data to identify relationships
between inputs and outputs (see [1]), making them well
suited to applications where the system’s physics is not
always well understood or is expensive to understand.

Several applications show the relevance of model predic-
tive control coupled with black box model to respond to our
concern [1], [2]. Predictive control like EMPC (Economical
Model Predictive Control) approach can in first place offer
more energy consumption flexibility and secondly a more
efficient behaviour [3]. With the ongoing transition towards
renewable energy sources, the need for flexibility in indus-
trial systems is becoming increasingly important.

1Purecontrol, 68 Av. Sergent Maginot, 35000 Rennes, FRANCE
{firstname}.{surname}@purecontrol.com

2LS2N – Laboratory of digital sciences of Nantes, UMR CNRS 6004,
BP 92208, 44322 Nantes

3IMT Atlantique, CS 20722, 44307 Nantes, FRANCE
{firstname}.{surname}@imt-atlantique.fr

4Nantes Université, 44306 Nantes, FRANCE
{firstname}.{surname}@univ-nantes.fr

Black box system identification include a lot of methods
to obtain a model from data. A lot of model structures
and identification processes have been proposed for both
linear and non-linear contexts [4], [5]. Among the black
box models, we can cite the linear polynomial models (such
as ARX, OE, ARMAX), linear state space models (LSS)
[4], Sparse Identification of Nonlinear Dynamics (SINDy)
[6], neural networks (NN), linear parameter-varying models
(LPV) [7], and many others. This field provides a complete
range of model complexities that can fit any unknown
model. However, the linear model is the main paradigm that
has received a lot of analysis tools and theoretical results.
Relying on a linear model, even if the system is non-linear, is
always a good starting point and can be sufficient, especially
for control.

Dealing with operating systems and using black box mod-
els without a simulator is challenging due to limited freedom
in data generation and time constraints for data collection.
For a cost-effective control paradigm that enables widespread
deployment of such control approaches, it is crucial to first
obtain a reliable and accurate model, especially in contexts
characterized by small datasets and poor data coverage over
the regions of interest. Linear models can offer a good trade-
off in terms of data efficiency, consistency, and accuracy
for certain types of systems, such as swimming pools [8],
HVAC (heating, ventilation and air conditioning) systems
[9], and others. Indeed, the extrapolation of linear models
is powerful and predictable compared to non-linear models,
and they can be characterized, which is important for control.
However, linear models do not provide the best accuracy
when non-linear phenomena occur, which can be detrimental
to predictive control performance [1].

To the authors’ knowledge, little attention has been paid
to the development of methodologies for learning non-linear
models that are certainly accurate, but also capable of extrap-
olations as good as linear models are in general. Providing
a solution to this problem would allow the deployment of
an efficient and low-cost nonlinear control method for all
systems that can be roughly modeled by linear models.
From this point, adaptive or iterative control schemes with
feedback loops using new data could be used [10].

To overcome this challenge, this article proposes an
identification method relying on a hybrid linear/nonlinear
based ARX model. This non-linear identification scheme
proposes an architecture without an implicit observer (relying
on a reconstructability map [11]), emphasizing the linear
contribution of this hybrid model. This approach allows
a cost-effective use (no need for an expensive non-linear



observer), good extrapolation properties compared to pure
non-linear methods, and competitive accuracy in the domain
of the dataset. The explicability of the model is better than
that of the NLARX models, by the importance given to
the linear contribution. The identification scheme is well
suited for predictive control, which requires precision within
a bounded time horizon. We use neural networks to formulate
the non-linear model as they provide good approximation
performance.

As a use case, we selected the SWPool Benchmark [12]
which illustrates the industrial need for identification under
operational conditions that result in poor data distribution. It
will make it possible to comparatively evaluate the quality
of the proposed method. We rely on this dataset to draw a
connection with the problem addressed in this article and
to compare our approach with other system identification
methods.

Hybrid linear and non-linear models are not a novel
concept, as they have been explored in both time series
prediction and system identification in various forms and for
different purposes. In the context of time series prediction,
the objective is to enhance linear expressivity with non-linear
components. Zhang [13] introduced a hybrid ARX with a
neural network-based noise model. Other techniques have
been proposed to increase the complexity of hybrid models
[14], [15]. However, these approaches are not specifically
designed to handle dynamical systems identification for
control.

The current state-of-the-art in system identification in-
cludes several hybridization schemes for different purposes.
Among them, the generalized Non Linear State Space (g-
NN-SS) model [16] model is a recent proposition in which
the linear state space is coupled with a residual non-linear
function. This approach has been improved somewhat by
Schoukens in [17] who proposes a relevant way to initialize
the learning model to improve the optimization process.
Good performances were thus obtained compared to pure
non-linear methods. Other hybridization methods, closer to
LPV, have also received interest [18]. To the best of our
knowledge, not much effort has been devoted to leveraging
this hybridization for enhancing reliability and sample effi-
ciency in non-linear system identification. By ’reliability’ of
a given model, we mean its ability to predict the system’s
dynamics across its entire domain with precision, even
beyond the training dataset.

In order to present the proposed methodology, this article
will be organized as follows:

• Introduction to I/O model structure and identification
method for linear and non-linear formulations.

• Introduction of the proposed hybrid method enriching
NLARX formulation.

• Evaluation of the results obtained with the hybrid model
and learning method proposed compared to others using
SwPool benchmark [12].

II. ARX, NLARX AND NON LINEAR STATE SPACE
MODELS

A. Model structure

Among the non-linear models with a reconstructability
map, one of the most generic is the Deep Encoder State
Space [19]. In this work, the reconstructability map function,
observation function, and system function are expressed
using non-linear functions in a discrete and MIMO context.

x[t] = ψθ(u[t : t− no], y[t : t− no])

x[t+ 1] = gθ(x[t], u[t], e[t])

y[t] = hθ(x[t]) + e[t]

(1)

With x[t] ∈ Rnx , y[t] ∈ Rny and u[t] ∈ Rnu denote the
state, observation, and control signals, respectively. gθ, hθ
and ψθ stand for the state transition function, observation
function and reconstructability map respectively. θ represents
the model function weights and no denotes the size of the
delayed I/O input required to recover the state in closed form.
The delayed representation u[t+ i : t] is equivalent to [u[t+
i]T · · ·u[t]T ]T .

From this model, it is possible to derive different models
such as (non-linear output error (NOE)) or equation error
form (non-linear auto-regressive with eXogenous (NLARX),
non-linear auto-regressive with Moving Average and eXoge-
nous (NARMAX)). In this work, we concentrate on the
equation error form, which enables more straightforward
identification patterns.

NLARX is one of the most popular non-linear equation
error models due to its training in Prediction Error Mini-
mization (PEM), which is equivalent to a regression task.
This regression task can be expressed:

y[t] = fθ(y[t− 1], · · · , y[t− na], u[t− 1], · · · , u[t− nb]) + e[t]

(2)

Which admit the following state space representation:

x[t] = [y[t : t− na], u[t− 1 : t− nb]]
T

x[t+ 1] = Px[t] + [fθ(x[t], u[t]), 0, · · · ]T +Ke[t]

y[t] = [1, 0, · · · , 0]x[t]
(3)

With P being a projection matrix used to shift all sub-
elements of the state to comply with the definition, and
fθ : Rnx×nu → Rny representing the unfixed non-linear
part of the state transition, and finally K to project the
noise to the state space. From the perspective of equation
1, the reconstructability map is set to be linear and fixed
as a projection matrix, as well as the observation function.
The state transition function is fixed to be linear, except for
the first sub-element, represented by the function fθ. Even
if we constrain the state space and significantly increase its
dimension, this form can handle many systems and is easier
to train with fewer parameters.

Finally, the linear model ARX can be seen as a sub-part
of the NLARX, with the state transition being fully linear,



with only the first sub-element unfixed. This model is often
represented using the backward shift operator q−1:

A(q−1)y[t] = B(q−1)u[t] + e[t], (4)

Where A(q−1) and B(q−1) are polynomial matrices of size
ny × ny and ny × nu respectively.

This two polynomial matrices can be written as:

A(q−1) = Iny×ny
+A1q

−1 +A2q
−2 + · · ·Ana

q−na

B(q−1) = B1q
−1 +B2q

−2 + · · ·+Bnb
q−nb

(5)

The linear representation of the ARX state space according
to equation 1 can be formulated as follows:

x[t] = [y[t : t− na], u[t− 1 : t− nb]]
T

x[t+ 1] = Px[t]+

[A1 . . . Ana
B2 · · ·Bnb

0(nx−1)×nx
]x[t] + [B1 0 · · · ]u[t]

y[t] = [1, 0, · · · , 0]x[t] + e[t]

(6)

These three models offer a good perspective from a deep
black box model to a grey box model (see [5] for more
examples).

B. Identification

The PEM is a commonly used method for identifying
linear or non-linear I/O models. This procedure optimizes
the model weights to minimize the prediction error (one
step ahead) using selected data according to a scalar-value
function. It is very popular since linear ARX models can be
identified in closed form, and non-linear models can be opti-
mized using traditional regression methods. The square root
error for one-step prediction can be expressed as follows:

V
(1)
N (θ,D) =

N∑
t=1

||ŷ[t|t− 1]− y[t]||22 (7)

Here, ŷ[t|t−1] represents the prediction given the past obser-
vation from t− 1, θ represents the model parameters, and D
represents the dataset used for identification. Depending on
the model used, this problem can be a linear or non-linear,
convex or non-convex optimization problem.

Simulation Error Minimization (SEM) is another method
for identifying models, which is based not on the one step
ahead prediction but on the full simulation error. This method
is more suitable for output error models and can avoid
some of the biases induced by the noise model in the PEM
formulation [20], [21].

V
(1:N)
N (θ,D) =

N∑
t=1

||ŷ[t|0]− y[t]||22 (8)

This method is unfortunately expensive and needs approxi-
mations and a dedicated optimization schema to be computed
[22]. The multiple shooting [19], [23] has received recent
interest due to its smoothed cost function [23] and compu-
tational efficiency. The idea is to split the simulation error
into multiple bounded simulation errors using a convolution
application (see equation 9). Fig. 1 illustrates an example of

three bounded simulations at different starting points. The
multiple shooting method proceeds like this for every data
point before using all the error predictions for optimization.

Fig. 1: Illustration of multiple shooting prediction: Three
bounded simulation predictions are performed with different start-
ing points (represented by blue, green, and yellow colors). Black
points represent the original data used to estimate the model error
through all those predictions.

In our context of predictive control with receding horizon,
which ultimately interests us, having accurate predictions
can lead to better control performance [1], [24]. Using a
multi step precision criterion (bounded simulation horizon)
instead of PEM or SEM is a natural adaptation to this
need. The MPC Relevant Information (MPC-RI) method [25]
implements this idea to identify models for predictive control
purposes. The natural choice for the identification criterion
can be derived from the SEM with a bounded horizon:

V
(1:H)
N (θ,D) =

N∑
t=1

H∑
i=1

||ŷ[t|t− i]− y[t]||22 (9)

This formulation can be viewed as the multiple shooting
approximation of the SEM identification. This loss function
can be efficiently optimized for both linear and non-linear
models using the Back Propagation Through Time method
[26] and modern automatic differentiation.

III. PROPOSED HYBRID METHOD: NLR-LARX
A. NLR-LARX Model

The proposed approach is a hybrid ARX/NLARX model
that relies on residual aggregation, named NLR-LARX
(NonLinearResidual-Linear-ARX). This idea is similar to
Zhang’s hybrid model [13] with control variables and a non-
linear residual model based on the NLARX formulation. In
this hybridization, the linear ARX model serves as the core
predictor of the system, while the non-linear model corrects
the linear model by predicting the equation error for each step
of the recursive multi step prediction. The one step prediction
can be formulated as follows:
ŷ[t+ 1|t] = (Iny×ny −A(q−1))y[t] +B(q−1)u[t] + σϵẽ[t]

ẽ[t] = fθ(y[t− 1], · · · , y[t− na], u[t− 1], · · · , u[t− nb])
(10)

Here, A(q−1) and B(q−1) represent the linear ARX
model, fθ represents the non-linear function, ẽ represents
the non-linear equation error estimation, and σϵ is a diagonal
matrix. A neural network is used as the non-linear function
due to its excellent approximation properties and well-
established training toolbox. The constant matrix σϵ ensures
normalized output for the neural network during the training.



The multi step prediction is performed using the same
input signals for both models. Fig. 2 represents the block
diagram of this approach, where the linear noise model
is applied to the neural network output. The proposed ar-
chitecture enables a natural transition from a hybrid non-
linear model to a classical linear model during multi step
prediction, particularly when the performance of the neural
network is compromised. This can be achieved in the same
manner as multi step ARX prediction, by setting the future
equation noise to zero. This can enable future contributions
with a switch mechanism depending on the uncertainty of
the neural network prediction.

++ +

Fig. 2: Proposed hybrid NLARX scheme

The method is designed to ensure that the linear model
explains the majority of the prediction, while the non-linear
model corrects the linear model during recursive and long-
term prediction. To achieve this, we require a linear noise
model that propagates the non-linear prediction, allowing
little non-linear amplitude to correct the prediction over
the long run. Therefore, the non-linear model must deal
with this linear closed loop during the recursive predic-
tion. We propose a two step identification method with a
heterogeneous identification criterion. The ARX model is
trained using the PEM formulation, which allows for a closed
form resolution. The error standard deviation is computed
based on this first linear model. Then, the linear model is
fixed and mixed with the non-linear model for non-linear
training. The non-linear model is trained according to the
multi step criterion. The multi-shooting method [19] with the
appropriate prediction horizon is used to identify the residual
model. This identification problem can be formulated as
follows:

Step One:

A∗(q−1), B∗(q−1) = argminV (1)
N ({A(qt−1), B(q−1)},D)

with : ŷ[t|t− 1] := (Iny×ny
−A(q−1))y[t] +B(q−1)u[t]

σϵ := diag(std(ŷ[t|t− 1]− y[t]))
(11)

Step Two:

θ∗ = argminθV
(1:H)
N ({A∗, B∗, θ},D) + αR(θ,D)

with : ŷ[t+ k|t] = (Iny×ny
−A∗(q−1))ŷ[t+ k − 1|t]+

B∗(q−1)u[t+ k − 1] + σϵfθ(ŷ[t+ k − 1|t], u[t+ k − 1])
(12)

Where α represents the weight of the non-linear regulariza-
tion. The second part of the problem is solved using a deep
learning library (Tensorflow) and automatic differentiation
with the Back Propagation Through Time concept. The reg-
ularization term R(θ,D) penalizes the nonlinear prediction
amplitude so that its contribution is as small as possible. The
neural network is initialized with a dedicated distribution
(such as GlorotUniform), but the output layer’s weights are
set to zero (like in [17]) in order to start the hybrid model
at the ARX level.

This hybridization scheme is all the more interesting
because it does not entail any model order increase compared
to the original ARX model (see equation 16). The model’s
expressiveness remains high, as the non-linear part uses
the same inputs as NLARX models. This method does not
require an expensive observation system, especially with
non-linear models. The ARX model is trained only for one
step prediction for two reasons. Firstly, it is cost-effective and
represents the expected regime of prediction throughout the
horizon, thanks to the non-linear error prediction. Secondly,
learning a linear model in k-step is motivated for bias
correction [27], which is not necessary here since the non-
linear model corrects the bias error.

This residual approach does not constrain the neural
network’s expressiveness and can be seen as a special case
of a ResNet layer [28], employing a custom linear function
rather than the identity function. Additionally, due to its use
of an auto-regressive formulation, it can approximate any
recursive system that can be represented by a continuous
recursion function (see Definition 2.1 of [29]).

B. Regularization

To ensure a minor non-linear contribution, a regularization
term can be added to the identification process. We propose
two methods to penalize the non-linear contribution during
the multi step prediction. The first method consists of using
ridge regularization on the neural network output at each
step. This will penalize large neural network outputs and
ensure moderate non linear contribution.

R(1)(θ,D) =
1

NK

N∑
t=1

K∑
k=1

||ẽ[t+ k|t]||2 (13)

We also present a more advanced regularization approach to
ensure a good extrapolation of the hybrid model. Inspired
by some Out Of Distribution (OOD) Detection methods
[30], [31], we use a grid generation of synthetic data to
cover the whole range of admissible values, and penalize
the neural network on this extended dataset. As explained
earlier, having a non-linear prediction of zero will make the
prediction identical to that of a pure linear model. Using a
small weight in the regularization will not penalize the hybrid



X[t+ 1] =



−A1 −A2 · · · −Ana−1 −Ana
B2 B3 · · · Bnb−1 Bnb

Iny×ny
0 0 0

0 0

0
...

0 0 Iny×ny 0
0 0

Inu×nu 0 0 0

0

0
0 0 Inu×nu

0

0

0



X[t] +



B1

0

0
Inu×nu

0

0



U [t] +



σϵfθ(X[t], U [t])
0
0

0


Y [t+ 1] =

[
Iny×ny

0 · · · 0
]
X[t+ 1], with X[t] =

[
y[t− 1]T , · · · , y[t− na]

T , u[t− 1]T , · · · , u[t− nb]
T
]T
, Y [t] =

[
y[t]

]
(16)

performance too much on the training set, while penalizing
the neural network in the extrapolation domain.

R(2)(θ,D′) =
1

card(D′)

N∑
i=1

||fθ(yi, · · · , ui, · · · ) ||2 (14)

Where D′ represents the synthetic regularization dataset with
the grid sampling and yi, ui element of D′.

The main difference between the two versions is that the
second version restricts the residual component to produce
minimal contribution in the extrapolation domain, whereas
the first version only ensures a marginal contribution of the
residual model within the training dataset.

We do not expect a null contribution of the neural network
across the entire system space solely through regularization.
However, prior work [30] has shown some generalization
capability of these kinds of approaches when ODD datasets
are properly defined.

IV. RESULTS

A. Performance: SWPool benchmark

The SwPool Benchmark1[12] contains a dataset from an
actual aquatic center in operation. It is designed for data-
driven identification of temperatures in two pools, based
on a common sensor configuration and unknown system
properties. The benchmark includes a training dataset, a test
dataset and an extrapolation dataset. It also provides preci-
sion scores for 8-hour ahead predictions in both interpolation
and extrapolation regimes. In this section, we will compare
the proposed method to highlight the interest of it.

The first model is the NLARX one with a feed forward
neural network in residual architecture (better accuracy than
a direct feed forward model). It is formulated as equation
2 and trained with the multi step criterion. The linear ARX
model is also included as a second model (equation 4) using
Matlab ident. toolbox. We chose to include these two models,
ARX and NLARX, in the comparison as they are parts of
the proposed hybrid model. Comparing their individual per-
formance against the performance of the entire hybrid model

1The SwPool benchmark is available at the following address https:
//benchmark-datadriven-sysid.purecontrol.com

is of interest to us. Finally, the Deep Encoder State Space
model (DESS) [19] using the Python DeepSI toolbox is also
included, as it achieved one of the highest accuracies on
several non-linear benchmarks [32] and represents the most
general black-box state-space model with a reconstructability
map. The hybrid model was trained using Matlab for the
linear part and the Tensorflow library for the non-linear part.
We will include the proposed method with the two proposed
regularization methods separately, NLR-LARX(1) and NLR-
LARX(2) for the first and second regularization method
respectively (see equation 13 and 14). Between these two
versions only the R(θ,D) regularisation function is different,
in order to analyse their respective performances.

For NLR-LARX(2),The extrapolation data are generated
using a temperature range from 26 to 31 degrees and the
full range of control variables (extrapolation data have lower
temperatures, around 24 degrees for both pools). All pure
exogenous signals, such as outdoor temperature, are sampled
from the training dataset to avoid the curse of dimensionality.

The g-NN-SS model is not included since no work has
been done to apply a reconstructability map with this archi-
tecture. All non-linear training is done using the Adam [33]
optimization method.

The benchmark defines the average precision through
multi step prediction with following function:

L(I, J) = 1

J + I − 1

J∑
i=I

√√√√ K∑
k=1

||ŷ[i+ k|k]− y[i+ k]||22
N

(15)

Short term prediction, long term precision and average
precision through the 8 hours horizon are defined with the
followings quantities; L(0, H/4), L(3H/4, H) and L(0, H).

Hyper-parameter optimization is performed to tune all
model parameters according to their specificities. Among
those parameters, the horizon hyper-parameter H (which is
the prediction depth criterion) is optimized only from 5 to
15 steps due to computation limitations. Besides, several
empirical experiments did not show any evidence of better
performance in test set using the full 48 step horizon for the
training criterion.

https://benchmark-datadriven-sysid.purecontrol.com
https://benchmark-datadriven-sysid.purecontrol.com


ARX parameters :
• na: 3, nb: 3
• focus: prediction

NLR-LARX(1) parameters :
• Horizon: 10
• Act. func. : relu
• Linear input:
na: 3, nb: 3

• Neural network input:
na: 3, nb:3

• #Layer: 1, #neurons: 32
• Learning rate: 3.10−4

• Batch size: 64
• #Epochs: 300
• Alpha : 0.0001

NLARX parameters:
• Horizon : 15
• Act. func. : relu
• na: 3, nb: 3
• #layers: 2, #neurons: 16
• Learning rate: 10−4

• Batch size: 128
• #epochs: 300
• L2 Norm Pem. : 10−4

DESS parameters:
• Horizon : 15
• nx: 6, no: 18
• Act. func.: tanh,
• #layers: 2, #neurons: 16
• Learning rate : 10−3

• Batch size: 256,
• #Epochs: 400

TABLE I: All hyper-parameters used in the numerical com-
parison.

All optimized hyper-parameters are listed TABLE. I. They
are obtained with a random search with around 300 trials per
model. The optimal hyper-parameters for NLR-LARX(2) are
identical to those for NLR-LARX(1)(except for na=1 and
α=0.001), and are not given twice in TABLE I.

The benchmark results are presented in Table II. With
the exception of the ARX model (which is fitted with a
deterministic algorithm), all results are computed 10 times
to estimate the mean and standard deviation that are reported
in the table.

The NLR-LARX(1) model provides the best accuracy on
the test set compared to the two original methods (ARX and
NLARX). Overall, all non-linear models trained using the
same multiple shooting method provide similar performance
on the test set. NLR-LARX(1) is slightly better due to
reduced variance in the model performance. NLR-LARX(2)

is worst in terms of test accuracy (around 0.16 compared
to 0.15 for other non-linear models; see the first column of
TABLE II), indicating some negative effects of the proposed
regularization in the interpolation context.

As expected, the linear model provides the best extrapo-
lation performance across all four extrapolation scenarios of
the benchmark. Both non-linear models (NLARX & DESS)
produce very poor accuracy in all scenarios. This highlights
the limitations of pure non-linear model for consistent black
box modeling.

The hybrid model with the first regularization does not
provide better extrapolation than other non-linear models,
which suggests that the residual non-linear model produces
unpredictable contribution. On the other hand, the second
regularization method, NLR-LARX(2), which penalizes the
residual model output in some synthetic extrapolation data,
performs as expected with accuracy close to the linear model
for several scenarios. This result tends to show the ability of
the proposed method to merge the best of the both worlds,
non-linear interpolation, and linear extrapolation (or at least
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00h00 08h00 16h00 00h00 08h00 16h00 00h00

27.8

28.0

28.2
Pool 1

00h00 08h00 16h00 00h00 08h00 16h00 00h00
Time

29.0

29.5

30.0

Pool 2

Te
m

pe
ra

tu
re

[C
]

Data ARX NLR-LARX(1) DESS

Fig. 4: Prediction example for several prediction horizons.

be able to move in the Pareto front). Some work needs to
be done to improve the regularization to achieve the best
non-linear interpolation while remaining close to the linear
extrapolation capability.

The precision of both pool signals according to the predic-
tion depth and the model is presented in Fig. 3 (test set only).
As expected, the linear model performs the worst, especially
with the second pool. All non-linear models produce less er-
ror, notably in the long term prediction. The DESS produces
very competitive accuracy but performs worse in the short
term due to inaccurate state space estimation (as noted in the
original paper [19]).

An example of predictions for different horizons is shown
in Fig. 4. At each vertical red line, all models are initialized
with the real observations according to their specifications.

B. NLR-LARX behaviour

By examining the dynamic relationship between the linear
and non-linear components, we can gain further insight into
the performance of our model. Specifically, it is crucial
to ensure that the non-linear contribution remains marginal
compared to the linear contribution.

We draw our attention to this behavior by comparing the
variance of the residual nonlinear output, while taking into
account its normalization matrix σϵ. In order to estimate the
magnitude of the variance, we propose including the variance
of the discrete derivative of the linear ARX model alone



L(1, H) L(1, H/4) L(3H/4, H) S1 L(1, H) S2 L(1, H) S3 L(1, H) S4 L(1, H)
ARX 0.293±0.00 0.113±0.00 0.463±0.00 0.276±0.00 0.284±0.00 0.347±0.00 0.327±0.00
NLARX 0.159±0.0073 0.086±0.0013 0.221±0.0139 0.303±0.0798 0.669± 0.1556 1.524±0.7346 0.928±0.3187
DESS 0.151±0.0102 0.090±0.0038 0.207±0.0180 0.565±0.2060 1.162±0.4327 3.348±1.7979 1.274±0.6707
NLR-LARX(1) 0.147±0.0033 0.081±0.0008 0.204±0.0053 0.332±0.0703 0.697±0.2730 3.076±1.1952 1.543±0.3662
NLR-LARX(2) 0.164±0.0091 0.085±0.0016 0.238±0.0170 0.221±0.0236 0.431±0.1028 0.486±0.0777 0.404±0.0543

TABLE II: Swp Benchmark score:
L(1, H),L(1, H/4),L(1, 3H/4) are scores for the test set, and Si represents the score for the ith extrapolation scenario.

Test set Extra. set
0.0000
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ARX discrete deriv. (σϵfθ) NLR-LARX(1) (σϵfθ) NLR-LARX(2)

Fig. 5: Variance of the discrete derivative of the linear ARX
model and the non-linear residuals of both NLR-LARX(1)

and NLR-LARX(2) models for the test set and extrapolation
set.

(which can be computed after hand with ŷ[t + k|t] − ŷ[t +
k−1|t]). By considering only the discrete derivative, we can
make a more accurate comparison, as the residual portion is
not necessary to predict the entire transition function.

This comparison is shown in Fig. 5 for both the test set
and the extrapolation dataset, using both the NLR-LARX(1)

and NLR-LARX(2) models, as well as the linear model. All
variances were estimated through 8-hour recursive prediction
for the entire dataset, using the same 10 models used in
the benchmark score. Consistent with our expectations, the
non-linear residual variance is relatively small compared to
the variance of the linear discrete derivative. We observe
a slightly more variance with the NLR-LARX(1) model
compare to NLR-LARX(2), which can explain the better
performance. However, in the extrapolation data, the NLR-
LARX(1) model exhibits a significant increase in output
variance compared to its interpolation regime, with 10 times
more variance. On the other hand, the NLR-LARX(2) model
with the second regularization allows for a relatively constant
variance of the non-linear residual model. This result is
expected since the R(1) regularization does not constrain
the residual model in the extrapolation regime, unlike R(2).
While this stable contribution helps with extrapolation (as
shown with R(2)), achieving linear equivalent extrapolation
accuracy would require the residual output to have a zero or
near zero amplitude (not exactly the case with R(2)).

In addition to the amplitude comparison, we can compute
the cross-correlation between the linear discrete derivative
of the ARX model and the non-linear output of the NLR-
LARX(1) model.

Pool 1
DD ARX (σϵfθ)

NLR-LARX(1)

DD ARX 1.0 -0.063
(σϵfθ) -0.063 1.0
NLR-LARX(1)

Pool 2

DD ARX (σϵfθ)
NLR-LARX(1)

DD ARX 1.0 -0.027
(σϵfθ) -0.027 1.0
NLR-LARX(1)

TABLE III: Covariance matrices between the residual non-
linear model of NLR-LARX(1) and the Discrete Derivative
of the ARX (DD ARX) model in the test set.

The ARX output and residual model exhibit no linear cor-
relation. As described in Zhang’s hybrid ARX model [13],
the ARX component captures all of the linear correlations
between the lagged observations and the output predictions.
This constraint forces the neural network to model only
the non-linear relationships between the input and output
variables.
To summarize this empirical study, the proposed structure
exhibits good characteristics in terms of both prediction
accuracy in the interpolation regime and prediction ability
in the extrapolation regime. However, there are limits to
achieving excellent simultaneous interpolation and extrap-
olation performance.

V. CONCLUSIONS

In this paper, a hybrid linear-nonlinear autoregressive black
box model has been proposed, as a useful support for system
identification. It is particularly suited to the representation of
physical processes whose behavior can be largely explained
by a linear model. The identification method that we have
recommended and implemented proceeds to a residual hy-
bridization. It combines a state-of-the-art ARX model with
a trained neural network in a multi step error minimization
process. In order to guarantee the predominance of the linear
part of the model, we have developed a two-step learning
process. The residual hybridization technique ensures consis-
tent use of the linear model with neural network prediction
across multi step predictions. Two regularizations have been
proposed to limit the non-linear contribution in both the
extrapolation and interpolation regimes.
The results obtained from the numerical experiments on
the SwPool benchmark show that the learned hybrid model
reaches on the test set (interpolation) an accuracy equivalent
to that obtained with a purely non-linear model. At the same
time, it offers much higher performance in extrapolation,
with an accuracy close to that obtained by an optimized
linear model alone. The empirical analysis of the output
of the neural network confirms a weak contribution for the
prediction, compared to that of the linear part. This allows a
linear interpretation/explainability of the black box model 2.
Regularizations considered have shown their effectiveness.
We will continue our search however, to have a regularization

2the best of both worlds?



requiring no compromise. Future work will also focus on
exploring the benefits of the model we proposed, to be used
for predictive control applications.

NOMENCLATURE

PEM Prediction Error Minimization
SEM Simulation Error Minimization
MPC-RI Model Predictive Control

Relevant Information
EMPC Economical Model Predictive Control
LSS Linear State Space
ARX Auto-Regressive with eXogenous
ARMAX Auto-Regressive Moving Average

with eXogenous
OE Ouput Error model
LPV Linear Parameter Varying
NLARX Non-Linear Auto-Regressive

with eXogenous
NOE Non-linear Output Error
DESS Deep Encoder State Space
g-NN-SS generalized Non Linear State Space
NLR-LARX Non-Linear-Residual Linear

Auto-Regressive with eXogenous
NN Neural Network
OOD Out Of Distribution
DD ARX Discrete Derivative of

Auto-Regressive with eXogenous

REFERENCES

[1] P. C. Blaud, P. Chevrel, F. Claveau, P. Haurant, and A. Mouraud,
“From multi-physics models to neural network for predictive control
synthesis,” Optimal Control Applications and Methods, vol. 44, no. 3,
pp. 1394–1411, 2023.

[2] M. Wallace, R. McBride, S. Aumi, P. Mhaskar, J. House, and T. Sals-
bury, “Energy efficient model predictive building temperature control,”
Chemical Engineering Science, vol. 69, no. 1, pp. 45–58, 2012.

[3] J. P. D. Marı́n, F. V. Garcı́a, and J. R. G. Cascales, “Use of a predictive
control to improve the energy efficiency in indoor swimming pools
using solar thermal energy,” Solar Energy, vol. 179, pp. 380–390,
2019.

[4] L. Ljung, System Identification: Theory for the User. Pearson
Education, 1998.

[5] J. Schoukens and L. Ljung, “Nonlinear system identification: A user-
oriented road map,” IEEE Control Systems Magazine, vol. 39, no. 6,
pp. 28–99, 2019.

[6] S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Discovering governing
equations from data by sparse identification of nonlinear dynamical
systems,” Proceedings of the National Academy of Sciences, vol. 113,
no. 15, pp. 3932–3937, 2016.

[7] C. A. Thilker, P. Bacher, D. Cali, and H. Madsen, “Identification of
non-linear autoregressive models with exogenous inputs for room air
temperature modelling,” Energy and AI, vol. 9, p. 100165, 8 2022.

[8] Y. Dong, H. Yonghong, and X. Gaohong, “Design of indoor swimming
pool water temperature control system based on fuzzy controller and
smith predictor,” in Proceedings of 2011 International Conference on
Electronic & Mechanical Engineering and Information Technology,
vol. 9, 2011, pp. 4678–4681.
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