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Abstract. Incomplete Argumentation Frameworks (IAFs) enrich clas-
sical abstract argumentation with arguments and attacks whose actual
existence is questionable. The usual reasoning approaches rely on the
notion of completion, i.e. standard AFs representing “possible worlds”
compatible with the uncertain information encoded in the IAF. Recently,
extension-based semantics for IAFs that do not rely on the notion of com-
pletion have been defined, using instead new versions of conflict-freeness
and defense that take into account the (certain or uncertain) nature
of arguments and attacks. In this paper, we give new insights on this
reasoning approach, by adapting the well-known grounded semantics to
this framework in two different versions. After determining the compu-
tational complexity of our new semantics, we provide a principle-based
analysis of these semantics, as well as the ones previously defined in the
literature, namely the complete, preferred and stable semantics.

1 Introduction

Abstract argumentation has received much attention since the seminal paper
by Dung [12]. An Argumentation Framework (AF) is generally defined as a di-
rected graph where nodes represent arguments, and edges represent attacks be-
tween these arguments. Since then, many generalizations of Dung’s framework
have been proposed, introducing the notion of support between arguments [2],
weighted attacks [13] or weighted arguments [19], preferences between arguments
[1], and so on.

In this paper, we focus on one such generalization of abstract argumenta-
tion, namely Incomplete Argumentation Frameworks (IAFs) [8, 7, 5] in which
arguments and attacks can be defined as uncertain, meaning that the agent rea-
soning with such an IAF is not sure whether these arguments or attacks actually
exist (e.g. whether they will actually be used at some step of the debate). This is
particularly meaningful when modelling an agent’s knowledge about her oppo-
nent in a debate [10, 11], since it is a reasonable assumption that agents are not
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always able to assess precisely the uncertainty degree of a piece of information
(e.g. meaningful probabilities may not be available). We push further a recent
study of semantics defined for reasoning with IAFs, based on the idea that basic
principles of argumentation semantics (namely conflict-freeness and defense) can
be adapted to take into account the nature of the pieces of information in the
IAF (certain or uncertain) [7, 16, 18]. While the initial work on this topic focuses
on Partial AFs (which are IAFs without uncertain arguments) and the preferred
semantics [7], the general IAF model and other semantics (namely complete and
stable) have also been studied in [16, 18]. Now we focus on the adaptation of
the last classical semantics initially defined by Dung, namely the grounded se-
mantics. For all the semantics defined in the literature and in the present paper,
we also investigate the principles they satisfy, following the principle-based ap-
proach for analysing argumentation semantics [4, 3, 20]. Proofs are omitted for
space reasons.

2 Background

Definition 1. An Argumentation Framework (AF) [12] is a directed graph F =
⟨A,R⟩ where A represents the arguments and R ⊆ A×A represents the attacks
between arguments.

In this paper we assume that AFs are always finite, i.e. A is a finite set of
arguments. We say that an argument a ∈ A (resp. a set S ⊆ A) attacks an
argument b ∈ A if (a, b) ∈ R (resp. ∃a ∈ S such that (a, b) ∈ R). Then, S ⊆ A
defends a ∈ A if ∀b ∈ A such that (b, a) ∈ R, S attacks b. A set of arguments
S ⊆ A is called conflict-free when ∀a, b ∈ S, (a, b) ̸∈ R. In this case we write
S ∈ cf(F). [12] defined several semantics for evaluating the acceptability of
arguments, based on the characteristic function ΓF of an AF:

Definition 2. Given an AF F = ⟨A,R⟩, the characteristic function of F is
ΓF : 2A → 2A defined by

ΓF (S) = {a | S defends a}

Now, given S ⊆ cf(F) a conflict-free set of arguments, S is

– admissible iff S ⊆ ΓF (S),
– a complete extension iff S = ΓF (S),
– a preferred extension iff it is a ⊆-maximal admissible set,
– the unique grounded extension iff it is the ⊆-minimal complete extension.

These sets of extensions are denoted (resp.) by ad(F), co(F), pr(F) and
gr(F). Finally, a last classical semantics is not based on the characteristic func-
tion: S ∈ cf(F) is a stable extension iff S attacks all the arguments in A \ S.
The stable extensions are denoted st(F). We sometimes write σ(F) for the set
of extensions of F under an arbitrary semantics σ ∈ {cf, ad, co, pr, gr, st}.
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Fig. 1: Examples of AF (left) and IAF (right)

Semantics σ Extensions σ(F)

co {{a1}, {a1, a3}, {a1, a4, a6}}
pr {{a1, a3}, {a1, a4, a6}}
st {{a1, a4, a6}}
gr {{a1}}

Table 1: Extensions of the AF F

Example 1. Figure 1a describes F = ⟨A,R⟩, where the nodes represent A and
the edges represent R. Its extensions for the co, pr, st and gr semantics are given
in Table 1.

Various decision problems can be interesting: σ-Ver is the verification that
a given set of arguments is a σ extension of a given AF, σ-Cred and σ-Skep
consist (resp.) in checking whether a given argument belongs to some or each
σ-extension of a given AF. Finally, σ-Exist (resp. σ-NE) is the check whether
there is at least one (resp. one non-empty) σ-extension for a given AF.

Incomplete Argumentation Frameworks (IAFs) generalize AFs by adding a
notion of uncertainty on the presence of arguments and attacks, i.e. an IAF
is a tuple I = ⟨A,A?,R,R?⟩ where A,A? are disjoint sets of arguments, and
R,R? are disjoint sets of attacks over A ∪ A?. The arguments and attacks in
A and R certainly exist, while those in A? and R? are uncertain. See [17] for
a recent overview of IAFs. In this paper, we focus on the IAF semantics from
[7, 16, 18]. The intuition behind this approach consists in adapting the notions
of conflict-freeness and defense to IAFs, in order to define well-suited notions of
admissibility and the corresponding semantics.

Definition 3. Let I = ⟨A,A?,R,R?⟩ be an IAF, and S ⊆ A ∪ A? a set of
arguments. S is weakly (resp. strongly) conflict-free iff ∀a, b ∈ S ∩ A (resp.
a, b ∈ S), (a, b) ̸∈ R (resp. (a, b) ̸∈ R ∪ R?).

Definition 4. Let I = ⟨A,A?,R,R?⟩ be an IAF, S ⊆ A∪A? a set of arguments,
and a ∈ A ∪ A? an argument. S weakly (resp. strongly) defends a iff ∀b ∈ A
(resp. b ∈ A ∪ A?) s.t. (b, a) ∈ R (resp. (b, a) ∈ R ∪ R?), ∃c ∈ S ∩ A s.t.
(c, b) ∈ R.
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The weak (resp. strong) conflict-free and admissible sets of an IAF I are de-
noted by cfw(I) and adw(I) (resp. cfs(I) and ads(I)). Combining weak (resp.
strong) conflict-freeness with weak (resp. strong) defense yields a notion of weak
(resp. strong) admissibility, and the corresponding preferred and complete se-
mantics.

Definition 5. Let I = ⟨A,A?,R,R?⟩ be an IAF, and S ⊆ A ∪ A? a set of
arguments. S is a

– weak (resp. strong) preferred extension of I if S is a ⊆-maximal weak (resp.
strong) admissible set,

– weak (resp. strong) complete extension of I if S is a weak (resp. strong)
admissible set which does not weakly (resp. strongly) defend any argument
outside of S.

These semantics are denoted by prx(I) and cox(I), with x ∈ {w, s}. The
stable semantics has been adapted as well.

Definition 6. Let I = ⟨A,A?,R,R?⟩ be an IAF, and S ⊆ A ∪ A? a set of
arguments. S is a weak (resp. strong) stable extension iff it is a weak (resp.
strong) conflict-free set s.t. ∀a ∈ A \ S (resp. a ∈ (A∪A?) \ S), ∃b ∈ S ∩A s.t.
(b, a) ∈ R.

We use stx(I) with x ∈ {w, s} to denote the weak and strong stable extensions
of an IAF.

Example 2. Figure 1b describes an IAF I = ⟨A,A?,R,R?⟩ where the dotted
nodes (resp. edges) represent the uncertain arguments A? (resp. attacks R?).
Certain arguments and attacks are represented as previously. Its extensions are
given in Table 2.

Semantics σ Extensions σ(F)

cow {{a1, a2, a4, a6, a7}}
prw {{a1, a2, a4, a6, a7}}
stw {{a2, a4, a6, a7}, {a2, a4, a5, a6, a7},

{a1, a2, a4, a6, a7}, {a1, a2, a4, a5, a6, a7}}

cos {{a1}, {a1, a6}}
prs {{a1, a6}}
sts ∅

Table 2: Extensions of the IAF I

The complexity of reasoning with these semantics has been established in
[16, 18], the results are summarized in Table 3.
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3 Grounded Semantics

Now we fulfill the landscape of extension-based semantics for IAFs by defining
weak and strong variants of the grounded semantics. Following Dung’s original
approach, we define characteristic functions of an IAF, corresponding to the
notions of weak and strong defense from Definition 4.

Definition 7 (Characteristic Functions). Given an IAF I = ⟨A,A?,R,R?⟩,
the x-characteristic function of I (where x ∈ {w, s}) is defined by

Γx,I(S) = {a ∈ A ∪A? | S x-defends a}

We show that the results by Dung regarding the characteristic function of
an AF [12, Section 2.2] can be adapted to our framework. The following lemmas
are easy to prove. First, the x-characteristic function preserves the x-conflict-
freeness.

Lemma 1. Given an IAF I = ⟨A,A?,R,R?⟩, x ∈ {w, s} and S ⊆ A ∪ A?, if
S ∈ cfx(I) then Γx,I(S) ∈ cfx(I).

The following lemma also shows that the usual relation between admissibility
and the characteristic function(s) also works for the strong and weak admissible
sets defined in [16, 18].

Lemma 2. Given an IAF I = ⟨A,A?,R,R?⟩, x ∈ {w, s}, and S ⊆ A∪A? such
that S ∈ cfx(I), S ∈ adx(I) if and only if S ⊆ Γx,I(S).

Also, the correspondence between fixed-points of the characteristic functions
and the strong and weak complete extensions holds in our framework as well.

Lemma 3. Given an IAF I = ⟨A,A?,R,R?⟩, x ∈ {w, s}, and S ⊆ A∪A? such
that S ∈ cfx(I), S ∈ cox(I) if and only if S = Γx,I(S).

Now, we prove that the Γx,I functions are monotonic.

Lemma 4. Given an IAF I = ⟨A,A?,R,R?⟩, x ∈ {w, s}, and two sets of
arguments S, S′ ⊆ A ∪ A? such that S, S′ are x-conflict-free, if S ⊆ S′ then
Γx,I(S) ⊆ Γx,I(S

′).

Proof. Assume that S, S′ are x-conflict-free sets such that S ⊆ S′. Now consider
a ∈ Γx,I(S), and let us prove that a ∈ Γx,I(S).

First, consider the case where x = w. Since S weakly defends a, for all
b ∈ A such that (b, a) ∈ R, there is c ∈ S ∩ A such that (c, b) ∈ R. Since
S ⊆ S′, obviously there is no certain argument in S′ which certainly attacks a
(otherwise, there would be a contradiction either with the fact that S weakly
defends a, or with the fact that S′ is weakly conflict-free). So S′ weakly defends
a, and we can conclude that Γw,I(S) ⊆ Γw,I(S

′).
Now consider x = s. Since S strongly defends a, for all b ∈ A ∪ A? such

that (b, a) ∈ R ∪ R?, there is c ∈ S ∩ A such that (c, b) ∈ R. Since S ⊆ S′

and S′ is strongly conflict-free, there is no argument in S′ which attacks a,
for similar reasons to the previous case x = w. So S′ strongly defends a, and
Γs,I(S) ⊆ Γs,I(S

′).
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Finally we define the grounded semantics of IAFs:

Definition 8. Given an IAF I = ⟨A,A?,R,R?⟩ and x ∈ {w, s}, the unique
x-grounded extension of I is the fixed point obtained by iteratively applying the
x-characteristic function of I using ∅ as the starting point.

This means that we can compute the x-grounded extension with Algorithm 1,
which follows the usual approach for computing the grounded extension of an
argumentation framework: take the arguments which do not need to be defended
(i.e. compute Γx,I(∅), in the case where x = w, these are the arguments which
are not certainly attacked by certain arguments; in the case where x = s it
means that they are not attacked at all). Then, while it is possible, we add to
the extension arguments that are defended by the arguments already member of
the extension. The process stops when nothing can be added anymore.

Algorithm 1 Computation of the x-grounded extension

Require: I = ⟨A,A?,R,R?⟩, x ∈ {w, s}
1: result = Γx,I(∅)
2: while result ̸= Γx,I(result) do
3: result = Γx,I(result)
4: end while
5: return result

Example 3. Continuing the previous example, we have grw(I) = {{a1, a2, a4, a6,
a7}} and grs(I) = {{a1}}.

From Lemma 4, we deduce that the iterations of the loop (line 2 in Algo-
rithm 1) only add arguments to the result being constructed. So the number of
iterations of this loop is bounded by the number of arguments, which means that
this process is polynomial, as well as all the classical decision problems for these
semantics. The P-hardness comes from the known results for standard AFs [14].

Proposition 1. For x ∈ {w, s}, the problems grx-Ver, grx-Cred and grx-Skep
are P-complete, grx-Exist is trivial, and grx-NE is in L.

Proof. P-membership is obvious, since the unique x-grounded extension S can
be computed in polynomial time using Algorithm 1. Then, it can be checked
in polynomial whether the given set is equal to S (for grx-Ver), or whether the
given argument belongs to S (for grx-Cred and grx-Skep). For grx-Exist, any I
has exactly one x-grounded extension, so it is trivial. Finally, grx-NE can be
solved by checking, for each argument, whether it needs to be x-defended or not.
As soon as some argument does not need to be x-defended, the answer to grx-NE
is YES. This check can be done in polynomial time and logarithmic space, hence
the result.
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Finally, P-hardness for grx-Ver, grx-Cred and grx-Skep come from the hardness
of the corresponding problems for the grounded semantics of AFs [14], and the
fact that any AF ⟨A,R⟩ is an IAF ⟨A, ∅,R, ∅⟩. A similar transformation is used
for proving hardness results in the case of other semantics [16, 18].

From Lemma 3, it is obvious that the x-grounded extension of an IAF is also
a x-complete extension. It is also the case that any complete extension must
contain the arguments which do not need to be x-defended, and then it must
contain all the arguments from the x-grounded extension. So the x-grounded
extension can be characterized as the (unique) ⊆-minimal x-complete extension,
similarly to the “classical” grounded extension. This implies that the coNP upper
bound for cox-Skep [16] can be made more precise, since cox-Skep = grx-Skep.

Corollary 1. For x ∈ {w, s}, cox-Skep is P-complete.

Table 3 summarizes the known complexity results for reasoning with the
semantics of IAFs. Grey cells correspond to new results provided in this paper,
while the other cells correspond to results from [16] (for σx-Ver, σx-Cred and
σx-Skep) and [18] for (σx-Exist and σx-NE).

Semantics σx σx-Ver σx-Cred σx-Skep σx-Exist σx-NE

cfx in L in L trivial trivial in L
adx in L NP-c trivial trivial NP-c
grx P-c P-c P-c trivial in L
stx in L NP-c coNP-c NP-c NP-c
cox in L NP-c P-c trivial NP-c
prx coNP-c NP-c ΠP

2 -c trivial NP-c

Table 3: Complexity of σx-Ver, σx-Cred, σx-Skep, σx-Exist and σx-NE for σ ∈
{cf, ad, gr, st, co, pr} and x ∈ {w, s}. C-c means C-complete.

4 Principle-based Analysis of IAF Semantics

Now we study the properties of the extension-based semantics of IAFs. More
precisely, we focus on some principles already mentioned in the literature [3,
20]. However, we do not mention some principles which are not relevant here,
like admissibility or reinstatement, which do not make sense if they are directly
applied to IAFs. Since our semantics have been defined to satisfy weak or strong
counterparts of admissibility (except weak stable semantics), there is nothing
to prove regarding these principles adapted to IAFs. We adapt to IAFs several
principles from the literature, and show which ones are satisfied by our semantics.

The I-maximality principle states that no extension should be a proper subset
of another extension.
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Principle 1 An extension-based semantics σ satisfies the I-maximality princi-
ple if, for any AF I = ⟨A,A?,R,R?⟩, ∀S, S′ ∈ σ(I), if S ⊆ S′ then S = S′.

Proposition 2. I-maximality is satisfied by sts as well as prx and grx for x ∈
{w, s}. It is not satisfied by cox for x ∈ {w, s}, nor by stw.

Proof. For prx, this is obvious by definition of the semantics. Similarly, since grx
only contains a single extension, it is obviously minimal. For the cox semantics,
it does not work because there are examples of IAFs with several cox extensions,
including one of them which is included in all the other ones (the grx extension).
It works for the sts semantics because sts(I) ⊆ prs(I) for any IAF. Finally,
for stw, consider I = ⟨{a}, {b, c, }, {(b, c), (c, b)}, ∅⟩. Its extensions are stw(I) =
{{a}, {a, b}, {a, c}, {a, b, c}}, so obviously it is not I-maximal.

Roughly speaking, the next principle states that if an argument belongs to
an extension, and is attacked by another extension, then there should be a third
one which abstains to give a status to this argument (i.e. this argument does
not belong to the third extension, and is not attacked by it).

Given S ⊆ A ∪ A?, S+ = {a ∈ A ∪ A? | ∃b ∈ S s.t. (b, a) ∈ R ∪ R?} is the
set of arguments attacked by S.

Principle 2 An extension-based semantics σ satisfies the allowing abstention
principle if, for any IAF I = ⟨A,A?,R,R?⟩, and any a ∈ A ∪ A?, if there are
two extensions S1, S2 ∈ σ(I) such that a ∈ S1 and a ∈ S+

2 , then there is a third
extension S3 ∈ σ(I) such that a ̸∈ S3 ∪ S+

3 .

Proposition 3. For x ∈ {w, s}, grx satisfies allowing abstention. For σ ∈
{pr, st} and x ∈ {w, s}, σx does not satisfy allowing abstention. Finally, cos
satisfies it, and cow does not satisfy it.

Proof. Consider first cos. Assume an argument a ∈ A ∪ A? such that a ∈ S1

and a ∈ S+
2 , for S1, S2 ∈ cos(I). Let us call S3 the unique grs-extension. Since a

is attacked by S2, a ̸∈ S3. Similarly, since a ∈ S1, a is not attacked by S3.
This proves the result for cos. For cow, a counterexample is the IAF I =
⟨{a, d}, {b, c}, {(a, d), (d, a), (b, c), (c, b), (b, a)}, ∅⟩. Its extensions are cow(I) =
{{b, c}, {a, b, c}, {d, b, c}}, so e.g. a belongs to some extension and is attacked
by all the other ones, there is no possible abstention.

The result is obvious of grx.
Finally, consider the IAF I = ⟨{a, b}, ∅, {(a, b), (b, a)}, ∅⟩, i.e. there are only

two certain arguments a and b which certainly attack each other. For any σ ∈
{pr, st} and x ∈ {w, s}, there are exactly two σx-extensions σx(I) = {{a}, {b}},
so obviously σx does not satisfy allowing abstention.

Notice that allowing abstention can be considered either as trivially satis-
fied (as in [20]) or non-applicable (as in [3]) for single-status semantics like the
grounded semantics. Here we use the first option for presenting the results.

The next principle is based on the notion of contaminating framework. To
define it, we need to introduce I1 ⊔ I2 = ⟨A1 ∪A2,A?

1 ∪A?
2,R1 ∪R2,R?

1 ∪R?
2⟩.
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Definition 9. Two IAFs I1 = ⟨A1,A?
1,R1,R?

1⟩ and I2 = ⟨A2,A?
2,R2,R?

2⟩ are
disjoint if (A1 ∪ A?

1) ∩ (A2 ∪ A?
2) = ∅.

An IAF I∗ is contaminating for a semantics σ if and only if for any I disjoint
from I∗, σ(I∗) = σ(I∗ ⊔ I).

The existence of such a contaminating IAF I∗ can be seen as a weakness of
the semantics, because adding I∗ to another IAF I somehow causes a crash of
the reasoning in I.

Principle 3 An extension-based semantics σ satisfies the crash resistance prin-
ciple iff there is no contaminating IAF for σ.

Proposition 4. For σ ∈ {co, pr, gr} and x ∈ {w, s}, σx satisfies crash resis-
tance. For x ∈ {w, s}, stx does not satisfy crash resistance.

Proof. For the weak and strong stable semantics, the usual counterexample
still works. Consider I∗ = ⟨{a}, ∅, {(a, a)}, ∅⟩, i.e. it is made of a single self-
contradictory argument. I∗ does not have any weak or strong stable extension.
It is also the case for I ⊔I∗, for any I. This means that I∗ is contaminating for
weak and strong stable semantics. For the other semantics, one can combine an
extension of I1 with and extension of I2 to obtain an extension of I1 ⊔ I2, so
there cannot be a contaminating IAF.

A set of arguments is called isolated if none of its elements attacks or is
attacked by an argument outside the set.

Definition 10. Given an IAF I = ⟨A,A?,R,R?⟩, a set of arguments S ⊆
A ∪A? is called isolated in I if

((S × ((A ∪A?) \ S)) ∪ (((A ∪A?) \ S)× S)) ∩ (R∪R?) = ∅

Given an IAF I = ⟨A,A?,R,R?⟩ and S ⊆ A ∪ A?, I↓S is the IAF defined
by I↓S = ⟨A ∩ S,A? ∩ S,R∩ (S × S),R? ∩ (S × S)⟩.

Principle 4 An extension-based semantics σ satisfies the non-interference prin-
ciple iff for any IAF I = ⟨A,A?,R,R?⟩, and for any S ⊆ A∪A? isolated in I,
σ(I↓S) = {E ∩ S | E ∈ σ(I)}.

Proposition 5. For σ ∈ {co, pr, gr} and x ∈ {w, s}, σx satisfies non-interference.
For x ∈ {w, s}, stx does not satisfy non-interference.

Proof.

To do.

Finally, the three last principles are based on the notion of unattacked sets
of arguments, i.e. sets that can attack arguments from outside, but which are
not attacked by arguments from the outside (notice that these sets do not have
to be conflict-free).
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Definition 11. Given an IAF I = ⟨A,A?,R,R?⟩, the set of arguments S ⊆
A ∪ A? is called unattacked in I if and only if ∀a ∈ (A ∪ A?) \ S, ∀b ∈ S,
(a, b) ̸∈ R ∪ R?.

The set of unattacked sets of I is denoted by US(I).

Principle 5 An extension-based semantics σ satisfies the directionality princi-
ple iff for any IAF I = ⟨A,A?,R,R?⟩ and any S ∈ US(I), σ(I↓S) = {E ∩ S |
E ∈ σ(I)}.

As in Dung’s framework, directionality implies non-interference, which im-
plies crash resistance.

The next principles are weaker versions of directionality, where there is only
an inclusion relation between σ(I↓S) and {E ∩ S | E ∈ σ(I)} instead of an
equality. This means that a semantics which satisfies directionality obviously
satisfies both of them, but a semantics which does not satisfy directionality may
satisfy one of them (but not both).

Principle 6 An extension-based semantics σ satisfies the weak directionality
principle iff for any IAF I = ⟨A,A?,R,R?⟩ and any S ∈ US(I), σ(I↓S) ⊇
{E ∩ S | E ∈ σ(I)}.

Principle 7 An extension-based semantics σ satisfies the semi-directionality
principle iff for any IAF I = ⟨A,A?,R,R?⟩ and any S ∈ US(I), σ(I↓S) ⊆
{E ∩ S | E ∈ σ(I)}.

Proposition 6. For σ ∈ {co, pr, gr} and x ∈ {w, s}, σx satisfies directionality.
For x ∈ {w, s}, stx does not satisfy directionality.

Proof. Consider an unattacked set S ∈ US(I). Now consider a weak complete
extension E ∈ cow(I), and let us prove that E ∩S ∈ cow(I↓S). Obviously, E ∩S
is weakly conflict-free. Then, since E weakly defends all its elements in I, when
we restrict the IAF to I↓S , any a ∈ S which attacks an element from E has
to be counterattacked by some b ∈ E ∩ S (because E weakly defends all its
elements, and since S is unattacked no b ∈ E \ S can attack a). So E ∩ S is
weakly admissible. Finally, it is obvious that E ∩ S does not weakly defend any
argument outside of it, since E does not (more precisely, if E ∩ S defends some
outsider arguments, then they belong to E \ S and thus they are not in the
restricted IAF I↓S). So E ∩ S is a weak complete extension of I↓S . This proves
that cow(I↓S) ⊇ {E ∩S | E ∈ cow(I)}. Now let us consider some E↓ ∈ cow(I↓S .
By defining, E↓ is weakly admissible in I↓S , and since S is unattacked then E↓
is not attacked by any argument in (A∪A?) \ S. So E↓ is weakly admissible in
I, and thus it is included in a weak preferred extension E of I. By definition,
E is also a weak complete extension of I. So we have E↓ = E ∩ S. This shows
that cow(I↓S) ⊆ {E ∩ S | E ∈ cow(I)}. We conclude that the weak complete
semantics satisfies directionality.

We can observe that the previous reasoning holds with strong complete se-
mantics as well.
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Now we consider a weak preferred extension E ∈ prw(I), and let us prove
that E ∩ S ∈ prw(I↓S). The result follows the fact that the weak complete
semantics satisfies directionality: since E is a weak complete extension, E ∩S is
a weak complete extension of I↓S . Assuming that E ∩ S is not a weak preferred
extension of I↓S , this means that some argument a ∈ S \ E must exist such
that (E ∩ S)∪ {a} is weakly admissible in the restricted IAF, and then E ∪ {a}
is admissible in the initial IAF, which is contradictory with the fact that E is
a weak preferred extension. So prw(I↓S) ⊇ {E ∩ S | E ∈ prw(I)}. The other
inclusion is even more straightforward, since the same reasoning as in the weak
complete semantics case can be used. Finally, notice that this reasoning holds
for the strong preferred semantics as well. So both the weak and strong preferred
semantics satisfy directionality.

To do: grounded and stable

Principles co gr pr st cos grs prs sts cow grw prw stw

I-max. ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✗

Allow. abst. ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗

Crash resist. ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗

Non inter. ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗

Direct. ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗

Weak Direct. ✓ ✓ ✓ ✓ ✓ ✓ ✓ ?? ✓ ✓ ✓ ??
Semi-Direct. ✓ ✓ ✓ ✗ ✓ ✓ ✓ ?? ✓ ✓ ✓ ??

Table 4: Satisfaction (✓) or non-satisfaction (✗) of the principles

Let us discuss the results of our principle-based analysis, summarized in
Table 4. In most of the cases, the semantics of IAFs have the same properties as
their counterpart for standard AFs. We notice few exceptions, and some open
questions. First, while strong complete semantics has the same properties as the
complete semantics of AFs, it is not the case of the weak complete semantics
which does not satisfy allowing abstention. Also, while classical stable semantics
of AFs and strong stable semantics of IAFs satisfy I-maximality, it is not the
case for the weak stable semantics of IAFs. Then, while it is known that the
stable semantics of AFs satisfy weak directionality (and thus does not satisfy
semi-directionality), the status of strong and weak stable semantics regarding
these properties is still open.

5 Related Work

While our approach for defining semantics for IAFs is, in a way, the original
one (since it was initially proposed for Partial AFs in [7]), most of the work on
reasoning with IAFs is based on the notion of completions [6, 5, 17], i.e. standard
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AFs that correspond to one possible way to “solve” the uncertainty in the IAF.
Using completions, all classical decision problems can be adapted in two versions:
the possible view (the property of interest is satisfied in some completions) and
the necessary view (the property of interest is satisfied in all the completions).
This reasoning approach captures the intuition that the agent reasoning with the
IAF uses it to represent a set of possible scenarios and must accept arguments
if they are acceptable in some/all scenarios. On the contrary, the approach from
[7, 18] which is also followed in the current paper considers that the agent uses
directly the structure of the IAF for reasoning, instead of using the structure of
the (exponentially many) completions of the IAF. Studying whether there are
relations between the “completion-based” and the “direct” semantics of IAFs is
an interesting question for future work.

6 Conclusion

This paper describes new results on a new family of reasoning approaches for
Incomplete Argumentation Frameworks (IAFs), inspired by the original seman-
tics for Partial AFs, a subclass of IAFs. We have shown that Dung’s grounded
semantics can be adapted to IAFs in two variants, namely weak and strong
grounded semantics. As it is usually the case, reasoning with such semantics
is doable in polynomial time. Then, we have established which principles from
the literature are satisfied by our new semantics, as well as the extension-based
semantics for IAFs defined in previous work.

Among possible interesting tracks for future research, of course we plan to
fill the gaps regarding the stable semantics in the principle-based analysis, i.e.
removing the question marks in Table 4. Also, it would be interesting to study
whether there are connections between the acceptability of argument with re-
spect to our semantics and their status with respect to completion-based reason-
ing methods. Then, we wish to apply our semantics in a context of controllability
[9, 15] and automated negotiation [11]. Also, it would be interesting to param-
eterize the weak semantics by the number of uncertain conflicts that can be
contained in a weak extension, in a way in the same spirit as weighted argumen-
tation frameworks [13].
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