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ABSTRACT

This work deals with elliptical Wishart distributions on the set
of symmetric positive definite matrices. It contains two major
contributions. First, the information geometry associated with
elliptical Wishart distributions is derived. Second, this geom-
etry is leveraged to propose Riemannian-optimization-based
maximum likelihood estimators of any elliptical Wishart dis-
tribution. Particular attention is given to two specific distribu-
tions: the t- and Kotz Wishart ones. The performance of the
proposed methods is assessed through numerical experiments
on simulated data.

Index Terms— covariance matrices, robust statistics, el-
liptical Wishart distribution, information geometry, Rieman-
nian geometry, and optimization

1. INTRODUCTION

Covariance matrices are crucial in various signal processing
and machine learning applications, such as radar and image
processing [1–3], biomedical signals analysis [4, 5], etc.. In
these applications, statistics over the set of non-degenerate
covariance matrices [6], which is the manifold S++

p of p × p
symmetric positive definite matrices, are tremendous. Indeed,
some statistics over S++

p are, for instance, leveraged for clas-
sification [4, 5] or Bayesian inference [7]. In this context,
the most classical distribution on S++

p is the Wishart distri-
bution [8]. This comes from the fact that it is the distribution
of sample covariance matrices of random vectors drawn from
a multivariate Gaussian distribution.

However, the Gaussian assumption of the data does not
hold in many practical cases. Indeed, in some applications,
such as radar processing, data are intrinsically non-Gaussian
(see e.g., [9]). In others, due to noise and outliers, it is more
likely for data to follow heavy-tailed distributions. In such
situations, it is usual to model data with a multivariate ellip-
tical distribution [10]. Analogously to how elliptical distri-
butions generalize the Gaussian one, it is possible to extend
the Wishart distribution with the so-called elliptical Wishart
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distributions [11]. This generalization allows for overcoming
some limitations of the Wishart distribution.

Some of the statistical properties of elliptical Wishart dis-
tributions are known; see e.g., [12–14]. However, no esti-
mator of the center of the distribution has been derived yet,
which is crucial for applications (e.g., classification for elec-
troencephalogram signals). The main contribution of this pa-
per is to propose a maximum likelihood estimator for the cen-
ter of any elliptical Wishart distribution, with a specific focus
on the so-called t- and Kotz-Wishart distributions. To derive
these estimators, Riemannian optimization [15] is exploited.
The other major contribution of this work is to study the in-
formation geometry on S++

p resulting from elliptical Wishart
distributions. Since it is the optimal Riemannian geometry on
S++
p for the considered distributions, it yields the most ap-

propriate Riemannian-optimization-based estimators.
The paper is organized as follows. Section 2 reviews el-

liptical Wishart distribution while Section 3 analyzes the cor-
responding information geometry. Then, Section 4 derives
maximum likelihood estimators while numerical experiments
are presented in Section 5. Finally, concluding remarks and
perspectives are drawn in Section 6.

2. ELLIPTICAL WISHART DISTRIBUTION

Elliptical Wishart distributions [11–14] form a large family
of distributions on S++

p . They generalize the Wishart dis-
tribution in the same way multivariate elliptical distributions
generalize the Gaussian one. The probability density function
(PDF) associated with the random variable S ∈ S++

p follow-
ing the elliptical Wishart distribution W(n,Σ, h) is, up to a
normalization factor,

f(S) ∝ |Σ|−n
2 |S|

n−p−1
2 h(tr(Σ−1S)), (1)

where | · | and tr(·) denote the determinant and trace operators
respectively; h : R+ → R+ is the density generator function
of the distribution; n ≥ p is an integer corresponding to the
degree of freedom; and Σ ∈ S++

p represents the center of the
distribution.

Distributions with PDF (1) can be defined by taking den-
sity generator functions of multivariate elliptical distributions



on Rnp; see e.g., [10] for a review. Beyond the Gaussian den-
sity generator function yielding Wishart, it is possible to de-
fine the counterparts of the t-, Kotz, Weibull, etc. distribu-
tions. While this paper is general, concrete examples are pro-
vided for the t-Wishart and Kotz-Wishart distributions. Their
density generators functions h are given in Table 1.

As for elliptically contoured vectors, it can be shown that
S ∼ W(n,Σ, h) admits a stochastic representation, which is
essential to obtain the Fisher information metric in Section 3.
Due to space limitations, we do not provide proof here. It will
be done in a forthcoming paper. It is given by

S = QΣ1/2UUTΣ1/2, (2)

where Q ∈ R+ and U ∈ Rp×n are independent random vari-
ables. The PDF of Q is, up to a factor, f(Q) ∝ h(Q)Q

np
2 −1.

U is such that vec(U) is uniformly distributed on the np-
dimensional unit sphere, where vec(·) denotes the vectoriza-
tion operator.

Finally, to derive the Fisher information metric and to
obtain the maximum likelihood estimator of the elliptical
Wishart distribution, it remains to provide the log-likelihood
of (1). Given independent and identically distributed (iid)
samples {Sk}Kk=1, the negative log-likelihood corresponding
to (1) is, up to an additive constant,

L(Σ) =
nK

2
log det(Σ)−

K∑
k=1

log(h(tr(Σ−1Sk)). (3)

3. INFORMATION GEOMETRY OF THE
ELLIPTICAL WISHART DISTRIBUTION

As presented above, the parameter space of the elliptical
Wishart distribution is S++

p . Since S++
p is open in the vector

space of symmetric matrices Sp, the tangent space at any
Σ ∈ S++

p can be identified with Sp. The optimal geometry
of S++

p with respect to the elliptical Wishart distribution with
negative log-likelihood L is the one induced by the corre-
sponding Fisher information metric. For Σ ∈ S++

p , ξ and
η ∈ Sp, it is given by [16]

⟨ξ,η⟩Σ = E[D2 L(Σ)[ξ,η]]. (4)

where D2 L(Σ)[ξ] is the second-order directional derivative
of L at Σ with respect to the direction ξ. When deriving the
Fisher metric, it is usual to choose K = 1. If needed, the
actual Fisher metric for K ̸= 1 samples is obtained through
scaling with K. The Fisher information metric of the ellipti-
cal Wishart distribution is provided in Proposition 1. Further-
more, functions Φ and parameters α defined in Proposition 1
are provided in Table 1 for the Wishart, t-Wishart and Kotz-
Wishart distributions.

Proposition 1 (Fisher information metric). The Fisher infor-
mation metric of the elliptical Wishart distribution with nega-
tive log-likelihood (3) is, for Σ ∈ S++

p , ξ and η ∈ Sp

⟨ξ,η⟩Σ = α tr(Σ−1ξΣ−1η) + β tr(Σ−1ξ) tr(Σ−1η),

where, given Φ = h′

h ,

α =
n

2

(
1− E[Q2Φ′(Q)]

np
2 (np2 + 1)

)
, β =

n

2

(
α− n

2

)
Proof. Given K = 1, the directional derivative of L at Σ with
respect to the direction ξ is

DL(Σ)[ξ] =
n

2
tr(Σ−1ξ)+Φ(tr(Σ−1S)) tr(Σ−1SΣ−1ξ).

From there, the second-order derivative of L is

D2 L(Σ)[ξ,η] = −n

2
tr(Σ−1ξΣ−1η)

− Φ′(tr(Σ−1S)) tr(Σ−1SΣ−1ξ) tr(Σ−1SΣ−1η)

− 2Φ(tr(Σ−1S)) tr(Σ−1SΣ−1ξΣ−1η).

Finding the Fisher metric thus boils down to computing

A = E[Φ(tr(Σ−1S)) tr(Σ−1SΣ−1ξΣ−1η)]

B = E[Φ′(tr(Σ−1S)) tr(Σ−1SΣ−1ξ) tr(Σ−1SΣ−1η)].

The calculation of these quantities relies on the stochastic
representation S = QΣ

1/2UUTΣ
1/2. One can show that

E[UUT ] = 1
pIp and V U = E[vec(UUT ) vec(UUT )T ] =

(Ip2 +Kpp+n vec(Ip) vec(Ip)
T )/(p(np+2)), where Kpp

denotes the commutation matrix. Since E[QΦ(Q)] = −np
2 ,

A = E[QΦ(Q)] tr(E[UUT ]ξη) = −n

2
tr(Σ−1ξΣ−1η),

where ξ = Σ
−1/2ξΣ

−1/2 and η = Σ
−1/2ηΣ

−1/2. Further-
more, since tr(XTY ) = vec(X)T vec(Y ), one can show

B = E[Q2Φ′(Q)] vec(ξ)TV U vec(η),

= E[Q2Φ′(Q)]
p(np+2) (2 tr(ξη) + n tr(ξ) tr(η)).

Basic manipulations conclude the proof. ■

From the Cauchy-Schwarz inequality, the Fisher metric
of Proposition 1 defines a proper Riemannian metric only if
α > 0 and α+ pβ > 0. With an integration by parts, one can
show E[Q2Φ′(Q)] = np

2

(
np
2 + 1

)
−E[Q2Φ(Q)2]. Thus, the

condition is equivalent to var[QΦ(Q)] > 0, which is fulfilled
as long as QΦ(Q) is not a constant almost surely. This hap-
pens to be true for every elliptical distribution.

Interestingly, the Fisher information metric of elliptical
Wishart distribution shares the form of the Fisher informa-
tion metric of a multivariate elliptical distribution (with dif-
ferent values of α and β) [17]. It is expected because one can
show that elliptical Wishart distributions are closely linked to
multivariate elliptical distributions with a Kronecker product
structured covariance matrix, whose information geometry is
derived in [18].

The geometry of S++
p equipped with a Riemannian metric

of the form given in Proposition 1 is well-known and can be



Distribution Wishart Student Wishart Kotz Wishart

h(t) exp(−t/2) (ν + t)−
ν+np

2 , ν > 0 ta−1 exp(−rtb), a > 1− np
2 ; b, r > 0

Φ(t) − 1
2 − 1

2
ν+np
ν+t −rbtb−1 + a−1

t

α n
2

n
2

ν+np
ν+np+2

np(npb+2)+b(1−a)
2pb(np+2)

Table 1. Density generator functions h, functions Φ and Fisher metric parameter α of the Wishart, t-Wishart (with ν degrees
of freedom) and Kotz Wishart (with parameters a, b and r) distributions.

found, for instance, in [17]. In particular, the geodesic (a gen-
eralization of a straight line on a manifold) γ : [0, 1] → S++

p

emanating from Σ ∈ S++
p in the direction ξ ∈ Sp is

γ(t) = Σ exp(tΣ−1ξ), (5)

where exp(·) denotes the matrix exponential. From there, one
can deduce the Fisher information distance of the elliptical
Wishart distribution. It is defined as the length of the geodesic
joining Σ and Σ according to the metric of Proposition 1 and
its square is equal to

δ2(Σ, Σ̂) = α
∥∥∥log(Σ−1/2Σ̂Σ−1/2)

∥∥∥2
2

+ β
(
log det(Σ−1Σ̂)

)2
. (6)

where ∥·∥2 is the Frobenius norm and log(·) denotes the ma-
trix logarithm.

4. MAXIMUM LIKELIHOOD ESTIMATOR FROM
RIEMANNIAN OPTIMIZATION

The maximum likelihood estimator is the solution of the con-
strained optimization problem

argmin
Σ∈S++

p

L(Σ). (7)

For the Wishart distribution, the solution is known in
closed form. Indeed, it is simply

Σ̂W =
1

nK

∑
k

Sk. (8)

However, as for multivariate elliptical distributions, no
closed-form solution is known in the general case, and one
needs an iterative algorithm to find the solution. In this work,
we leverage the geometry of S++

p provided in Section 3 to
solve (7) through Riemannian optimization [15].

To do so, the first step to define is the Riemannian gradi-
ent ∇S++

p
L(Σ) of L at Σ ∈ S++

p . It is defined as the only
tangent vector such that, for all ξ ∈ Sp,

⟨∇S++
p

L(Σ), ξ⟩Σ = DL(Σ)[ξ].

Rather than computing the Riemannian gradient directly, it is
often handy to calculate the Euclidean gradient ∇EL and then

deduce the Riemannian one. From [19], in this case, one has

∇S++
p

L(Σ) =
1

α
Σ∇EL(Σ)Σ

− β

α(α+ pβ)
tr(∇EL(Σ)Σ)Σ.

The Euclidean gradient ∇EL of the negative log-likelihood
of an elliptical Wishart distribution is given in Proposition 2.
Functions Φ required to compute the Euclidean gradient in
practice are provided in Table 1 for the Wishart, t-Wishart
and Kotz Wishart distributions.

Proposition 2 (Euclidean gradient). The Euclidean gradient
of the negative log-likelihood L : S++

p → R defined in (3) of
the elliptical Wishart distribution is, for all Σ ∈ S++

p ,

∇EL(Σ) = Σ−1

(
nK

2
Σ+

K∑
k=1

Φ(tr(Σ−1Sk))Sk

)
Σ−1,

Proof. This results directly from ∇E log det(Σ) = Σ−1 and
∇E tr(Σ

−1S) = −Σ−1SΣ−1. ■

The Riemannian gradient is sufficient to define a descent
direction of L at Σ, yielding the Riemannian steepest de-
scent algorithm [15]. However, if one wants to employ more
sophisticated optimization methods such as conjugate gradi-
ent or the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algo-
rithm, defining a vector transport operator. Such methods al-
low transporting a tangent vector of one point onto the tan-
gent space at another point, [15] is needed. The most nat-
ural choice is the one corresponding to parallel transport on
S++
p [20]. The transport of tangent vector ξ of Σ onto the

tangent space at Σ̂ is TΣ→Σ̂(ξ) = (Σ̂Σ−1)1/2ξ(Σ−1Σ̂)1/2.
Once a descent direction is selected, it remains to get from

the tangent space back onto the manifold. This is achieved by
a retraction [15]. In our case, from a numerical perspective,
the best solution is to take the second-order approximation of
the geodesics (5). Given Σ ∈ S++

p and ξ ∈ Sp, it is [20]

RΣ(ξ) = Σ+ ξ +
1

2
ξΣ−1ξ.

With these tools, a large panel of Riemannian optimiza-
tion algorithms can be employed to solve (7). For instance,
the sequence of iterates {Σi} and descent directions {ξi}
generated by a Riemannian conjugate gradient algorithm is

Σi+1 = RΣi
(ξi)

ξi = ti(−∇S++
p

L(Σi) + βiTΣi−1→Σi
(ξi−1)),

(9)
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Fig. 1. Median (dark lines), 5% and 95% quantiles (filled areas) of error measures of maximum likelihood estimators of
Wishart and Student Wishart distributions as functions of the number of samples K. Medians and quantiles are computed over
200 simulated sets {Sk} drawn from a Student Wishart distribution.
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Fig. 2. Median (dark lines), 5% and 95% quantiles (filled areas) of error measures of maximum likelihood estimators of
Wishart and Kotz Wishart distributions as functions of the number of samples K. Medians and quantiles are computed over
200 simulated sets {Sk} drawn from a Kotz Wishart distribution.

where ti is a stepsize computed through a linesearch [15] and
βi can be computed using the rule in [21] for example.

5. NUMERICAL EXPERIMENTS

To validate the interest of the maximum likelihood estimators
derived in Section 4, numerical experiments are conducted on
simulated data drawn from the t- and Kotz-Wishart distribu-
tions. We set n = 100, p = 16 and we randomly generate
a center Σ ∈ S++

p . For K ∈ {30, 70, 100, 300, 500}, we
draw iid samples {Sk}Kk=1 according to W(n,Σ, h), where
h corresponds either to the t-Wishart distribution with ν ∈
{5, 100} or to the Kotz-Wishart distribution with (a, b, r) ∈
{(1, 1, 0.5), (5, 1, 0.55)}. For each setting, 200 data sets are
simulated.

For each kind of simulated data (t- or Kotz-Wishart), we
compare two different estimation algorithms: the Wishart
estimator Σ̂W defined in (8); and the maximum likelihood
estimator corresponding to the simulated data (t- or Kotz
Wishart). The latter are computed with a Riemannian con-
jugate gradient algorithm as presented in (9). To evaluate
the estimation error, we employ the Fisher information dis-
tance (6) between the true center and estimators.

Figures 1 and 2 display the medians, 5%, and 95% quan-
tiles of the errors of each considered estimator. When data
follow (or are close to follow) the Wishart distribution, i.e.,
t-Wishart with ν = 100 or Kotz-Wishart with (a, b, r) =

(1, 1, 0.5), we observe that the maximum likelihood estimator
of the true distribution obtained via Riemannian optimization
and the Wishart estimator feature equivalent performance. In
such cases, the Wishart estimator is preferred as it is much
cheaper to compute. However, as expected, when we stray
away from the Wishart distribution, i.e., t-Wishart with ν = 5
or Kotz-Wishart with (a, b, r) = (5, 1, 0.55), the Wishart es-
timator no longer provides good results and is strongly out-
performed by maximum likelihood estimators.

6. CONCLUSION AND PERSPECTIVES

This paper studies elliptical Wishart distributions, providing
two significant contributions. The first consists in deriving
the information geometry on S++

p associated with this family
of distributions. The second is to develop a Riemannian-
optimization-based method to compute the maximum like-
lihood estimator of elliptical Wishart distributions. The ex-
cellent performance of the proposed methods is validated
through numerical experiments.

In future works, the geodesic convexity of the negative
log-likelihood (3) will be studied to prove the convergence
of the proposed algorithm adequately. Moreover, the optimal
reachable performance of the estimators will be investigated
by finding the intrinsic Cramér-Rao lower bound [16]. Fi-
nally, resolving the estimation problem will enable to enlarge
the use of elliptical Wishart distributions in signal processing.
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