
HAL Id: hal-04213767
https://hal.science/hal-04213767

Submitted on 21 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A New Evolutive Generator for Graphs with
Communities and its Application to Abstract

Argumentation
Jean-Marie Lagniez, Emmanuel Lonca, Jean-Guy Mailly, Julien Rossit

To cite this version:
Jean-Marie Lagniez, Emmanuel Lonca, Jean-Guy Mailly, Julien Rossit. A New Evolutive Generator
for Graphs with Communities and its Application to Abstract Argumentation. First International
Workshop on Argumentation and Applications (Arg&App 2023), Sep 2023, Rhodes (Grèce), Greece.
�hal-04213767�

https://hal.science/hal-04213767
https://hal.archives-ouvertes.fr


A New Evolutive Generator for Graphs with
Communities and its Application to Abstract
Argumentation
Jean-Marie Lagniez1, Emmanuel Lonca1, Jean-Guy Mailly2 and Julien Rossit2

1CRIL, Université d’Artois - CNRS
2Université Paris Cité, LIPADE

Abstract
Graph generators are a powerful tool to provide benchmarks for various sub�elds of KR (e.g. abstract
argumentation, description logics, etc.) as well as other domains of AI (e.g. resources allocation, gossip
problem, etc.). In this paper, we describe a new approach for generating graphs based on the idea of
communities, i.e. parts of the graph which are densely connected, but with fewer connections between
di�erent communities. We discuss the design of an application named crusti_g2io implementing this idea,
and then focus on a use case related to abstract argumentation. We show how crusti_g2io can be used to
generate structured hard argumentation instances which are challenging for the fourth International
Competition on Computational Models of Argumentation (ICCMA’21) solvers.

Keywords
Benchmark generation, Graph generation, Abstract argumentation

1. Introduction

Graph-based models are widespread in many �elds of Knowledge Representation and Reasoning,
including abstract argumentation [1]. This appeals automated graphs generation approaches to
provide challenging benchmarks that can put to the test practical tools developed within these
various frameworks. The literature o�ers di�erent methods to generate graphs, which exhibit
di�erent properties and various applicabilities to concrete problems and scenarios. In particular,
one challenge consists in generating structured instances, i.e. random graphs which present
interesting patterns that are relevant for some speci�c application. A well-known example of
such a structured generation model is the Watts-Strogatz model [2], where the generated graphs
have a small world property. Among the variety of graphs that have been studied, some recent
works are interested in the generation of graphs with communities of nodes, i.e. parts of the
graphs which are densely connected, but with fewer connections between di�erent communities
[3]. Such models include BTER [4] and Darwini [5], that propose to link nodes inside so-called
a�nity blocks, and then to add links between the nodes from di�erent blocks. Being a model
of choice to represent people communities [3], graphs with communities seem to be a good
candidate to encode large debates, which could be the source of argumentative reasoning.

Arg&App 2023: International Workshop on Argumentation and Applications, September 2023, Rhodes, Greece
� lagniez@cril.fr (J. Lagniez); lonca@cril.fr (E. Lonca); jean-guy.mailly@u-paris.fr (J. Mailly);
julien.rossit@u-paris.fr (J. Rossit)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

52



However, until recently, there was an important lack of practical approach for computing
the solutions of argumentation problems. Although there were some algorithmic approaches
proposed in the literature, few pieces of software were actually available for the community.
This has changed (mainly) thanks to the organization of the First International Competition on
Computational Models of Argumentation (ICCMA), in 2015. Since then, some solvers have been
proposed, based either on original techniques dedicated to argumentation frameworks [6, 7, 8],
or on translation into other frameworks which have already proven e�cient computational
bene�ts (e.g. Boolean satisfaction problem (SAT) [9, 10, 11]). The e�orts of the community
at the occasion of the various editions of ICCMA have seen a general increase of the quality
of the computational approaches for argumentation, both with respect to the correctness of
the approaches and their runtime e�ciency. However, the lack of challenging and realistic
benchmarks for argumentation is still an issue for the community. Using (community-based)
graph generators was naturally quickly considered to �ll this hole.

In this paper, we propose a new generation method for obtaining community-based graphs
and we apply it to abstract argumentation. Our approach is based on three components: we
�rst generate an outer graph which gives a global skeleton for the structure of the generated
instance; then in each node of the outer graph, we generate an inner graph i.e. a community
of nodes; and �nally when two nodes of the outer graph are connected, we use a linker to add
some relations between the corresponding inner graphs. We then show how our method can be
applied to generate structured, challenging graphs for argumentation purpose. The added value
of our approach compared to the previous ones lies in its ability to be generic and modular,
since any of the three components can be easily replaced by other versions. In particular, the
outer and inner graphs can be generated through classical generation models like Erdös-Rényi
[12], Watts-Strogatz [2] or Barabási-Albert [13], but any other model could be plugged instead
(including BTER and Darwini graphs themselves). Our contribution includes a documented,
open-source graph generator following this inner/outer template. This application has been
made to be easily used by any user, but also to be convenient for developers who want to add
new features like graph generators, linkers or output formats.

The paper is organized as follows. We �rst give some background on abstract argumentation
in Section 2, and we introduce the inner/outer model in Section 3. Section 4 presents some
related works. Necessary and relevant features of our framework are presented in Section 5,
followed by some experiments in Section 6. Finally, Section 7 draws some conclusions and
highlights avenues for future work.

2. Background on Abstract Argumentation

An abstract argumentation framework (AF) [1] is a directed graph F = �A, R� where A is a
set of arguments and R � A � A is the attack relation between arguments. We say that an
argument a attacks an argument b if (a, b) � R. This is generalized to sets of arguments: S
attacks b (resp. S�) if there is some a � S which attacks b (resp. some b � S�). A set S defends
an argument a if for any b attacking a, there is a c � S attacking b.

Acceptability of arguments is usually evaluated thanks to the notion of extensions, i.e. sets of
collectively acceptable arguments. Various semantics exist for de�ning extension [1]. Formally,

53



a semantics is a function � : F = �A, R� �� E � 2A. We focus on the semantics cf, ad, co, pr,
stb and gr, standing respectively for con�ict-free, admissible, complete, preferred, stable and
grounded. Given an AF F = �A, R�, and a set of argument S � A, S � cf(F) i� �a, b � S,
(a, b) �� R; S � ad(F) i� S � cf(F) and S defends all its elements; S � co(F) i� S � ad(F)
and S does not defend any argument in A \ S; S � pr(F) if S is a �-maximal element of
ad(F); S � stb(F) i� S � cf(F) and S attacks all the arguments in A \ S; S � gr(F) i� S
is the �-minimal element of co(F). See e.g. [1] for more details about these semantics as well
as other semantics de�ned in the literature. Let us illustrate the complete, preferred, stable and
grounded semantics with the following example:

Example 1. The extensions for co, pr, stb and gr of F = �A, R� from Figure 1 are co(F) =
{�, {a1}, {a2, a4}}, pr(F) = {{a1}, {a2, a4}}, stb(F) = {{a2, a4}} and gr(F) = {�}.

a1 a2 a3

a4

a5

Figure 1: The AF F

Recall that reasoning with AFs is generally hard, with many classical problems at the �rst or
second level of the polynomial hierarchy [14].

3. The Inner/outer Model

We propose a new approach for generating graphs that considers underlying graph structures.
More precisely, an outer graph GGO that will be used as a skeleton for the instance is �rst
constructed from a graph generator GO . Then, each node of this graph is associated with a fresh
inner graph (fresh in the sense where nodes of each inner graph are disjoint) built by another
generator GI . In order to link inner graphs together, we successively consider each inner graph
Gn rooted to a node n of GGO and add edges between it and the inner graphs Gn� rooted to a
node n� when an edge exists in the outer graph between n and n�. The �nal graph is then the
set of inner graphs together with the added edges. Interestingly, such generation process can
handle both directed and undirected graphs (with the constraint that the inner graphs generator
and the added edges involve edges of the same kind1). However, here we focus on the direcred
case, since the goal is to generate argumentation frameworks. Formally, the function in charge
of linking inner graphs together in the directed case is de�ned as follows:

De�nition 1 (Directed linker). A linker over directed graphs is a mapping Ld such that, for
any G1 = �N1, E1� and G2 = �N2, E2�: Ld(G1, G2) � (N1 � N2) � (N2 � N1).

1Note that the outer graph may be non-directed even when the �nal graph is directed: the presence of directed
edges may represent a “hierarchical” relation between the communities, while non-directed edges at this level mean
that the communities are, in a way, equivalent.

54



Algorithm 1 Inner/outer graph generation

Input: an outer graph generator GO , an inner graph generator GI and a linker L
Output: an inner/outer graph

1: GGO � �N, E� a GO-generated graph
2: for n � N do
3: Gn � �Nn, En� a GI-generated graph
4: end for
5: L = �
6: for (n, n�) � E do
7: L � L � L(Gn, Gn�)
8: end for
9: return �(

�
n�N Nn), (

�
n�N En) � L�

Algorithm 1 formalizes our approach. The generation process starts with the generation
of the outer graph, i.e. the graph which is used as the skeleton of the instance (line 1). Then,
each node of this outer graph is associated with an inner graph which is built by the dedicated
graph generator GI (line 3). The rest of the algorithm consists in building some links between
the di�erent inner graphs, with respect to the structure of the outer graph. To do so, for each
edge in the outer graph, the inner graphs associated with the two outer graph nodes under
consideration are passed to the linker (line 7); the resulting set of edges is stored. At the end, the
algorithm returns the union of the inner graphs plus the edges returned by the linker, producing
the �nal inner/outer graph.

Our approach o�ers the advantage of being �exible and allows, for instance, to generate a
community graph such that the outer graph is a tree (T ) and inner graphs are Erdös-Rényi graphs
(ER). It is also possible to generate paths of Barabási-Albert (BA) graphs, or Watts-Strogatz
(WS) graphs made of WS communities, etc.

Example 2. Let us illustrate the generation algorithm with GO = T , GI = ER, and L a function
which returns a random set of edges between two graphs. An example of generation process is
given at Figure 2. Figure 2a shows the outer graph, which is thus a (non-directed) balanced binary
tree. Then, in each node of the tree, an inner graph is generated thanks to the Erdös-Rényi model
(Figure 2b). Figure 2c shows the addition of edges between the inner graphs thanks to the linker.
And �nally, the resulting graph is shown at Figure 2d.

4. Related Works

The next sections presents the application we developed to generate inner/outer graphs and
its application to generate AF benchmarks. There already exists tools for generating AFs from
random graph generators. But, from the best of our knowledge, these tools do not modify the
underlying graph generated by these models. In [15], the authors propose the C++ framework
AFBenchGen. It is an AF generator based on the Erdös-Rényi model (ER). In [16], the same
authors proposed an extension of AFBenchGen, called AFBenchGen2 which is written in Java,

55



(a) Outer Graph

a1
1 a1

2

a2
1 a2

2

a4
1 a4

2 a5
1 a5

2

a3
1

a3
2 a3

3

a6
1

a6
2 a6

3

a7
1

a7
2 a7

3

(b) Inner Graphs

a1
1 a1

2

a2
1 a2

2

a4
1 a4

2 a5
1 a5

2

a3
1

a3
2 a3

3

a6
1

a6
2 a6

3

a7
1

a7
2 a7

3

(c) Edges between Inner
Graphs

a1
1 a1

2

a2
1 a2

2

a4
1 a4

2 a5
1 a5

2

a3
1

a3
2 a3

3

a6
1

a6
2 a6

3

a7
1

a7
2 a7

3

(d) Final Graph

Figure 2: Generation process.

that also consider two additional random graph generator models, which are the Watts-Strogatz
(WS) and Barabási-Albert (BA) models. For these two generators the random graphs are used
as such. Our tool is much more general than the AFBenchGen family of AFs generators. Indeed,
by considering the simple graph consisting in one node as outer graph, it is possible to have the
exactly same behaviour.

In [17], we introduced a new method for generating challenging benchmarks for the ICCMA’21
competition. This generator is the fundamental basis of our tool. More precisely, we have
proposed three variants of our generator �GO, GI

i , L�, with i � {1, 2, 3}, de�ned as follows. In
our case GO = T , meaning that the underlying graph is actually a perfectly balanced d-tree of
height h, where d and h are �xed and provided as parameters. The only di�erence between
the three variants is the inner graphs generator: GI

1 = ER, GI
2 = BA, while GI

3 is a random
pick of either ER or BA, which means that in the �rst case all the local graphs are Erdös-Rényi
graphs, in the second case they are all Barabási-Albert graphs, and in the last case they can be
either of them with a probability 0.5.

Once the outer graph has been generated, the inner graphs are linked as follows. For this
generation model, the iteration over the set of edges (line 6 in Algorithm 1) is a breadth-�rst
graph traversal from the root to the leaves of the tree. For each inner graph associated with
an outer node o, k nodes are randomly selected (k varies from 5 up to 12 for the benchmarks
generated for the ICCMA’21 competition). The descendants {o1, . . . , om} of o are iteratively
considered. For each oi, between 20% and 70% of the inner nodes contained in oi are randomly
selected. Then, for each node n1 picked in o and with each node n2 picked in oi one of the
attacks (n1,n2) or (n2,n1) is added randomly.

In this paper a slightly modi�ed version of the tool proposed for generating the ICCMA’21
benchmarks has been considered. Inner graphs are only linked with their children (and not with
any of their descendants). Moreover, a ratio of 20% has been considered for selecting the edges
that are added between communities (instead of a ratio between 20% and 70% of the nodes).

5. The crusti_g2io graph generator

We built a command line application called crusti_g2io, dedicated to the generation of inner/outer
graphs. It is made available under the terms of the GNU GPLv3 on Github account of the Centre

56



de Recherche en Informatique de Lens.2 We took advantage of the Rust programming language
to provide an e�cient, memory-safe application, even in parallel context. In addition, Rust
allows crusti_g2io to be both an application and a library (the project in mainly a Rust library
with additional code to create the application). Interestingly, Rust libraries can be turned into
C libraries (static or dynamic) or be linked with them. This makes crusti_g2io able to use any
library that can be turned into a C library or to be used itself with any program that can load C
libraries, allowing for example Go and Python bindings.

The application can be used to generate both directed and undirected graphs. In the following,
we describe how to use the application for directed graphs only; however, going from directed
to undirected is as simple as replacing directed by undirected in the commands.

me@PC:~/crusti_g2io generate-directed -o tree/10 -i er/100,0.5 -l min_incoming -x out.apx -f apx
![INFO ] [2023-03-03 10:54:39] crusti_g2io 0.1.0
[...]
![INFO ] [2023-03-03 10:54:39] generated a graph with 1000 nodes and 24882 edges
![INFO ] [2023-03-03 10:54:39] exiting successfully after 45.6625ms

Figure 3: Example on invocation of crusti_g2io.

The �rst goal of crusti_g2io is to be easy to install and to use. The only requirement to use it is
to have a Rust compiler installed (except of course if you were given an already compiled version);
then, executing a standard release build command (cargo build –release) produces the
executable (in the target/release directory on UNIX systems). The user can also use the
cargo install command to compile and install the program on its computer.

From a user perspective, crusti_g2io is made to be used without looking at its documentation.
Calling crusti_g2io -h, (or –help) shows the list of commands and what they do. Calling
crusti_g2io with a command and a help �ag displays the help message for this command. For ex-
ample, calling crusti_g2io generate-directed -h explains what generate-directed
does, gives its mandatory and optional options (along with their descriptions).

The goal of crusti_g2io is to generate a graph from an outer graph generator, an inner
graph generator and a linker, and to output it using a graph output format. Thus, these exact
four options form the exact set of mandatory options for the generate-directed command.
Again, they can be recalled by typing crusti_g2io generate-directed -h in a termi-
nal. Concerning the lists of the available graph generators, linkers and graph output formats,
they can all be retrieved by a crusti_g2io command (respectively generators-directed,
linkers-directed and display-engines-directed); calling these commands also indi-
cates how to parameterize the generators, linkers or formats which need it. Figure 3 shows how
to build a tree-like outer graph (-o) of 10 inner (-i) Erdös-Rényi graphs of 100 nodes with a
probability of 0.5 where links (-l) are created between lowest degree nodes, and export (-x) it in
the �le out.apx using the apx format (-f). The required parameters for generators and linkers
(when needed) are given after a slash and split by commas (see tree/10 and er/100,0.5
in the �gure). Embedded graph generators include the famous Erdös-Rényi, Watts-Strogatz
and Barabási-Albert models, trees and chains. Concerning the linkers, one is a random one,

2https://github.com/crillab/crusti_g2io

57



one links nodes with the least incoming edges, and the last one links the nodes with index 0 —
which can have some meaning, in particular if a graph is initialized with a special value like in
the Barabási-Albert model. Finally, The Graphviz DOT and GraphML formats are available, just
like the abstract argumentation related format APX and DIMACS (from ICCMA 2023).

These generators, linkers and formats are a very small subset of what is o�ered by the
literature. This is the reason why we tried to make the addition of new content as easy as
possible for developers. For example, to add a new generator, it is only required to create a
structure that implements the four functions of the dedicated trait and to register it in the
set of generators. Concerning the trait, the implementation of three functions out of four is
straightforward as they respectively return the name of the generator to be used on the command
line interface, the description of the generator, and the types of the expected parameters. The
last function is the one dedicated to the generation of graphs: it takes as input the (checked)
parameter values as given on the command line interface (i.e. the content following the slash)
and returns a closure which takes a pseudo-random number generator (PRNG) and produces
a graph. The registration of the new generator consist of adding an import statement and a
single line of code. Adding a new linker requires a similar process, except that the closure takes
a PRNG and two graphs, and returns a vector of edges. When invoking crusti_g2io, the graph
can be printed out on the standard output (this is the default behaviour) or exported to a �le.
The default behavior mixes log messages and the graph; this can be prevented by hiding the log
messages (e.g. by setting the corresponding option) or by exporting the graph to a �le. Adding
a new output format is similar to adding a new generator or linker.

Finally, crusti_g2io is made to produce reproductible results. By default, it uses an unpre-
dictable random seed; in order to get reproductible results, the user can set the random seed with
the -s option on the command line. Regardless of the fact the seed was speci�ed or randomly
speci�ed, it is logged so the results can be reproduced. An e�ort was made in order to mix
reproducibility and the use of the full power of the computers, as the application computes the
inner graphs and the links between these graphs in a parallel fashion. In order to get repro-
ductible results, the program �rst computes the outer graph using the global PRNG initialized
with the provided seed. Then, each outer node is sequentially associated a random seed using
the global PRNG. This way, each inner graph generation process can receive a PRNG which
directly depends on the CLI-provided seed, enforcing the reproducibility of the generation for a
given seed. The same approach is used for the linking process.

6. Using crusti_g2io to generate challenging abstract
argumentation problems

Now, we use crusti_g2io to generate structured AF instances. The goal is to generate overall
instances composed of multiple communities. In addition, we want to generate instances with
a large amount of small communities, but also instances with less communities of a greater
size. To achieve this, we aim at drawing the frontier between hard and too-hard instances for a
set of community sizes, densities and counts. In order to evaluate the di�culty induced by the
generated argumentation graphs, we chose to compute extensions (putting acceptance queries
aside) to consider the whole graphs instead of problems that could be related to a reduced area

58



of the graph. We arbitrary selected a problem of the �rst level of the polynomial hierarchy
(SE-ST: compute an extension for the stable semantics) and one of the second level (SE-PR:
compute an extension for the preferred semantics). For both tracks, we used the solvers that
got the best results at the ICCMA’21 competition, namely A-Folio-DPDB3 for the SE-ST track
and µ-Toksia [11] for the SE-PR track. As A-Folio-DPDB delegates the SE-ST problems to the
µ-Toksia solver submitted at ICCMA’19, we �nally used µ-Toksia (2019) for SE-ST problems.
We chose to build communities of Erdös-Rényi graphs, since those graphs were already used
to generate AFs and can be naturally generated as directed graphs. Communities were linked
following a tree template (like ICCMA’21 instances). The linker processes in a way inspired by
the ER generator: each possible edge from the source graph to the target graph is added with
probability 0.2.

In the �rst part of our experiments, we sought which sizes of communities are small enough
to be part of our graphs. We used crusti_g2io to generate single Erdös-Rényi graphs (by asking
for an outer graph composed of a single node) with di�erent number of nodes (from 100 to
1000) and probability for each edge to appear (0.1, 0.2 and 0.5). For each setting, we generated
10 di�erent graphs by feeding the app with random seeds from 0 to 9; the computation times
are averages of these 10 values, and a timeout of at least one makes the average be also timeout.
We run experiments on machines equipped with Intel Xeon E5-2637 v4 processors and 128GB
of RAM, and the timeout was �xed to 600s, as in ICCMA’21. Table 1 shows some experimental
results.

First, we can note that for a given number of nodes, instances are more di�cult for lower
Erdös-Rényi probability values. This may be explained by the lower number of constraints,
making preferred extensions admit more arguments, and stable extensions less common. This
hypothesis would require further investigation, but is o�-topic here since we are only interested
in the di�culty of the instances.

Communities of 100 arguments seem easy for both SE-ST and SE-PR, whatever the probability
setting. With a setting of 0.1, the problems begin to require multiple seconds to be solved for
200 nodes; this value should not be exceeded for instances involving several communities. A
single community of 300 nodes cannot be solved in this context. With a setting of 0.2, the limit
in terms of number of nodes to consider for multiple communities seems to be between 200 and
300; for this value, a single community requires more than 10 seconds for SE-ST, and more than
20s for SE-PR. A setting of 0.5 allows to generate instances with a single community of at least
1000 nodes. Interestingly we remarked that in this case, all instances admit stable extensions,
which is not the case for the other probability settings. This indicates that these instances have
a special structure that might make solvers work di�erently on them. Finally, as expected, the
SE-PR problem takes more time to be solved than SE-ST.

Now that we have bounds on the size of the communities to consider, we can experiment
the di�culty induced by the number of communities. We generated complete binary trees of
Erdös-Rényi communities, where each community is linked to the ones associated with its
children.

For this second experiment session, we considered Erdös-Rényi with nodes between 100 and
500 with the same three probability settings. We assumed the multiplicity of the communities

3https://github.com/gorczyca/dp_on_dbs/tree/competition

59



ER proba. ER nodes SE-ST (s) SE-PR (s)

0,1 100 0,01 0,03
200 3,13 9,14
300 — —
400 — —

0,2 100 0,02 0,02
200 1,85 4,13
300 13,87 22,91
400 — —

0,5 100 0,01 0,02
200 0,10 0,07
300 0,14 0,37
400 0,23 4,11
500 1,81 13,97
600 4,28 16,56
700 3,34 41,23
800 6,72 74,41
900 11,27 141,24
1000 14,32 67,37

Table 1
CPU time required by µ-Toksia 2019 (resp. 2021) to compute a single stable (resp. preferred) extension
for di�erent sizes of Erdös-Rényi graphs. CPU times are average of 10 values. If a timeout was reached
for at least one graph, — is reported.

would make the instances very hard for the 0.5 probability for more than 500 nodes per commu-
nity. We considered (directed) outer tree heights from 3 to 9, making the outer graphs contain
from 7 to 511 nodes. For each setting, 10 instances were generated with random seeds going
from 0 to 9. We used to same machines and timeout than before. Figures 4 and 5 report the
interesting parts of these new results. The plots on Figure 4 correspond to the results for the
SE-ST track, while Figure 5 reports the results for SE-PR. For each �gure, the three sub�gures
are each associated with a density setting (0.1, 0.2 and 0.5). For each sub�gure, the average
computation time is given on the y-axis, while the x-axis gives the number of communities; the
lines gives the di�erent community sizes.

We �rst focus on the SE-ST results, given by the plots at Figures 4a, 4b and 4c. Concerning
the results of µ-Toksia 2021 for the 0.1 probability setting (Figure 4a), we can observe that the
problems are too easy when the number of nodes per community is lower than 200 (all solved in
few seconds even for 511 communities) and too hard when it is above this value (such problems
cannot be solved when there are more than 31 communities). Thus, this setting does not allow
us to draw a clear frontier between the hard and the too-hard instances. This is also the case for
the 0.5 probability setting (Figure 4c) for which the instances are surprisingly very di�cult even
for low values of community sizes and community counts. This is not an unexpected result
since as noted below, these instances have a special structure that might prevent µ-Toksia to
solve them. By the way, we discovered that µ-Toksia was not able to prove the absence of stable

60



extension in any community-based instance with this density. If such instances are included in
our benchmarks, then µ-Toksia may su�er from this special kind of instances. Fortunately, the
0.2 case (Figure 4b) perfectly �ts our needs of frontier as it shows multiple settings of community
sizes and counts are solvable but di�cult (hundreds of seconds required to solve) namely the
sets of 511 communities of size 225, the sets of 255 communities of size 250 and the sets of 63
communities of size 275.

Now, we discuss the SE-PR results, given by the plots at Figures 5a, 5b and 5c. Just like for
SE-ST, the 0.1 probability setting (Figure 5a) does not seem to be an interesting value for us
since little changes in community sizes makes the di�culty a lot higher: see e.g. the di�erence
between communities of 175 nodes — almost di�cult instances when there are 511 of them —
and 200 nodes — where instances are too di�cult for 255 communities. Things are a little better
for the 0.2 probability (Figure 5b) when considering communities of size between 225 and 300,
but the real interesting setting in this case if the 0.5 probability (Figure 5c). In this case, we can
�nd at least three cases of di�erent community sizes for which hard instances exist: the sets of
511 communities of 175 nodes, the sets of 255 communities of 300 nodes and the sets of 127
communities of 500 nodes.

To conclude this section, it is worth noting that crusti_g2io generated the instances very fast.
For the graph generation, we took advantage of machines with a higher number of processor
cores. We dedicated to each process an Intel Xeon Gold 6248 (a 20-cores processor) and 192GB
of RAM. The biggest instances we considered are the ones with 511 communities of 500 nodes
with a probability setting of 0.5, for which the graph admits 255500 nodes and more than 89
millions edges. For these instances, the graph generation itself took less than 4s each. A little
longer was necessary to translate the graphs into argumentation frameworks and store them
using the (verbose) APX format on the hard disk. With these additional translation and writing
times, the average wall-clock time was 19.62s.

7. Conclusion

In this paper, we have de�ned a new approach for generating (directed or non-directed) graphs
based on the concept of communities, which are graphs where some subparts of the graph
are highly connected, but are loosely related to other subparts. Our approach uses a so-called
inner/outer template, i.e. we �rst generate an outer graph representing the global structure
of the graph, then in each node of the outer graph we generate an inner graph, and �nally
we use a linker to add edges between nodes of inner graphs which are connected in the
outer graph structure. The proposed model is particularly generic and modular, since all the
components (outer graph generator, inner graph generator and linker) can be replaced by other
generators or linkers. Our model is particularly well suited for abstract argumentation, since
large debates (i.e. large argumentation frameworks) can naturally be split into sub-debates
which are only connected by a few arguments and attacks. We have described our open-
source tool for the generation of graphs, and especially we have shown that this tool allows to
generate meaningful argumentation framework instances with a level of di�culty for standard
computational problems which can be adapted thanks to the choice of some parameters.

Several avenues for future work can be highlighted. Regarding the tool, a natural development

61



(a) SE-ST, ER probability of 0.1 (b) SE-ST, ER probability of 0.2

(c) SE-ST, ER probability of 0.5

Figure 4: CPU time (in seconds) required by µ-Toksia 2019 to compute a single stable extension for
community graphs of di�erent community sizes and di�erent community count. CPU times are an
average of 10 values.

direction is to design an even more generic framework, allowing several levels of nested graphs
(i.e. the inner graph generator could generate graphs which also follow the inner/outer template).
We also plan to improve the usability of the tool by describing the generation task in �les (using
e.g. the YAML or JSON format) instead of the command-line interface.

Regarding the issue of AF generation, we can improve the relevance of the tool by incor-
porating linkers which make sense in the context of abstract argumentation frameworks (for
instance, we could add edges concerning in priority arguments which are skeptically accepted
w.r.t. some given semantics). Another interesting future work consists in proposing generation
models for more complex argumentation frameworks, which would require e.g. graphs with
di�erent kinds of edges or arguments (to incorporate supports [18] or incompleteness [19]) or
graphs with weights associated with edges [20] or arguments [21].

62



(a) SE-PR, ER probability of 0.1

(b) SE-PR, ER probability of 0.2 (c) SE-PR, ER probability of 0.5

Figure 5: CPU time (in seconds) required by µ-Toksia 2021 to compute a single preferred extension for
community graphs of di�erent community sizes and di�erent community count. CPU times are an
average of 10 values.

Acknowledgements

This work has been partly supported by the CPER DATA Commode project from the “Hauts-de-
France” Region, the ANR projects PING/ACK (ANR-18-CE40-0011) and AGGREEY (ANR-22-
CE23-0005).

References

[1] P. M. Dung, On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games, Artif. Intell. 77 (1995) 321–358.

[2] D. Watts, S. Strogatz, Collective dynamics of "small-world" networks, Nature 393 (1998)
440–442.

[3] M. Girvan, M. Newman, Community structure in social and biological networks, Proc. of
the NAS of the USA 99 (2002) 7821–7826.

63



[4] T. Kolda, A. Pinar, T. Plantenga, C. Seshadhri, A scalable generative graph model with
community structure, SIAM J. Sci. Comput. 36 (2014).

[5] S. Edunov, D. Logothetis, C. Wang, A. Ching, M. Kabiljo, Generating synthetic social
graphs with darwini, in: Proc. of ICDCS, 2018, pp. 567–577.

[6] N. Geilen, M. Thimm, Heureka: A general heuristic backtracking solver for abstract
argumentation, in: Proc. of TAFA 2017, 2017, pp. 143–149.

[7] M. Heinrich, The matrixx solver for argumentation frameworks, CoRR abs/2109.14732
(2021).

[8] L. Kinder, M. Thimm, B. Verheij, A labeling based backtracking solver for abstract argu-
mentation, in: Proc. of SAFA 2022, 2022, pp. 111–123.

[9] W. Dvorák, M. Järvisalo, J. P. Wallner, S. Woltran, Complexity-sensitive decision procedures
for abstract argumentation, Artif. Intell. 206 (2014) 53–78.

[10] J.-M. Lagniez, E. Lonca, J.-G. Mailly, Coquiaas: A constraint-based quick abstract argu-
mentation solver, in: Proc. of ICTAI 2015, 2015, pp. 928–935.

[11] A. Niskanen, M. Järvisalo, µ-toksia: An e�cient abstract argumentation reasoner, in: Proc.
of KR 2020, 2020, pp. 800–804.

[12] P. Erdös, A. Rényi, On random graphs. I., Publicationes Mathematicae 6 (1959) 290–297.
[13] A. Barabási, R. Albert, Emergence of scaling in random networks, Science 286 (1999)

509–512.
[14] W. Dvorák, P. E. Dunne, Computational problems in formal argumentation and their

complexity, in: Handbook of Formal Argumentation, College Publications, 2018, pp.
631–688.

[15] F. Cerutti, M. Giacomin, M. Vallati, Generating challenging benchmark afs, in: Proc. of
COMMA 2014, 2014.

[16] F. Cerutti, M. Giacomin, M. Vallati, Generating structured argumentation frameworks:
AFBenchGen2, in: Proc. of COMMA 2016, 2016.

[17] J.-M. Lagniez, E. Lonca, J.-G. Mailly, J. Rossit, Design and results of ICCMA 2021, CoRR
abs/2109.08884 (2021).

[18] C. Cayrol, M.-C. Lagasquie-Schiex, Bipolarity in argumentation graphs: Towards a better
understanding, Int. J. Approx. Reason. 54 (2013) 876–899.

[19] J.-G. Mailly, Yes, no, maybe, I don’t know: Complexity and application of abstract argu-
mentation with incomplete knowledge, Argument Comput. 13 (2022) 291–324.

[20] P. E. Dunne, A. Hunter, P. McBurney, S. Parsons, M. Wooldridge, Weighted argument
systems: Basic de�nitions, algorithms, and complexity results, Artif. Intell. 175 (2011)
457–486.

[21] J. Rossit, J.-G. Mailly, Y. Dimopoulos, P. Moraitis, United we stand: Accruals in strength-
based argumentation, Argument Comput. 12 (2021) 87–113.

64


