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Abstract—Rotational motion (or attitude) estimation algo-
rithms in navigation rely mainly on measurements from a set of
sensors, including a magnetometer, gyroscope and accelerometer,
also known as magnetic, angular rate, and gravity (MARG)
sensor array. However, the significant power consumption of
the gyroscope and its intrinsic bias motivate the need for more
suitable solutions. In this paper, a robust two-stage Kalman filter
is designed for attitude estimation in the special orthogonal group
SO(3), by considering the angular velocity as unknown input. The
performance of the proposed algorithm was evaluated through
Monte Carlo simulations compared to the known TRIAD algo-
rithm, which utilizes measurements from only accelerometer and
magnetometer sensors, and to the Invariant Extended Kalman
Filter (IEKF), which is applied for SO(3) estimation using MARG
sensor array.

Index Terms—Gyro-free, attitude estimation, navigation, un-
known input, SO(3).

I. INTRODUCTION

In the last several decades, navigation technology advanced
significantly, playing a crucial role in several domains, such
as military, missile technology, space operations, and indoor
positioning. It has continued to evolve and is now widely
used in smart devices. To facilitate navigation, considerable
progress has been made in the technology, as well as in the
theory and algorithms of data fusion. Two main categories of
algorithms exist to estimate the attitude, one of the navigation
states, of a rigid body: static and dynamic. On the one hand,
static algorithms utilize only observations from accelerometer
and magnetometer sensors, without taking into account the
history of measurements or the body’s dynamics, and include
some known algorithms such as FQA [1], TRIAD [2]], and
QUEST [2]. On the other hand, dynamic algorithms use a
dynamic model with angular velocity from a gyroscope as
an input to predict the attitude, while measurements from
the accelerometer and magnetometer are used to update the
prediction. The attitude dynamics, which can be expressed
using either quaternion, rotation matrices, or Euler angles,
are nonlinear and pose several challenges. The utilization of
Euler angles representation introduces the issue of singularity
[3]. Using quaternion or rotation matrix dynamics with the
Extended Kalman filter (EKF), the commonly used algorithm
for attitude estimation, leads to an estimation error without
physical meaning, affecting the filter update step. Additionally,
a normalization of the state, represented by quaternion for
example, is required at each time step, which can further affect
the quality of estimation [3]]. As a result, recent works in the

literature were developed using the Invariant Extended Kalman
filter (IEKF) theory, with attitude dynamics expressed in the
special orthogonal group SO(3), which eliminates the need
for normalization and allows the error to be expressed in R3
vector space. This error can be mapped to an element in SO(3)
using the function called “exponential map” [4]], [5].

In addition to advancements in theory, significant progress
has also been made in technology. In the past, large, expensive,
and power-consuming gyroscopes were developed. However,
with the introduction of low-cost Micro-electro-mechanical
Systems (MEMY), the size and cost of gyroscopes have signifi-
cantly reduced. Although MEMS gyroscopes offer advantages,
they also have some drawbacks. One of the main drawbacks is
that MEMS gyroscopes have a relatively high-power consump-
tion compared to accelerometers and magnetometers, with
MEMS accelerometers and magnetometers operating in the
microampere range while MEMS gyroscopes typically require
a few milliamperes [6]—[8]]. Such high current consumption is
unsuitable for applications requiring low-power consumption,
such as smart devices (smartphones, tablets, etc.). Another
important drawback of MEMS gyroscopes, especially in low-
cost Inertial Measurement Units (IMU), is their susceptibility
to drift and bias, [9]]. Gyroscopes are also prone to noise, which
tends to increase over time. Also, in order to use dynamic
algorithms such as the IEKF, the covariance matrix of this
noise should be known, which can be challenging and may
not always be feasible.

To avoid the use of gyroscope, one existing solution consists
in applying static attitude estimation algorithms. Additionally,
there have been several studies in the literature that concentrate
on developing angular motion estimation algorithms, to be
able to achieve attitude estimation task without gyroscope.
These algorithms are commonly known as gyro-free attitude
estimation techniques [7]], [10], [11]. Such algorithms rely
on utilizing several accelerometers placed in specific spatial
configurations. However, these works require knowledge of
the sensors’ exact positions and consider the measurements to
be deterministic. To the best of the authors’ knowledge, no
literature currently addresses the problem of gyro-free attitude
determination using attitude dynamic equations and dynamic
estimation algorithms.

In this paper, we propose to consider the angular velocity
as unknown input and hence avoid the use of gyroscope for
attitude estimation purposes. State estimation with unknown
inputs has been the subject of numerous theoretical studies



in the literature for linear systems when the unknown input
affects the state dynamic only [12], [13], or when it may
also affect the output [14], [15]. Some of these works were
extended to nonlinear dynamics [16]. In these works, the
proposed approaches were evaluated with simple theoretical
examples and the problem of attitude estimation with unknown
angular velocity input was never addressed. Moreover, even
implementing the existing algorithms for nonlinear systems
with unknown inputs would have drawbacks of the normal-
ization step in the case of the quaternion. Finally, our aim is
to develop an algorithm for attitude estimation in SO(3), with
unknown angular velocity input. This angular velocity only
affects the state dynamics. The Robust Two-Stage Kalman
Filters for systems with unknown inputs (RTSKF) [[12]], devel-
oped for linear systems by making use of a two-stage Kalman
filtering technique, is proposed for this estimation problem. In
this framework, the attitude dynamics is represented in SO(3)
with unknown angular velocity input, i.e. the use of gyroscope
will be omitted, and the outputs are measurements from a 3-
axis accelerometer and a 3-axis magnetometer.

The main contributions of this paper can be resumed as
follows:

o The extension of the RTSKF to include systems repre-
sented in SO(3).

e The design of a novel algorithm for gyro-free attitude
estimation, where the dynamics relating the attitude to
the unknown angular velocity input is used.

The paper is structured as follows: Section [lI] introduces the
mathematical concepts of skew-symmetric matrices and SO(3)
group necessary for the estimation purpose. It also explains
the mathematical model expressed under this special group
and the problem statement. Section revisits the RTSKF
for easy reference and lists the algorithm steps. Section [[V]
presents the proposed RTSKF-SO(3) for SO(3)-based attitude
estimation. Section [V] shows the Monte Carlo simulations and
comparison results with two algorithms from the literature, the
TRIAD and IEKF algorithms. The paper ends with Section
where we summarize our findings and discuss potential future
research directions in this field.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Skew symmetric matrix

Skew-symmetric matrices are defined as matrices A that
meet the criterion: A7 = —A. Three-by-three skew-
symmetric matrix (£)x that is corresponding to a vector
&€ € R3 is written as:

&1 0 —& &
E)x =] & = &3 0 =& 1. M
& /) & & 0

We can perform cross-product operations between two vectors
in R? in the form of matrix multiplications. Consider v, vy €
Rg, then vy X vo = (V1)><V2c As vi X Vg = —Vg X Vi, We
conclude with this usful property:

(V1)><V2 = _(V2)><V1- (@)

Lemma 1. Ler u and w be two linearly independent vectors

in R3. Then, the matrix ( vl:, ))X has full column rank.
X

u
Proof. Let us assume that the matrix (( w ))X is not a
X

full column rank. This means that there exists a vector f €
u
R3 \ {0} such that ( ((W))X >f=0then (u )Xf:O
X

and (W )Xf:O,whichgiveusuxf:Oandwxf:O,
and thus both u and f are linearly dependent, and similarly,
both w and f are linearly dependent. Consequently, w and u
are linearly dependent. Therefore, the initial assumption that

u
the matrix (( w ))X does not have a full-column rank
X

must be false. Hence, it has indeed a full-column rank. O

B. The orthogonal group SO(3)

The attitude describing the rotational motion of a rigid body
in 3D space between two frames, Earth-fixed frame and body
frame, can be represented using rotation matrices that belong
to the orthogonal group SO(3) = {R € R3*? : RRT =
I3, det(R) = 1} [17]. The exponential map expy, : R® —
SO(3) allows transferring element & € R3 to the SO(3)
accordingly to the following formula [[17]:

sin([[£]]) sin([€]/2)* 2
m =1 X 2 X" 3
expm(§) = Is + il (&)x + THE &% O
Some key properties of the exponential map [4]:
expm (§) = exp((§)x), 4)
expm(€) " = expim(—€). )

First-order approximation of (3) when ||£]| < 1 gives:

expm(§) = I3 + (§)x- (6)

For small vi,vo € R? (i.e ||vi] < 1, |va] < 1), we also
have this approximation [5]:

expm (V1 + va) & expm(vi)expm(va). 7

C. Attitude dynamics represented on SO(3)

The discrete-time rotation dynamics of a rigid body can be
expressed as [18], [19] :

Rit1 = Ryexpm(wi + wi), (®)

where the subscript k£ denotes the time step number, Ry €
R3*3 is the rotation matrix from the body frame to the Earth-
fixed frame, wj, = ATw}™® where wi™* € R3 is the
true angular velocity and AT is the sampling time, wy is
the process noise which is assumed to follow a Gaussian
distribution with a mean of zero and a covariance matrix Q.
The measurement equation, expressed as Y € RS, is com-
posed of measurements from both 3-axis accelerometer and
3-axis magnetometer. In the absence of external accelerations
(linear accelerations due to motion) and magnetic disturbances,



the only acceleration that will be measured is the one related
to the Earth’s gravity. Similarly, the only magnetic field that
will be measured is the Earth’s magnetic field. Then Yy is

given by:

b -1 g

a R, 'g v
Y, — R Yk k 9
* (Bi) (Rklme - vii )’ ®
where az € R3, Bz € R3 are the accelerometer and magne-
tometer measurements written in the body frame, respectively.
g € R?, m, € R? are the Earth’s gravity acceleration and

the Earth’s magnetic field written in the Earth’s fixed frame,
g

. v .
respectively. v = ( Vj; ) represents the measurement noise

vector, which is assumed to follow a Gaussian distribution
with a mean of zero and a covariance matrix R;. Also, the

-1
measurement function is defined by h : R — Pf{* 1151 ,
then Y could be re-written as:

Y. = h(Ry) + V. (10)

D. Problem statement

Equations (8) and (I0) define the discrete-time system

model:
Rii1 = Ryexpm(wi + Wi),
Yk = h(Rk) + Vz.

Our aim is to design an estimator for (Ry)xen+ When the input
(wk)ken is unknown using only the measurements (Y )ren,
and by exploiting the RTSKF [12] for systems with unknown
inputs. For this purpose, we revisit the RTSKF for linear
systems in Section and then design the new algorithm,
which we call RTSKF-SO(3) in Section which extends
the RTSKF to the case where the dynamics are formulated in
the special orthogonal group SO(3) as in (8). Utilizing SO(3)
as the attitude representation offers advantages over alternative
representations like quaternions or Euler angles.

III. OVERVIEW ON THE RTSKF ALGORITHM

For easy reference, the main details of RTSKF for systems
with unknown inputs [12] are listed in this section. To begin
with, the algorithm considers the linear discrete-time system
model as follows:

Xpt+1 =Apxy + Epdy +wy,
yr =Hpxg + v,

Y
12)

where x;, € R”, dy € RP, y, € R™ are the system
state, the unknown input, and the system output (measure-
ments), respectively. The matrix Ej has the appropriate rank:
rank[Eg] = p. wg, vy, are the process and measurement noise
assumed to follow Gaussian distributions with mean of zero
and covariance matrix of Qi and Ry respectively. Certain
conditions related to the matrices Ay, E;, and Hj, need to be
satisfied to make the RTSKF works properly. These conditions
are as follows [12]:

rank[Hy] =m > p,

{ rank[HpE;_4]

) (13)

The RTSKF works recursively and the steps for time step
k are listed in the Algorithm [I} which takes as inputs: the
state estimation and state estimation error covariance matrix
in the previous time step (X;—; and P{_, respectively) and
the output vector in current time step (yg). Steps 1 and 2 are
the time update (prediction), step 3 calculates the innovation
(the output prediction error), step 4 calculates the innovation
covariance matrix, and step 5 calculates the Kalman gain K7,
to correct the predicted state in step 6 in order to minimize the
state estimation error covariance matrix P¢ in step 7. Steps
8, 9 and 10 estimate the unknown input d;, with a minimum
covariance matrix P¢. Finally, steps 11, 12 and 13 give the
final state estimation X; with the final state estimation error
covariance matrix P{ after substituting the estimation of the
unknown input. More details exist in the original paper [[12].

Algorithm 1 RTSKF for state estimation with unknown inputs

Input: x;,_1, P{_,, y&
I Xpjp—1 = Agp—1Xp—1

2 Pi\k_l = Ak—lplf—lAz—l + Qr-1
3 Yk =Yr — HeXppp—1

4: Cp = HkPi\k—ng + R

5: Kf = P;glk_lﬂgc,;l

6: X = Xpjp—1 + KLy

7 Py = (I -K{Hy)PY,

s P{ = ( Bl ,HIC;'H;E; ; )
0. K¢ = P¢ET HIC!

10: fik = Kgyk

11: Vi, = (I — K%Hk)Ek_l

12: X = X + Vk&k

13: P§ = f’ﬁ + VkPZVg

14: return X, P%

Let us define the time update estimation error Xpjx—1 =
X — Xpk—1 and the estimation error X, = Xp — Xj. By
applying and step 1 of Algorithm [T] in the time update
estimation error equation, we get:

Xijh—1 = Ap—1Xp—1 + Epo1dg—1 +wi—1 — Ap1Xp—1,

Xpjh—1 = Ap—1Xp—1 + Ep1dg1 + w1, (14)
The innovation can be written as follows:
Vi =yr — HiXpp1
Vi = Hpxp +vi — HiXpr—1
Ve = HpXp 1 + vk (15)

Equations (T4) and (I5) define the estimation error system and
will be used in Section

IV. RTSKF FOR ESTIMATION IN SO(3)

This section aims to design the RTSKF with unknown inputs
for attitude estimation in SO(3) and demonstrates how it can
be applied to the system defined in (8) and when angular
velocities from a 3-axis gyroscope are unknown. In the time



update, we consider zero angular velocity similar to the first
step of Algorithm [T} then (8) leads to:

Rk|k71 = Ry_1.

To compute the time update state estimation error, the dif-
ference Ry — ka,l has no physical meaning, instead we
define the time update state estimation error 7);;,_, and the
state estimation error 7;, as follows:

(16)
A7)

Miel—1 = R,Z\k,lRm
"7k - R;le.
Both 7;,;,_; and 7, belong to SO(3), so they can be mapped

with &5 51, &,_y € R® using the exponential map expy(.)
as defined in (G):

Mijk—1 = XPm (Egr—1)s (18)
Ny, = expm (&) (19)

By using and we get:
expm (&kjp—1) = R;:|k 1R (20)

Employing the model (8) we get:
eXpm(Sk\k—l) = R;;;Rk—lexpm(wk—l +Wr_1),
Then based on (T9):
expm (&xjp—1) = €XPm (&p—1)eXPm(Wrk—1 + Wg—1).
Applying the approximation (7)) gives:
Eiplo—1 = Ep—1 T Wr—1 + Wi_1. 1

The innovation can be written such as:

Y =Yy — h(Rypp_1),
S R;'g Rkk 18
R, 'm. . Rk\k 1

- Y
+V}<:-
k\k pm

By substituting Ry, with (20), it follows successively:

) + vy,

Using the first-order approximation (), we obtain:
- R !
v, = ( ((gkk 1)x il 18 ) + v

Eklk 1)><Rk|k 1Me
Finally, using the useful property (2), we obtain:

Yn _ ( ((Rkk 1g) £k|k 1 >+vz7

B R1;|k m ) £k\k 1

?k: eXpm(fgk\k I)Rk|k 18 — Rk|k 18
eXpm(—'Sk\kq)R;;\k ;m -R,

k|k—1
Y, = (expm(—&pjp—1) — 13)Rk|k 18
(expm (—&kjp—1) — IS)RM}C 1Me

me.

- (R;ﬁc 18)x .

Equations (21) and (22) are the linearized estimation error
system in R? akin to (14) and (15). The linearized estimation

error system has the matrices:

Al =T,
Bl =1, *
—_ (Rk|k 8)x Vk € N*. (23)
k (R 1 )
k|k— m

Hence the conventional RTSKF with unknown input can be
applied to derive the gains K¢, K¢, V and the updated
covariances (after verifying that conditions (I3) are satisfied).
The terms K7y, and Vkak in steps 6 and 12 are corrective
shift computed on the linearized error system. Therefore,
exponential mapping of the corrective shift is applied to
correct the rotation matrix [4]], [5]. This step should be applied
twice for both steps, 6 and 12, respectively, as follows:
Rk = Rk\k 1expm(K Yk) Rk = Rkexpm(dek)

Let us now check if the matrices in (23) satisfy the conditions
lb the vectors Rk‘ w18 and R,c }g ,m, represent the Earth’s
gravity and Earth magnetic field vectors written in the same
frame respectively, then they are linearly independent, then by
using Lemma |1 I we conclude that rank[H}] = 3, and also
we have rank[EL] = rank[I3] = 3 and rank[HLE! || =
rank[H}] = 3. Then the conditions are satisfied.

It is important to note that matrices Ak and Eéc are indepen-
dent of the estimation, but the matrix Hﬁf is not. However,
an approximation is used to obtain the innovation covariance
matrix Cov(Yy) = H}Cov(&y,_)HLT + Ry (the same
approximation is used for the derivation of the EKF algorithm
120D).

Finally, Algorithm [2] lists the RTSKF for SO(3) estimation.

Algorithm 2 Proposed RTSKF-SO(3) for attitude estimation
with unknown angular velocities
Input Rk 1, k 1 Yk: = [azsz]

1: Ryje—1 = Ryt

2 Pk\k =B+ Qe

32 Y=Y, — h(Rk|k 1)

4: Cp = HkPi\k 1 +'Rk
s Ki =Py, Hj c—1

6: Ri = Ryyjp—rexpm (KEY)
7. Pf = (I- KfH,)PY,

s P{ = ( HLTC,'H, )‘1
9 Kj _PdHl Tc !

10: dk = K¢ Yk

1: Vi =1-K*H!

12: Rk = Rkexpm(Vkak)

13: P§ =P 4+ V,PIV]

14: return Ry, P




V. SIMULATIONS OF THE RTSKF-SO(3) ESTIMATION:
SETUP AND MAIN RESULTS

To evaluate the proposed RTSKF-SO(3), we implemented
three algorithms: RTSKF-SO(3), TRIAD |[2], and IEKF [5].
Table [l summarizes the implemented algorithms, including the
sensors utilized and their corresponding current consumption
range. To ensure a fair comparison with IEKF, we conducted
multiple scenarios with varying levels of gyroscope noise.
For each comparison/scenario, we performed Monte Carlo
simulations with 100 iterations to obtain reliable results.

TABLE I: Implemented algorithms in simulation with corresponding
sensor usage (Acc: 3-axis accelerometer, Mag: 3-axis magnetometer,
Gyro: 3-axis gyroscope)

Algorithm Acc | Mag | Gyro | Current consumptions
RTSKF-SO(3) v v Microampere range
TRIAD v v Microampere range
IEKF v v v Milliampere range

A. Setup of the simulation

The system was simulated for 100 sec for each Monte Carlo
iteration with a sampling time of AT = 0.01 sec (100 Hz).
The NED (North-East-Down) frame was chosen as the fixed
one, where the approximate values for the Earth’s gravity
and magnetic field in France are g = [0, 0, 9.81]7 m/s?
and m, = [0.23, 0.01, 0.41]7 Gauss, respectively. To
obtain the ground truth of the rotation between the body
and the fixed frames, the true angular velocity for the body
was set as shown in Table The ground truth of rotation
was then calculated using (8) with an initial rotation matrix
corresponding to [45°, 45°, 45°] in terms of Euler angles
(Roll, Pitch, Yaw) using XYZ convention (Section 3.3 in
[3]), and the true acceleration and magnetic field written in
the body frame were generated using (9) with zero noises.
Subsequently, noisy measurements were generated by adding

TABLE II: The true angular velocity used in simulation

0<t<50

W 0.8 cos(1.2t)
wy | —1.1cos(0.5t)
w, | —0.4co0s(0.3t)

50 <t < 100
— cos(1.2t)
0.5 cos(0.8t)

—0.7 cos(0.7¢t)

white noise with zero mean and chosen standard deviations
to the true angular velocity, acceleration and magnetic field
(the latest two written in the body frame) to obtain the
gyroscope, accelerometer, and magnetometer measurements
along three axes, respectively. The standard deviations for
the accelerometer and magnetometer noises were set to be
o, = 0.01 m/sec? and o,, = 0.005 Gauss, respectively.
Several levels of gyroscope noise were performed when using
IEKF. Note that changing the gyroscope noise level does not
affect the results of our proposed approach, as it does not
depend on gyroscope measurements. In order to initialize the
three algorithms (particularly RTSKF-SO(3) and IEKF), the
initial estimated rotation matrices and initial estimation error
covariance matrices were set to be identities.

B. Results and discussions

To compare the performance of the proposed RTSKF-SO(3)
with the TRIAD and IEKF algorithms, it is necessary to
express the estimation error using easily interpretable infor-
mation. To achieve this, all rotation matrices were converted
to Euler angles using the XYZ convention. The Root Mean
Square Error (RMSE) was then computed for the three algo-
rithms for the time range [2, 100]sec, where we start com-
puting the RMSE after 2 sec to guarantee the convergence of
RTSKF-SO(3) and IEKF. The estimation error was computed
relative to the ground truth rotation, which was also converted
to Euler angles. The RMSE was computed for each Monte
Carlo iteration, and in the end, the average was taken for the
100 iterations. The results will be presented in three parts:
first, a figure showing the effectiveness of the estimation for
the proposed algorithm; second, a comparison with TRIAD
and third, a comparison with [EKF.

1) RTSKF-SO3 estimation results: Figure shows the
estimation error obtained with RTSKF-SO(3) for Euler angles,
demonstrating the accuracy of the estimation. The left part
of the figure represents the estimation error within the time
range of [0,0.2] sec, while the right part corresponds to the
time range of [0.2,100] sec. In the left part, it is clear that
RTSKF-SO(3) achieves convergence quickly, specifically in
less than 0.05 sec. In the right part, we can observe that the
roll error mostly stays between —0.5 and 0.5 deg. The pitch
error remains between —0.2 and 0.2 deg, and the yaw error
is between —2 and 2 deg. These findings indicate that the
RTSKF-SO(3) estimation method performs well and provides
good results even if the angular velocity is unknown.

kS
S

Roll error
(degrees)
S

0 0.1 0.2

Pitch error
(degrees)
o 8 &
—

Yaw error
(degrees)
n B

o 8 &
oo

. . . . . . . .
0 0.1 02 02 10 20 30 40 50 60 70 80 90 100
Time [s]

Fig. 1: RTSKF-SO(3) estimation error

2) Comparison between RTSKF-SO(3) and TRIAD: Ta-
ble [lII} presents the RMSE (in degrees) for both RTSKF-SO(3)
and TRIAD. The proposed algorithm RTSKF-SO(3) shows a
20% improvement in RMSE compared to TRIAD using only
accelerometer and magnetometer measurements. Additionally,
it is important to mention that further enhancements can be
made to RTSKF-SO(3) to account for scenarios where the
body experiences linear acceleration or magnetic disturbances.
One potential improvement could involve adapting the mea-
surement covariance matrix [21]], which is not feasible when
using static algorithms like TRIAD.



TABLE III: RMSE (in degrees) for both RTSKF-SO(3) and TRIAD

TRIAD RMSE (degrees) | RTSKF-SO(3) RMSE (degrees)
0.73 0.58

3) Comparison between RTSKF-SO(3) and IEKF: In the
Table we calculate the RMSE (in degrees) for both
RTSKF-SO(3) and IEKF for various gyroscope noise lev-
els (various gyroscope noise standard deviations o). The
obtained results indicate that RTSKF-SO(3) has comparable
accuracy with IEKF, even if it does not use measurements from
a 3-axis gyroscope. Sometimes RTSKF-SO(3) can perform
better, and sometimes not, depending on the gyroscope noise
standard deviation. In all cases, the difference in RMSE
between the two algorithms remains small.

Further, this simulation helps us to note the following chal-
lenges as motivating factors for using RTSKF-SO(3):

« the IEKF remains sensitive to the gyroscope noise and,
therefore, to the quality of the sensor, while RTSKF-
SO(3) does not,

o in experimental tests, higher power consumption will
be observed with IEKF than RTSKF-SO(3). By using
RTSKF-SO(3), the current consumption would decrease
from milliampere to microampere range with a slight
decrease in the accuracy,

o the need to know the gyroscope noise covariance matrix
and bias with IEKF but not with RTSKF-SO(3).

TABLE IV: RMSE (in degrees) for both RTSKF-SO(3) and IEKF
for various gyroscope noise level

oo TEKF RTSKF-SO(3)
(rad/sec) | RMSE (degrees) | RMSE (degrees)

0.01 0.35

0.05 0.60 0.58

0.10 0.71

VI. CONCLUSION AND FUTURE WORK

This paper proposed a dynamic algorithm for attitude esti-
mation using measurements from a 3-axis accelerometer and a
3-axis magnetometer while considering the angular velocity as
an unknown input. The proposed RTSKF-SO(3) was evaluated
using Monte Carlo simulations, and the results show that it out-
performed TRIAD, which is a commonly used static algorithm
for attitude estimation. Moreover, RTSKF-SO(3) demonstrates
better performance than the Invariant Extended Kalman filter
(IEKF) in high gyroscope noise scenarios. Therefore, the pro-
posed algorithm can provide an effective solution for attitude
estimation in situations where gyroscope measurements are
not reliable or unavailable. In future works, it is important to
validate the results of the proposed RTSKF-SO(3) algorithm
on real data and compare the power consumption of IEKF
and RTSKF-SO(3) in real applications. Another direction for
future works is the extension of the proposed algorithm to
handle the case when the body is subject to linear acceleration.
This would further enhance the applicability of the algorithm
in practical situations.
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