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Abstract

The construction of the atomic register abstraction over crash-prone asynchronous message-
passing systems has been extensively studied since the founding work of Attiya, Bar-Noy, and
Dolev. It has been shown that t < n/2 (where t is the maximal number of processes that
may be faulty) is a necessary and sufficient requirement to build an atomic register. However,
little attention has been paid to systems where faulty processes may exhibit a Byzantine be-
havior. This paper studies three definitions of linearizable single-writer multi-reader registers
encountered in the state of the art: Read/Write registers whose read operations return the
last written value, Read/Write-Increment registers whose read operations return both the last
written value and the number of previously written values, and Read/Append registers whose
read operations return the sequence of all previously written values. More specifically, it com-
pares their computing power and the necessary and sufficient conditions on the maximum ratio
t/n which makes it possible to build reductions from one register to another. Namely, we prove
that t < n/3 is necessary and sufficient to implement a Read/Write-Increment register from
Read/Write registers whereas this bound is only t < n/2 for a reduction from a Read/Append
register to Read/Write-Increment registers. Reduction algorithms meeting these bounds are
also provided.

Funding This work was partially supported the French ANR project ByBloS (ANR-20-CE25-
0002-01) and PriCLeSS (ANR-10-LABX-07-81).

1 Introduction

Atomic register abstractions. The register abstraction is the basis of the Turing machine’s
tape. It provides two basic operations: a write operation that allows defining a new value for the
register and a read operation that returns its value. In concurrent architectures such as multi-
core systems, the read/write semantics of a register is the cleanest and most easy-to-understand
abstraction of shared memory and is extensively used in multi-threaded programs. In such a setting,
a register that can be accessed concurrently by several processes represents a communication
medium. In a message-passing system where processes may experience crash failures, Attiya, Bar-
Noy, and Dolev [5] proposed the first emulation of a shared register (called ABD) for which it has
been shown that t < n/2 (where n is the total number of processes and t is the maximal number of
processes that may crash) is a necessary and sufficient requirement. Several algorithms have been
proposed in order to enhance space or time efficiency.

According to which process is allowed to read or write a register and the significance of the
returned value, several types of registers have been proposed, among which single-writer multi-
reader (SWMR) and multi-writer multi-reader (MWMR) registers. Several levels of consistency
can also be proposed: atomic, regular, and safe. A register is said to be atomic (or linearizable)
if (a) each read or write operation appears as if it has been executed instantaneously at a single
point of the timeline, between its start event and its end event, (b) no two operations appear at
the same point of the timeline, and (c) a read returns the value written by the closest preceding
write operation (or the initial value of the register if there is no preceding write) [17]. Reduction
algorithms from one type of register to another (MWMR vs SWMR and atomic vs regular or safe)
have been proposed (these registers are thus equivalent from a computability point of view).
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Byzantine-prone distributed systems. The implementation of shared registers has been
first studied in the crash failure model and then extended to Byzantine failures. A Byzantine
process is a process that may deviate from its specification [22]. Byzantine faults gained interest
since the work on Byzantine Fault Tolerance (BFT) [9], an implementation of a replicated state
machine over a set of servers [23]. More recently, Blockchains made their appearance and a link
was quickly made with the BFT approach [2]. Blockchains can be seen as eventually consistent
implementations of a ledger data structure that consider in addition the semantic chaining between
the different blocks and cryptography is used as a tool. The ledger itself can be seen as a particular
register. In this paper, we propose to study register abstractions, the basic data structure, in
distributed systems prone to Byzantine faults. Several works have addressed the design of a
distributed shared storage in the client/server model prone to Byzantine failures [1, 10, 20]. A set of
server processes implements a shared storage abstraction accessed by client processes. The different
processes are, thus, separated into two classes and the system is not symmetric. While some servers
can be Byzantine, most papers restrict the type of failure allowed to clients. [1] considers clients
that can only crash, and [6] considers that clients can be Byzantine but a bounded number of times.
On the other hand, [19] considered the use of signatures, and [13, 14] explored the conditions under
which one can have fast reads (one-way messages) when servers never communicate with each other.
Finally, [3] considers that readers can be Byzantine but not the writer.

In the context of asynchronous message-passing systems where at most t processes out of the
n processes of the system can exhibit a Byzantine behavior, only the implementation of atomic
SWMR (single-writer multi-reader) registers has been considered due to the fact that a Byzan-
tine process can corrupt any register it can write. As Cohen and Keidar phrase it “In practice,
multi-writer multi-reader (MWMR) registers are useless in a Byzantine environment as an adver-
sary that controls the scheduler can prevent any communication between correct processes.” [12].
Differently, the values written to a SWMR (single-writer multi-reader) register associated with
a non-Byzantine process cannot be corrupted by a Byzantine process. As a result, [16] and [21]
considered implementing an array of n SWMR registers, one per process. If a register is associated
with some process p, p is the only process that can write it, while all processes can read it.

Defining Byzantine-tolerant registers. Following the definition of Byzantine linearizabil-
ity proposed in [12], the most natural way of specifying a register in this context would be to say
that if the writer is not Byzantine, the register respects the classical specification of an atomic reg-
ister, otherwise, a read operation can return any value. This register will be called the Read/Write
register.

In order to give some significance to the registers associated with Byzantine processes, [16] and
[21] give a different specification of a SWMR register. Indeed, while the specification of a register
associated with a correct (non-Byzantine) process is identical to that of a classical atomic register,
the specification of a register associated with a Byzantine process can be declined in different ways,
depending on how the behavior of the Byzantine writer is perceived. In [16], a register keeps track
of the sequence of all the values written by the writer (be it Byzantine or not) and this sequence
is seen in the same way by all non-Byzantine processes. This register will be called in this paper
Read/Append register. If the writer is correct, the sequence will correspond to the chronological
sequence of values it wrote. If the writer is Byzantine, this sequence depends on the behavior of
the writer, in the extreme case, the history will be reduced to the initial state (an empty sequence).
In other words, a single-writer Read/Append register can be seen as a single-writer atomic ledger.

Differently, in [21], a register keeps only the last written value together with its sequence
number. This will be called the Read/Write-Increment register. In the same way, if the writer is
Byzantine, the register may be in any state as soon as it is perceived consistently by non-Byzantine
processes: two correct processes that read the same register and return the same sequence number
will necessarily get the same value even if the writer is Byzantine. At the extreme, the register’s
state will be stuck to the initial value with sequence number 0.

Why only studying SWMR registers? In addition to the lack of sense of multi-writer
Read/Write registers discussed above, this paper only considers single-writer registers because we
are only interested in memory abstractions that are equivalent to the atomic register in crash-
prone systems. Indeed, when only crashes are considered, any of these register specifications can
be implemented on top of any other, because writes cannot be concurrent when there is a single
writing process. On the other hand, this is not the case for the multi-writer versions of the three
register specifications: even in crash-prone systems, a ledger has the synchronization power of
consensus and can implement a state machine; and it is easy to see that multi-writer Read/Write-
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Figure 1: Conditions for implementing Byzantine-tolerant single-writer multi-reader registers

Increment registers have consensus number 2.
In crash-prone systems, basic registers are used as building blocks to construct safe synchro-

nization algorithms (i.e. consensus, stack, queue, etc.) and the additional power is brought either
by temporal properties, special hardware instructions, or by randomization. Studying and under-
standing the exact relationship between single-writer registers in the Byzantine framework would
allow a similar approach. For example, using single-writer registers plus additional properties
like randomization could help to implement Byzantine-tolerant ledgers. Although the relation of
crash-prone atomic registers is well-studied, this is not the case for the Byzantine case.

Hence, this work sheds new light on the construction of Byzantine-prone asynchronous atomic
registers. When one wants to implement these SWMR registers over an asynchronous Byzantine
message-passing distributed system, t < n/3 is necessary and sufficient for all three variants [16].
This is intuitive since the three register specifications differ only in the way they deal with Byzan-
tine writers: Moreover, it is known that in order to implement an atomic register on top of an
asynchronous message-passing system prone to process crashes, readers have to write [4, 5]. So
even if we only consider non-Byzantine writers, the values they write will be relayed by readers
which may be Byzantine. Therefore, the correct readers must be able to distinguish the values
relayed by Byzantine processes from others hence the ratio t < n/3.

Contribution. This paper investigates the relationship between the three register specifica-
tions stated above in the presence of Byzantine failures and studies under which condition one
type of register can be built from another as shown in figure 1. Whereas the reduction from a
Read/Write register to a Read/Write-Increment one and from a Read/Write-Increment register
to a Read/Append register is straightforward by their respective definitions, it is important to
note that a Read/Write-Increment register can be implemented from Read/Write registers only if
t < n/3 and surprisingly, a Read/Append register can be reduced to a Read/Write-Increment reg-
ister as soon as t < n/2. This shows that the sequence number mechanism in the R/WI registers is
actually quite powerful, but does not close the gap with the R/A registers. This suggests that some
aspects of the bad behavior of Byzantine processes are already captured by Read/Write-Increment
registers and can benefit upper-layer constructions. The proposed bounds are tight, we prove on
the one side that the proposed bounds are necessary, and we propose constructions that allow these
reductions.

Organization. The remainder of this paper is organized as follows: Section 2 presents the
considered distributed model. Then we investigate the relationships, on the one hand, between
Read/Write registers and Read/Write-Increment registers (Section 3) and on the other hand,
between Read/Write-Increment registers and Read/Append registers (Section 4). Finally, Section 5
concludes the paper.

2 Computing Model

We consider the classical Byzantine-prone asynchronous shared-memory model.

Computing entities. The system is made up of n sequential processes, denoted p1, p2, . . . , pn.
These processes are asynchronous in the sense that each process progresses at its own speed, which
can be arbitrary and may vary along any execution, and remains always unknown to the other
processes. Each process pi has access to its own identifier i it can use in the code.

Failure model. A Byzantine process is a process that behaves arbitrarily [18, 22]: it may start
in an arbitrary state, stop executing at any time (this behavior is called a crash), perform arbitrary
state transitions, attempt to communicate arbitrary or different values to different processes, etc.
Among the n processes of the system, it is supposed that at most t can exhibit a Byzantine
behavior in any given execution. A Byzantine process is also called a faulty process and a process
that commits no failure (i.e., a non-Byzantine process) is also called a correct process.
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Communication model. The processes communicate by invoking operations on a collection
of shared objects. Since efficiency is not a central issue of this paper, we consider that processes
have access to as many shared objects as necessary. We consider only linearizable (atomic) t-
resilient shared objects, as defined thereafter. t-resiliency is a classical liveness condition stating
that all operations invoked by correct processes terminate provided there are at most t faulty
processes [7].

Following [12], Definition 1 defines Byzantine linearizability in terms of admitted distributed
histories, depending on a given object defined by a sequential specification (in our case, the register
specifications already discussed). A distributed history (or simply history when it is clear from
context) is an abstraction of a distributed execution, composed of a sequence of atomic steps taken
by the processes. The steps taken by correct processes can be either 1) the invocation and response
events of the operations specified by a given algorithm, 2) executions of atomic operations on shared
objects of the underlying model, or 3) local computations. We only accept well-formed histories, in
which correct processes alternate invocation and response events. In other word, a correct process
cannot return from an operation it has not yet invoked, and cannot invoke an operation before it
has returned from its previous invoked operation.

More precisely, Byzantine linearizability is defined as an extension of linearizability [15], such
that only the operations of correct processes must be correctly specified, whereas the histories of
Byzantine processes can be re-interpreted into any local history, so that the full history respects the
specification of the object. In particular, operations correctly performed by Byzantine processes
may be either recognized, ignored or reinterpreted as a different correct operation by the correct
processes. A consequence of this definition is that no process can alter the semantics of an operation
invoked on a shared object. A Byzantine process can invoke or not an operation independently
from its code. However, if Byzantine processes attempt to alter the internal implementation of the
object, correct processes will agree on some sequence of operations that were invoked, and the effect
of these operations will conform to the specification of the object. This notion of linearizability is
close to the one defined in [11] for the special case of the ledger data structure.

Definition 1 (Byzantine Linearizability) A history H is linearizable with respect to an object
O if there exists a sequential history H ′ (called a linearization of H) such that (1) after removing
some pending operations from H and completing others by adding matching responses, it contains
the same invocations and responses as H, (2) if an operation o returns before an operation o′ starts
in H, then o appears before o′ in H ′, and (3) H ′ satisfies O’s sequential specification.

A history H is Byzantine linearizable with respect to an object O if there exists a history H ′

linearizable with respect to O, such that H ′|correct = H|correct (where H|correct denotes the history
H where only the operations done by correct processes are considered).

We say that an object is Byzantine linearizable, or simply linearizable if all of its executions
are Byzantine linearizable.

The three register abstractions. This paper considers three variations of the classical
SWMR register, whose sequential specification is defined below and illustrated in Figure 2:

Read/Write (R/W) registers offer two operations: a write operation, only accessible to the
writing process, that does not return any value, and a read operation accessible to all pro-
cesses, that returns the last written value, or the initial value ⊥ if no value was written.

Read/Write-Increment (R/WI) registers offer two operations: a write-incr operation, only
accessible to the writing process, that does not return any value, and a read operation ac-
cessible to all processes, that returns a pair x = ⟨x.value, x.count⟩, such that x.value is the
last written value (similar to R/W registers), and x.count is the number of times the opera-
tion write-incr was called by the writer. If no value was ever written, the read operation
returns ⟨⊥, 0⟩.
Remark that the definition of Byzantine linearizability implies that, if two processes read the
same count field, then they must read the same value field as well.

Read/Append (R/A) registers offer two operations: an append operation, only accessible to
the writing process, that does not return any value, and a read operation accessible to all
processes, that returns the ordered sequence of all written values on that register since the
beginning of the execution.

The initial empty sequence is denoted by ε, and the concatenation of a sequence l and a
value v is denoted by l⊕ v. Given a sequence l and an index s ∈ N, let us denote by l[s− 1]
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the sth value in l (i.e. the first index is 0). Given two sequences l and l′, let l ⊆ l′ denote the
fact that l is a prefix of l′.

Thanks to Byzantine linearizability, the sequences returned to different reads must be con-
sistent, i.e. one must be a prefix of the other.

1 initial state is
2 value← ⊥;
3 operation write (v) invoked by pi is
4 value← v;

5 operation read () invoked by any pj is
6 return value;

(a) Read/write register REG[i]

1 initial state is
2 value← ⊥;
3 count← 0;

4 operation write-incr(v) invoked by pi is
5 value← v;
6 count← count+ 1;

7 operation read() invoked by any pj is
8 return ⟨value, count⟩;

(b) Read/write-inc register REG[i]

1 initial state is
2 log ← ε.

3 operation append(v) invoked by pi is
4 log ← log ⊕ v.

5 operation read() invoked by any pj is
6 return log .

(c) Read/append register REG[i]

Figure 2: Sequential specification of the different registers

More precisely, we consider that processes have access to as many arrays of n SWMR registers
as necessary. The i-th entry of the array is associated with process pi. This means that pi is the
only process that can write a value in this register while other processes can only read it.

Remark. If a process is supposed to write only once in its register, a Byzantine process pw
can write a first value that will be read by some processes pi and then write a second value before
some other processes pj reads the register. If the Byzantine process uses a R/W register, pi and
pj may read different values. If the considered register is a R/WI one, pj knows that the writing
process is Byzantine because the value it reads is associated with a count = 2. Finally, if one uses
a R/A register, all sequences read by correct processes will contain the very same first value even
though the Byzantine process appended other values. It is clear that the different registers offer
different information on the behavior of Byzantine processes.

Notation. Let R denote a type of SWMR register through which processes can communicate.
The acronym BASMn,t[R] is used to denote the n-process asynchronous system where up to t
processes may exhibit Byzantine behavior and communication is through as many instances of R
as necessary. BASMn,t[R,C] denotes BASMn,t[R] enriched with the condition C on t and n.

A characterization of Byzantine linearizability for Read/Append registers. In or-
der to simplify the proofs of subsequent algorithms, Proposition 2 defines four properties that
characterize linearizable R/A registers. Clearly, these properties are verified by any linearizable
R/A register.
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Proposition 2 (Linearizability for Read/Append registers) Let H be a distributed history
of a Read/Append register object that verifies the following properties.

Validity: If a read operation performed by a correct process returns log, and if the writing process
is correct, then for all s ∈ {1, ..., |log|}, log[s−1] is the sth value written. (By indistinguisha-
bility with the scenario where the writer crashes before the end of the read, this implies that
the sth write started before the read completed).

Read after write: if a read done by a correct process starts after the sth write of a correct process
completes, then the read cannot return a sequence containing less than s values.

Inclusion: let ri and rj be two read operations, done by correct processes, that return respectively
log i and logj. Then log i is a prefix of logj, or logj is a prefix of log i.

Read after read: let ri and rj be two read operations, done by correct processes, that return
respectively log i and logj. If ri completes before rj starts, then log i is a prefix of logj.

Then H is Byzantine linearizable with respect to the Read/Append register.

Proof 3 Proof when the writing process is correct. Let us consider the history H ′ = H|correct, i.e.
H ′ is H in which the reads of Byzantine processes were removed. Clearly, H ′|correct = H|correct.
We will prove that H ′ is linearizable.

For each operation o of H ′, we define the timestamp ts(o) of o as follows. If o is the sth write
operation, then ts(o) = s. If o is a read operation that returns log, then ts(o) = |log|. We also
define the binary relation → between operations as o1 → o2 if either 1) o1 returned before o2 was
started (denoted by o1 →1 o2), or 2) ts(o1) < ts(o2) (denoted by o1 →2 o2), or 3) o1 is a write, o2
is a read, and ts(o1) = ts(o2) (denoted by o1 →3 o2).

Let us prove that → is cycle-free. Indeed, suppose there is a cycle o1 → o2 → . . . → ok = o1.
Since none of the cases contains reflexivity, the cycle contains at least two different operations.
Moreover, let us notice that o1 → o2 implies ts(o1) ≤ ts(o2): this is true by definition for →2 and
→3, and this is implied by the Validity, Read after read and Read after Writes properties for →1.
Hence, all operations in the cycle have the same timestamp, and they are not compared by →2.
Since →1 itself is a partial order, it means there is a write operation w and a read operation r
such that w →3 r. Consequently, there is a write operation w′ and a read operation r′ such that
r′ → w′, which is only possible if r′ →1 w′. In other words, a read returns a value that has not yet
been written, which is prevented by the Validity property.

Finally, the reflexive and transitive closure of → can be extended into a total order ≺ that
respects real time thanks to →1, and that respects the sequential specification of the Read/Append
register: by →2, the read operations are ordered by size of the returned sequences, hence by inclu-
sion by the Inclusion property, and the sequences are composed of written values by the Validity
property; append operations are ordered before the read operations that include their values in their
return sequence by →1, and after the others by →2. Hence, H ′ is linearizable, so H is Byzantine
linearizable, which concludes the proof when the writer is correct.

Proof when the writing process is Byzantine. Let us consider the history H ′ = H|correct, i.e.
H ′ only contains the reads done by the correct processes in H. As is the case of a correct writer,
we define the binary relation → between two read operations o1 and o2, that return respectively log1
and log2, as o1 → o2 if either 1) o1 was terminated before o2 was started (denoted by o1 →1 o2),
or 2) log1 is a strict prefix of log2 (denoted by o1 →2 o2). The Read after read property implies
that → is cycle-free, so it can be extended into a total order ≺.

Thanks to the Inclusion property and the definition of →2, for all operations o1 and o2 that
return respectively log1 and log2, if o1 ≺ o2, then log1 is a prefix of log2. Since ≺ contains →2, it
is possible to build a linearizable extension H ′′ of H ′ by adding write operations corresponding to
the read values, in the order in which they are read, and just before the time where they were read
first. Hence, H ′′ is linearizable and H ′′|correct = H|correct, so H is Byzantine linearizable, which
concludes the proof.

3 From R/W registers to R/WI registers

This section shows that the hypothesis t < n
3 is necessary, and sufficient, to implement a R/WI

register on top of R/W registers. More precisely, Section 3.1 proves that t < n
3 is an upper bound

on the number Byzantine tolerated by any such reduction algorithm, and then Section 3.2 presents
an algorithm whose resilience is optimal.

6



pw

pi

pj

write-incr(a)

read()→ ⟨a, 1⟩

(a) Situation S1: pj is Byzantine, but does
nothing to prevent pi from reading ⟨a, 1⟩

pw

pi

pj

read()→ ⟨a, 1⟩

write-incr(b)

read()→ ⟨b, 1⟩

(b) Situation S2: pi is Byzantine, but cannot prevent pj
from reading ⟨b, 1⟩

pw

pi

pj

write-incr(a)

read()→ ⟨a, 1⟩

write-incr(b)

read()→ ⟨b, 1⟩

(c) Situation S3: pw is Byzantine, and can force pi and pj to read different values

Figure 3: Illustration of the scenarios from the proof of Theorem 4, with n = 3 and t = 1

3.1 An upper bound on resilience

This section proves that the maximal resilience of any implementation of a linearizable Read/Write-
Increment register in a system where processes communicate only through Read/Write registers,
is at most t ≥ n

3 .

Theorem 4 It is impossible to implement a linearizable Read/Write-Increment register in the
model BASMn,t[R/W], when n ≥ 3 and t ≥ n

3 .

Proof 5 Let us assume that there exists an algorithm, A, which implements linearizable R/WI
registers using a collection of R/W registers, even when t ≥ n

3 . We are going to show (proof by
contradiction) that there exists an execution allowed by A and that is not linearizable.

Let us consider a system made up of n ≥ 3 processes, and let t ≥ n
3 . We can partition the set

of processes into three non-empty sub-sets W , I and J , whose size is at most t. Let us pick three
processes pw ∈ W (the writing process), pi ∈ I and pj ∈ J (two reading processes), and let us
consider three situations in which A is used to implement a R/WI register x that can be written
by pw only. These situations are represented in Figure 3 and described thereafter.

S1: In the first scenario (Figure 3a), the processes in J are Byzantine and do not take any step
during the execution. All other processes are correct. Initially, Process pw writes a in x. The
write-incr terminates because |J | ≤ t processes are Byzantine. Then, Process pi reads x.
Similarly, the read terminates, and returns ⟨a, 1⟩ because x is linearizable.

S2: In the second scenario (Figure 3b), only the processes of I are Byzantine. At first, Byzantine
processes are not quiet, but they simulate their behavior in S1. At this point, all shared
registers in which processes of I can write are the same as after the reading of ⟨a, 1⟩ by pi.
In a second stage, Byzantine processes become quiet and pw writes b in x. As previously,
the write-incr must terminate because |I| ≤ t processes are Byzantine. In a third stage,
pj reads x. The read terminates and returns ⟨b, 1⟩ because x is linearizable and the correct
process pw indeed only wrote one value, which was b.

S3: In the last scenario (Figure 3c), processes of W are Byzantine, and the processes of J are
initially slow. Initially, pw behaves correctly and writes a in x, then Process pi reads x. So
far, the situation is the same as S1, so pi gets ⟨a, 1⟩ as the result of its read. For the rest of
the executions, processes in I become too slow to play any role.

Then, all processes in W write, in their respective registers, the values that were contained
in their registers in S2 after pw wrote b, and keep simulating the behavior they had in S2.

Finally, pj reads x. Notice that, at this point, S3 and S2 are indistinguishable to all processes
in J : in both situations, all registers written by processes in W contain the value resulting
from a write of b, all registers written by processes in I contain the value resulting from a
write of a, all processes in W respond accordingly to a write of b, and all processes in I are
quiet. Therefore, pj must return ⟨b, 1⟩.

Remark that, in S3, two correct processes pi and pj have read respectively ⟨a, 1⟩ and ⟨b, 1⟩ in x.
This violates linearizability, so A cannot exist.
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3.2 A resilience-optimal algorithm

Algorithm 1 presents an implementation of a R/A register in the model BASMn,t[R/W, t < n
3 ].

Since R/WI registers can be trivially implemented from R/A registers, this proves that R/WI
registers can be implemented in BASMn,t[R/W, t < n

3 ] as well. The writing process is denoted
by pw.

Shared memory and local variables. The n processes share three variables called endorse,
approve and confirm, defined as follows.

• endorse[0...][1..n] is an infinite array of arrays of n SWMR atomic R/W registers such that,
for any s ∈ N and i ∈ {1, ..., n}, endorse[s][i] can only be written by pi, is initialized to a
value ⊥ that cannot be appended to the R/A register and eventually contains pi’s opinion
on what the sth value appended is.

• Similarly, approve[0...][1..n] is an infinite array of arrays of n SWMR atomic R/W registers,
initialized to ⊥ as well. A correct process pi only writes, in approve[s][i], a value that it
has previously read in more than n+t

2 cells of endorse[s].

• confirm[1..n] is an array of n SWMR atomic R/W registers such that for any i ∈ {1, ..., n},
confirm[i] can only be written by pi and contains sequences of appended values that have
already been read by pi in more than 2t cells of approve[s].

Besides these three shared variables, each process pi maintains five local variables:

• log i is a sequence that represents the current state of the shared R/A register seen by pi;

• count i is an integer that represents the number of appended values;

• endorsei[1..n] is an array of size n, that stores a local copy of endorse[|log i|] by pi;

• approvei[1..n] is an array of size n, that stores a local copy of approve[|log i|] by pi;

• confirmi[1..n] is an array of size n, that stores a local copy of confirm[|log i|] by pi.

Notations. Let v be a value, l a sequence of values, and s ∈ N. We say that a process pi
endorses v as the (s + 1)th value (or simply endorses v when s is immaterial) if pi writes v in
endorse[s][i]. Similarly, we say that pi approves v as the (s+1)th value (or simply approves v) if
pi writes v in approve[s][i], and that pi confirms l if pi writes l in confirm[i]. We also say that
pi confirms v as the (s+1)th value (or simply confirms v) if there exists a sequence l of size s such
that pi confirms l⊕ v. Finally, we say that pi logs v as the (s+1)th value (or simply logs v) when
pi executes log i ← log i ⊕ v in Line 18, with |log i| = s.

Description of the algorithm. Algorithm 1 implements a confirmation mechanism similar
to the protocol for reliable broadcast proposed by Bracha and Toueg in 1985 [8]. In order to write
its (s + 1)th value v, the writing process pw writes v in endorse[s][w] (Line 2) and then waits
until it has logged v as its (s+ 1)th value, which will happen after enough correct processes have
confirmed the write by calling the procedure synch() (which they do regularly thanks to Line 8).

When any process pi invokes synch(), it first updates its local copy of the shared variables
confirm, approve and endorse (Lines 9-11), and then it checks the five following conditions to
help progress on an agreement on the written values.

• The first time pi reads a non-⊥ value in endorse[s][w], it endorses this value by writing it
to endorse[s][i] (Line 12).

• If some value v has been endorsed by more than n+t
2 processes, i.e. by a majority of the

correct processes, pi approves this value by writing it to approve[s][i] (Line 14).

Remark that two correct processes cannot approve different values. However, at this stage,
it is still possible that some correct process approves a value, and other correct processes do
not approve any value.

• If some value v has been approved by at least t + 1 different processes, i.e. by at least one
correct process, pi trusts this correct process and approves the value as well (Line 15).
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operation append(v) invoked by pw is
1 countw ← |logw|;
2 endorse[countw][w].write(v);
3 while |logw| ≤ countw do synch();

operation read() invoked by any pi is
4 synch();
5 count i ← max{c ∈ N : |{j : |confirmi[j]| ≥ c}| > t};
6 while |log i| < count i do synch();
7 return log i;

background task T () repeatedly executed by all pi is
8 synch();

procedure synch() invoked by any pi is
9 for j from 1 to n do endorsei[j] ← endorse[|log i|][j].read();

10 for j from 1 to n do approvei[j] ← approve[|log i|][j].read();
11 for j from 1 to n do confirmi[j] ← confirm[j].read();
12 if endorsei[i] = ⊥ ∧ ∃v ̸= ⊥ : endorsei[w] = v then endorse[|log i|][i].write(v);
13 if approvei[i] = ⊥ then
14 if ∃v ̸= ⊥ : |{j : endorsei[j] = v}| > n+t

2 then approve[|log i|][i].write(v);
15 if ∃v ̸= ⊥ : |{j : approvei[j] = v}| > t then approve[|log i|][i].write(v);
16 else if confirmi[i] = log i then
17 if ∃v ̸= ⊥ : |{j : approvei[j] = v}| > 2t then confirm[i].write(log i ⊕ v);
18 else if ∃v ̸= ⊥ : |{j : confirmi[j] ⊇ log i ⊕ v}| > 2t then log i ← log i ⊕ v;

Algorithm 1: Implementation of a R/A register in the model BASMn,t[R/W, t < n
3 ]

• If some value v has been approved by at least 2t + 1 processes, i.e at least t + 1 correct
processes, pi confirms the value by appending it at the end of confirm[i] (Line 17).

Remark that if the condition of Line 17 is true for some process, then the condition of Line 15
will always remain true (for the same s) even if t Byzantine processes change their approved
value. Hence, all correct processes will eventually confirm the value.

• If some value v has been confirmed by more than 2t different processes (correct or not), pi
logs v (Line 18). Recall that l ⊇ l′ denotes the fact that l′ is a prefix of l.

When any process pi reads the Read/Append register, it first invokes synch() to update its local
copies of the shared variables (Line 4), then it computes the number count i of values that have been
confirmed by more than t processes (Line 5) and waits until all these values have been confirmed
by at least 2t processes (Line 6). This ensures the predicate aic(log i) defined by Definition 6: all
these values have been confirmed by at least t+ 1 correct processes, which will remain true in the
future even if t Byzantine processes change their mind. Then, pi returns the sequence composed
of these values (Line 7) knowing that these values will also be returned by all subsequent reads.

Definition 6 (Add In Confirm) For all sequences of values l, let us define the predicate aic(l)
as follows: aic(l) is verified if, and only if, there exists at least t+1 correct processes pj such that
l is a prefix of confirm[j].

3.3 Correctness of the Algorithm

We now prove the correctness of Algorithm 1.

Lemma 7 (Approved value) Two correct processes cannot approve different sth values.

Proof 8 Suppose some correct processes pi (resp. pj) writes vi (resp. vj) in approve[s], for
some s. Since this can happen on Line 15 only if pi (resp. pj) has read vi (resp. vj) from a
correct process in approve[s], some correct process wrote vi (resp. vj) in approve[s] on Line 14.
By the condition on Line 14, more than n+t

2 processes endorsed vi (resp. vj). Therefore, at least
t + 1 processes endorsed both values on Line 12, among which there is one correct process. This
contradicts the condition endorsei[i] = ⊥ of Line 12.

Lemma 9 (Confirmed value) If a correct process pi logs v on Line 18, then it confirmed log i⊕v.

9



Proof 10 Suppose a correct process pi writes log i ⊕ v on Line 18. The condition on Line 16 was
false, so pi wrote log i ⊕ v′ to confirm[i] on Line 17, for some v′ that was approved by a correct
process. By the condition on Line 18, some correct process confirmed v on Line 17, so some correct
process approved v. Since v and v′ were both approved by a correct process, v = v′ by Lemma 7.

Lemma 11 (Logged value) If the writing process pw is correct and some correct process pi logs
v as its sth value, then v is the sth value written by pw.

Proof 12 When pi logs v as its sth value (Line 18), log i⊕v has already been confirmed by at least
2t + 1 processes, hence by some correct process in Line 17. Therefore, v was approved by at least
2t + 1 processes, on Line 14 or 15. Remark that the first correct process that approved v could
not have done so on Line 15 because, at that moment, it was approved by at most t Byzantine
processes. Hence, some correct process approved v on Line 14, after v had been endorsed by more
than n+t

2 ≥ 2t processes. Some correct process among them endorsed v on Line 12. By Line 12,
v′ is the value v that pw wrote on Line 2 during its sth invocation of append.

Lemma 13 (Stability of aic) If aic(l) is true for some l at some time, then it remains true
forever.

Proof 14 Suppose that l is a prefix of confirm[i] for some correct process pi. If confirm[i] is a
prefix of logi, then it will remain true because pi only appends values at the end of logi, to overwrite
either logi or confirm[i]. Otherwise, pi already executed Line 17, but not yet Line 18, and by
Lemma 9, it can only write confirm[i] in log i. Hence, l remains a prefix of confirm[i] forever,
and the same is true for all correct processes.

Lemma 15 (Inclusion for aic) If there exist l and l′ such that the condition aic(l) is true at
some time, and aic(l′) is true at some time, then l is a prefix of l′ or l′ is a prefix of l.

Proof 16 By Lemma 13, aic(l) and aic(l′) remain true forever after some point. Then, some
correct processes pi and pj confirmed l and l′, respectively. Suppose (by contradiction) that the
lemma is false, and let us consider the longest common prefix log of l and l′, as well as the first
value vi ̸= vj by which l and l′ differ. As correct processes append values one by one on Line 17,
pi (resp. pj) confirmed log ⊕ vi (resp. log ⊕ vj). By the condition of Line 17, some correct process
approved vi (resp. vj), which contradicts Lemma 7.

Lemma 17 (Log and aic) If pi is a correct process, aic(log i) holds at all times.

Proof 18 We prove the lemma by induction on |log i|. Initially, aic(ε) holds. Suppose aic(log i)
holds for some log i, and let us suppose pi logs v on Line 18. By the condition of that line, log i⊕ v
was confirmed by at least 2t + 1 processes, hence by at least t + 1 correct processes. Therefore,
aic(log i ⊕ v) holds at that time, and by Lemma 13, aic(log i ⊕ v) remains true forever afterward.

Lemma 19 (Reads and aic) Let l be a sequence such that aic(l) is true when a correct process
pi invokes a read() operation. Then l is a prefix of the sequence returned to pi.

Proof 20 By Line 5, |l| ≤ count i, so by Line 6, |l| ≤ |log |i. Moreover, aic(log i) holds by
Lemma 17. Since aic(l) and aic(log i) are satisfied, Lemma 15 implies that l is a prefix of log i.

Lemma 21 (Linearizability) Let H be a distributed history admitted by Algorithm 1. Then H
is Byzantine linearizable with respect to the Read/Append register.

Proof 22 Following the characterization of Proposition 2, we prove the four properties that imply
Byzantine linearizability.

Proof of the Validity property. Correct processes pi return log i on Line 7, which is composed
of logged values that have been written by pw according to Lemma 11.

Proof of the Read after Write property. Let us suppose pw is correct and completed its sth

append operation (of some value v) before a correct process pi starts reading. By Lemma 17,
aic(logw) holds on Line 3, with |logw| ≥ s. By Lemma 13, aic(logw) is still true when pi starts
its read, so by Lemma 19, logw is a prefix of the sequence returned by pi, of size at least s.

Proof of the Inclusion property. Let us consider two reads ri and rj, done by two processes pi
and pj, that return respectively li and lj. By Lemma 17, we have aic(li) (resp. aic(lj)) when pi
(resp. pj) executes Line 7, which implies the inclusion property by Lemma 15.

Proof of the Read after read property. Let ri and rj be two read operations done by correct
processes pi and pj, that return respectively li and lj, such that ri completes before rj starts. By
Lemmas 13, 17, and 19, aic(li) is verified when pi returns, then when pj starts its read, so li is a
prefix of lj.
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Lemma 23 (Liveness) If some correct process pi confirms a sequence of size s, all correct pro-
cesses eventually log a sth value.

Proof 24 Suppose some correct process pi confirms a sequence of size s, and some process pj never
writes a sequence of size s in logj. Since pj appends values one by one in logj, this means that
|logj | plateaus at a size s′ < s after some point in time. Without loss of generality, let us assume
that s′ is minimal, i.e. |logk| reaches at least s′ for all correct process pk. By Lemma 9 and the
condition on Line 17, when |log i| reaches s′ + 1, at least t+ 1 approved s′ + 1 values.

Since all correct processes pj repeatedly execute synch() thanks to Line 8, all processes eventu-
ally read v at least t+1 times in approve[s′] (and only v, by Lemma 7) and approve it (Line 15).
This eventually satisfies the condition on Line 17, and then the condition on Line 18. Hence, |logj |
reaches s′ + 1. A contradiction.

Lemma 25 (t-resilience) Algorithm 1 is t-resilient.

Proof 26 Termination of the append operation. Suppose a correct process pw invokes append (v)
to write its sth value, and let lw be logw on Line 1. By Lemma 17 aic(lw) holds at the beginning
of the execution. Hence, some correct process pi writes lw in confirm[i], and by Lemma 23, each
correct process pi eventually reach a state where |log i| = |lw|.

Since all correct processes repeatedly execute synch() thanks to Line 8, all processes eventually
read v in endorse[|lw|][w] (Line 9) and write it in endorse[|lw|][i] (Line 12). Since there are at
least n−t > 2n

3 > n+t
2 correct processes, eventually, all of them write v in approve[|lw|] (Line 15).

Since there are at least n − t > 2n
3 > 2t correct processes, eventually, each of them appends v at

the end of confirm (Line 17). Then, pw can read v in the end of confirm[j] (Line 11) for more
than 2t different j, and appends it to logw (Line 18) and terminates its while loop (Line 3).

Termination of the read operation. Suppose a correct process pi invokes read(), and let us
study its loop on Line 6. By Line 5, at least one correct pj process wrote a log containing at least
count i values in confirm[j]. By Lemma 23, pi eventually writes at least count i values in log i and
complete its read operation.

Theorem 27 (Correctness of Algorithm 1) Algorithm 1 implements a t-resilient linearizable
SWRM Read/Append register in the model BASMn,t[R/W, t < n

3 ].

Proof 28 By Lemma 21, Algorithm 1 is linearizable. By Lemma 25, Algorithm 1 is t-resilient.

4 From R/WI registers to R/A registers

This section shows that the hypothesis t < n
2 is necessary, and sufficient, to implement a R/A

register on top of R/WI registers. More precisely, Section 4.1 proves that any such reduction
algorithm has a resilience t < n

2 as an upper bound, and then Section 4.2 presents an algorithm
with an optimal resilience.

4.1 An upper bound on resilience

This section proves that for any implementation of a linearizable Read/Append register in a sys-
tem where processes communicating only through Read/Write-Increment registers, the maximal
resilience is at most t < n

2 .

Theorem 29 It is impossible to implement a linearizable Read/Append register in the model
BASMn,t[R/WI], when n ≥ 4 and t ≥ n

2 .

Proof 30 Similarly to Section 3.1, suppose there is an Algorithm A implementing a R/A register
from a collection of R/WI registers in a system made up of n ≥ 4 processes, from which t ≥ n

2
maybe Byzantine. We will prove, by contradiction, that A allows a run that is not linearizable.
Since n ≥ 4, processes can be divided into four non-empty subsets W , I, J and K, each having a
size not exceeding t

2 processes. Let us pick four processes pw ∈ W (the writing process), pi ∈ I,
pj ∈ J and pk ∈ K (three reading processes). We will consider the four situations represented in
Figure 4 and described thereafter.

S1: In this first scenario, all processes of the sets J are Byzantine whereas W , I and K consist
of correct processes. Processes of K are too slow to participate. Process pw appends a to x.
The write terminates because |J | ≤ t processes are Byzantine. Then pi reads x and obtains
[a] because x is linearizable. After that, the Byzantine processes in J will simulate the steps
they would have taken in a read of x by pj, if pw had appended b instead of a.
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pw

pi

pj

pk

append(a)

read()→ [a]

read()→ [b]

(a) Scenario S1: pj and pk are Byzantine, but cannot
prevent pi from reading [a]

pw

pi

pj

pk

append(b)

read()→ [a]

read()→ [b]

(b) Scenario S2: pi and pk are Byzantine, but cannot
prevent pj from reading [b]

pw

pi

pj

pk

append(a)

read()→ [a]

read()→ [b]

read()→ [a, ...]

(c) Scenario S3: pw and pj are Byzantine, but cannot
prevent pi and pj from reading [a, ...]

pw

pi

pj

pk

append(b)

read()→ [a]

read()→ [b]

read()→ [b, ...]

(d) Scenario S4: pw and pi are Byzantine, but cannot
prevent pj and pk from reading [b, ...]

Figure 4: Illustration of the scenarios from the proof of Theorem 29, with n = 4 and t = 2

S2: In the second scenario, the processes of I are byzantine while the others are correct. Processes
of K are still slow. Process pw appends b to x, then the Byzantine processes of I simulate
the steps they would take in a read of x by pi if the written value were a. Finally, the correct
process pj reads the contents of x and gets [b] as a result because x is linearizable.

For all R/WI registers x, let x.count1 (resp x.count2) the value of x.count1 at the end of S1 (resp.
S2). The two remaining scenarios are built as extensions of S1 and S2, except that processes of W
are Byzantine as well, although pw appends its value (a in S3 and b in S4) by following A properly.

S3: After pi and pj finish their read in S1, all processes p′w ∈ W follow the following strat-
egy to confuse correct processes. For all R/WI registers x on which p′w can write, and
such that x.count1 + x.count2 ̸= 0, p′w calls write-incr(⊥) on x until the value of x is
⟨⊥,max(x.count1, x.count2) + 1⟩.
Then, process pk reads the contents of x. Since the correct process pi already read [a], pk is
forced to return a sequence whose first value is a, because x is linearizable.

S4: Processes p′w ∈W continue S2 with the same strategy. For all R/WI registers x p′w can write
such that x.count1 + x.count2 ̸= 0, p′w calls write-incr(⊥) on x until the value of x is
⟨⊥,max(x.count1, x.count2) + 1⟩.
Then, process pk reads a sequence starting with b in x, because x is linearizable and the
correct process pj already read [b].

The contradiction comes from the fact that the scenarios S3 and S4 are indistinguishable to process
pk during its last read: all the registers that can be written by processes of W are in the same state
that exposes no relevant information, all processes of I pretend they have read a, and all processes
of J pretend they have read b. Therefore, it is impossible for pk to return a different value in S3

and S4, which means A cannot exist.

4.2 A resilience-optimal algorithm

Algorithm 2 presents an implementation of a R/A register in the model BASMn,t[R/WI, t < n
2 ].

The writing process is denoted by pw.

Shared memory and local variables The n processes share two variables called endorse
and counter, defined as follows.

• endorse[0...][1..n] plays the same role as in Algorithm 1: it is an infinite array of arrays of
n SWMR atomic R/WI registers such that, for any s ∈ N and i ∈ {1, ..., n}, endorse[s][i] is
initialized to ⟨⊥, 0⟩, can only be written by pi, and eventually contains pi’s opinion on what
the sth appended value is.

Each process pi is only supposed to write once in endorse[s][i], for each s. Hence, a Byzan-
tine process can erase a value that it has already written in endorse[s][i], but doing so
passes the count field to 2, which informs the other processes that it is faulty and its values
cannot be trusted.
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operation append(v) invoked by pw is
1 countw ← |logw|;
2 endorse[countw][w].write-incr(v);
3 counter.write-incr(⊥);
4 while |logw| ≤ countw do synch();

operation read() invoked by any pi is
5 count i ← counter.read().count;
6 do old i ← log i; synch(); while |log i| < count i ∧ old i ̸= log i;
7 return log i;

background task T () repeatedly executed by all pi is
8 synch()

procedure synch() invoked by any pi is
9 if counter.read().count ≤ |log i| then return;

10 for j from 1 to n do endorsei[j]← endorse[|log i|][j].read() ;
11 if endorsei[i].count = 0 ∧ endorsei[w].count = 1 then
12 endorse[|log i|][i].write-incr(endorsei[w].value)
13 if ∃v : |{j : endorsei[j] = ⟨v, 1⟩ ∨ endorsei[j].count > 1}| > t then
14 log i ← log i ⊕ v;

Algorithm 2: Implementation of a R/A register in the model BASMn,t[R/WI, t < n
2 ]

• counter is an SWMR atomic R/WI register, initialized to ⟨⊥, 0⟩ as well, and can only be
written by the writing process pw. Only the field count of counter is used to represent the
number of appended values, so pw only writes a dummy value ⊥ in it.

Besides these two shared variables, each process pi maintains four local variables:

• log i is a sequence that represents the current state of the shared R/A register seen by pi.

• old i is a local copy of log i, used to detect when the value of log i changes locally.

• count i is an integer that represents the number of appended values.

• endorsei[1..n] is an array of size n, that stores a local copy of endorse[|log i|] by pi.

Notations Let v be a value and s ∈ N. We say that a process pi endorses v as the (s+ 1)th

value (or simply endorses v when s is immaterial) if the first value pi writes in endorse[s][i] is
v. Similarly, we say that pi logs v as the (s + 1)th value (or simply logs v) when pi executes
log i ← log i ⊕ v in Line 18, with |log i| = s.

Description of the algorithm Similarly to Algorithm 1, Algorithm 2 implements a confir-
mation mechanism to ensure that a read value can never be lost. In order to write its (s + 1)th

value v, the writing process pw writes v in endorse[s][w] (Line 2), then increments the count field
of counter (Line 3) by calling write-incr(⊥), and then waits until it has logged at s values.
This happens eventually after enough correct processes have endorsed v as their (s+1)th value by
calling the procedure synch() (which they do regularly on Line 8).

When any process pi invokes synch(), it first checks whether a new value was appended by
comparing the count field of counter, to the length of its log i variable (Line 9), and it updates its
local copy of the shared variable endorse (Line 10). Then on Lines 11-12, pi endorses the value
endorsei[w].value as its (|log i|+ 1)th value if 1) it has not done so yet (i.e. endorsei[i].count = 1),
and 2) pw has endorsed this value and has not overwritten it (i.e. endorsei[w].count = 1).

Finally, pi logs v if enough correct processes have endorsed the same value v to ensure its
persistence (Lines 13-14). The condition for persistence, captured by the predicate aih(|log i|, v)
in Definition 31, is similar to the condition of Line 13, and has two important properties:

• It can only be true if v was endorsed by some correct process, hence if v was endorsed by the
writer itself. Therefore, only one value v can ever satisfy this property

• Once this property is true at the same process, it cannot be falsified at another process later.
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When any process pi reads the Read/Append register, it first sets its local variable count i
to the count field of counter, which indicates the number of written values if the writer is
correct, and a bound on the complexity of the operation otherwise. Then, it invokes synch()
repeatedly until either 1) it has read count i values, or 2) its value for log i does not change during
one iteration (which indicates that a Byzantine writer incremented counter without updating
endorse properly). Then, pi returns its local value for log i.

Definition 31 (Add In History) For all s ∈ N and all values v, let aih(s, v), be the predicate
aih1(s, v) ∧ aih2(s, v) defined as follows:

• aih1(s, v) ≜ counter.count > s,

• aih2(s, v) ≜ |{i : endorse[s][i] = ⟨v, 1⟩ ∨ endorse[s][i].count > 1}| > t.

4.3 Correctness of the Algorithm

We now prove the correctness of Algorithm 2.

Lemma 32 (Stability of aih) If the condition aih(s, v) is true at a given time for some pair
(s, v), it can never become false afterward.

Proof 33 Proof for aih1. counter.count cannot decrease by the definition of write-increment.
Proof for aih2. Let pi be a process such that endorse[s][i] = ⟨v, 1⟩ ∨ endorse[s][i].count > 1.

If pi does not overwrite endorse[s][i], endorse[s][i] keeps its value because it is a SWMR register,
and if pi writes in endorse[s][i] afterwards, it remains true that endorse[s][i].count > 1.

Lemma 34 (Safety of aih) Suppose the condition aih(s, v) is true at a given time for some pair
(s, v). Then at some point in the execution, endorse[s][w] = ⟨v, 1⟩.

Proof 35 For aih2(s) to be true, at least t + 1 processes pi must have written in endorse[s][i].
Among them, some process pj must be correct. If pj is the writer pw, then the write happened on
Line 2, and after that endorse[s][w] = ⟨v, 1⟩. Otherwise, the write happened on Line 12. By the
condition on Line 11, pj read ⟨v, 1⟩ in endorse[s][w] on Line 10, which concludes the proof.

Lemma 36 (Update of log i) Let us consider a call of synch() by any correct process pi, let s be
|log i| at the moment of the invocation, and let v be any value. Then:

• if aih(s, v) when pi invokes synch(), then pi appends v on Line 14;

• if pi appends v on Line 14, then aih(s, v) is true when pi returns from synch().

Proof 37 Suppose aih(s, v) when pi invokes synch(). Then pi does not return on Line 9 by
aih1(s, v), and aih2(s, v) is true when pi executed Line 10, so the condition on Line 13 is true.

Suppose pi appends v on Line 14. Then aih1(s, v) was true when pi executed Line 9, and
aih2(s, v) was true after Line 10. Hence, Lemma 32 concludes the proof.

Lemma 38 (Linearizability) Let H be a distributed history admitted by Algorithm 2. Then H
is Byzantine linearizable with respect to the Read/Append register.

Proof 39 Following the characterization of Proposition 2, we prove the four properties that imply
Byzantine linearizability.

Proof of the Validity property. Suppose the writing process pw is correct, let us consider the
sequence logi returned by the read of a correct process pi on Line 7, let s ∈ {1, ..., |log |}, and let
v = log [s − 1]. By Lemma 36, aih(s − 1, v) is true after pi appended v to log, so by Lemma 34,
endorse[s − 1][w] = ⟨v, 1⟩. Since pw is correct, pw executed Line 2 when it wrote v as its sth

value.
Proof of the Read after Write property. Let us suppose pw is correct and completed its sth write

(of some value v) before a correct process pi starts reading. By Line 4, the write can only stop
when |logw| = s, so by Lemma 36, aih(s − 1, v) is true at the end of the write. By Lemma 32,
aih(s − 1, v) is still true at the beginning of the read. By the same reasoning for previous writes
(that have been completed as well), aih(s′, ) is true for all s′ < s. By aih1(s−1, v), count i ≥ s−1
after Line 5, and by Lemma 36, some value is appended to log i each time synch() is called on
Line 6 when |log i| < s. Hence, |log i| ≥ s when Line 6 completes.
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Proof of the Inclusion property. The sequence returned by a correct process is the content of its
variable log i. By Lemmas 36 and 34, all processes update their log i value by appending the same
values in the same order.

Proof of the Read after read property. Let ri and rj be two read operations done by correct
processes pi and pj, that return respectively log i and logj, such that ri completes before rj starts. By
Lemma 36, aih(s′, ) is true for all s′ < |log i| at the end of ri. Hence, applying the same reasoning
as for the Read after write property, |logj | ≥ |log i|. Finally, the Inclusion property implies that
log i is a prefix of logj.

Lemma 40 (t-resilience) Algorithm 1 is t-resilient.

Proof 41 Termination of the append operation. Suppose a correct process pw invokes append(v)
to write its (s+1)th value. In particular, pw completed all previous writes, by Lemma 36, aih(s′, )
is true for all s′ < s, and aih1(s, v) is true by Line 3.

All correct processes repeatedly execute synch() thanks to Line 8, hence by Lemma 36 again,
for all correct processes pi, eventually |log i| = s− 1. The next time pi executes synch(), it reads v
in endorse[s − 1][w] (Line 10) and writes it in endorse[s − 1][i] (Line 12), which is enough to
satisfy aih2(s, v) and allow pw to complete its write.

Termination of the read operation. Suppose a correct process pi invokes read(). Since log i
can only be updated by appending values at its end (Line 14), at each iteration of the loop Line 6,
either log i remains unchanged which stops the loop, or the length of log i growths, until it reaches
count i which stops the loop as well.

Theorem 42 (Correctness of Algorithm 2) Algorithm 2 implements a t-resilient linearizable
SWRM R/A register in the model BASMn,t[R/WI, t < n

2 ].

Proof 43 This is a direct consequence of lemmas 38 and 40.

5 Conclusion

The goal of this paper is to investigate the relationships between three register specifications:
the Read/Write register, whose read operation returns the last written value, the Read/Write-
Increment register, whose read operation returns a pair composed of the last written value and
the total number of values written, and the Read/Append register, whose read operation returns
the sequence of all written values. We identified necessary and sufficient bounds on the number of
Byzantine failures that can be tolerated in algorithms that build one from another. More precisely,
a Read/Write-Increment register can be implemented on top of Read/Write registers if, and only if,
t < n

3 . Differently, a Read/Append register can be implemented on top of Read/Write-increment
registers at the condition that t < n

2 .
In order to prove that Read/Write-Increment registers can be implemented on top of Read/Write

registers when t < n
3 , Algorithm 1 actually provides an implementation of a Read/Append register.

This is correct for computability reasons because Read/Write-Increment registers can be trivially
obtained from Read/Append registers. However, this poses the question of the memory complexity
of such algorithms: it is expected that a Read/Append register needs to keep the entire sequence
of written values because of its specification, but is it possible to only keep track of the current
value and a sequence number in a Read/Write-Increment register implementation?
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plexity of robust atomic storage. In Proceedings of the 30th Annual ACM SIGACT-SIGOPS
Symposium on Principles of Distributed Computing, PODC ’11, page 59–68, New York, NY,
USA, 2011. Association for Computing Machinery. https://doi.org/10.1145/1993806.1993816
doi:10.1145/1993806.1993816.
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