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Abstract: Located in the southeastern region of Morocco, the Zagora area mainly relies on groundwa-
ter as a source of water supply. However, this groundwater is often of concern, due to the limited
recharge and unfavorable geological conditions for the development of the aquifer. Despite this,
private wells in the Zagora ditch reveal relatively rich water resources. Geochemical and isotopic
studies were conducted in the area to understand the origin of the groundwater and its salinity,
aiding in informed water management strategies to assist in better planning and regulation of well
construction, as well as in mitigating the impacts of high salinity on local water supply and agricul-
tural systems. The results show that the water quality varies, with some wells having conductivity
values in excess of 5 mS/cm. Most groundwater samples have high salinity and low pH due to the
CO2 dissolved in groundwater. Geochemical analysis indicated two chemical facies: chloride–sulfate
calcic/magnesic and bicarbonate calcic/magnesic. The presence of Na+ and Cl− indicated that
the origin of these two elements in these waters was the dissolution of halite, with some samples
showing an enrichment of Na+ compared to Cl−. This could be attributed to cation exchange. The
concentration of Ca2+ and HCO3

− suggested that their origin is the dissolution of calcite and the
weathering of calcium silicate minerals such as plagioclase. The isotopic analysis showed that the
δ18O values ranged from −10.98‰ to −8.54‰, and δ2H values ranged from −75.9‰ to −62.3‰.
This indicated that the groundwater originated from the High Atlas with a recharge altitude between
2600 m and 2800 m. The groundwater flows into the graben through fissures and regional fault
networks.

Keywords: hydrogeochemistry; salinity; groundwater; water rock interactions; minerals hydrolysis;
evaporite dissolution

1. Introduction

Access to clean and safe drinking water is a basic necessity for human survival but, un-
fortunately, it is not always available in many arid and semi-arid regions [1]. These regions
are particularly vulnerable to the variability induced by climate change [2–5], including
long periods of drought and the reduction and salinization of water resources [6,7]. An
example of a region that is facing challenges with their water resources in an arid climate is
southeastern Morocco [8–10]. Indeed, climatic models and current trends in rainfall predict
a significant decrease in precipitation in the region [11–13], placing enormous pressure on
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the already-scarce water resources. This situation is further exacerbated by the significant
increase in population and sustained economic growth.

The region of Zagora is known for its agricultural and mining potential, with an
abundance of mineralized veins (such as Cu, Ba and Pb) [14,15] and intensive agriculture,
such as watermelon farming [16,17]. However, despite the scarcity of water resources
in the region, agriculture and mining activities heavily rely on water availability, which
conflicts with the local population’s demands for drinking and irrigation water. As a result,
groundwater levels have severely dropped, and water quality has deteriorated [17,18]. The
hydrogeological context of the study area is poorly understood. Nevertheless, it has been
discovered through some recently drilled boreholes by private proprietors that ground-
water flows are abundant in the faults within the graben Zagora. These groundwaters
are characterized by high salinity and the presence of dissolved CO2. The origin of the
groundwater and its mineralization are still unknown.

Saline groundwater is present in several areas of Morocco. It has been associated with
marine sedimentary rocks and Triassic formations in central Morocco [8,19,20]. Recent
studies have shown that the composition of the Messinian formation in the northeastern
region of Morocco is a major contributor to groundwater salinity [21,22]. Similar problems
have been identified in other regions of Morocco, including the Souss–Massa plain [23],
Haouzia [24], and the eastern Haouz plain [25]. In arid regions, the main sources of
dissolved substances in groundwater are typically mineral weathering in the soil and the
surrounding geological structures [26–29].

This study aims to understand water resources in the graben of Zagora, focusing on
identifying the origin of the groundwater, its mineralization processes, and its recharge
mode, using geochemical and isotopic tools in conjunction with local geological and
structural aspects.

2. Geological Framework

The Zagora graben is located in the eastern Anti-Atlas (Figure 1). It is oriented NE–SW,
with a length of about 120 km from Zagora to rich Merzoug localities.
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The eastern Anti-Atlas comprises a Precambrian basement and a Paleozoic cover,
giving rise to two inliers known as Saghro and Ougnat. These inliers are geographically
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separated from the High Atlas by Cretaceous basins. The surrounding areas of the Saghro-
Ougnat axis have thick sedimentary layers of Paleozoic age that extend over 4–5 km,
forming the Maider and Tafilalet basins on the eastern and southern sides, respectively.

The tectonic history of the eastern Anti-Atlas is characterized by two major events
that resulted in oriented structures trending in the Anti-Atlasic E–W and Ougartien NW–
SE directions. These events affected the Tazzarine, Maider, and Tafilalet basins. During
the Variscan orogeny, the Precambrian basement experienced a compression resulting
in the folding of the overlying Paleozoic cover. The Adoudounian event resulted in
disharmony, leading to the formation of a plastic layer that facilitated detachment folds.
Subsequently, the Alpine orogeny led to sporadic refolding of the folds. Similar to the
High Atlas, the Anti-Atlas foreland belt experienced uplift due to the N–S-trending Alpine
compression [14,15,30]. The Paleozoic sedimentary layers were formed in a trifling depth
basin and consist of Lower Cambrian shales and conglomerates, followed by alternating
shales and sandstone from the Middle Cambrian, Ordovician, and Silurian periods. This
uniform sequence of terrestrial deposits is covered by a Devonian carbonate platform
that includes a carboniferous layer of eroded material. These layers were subjected to
stretching during the Middle Devonian to the Upper Devonian era, according to [14],
and later deformed by Variscan compression. This compression was primarily directed
northeast to southwest and indicates the reactivation of normal faults [31].

The study area is located in the western region of the Maider basin, situated southeast
of Jbel Saghro. It falls within the Maider and Tafilalet mineral-rich regions, consisting of
Lower and Upper Paleozoic strata. The Paleozoic layers are mostly level, but they have
been disrupted by numerous faults and are characterized by extensive folded structures
situated along fault lines. Additionally, the terrain has been intruded upon by a series of
basic dikes, which are oriented in three distinct directions: E–W, NE–SW, and NW–SE [15].

2.1. Field Investigations and Synthetic Map Analysis

Field mapping in the area of the Zagora graben has highlighted a precise structural
map. This map shows two major structural directions (Figure 1):

• The E–W system, developed exclusively in the northeastern part of the study area.
This system of fractures affects mainly the sandstone and the pyelitic facies of the
second Jbel Bani.

• The NE–SW system, which is remarkably pronounced within the graben of Zagora.
These fractures are characterized with a thickness ranging from 0.5 m to 2 m and are
usually filled with quartz-carbonates and, occasionally, with iron oxides.

Field findings showed that the study area is mainly affected by 70◦ N to 115◦ N striking
faults. Dipping at 45◦ to 72◦ southwards, these faults show a dextral strike–slip movement.
The relative chronology of these two families of fracture confirms that the NE–SW-trending
fractures appeared to be the most recent, as they intersected the longest and oldest E–W
fractures.

2.2. Litho-Structural Mapping

Fieldwork enabled the identification of lithological units, including the second Bani
sandstones and the pelitic facies in the southeastern part of the Zagora graben and the
Lower Devonian marly limestones and sandstones and the Upper Visean shales in the
northeastern of the study area; the black pyritic black schist and the gray pelitic rocks of a
Silurian age are exposed in the northwestern and northeastern parts of the area. Doleritic
dykes of the Jurassic age, located in the northeastern part of the area, are oriented E–W
and are more than 250 m long and about 6 m thick. They are hosted in the second J. Bani
sandstones. Examination of samples showed that these dykes are characterized by the
presence of centimetric enclaves with quartz filling, feldspars, and calcite with a micro-
grained texture. A dissemination of pyrite is very abundant in these dolerites, with traces
of chalcopyrite. These doleritic dykes show an advanced alteration materialized by a total
sericitization of the plagioclases and a chloritization of the biotite; the clinopyroxenes are
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totally transformed to clinochlore and sericite minerals, which are easily identifiable by the
naked eye. However, the E–W-oriented structures contain lenticular-type veins that reach
about 5 km in length, with dips ranging from 43◦ to 72◦ to the south and north-northwest
(Figure 1). These major faults generally have a vertical throw of up to more than 250 m in
depth, as shown in (Figure 2), locally placing Ordovician sandstones from the second Bani
formation, which is overlain by the pelitic facies. These faults host, generally, copper and
lead ore in a barite and quarzo–carbonate gangue with a lenticular form.
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3. Materials and Methods

Hydrogeochemical and isotopic methods are commonly utilized by hydrogeologists to
gain insights into the recharge sources and the relationships between different components
of an aquifer system. For this study, 17 groundwater samples were collected using an
SP16 water sampler and their physico–chemical parameters, such as pH, conductivity,
and temperature, were measured in the field using an HI98494 Multiparamètre portatif
pH/EC/LDO (Figure 3). The cation and trace element analyses were conducted using an
ICP-MS Thermo Scientific Neoma Multicollector ICP-MS, while an ion chromatography
Dionex Integrion HPIC was utilized for anions. To ensure the accuracy of the results, the
samples were analyzed twice, and the values were cross-checked against the standards.
The geochemical data were then converted into their equivalent or milli equivalence units
to facilitate interpretation. To calculate the charge balance error, the difference between
the sum of major cations (Σ cation) and anions (Σ anions) was determined and divided by
the sum of all major ions. The acceptable percentage of error for water analysis typically
ranges from ±1% to ±10%. Table 1 presents the results of the groundwater analysis.

The stable isotope composition of water was analyzed using a Finnigan Delta+ mass
spectrometer coupled with a Finnigan equilibration unit (CO2, H2) to determine the online
O and H isotopic composition. The results were reported in d-notation, which represents
the per mil deviation of the measured isotopic ratio relative to the Vienna Standard Mean
Ocean Water (V-SMOW) international standard. The uncertainty for δ18O was better than
0.2%, while the uncertainty for δ2H was better than 2%.

Table 1. Physicochemical parameters and chemical analysis of groundwater.

Name EC (µS/cm) pH T ◦C Ca2+

(mg/L)
K+

(mg/L)
Mg2+

(mg/L)
Na+

(mg/L)
NO3−

(mg/L)
Cl−

(mg/L)
SO42−

(mg/L)
HCO3−

(mg/L)

BH1 3270 5.70 27 318 25 166 361 0 490 469 869
BH2 3420 5.84 26 343 27 176 406 3 536 616 933
BH3 1799 6.10 25 152 13 106 266 10 213 341 475
BH4 1118 6.68 26 112 8 79 166 18 131 175 403
BH5 2710 5.74 27 299 25 156 265 0 346 447 869
BH6 2850 6.76 26 317 32 157 283 0 357 214 1575
BH7 2470 5.86 26 239 22 135 266 0 367 296 1029
BH8 2970 6.26 25 258 24 155 335 0 452 375 869
BH9 2490 5.83 27 240 21 145 276 0 367 314 925

BH10 2430 5.83 27 249 22 148 261 0 329 315 981
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Table 1. Cont.

Name EC (µS/cm) pH T ◦C Ca2+

(mg/L)
K+

(mg/L)
Mg2+

(mg/L)
Na+

(mg/L)
NO3−

(mg/L)
Cl−

(mg/L)
SO42−

(mg/L)
HCO3−

(mg/L)

BH11 5660 6.68 25 260 51 279 852 45 1171 897 997
BH12 2600 5.98 27 273 20 166 254 0 378 150 1037
BH13 1071 6.18 26 157 11 83 128 0 104 164 451
BH14 3720 5.92 27 326 25 207 485 1 431 779 1126
BH15 2630 6.08 26 251 24 177 263 6 354 260 992
BH16 2750 5.98 26 262 25 184 286 8 389 366 932
BH17 2840 6.09 26 298 26 182 309 0 266 185 1511
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4. Results and Discussion
4.1. Hydrochemical Facies

The hydrochemical facies refer to distinct groundwater bodies within an aquifer that
vary in their geochemical properties [32]. This variation is influenced by several factors,
such as how quickly substances dissolve in water, the interaction between rocks and water,
the geological conditions affecting water movement, and the sources of contamination. A
commonly utilized tool in the investigation of groundwater quality and its geochemical
features is the Piper diagram [19,33]. This graphical representation is renowned for its
effectiveness in aiding the understanding of the characteristics of groundwater.

The Piper diagram shown in Figure 4 displays two chemical facies, chloride–sulfate
calcic/magnesic and bicarbonate calcic/magnesic, with a tendency toward both chloride
and bicarbonates in the anions subtriangle and a tendency toward sodium potassium in
the cations subtriangle.
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4.2. Principal Component Analysis

A principal component analysis was performed using nine parameters: conductivity,
pH, Cl−, Mg2+, Ca2+, Na+, SO4

2−, K+, and HCO3
− [34,35]. The results (Figure 5a) showed

that the first two axes, F1 and F2, explained 80.94% of the overall variance in the water
samples. The first axis accounted for 57.17%, while the second axis explained 23.79%. The
first axis (F1) is predominantly characterized by seven parameters that exhibited a strong
positive correlation, including conductivity, Cl−, Mg2+, Na+, SO4

2−, and K+. Furthermore,
this axis showed an increasing value gradient of these parameters from the left side to the
right side. On the other hand, the second axis (F2) was characterized by a positive loading
of pH and NO3

− and a negative loading for Ca2+, HCO3
−. Figure 4 also shows a strong

correlation between Ca2+ and HCO3
−.

The factorial diagram F1 – F2 (Figure 5b), which plots the individuals in the dataset,
displays a degree of variation in the water samples. However, the analysis was able to iden-
tify two main groups within the dataset despite this dispersion: The first group consisted
of less mineralized waters, with an average electric conductivity of 1330 µS/cm, while
the second group comprised saline groundwater, with an average electric conductivity
of 2850 µS/cm. This indicated that even though the dataset was spread out, there were
still clear patterns and clusters within it that could be identified through analysis. It is
worth mentioning that two water samples, BH8 and BH11, exhibited distinctive features
that differed from the two previously identified groups. BH8 displayed intermediary
characteristics between the two groups, whereas BH11 stood out completely, due to its
remarkably high salinity level and conductivity, exceeding 5 mS/cm.
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4.3. Groundwater Hydrochemistry and Mineralization Processes

The spatial variability of water temperature and pH was limited, with temperatures
consistently ranging between 25 ◦C and 27 ◦C, and pH values showing a narrow range of
5.9 to 6.96. It should be noted that the pH levels are on the acidic side, with a minimum
value of 5.9. The electrical conductivity (EC) of water is a useful parameter to assess its
mineralization level [33,36]. In this study, the measured EC values ranged from 1071 µS/cm
to 5660 µS/cm, with an average of 2753 µS/cm ± 0.4 µS/cm. These values indicated a
significant variation in water chemistry, with the lowest value recorded in Borehole 14 and
the highest value recorded in Borehole 11. As shown in the boxplot (Figure 6), sodium and
calcium were the dominant cations in the water, with concentrations ranging from 128 to
852 mg/L and 112 to 343 mg/L, respectively. Magnesium concentrations varied from 79
to 279 mg/L, while potassium concentrations were generally low, ranging from 8 to 51
mg/L. The most prevalent anions in the water were bicarbonate, chloride, and sulfate, with
concentrations ranging from 403 to 1511 mg/L, 104 to 1277 mg/L, and 150 to 897 mg/L,
respectively. Some samples from areas near small farms showed relatively high nitrate
concentrations, possibly due to the use of fertilizers.
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A useful way to determine the source of groundwater mineralization is examining the
relationship between chemical concentrations and conductivity [37,38]. The depictions of
water samples (Figure 7) demonstrate a strong positive correlation between conductivity
and major ions other than HCO3

− and SO4
2−. This supports the fact that the salinity of

groundwater is largely influenced by the dissolution of minerals containing Ca2+, Mg2+,
Na+, Cl−, and K+.

Water 2023, 15, 2172 9 of 16 
 

 

 
Figure 7. Conductivity (µS/cm) versus major elements concentrations (mg/L) of groundwater. 

The concentration of Na+ and Cl− (Figure 8) shows that most of the groundwater sam-
ples were projected, more or less, on the 1:1 slope line, indicating that the origin of these 
two elements in these waters was the dissolution of halite. However, four samples were 

Figure 7. Conductivity (µS/cm) versus major elements concentrations (mg/L) of groundwater.

Water–rock interactions are a crucial factor in understanding the changes in ground-
water quality and can aid in determining the origin of groundwater [39,40]. To analyze the



Water 2023, 15, 2172 9 of 15

concentration and interrelationship of various major elements, the ratio of groundwater
components is frequently employed. This technique facilitates the illustration and compre-
hension of hydrogeochemical processes and the chemical composition’s genesis [41–43].
During the process of water–rock interactions, there is a transfer of rock materials into
groundwater, which results in the partial loss of soluble ions and introduces new elements
into the groundwater.

The concentration of Na+ and Cl− (Figure 8) shows that most of the groundwater
samples were projected, more or less, on the 1:1 slope line, indicating that the origin of these
two elements in these waters was the dissolution of halite. However, four samples were
located below this line, indicating an enrichment in Na+ compared to Cl−. This enrichment
could be attributed to cation exchange and the alteration of aluminosilicates [44].
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The plot of Ca2+ versus HCO3
− (Figure 9) displays three main groups, indicating

that both elements are influenced by various processes. The first group exhibits samples
projected on or close to the 1:1 line, suggesting that the origin of Ca2+ and HCO3

− in
these groundwater samples is the dissolution of calcite. The second group consists of
samples displaying an excess of Ca2+ compared to HCO3

−, which could be attributed to
the weathering of calcium silicate minerals such as plagioclase [45].

Conversely, the third group is characterized by an excess of HCO3
− compared to Ca2+.

This excess may be the result of feldspar weathering, where water and carbon dioxide react
with feldspar to produce dissolved silica, potassium ions, and bicarbonate ions [32,45].

When the ratio of (Ca2+ + Mg2+) to (HCO3
− + SO4

2−) is close to 1:1, the dissolution of
calcite, dolomite, and gypsum are the dominant reactions in the system. However, if the
plot of (Ca2+ + Mg2+) versus (HCO3

− + SO4
2−) falls above the 1:1 line, this indicates that

the other phenomenon and reactions are happening, such as silicate minerals weathering
or a reverse cation exchange [46]. In this case, as can be observed in Figure 10, most of the
water samples fall below the 1:1 line. This confirm that the dissolution of calcite, dolomite,
and gypsum is not the only source of Ca2+, Mg2+, SO4

2−, and HCO3
− in the groundwater.

Weathering of aluminosilicate minerals and cation exchange are also significant factors
contributing to the concentrations of these ions. Figure 10 also shows the differentiation of
groundwater into three groups, based on varying degrees of mineralization. This could be
attributed to the fact that groundwater follows different flow paths because of the fractured
nature of the aquifer and, as a result, it may not undergo mineralization in the same way,
even if it experiences the same phenomena overall.



Water 2023, 15, 2172 10 of 15

Water 2023, 15, 2172 10 of 16 
 

 

located below this line, indicating an enrichment in Na+ compared to Cl−. This enrichment 
could be attributed to cation exchange and the alteration of aluminosilicates [44]. 

 
Figure 8. Plot of sodium versus chloride of groundwater samples from the graben. 

The plot of Ca2+ versus HCO3− (Figure 9) displays three main groups, indicating that 
both elements are influenced by various processes. The first group exhibits samples pro-
jected on or close to the 1:1 line, suggesting that the origin of Ca2+ and HCO3− in these 
groundwater samples is the dissolution of calcite. The second group consists of samples 
displaying an excess of Ca2+ compared to HCO3−, which could be attributed to the weath-
ering of calcium silicate minerals such as plagioclase [45]. 

Conversely, the third group is characterized by an excess of HCO3− compared to Ca2+. 
This excess may be the result of feldspar weathering, where water and carbon dioxide 
react with feldspar to produce dissolved silica, potassium ions, and bicarbonate ions 
[32,45]. 

 
Figure 9. Plot of calcium versus bicarbonate of groundwater samples from the graben. Figure 9. Plot of calcium versus bicarbonate of groundwater samples from the graben.

Water 2023, 15, 2172 11 of 16 
 

 

When the ratio of (Ca2+ + Mg2+) to (HCO3− + SO42−) is close to 1:1, the dissolution of 
calcite, dolomite, and gypsum are the dominant reactions in the system. However, if the 
plot of (Ca2+ + Mg2+) versus (HCO3− + SO42−) falls above the 1:1 line, this indicates that the 
other phenomenon and reactions are happening, such as silicate minerals weathering or 
a reverse cation exchange [46]. In this case, as can be observed in Figure 10, most of the 
water samples fall below the 1:1 line. This confirm that the dissolution of calcite, dolomite, 
and gypsum is not the only source of Ca2+, Mg2+, SO42−, and HCO3− in the groundwater. 
Weathering of aluminosilicate minerals and cation exchange are also significant factors 
contributing to the concentrations of these ions. Figure 10 also shows the differentiation 
of groundwater into three groups, based on varying degrees of mineralization. This could 
be attributed to the fact that groundwater follows different flow paths because of the frac-
tured nature of the aquifer and, as a result, it may not undergo mineralization in the same 
way, even if it experiences the same phenomena overall. 

The primary process of altering primary minerals is through silicate hydrolysis. The 
mineralogical composition of rocks has a greater impact on water/rock interactions than 
their chemical composition. The aggressiveness of CO2-rich water plays a significant role 
in these interactions [47–49]. The presence of dissolved CO2 in groundwater from deep 
aquifers allows it to alter aluminosilicate minerals present in the aquifer rocks. The reac-
tions between water and silicate rocks can be expressed by the following reactions: 

Plagioclase weathering: 

CaAl2Si2O8 + 2H2O + CO2 → Ca2+ + 2HCO3− + Al2Si2O5(OH)4 (1)

Feldspar weathering: 

KAlSi3O8 + 4H2O + 6CO2 → H4SiO4 + 2K+ + 4HCO3− + Al2Si2O5(OH)4 (2)

Albite weathering: 
NaAlSi3O8 + 2CO2 + 3H2O → Na+ + 2HCO3− + 2SiO2 + Al2Si2O5(OH)4 (3)

Amphibole hydrolysis: 

Ca2Mg5Si8O22(OH)2 + 12H2O + 6CO2 → 2Ca2+ + 5Mg2+ + 8Si(OH)4 + 6HCO3− (4) 

Biotite hydrolysis: 
K(Mg,Fe)3(AlSi3O10)(OH)2 + 14H2O + 4CO2 → K+ + 3Mg2+ + Fe2+ +3Al(OH)3 + 3Si(OH)4 + 4HCO3− (5)

 
Figure 10. Plot of (Ca2+ + Mg2+) versus (HCO3− + SO42−) of groundwater samples. Figure 10. Plot of (Ca2+ + Mg2+) versus (HCO3

− + SO4
2−) of groundwater samples.

The primary process of altering primary minerals is through silicate hydrolysis. The
mineralogical composition of rocks has a greater impact on water/rock interactions than
their chemical composition. The aggressiveness of CO2-rich water plays a significant
role in these interactions [47–49]. The presence of dissolved CO2 in groundwater from
deep aquifers allows it to alter aluminosilicate minerals present in the aquifer rocks. The
reactions between water and silicate rocks can be expressed by the following reactions:

Plagioclase weathering:

CaAl2Si2O8 + 2H2O + CO2 → Ca2+ + 2HCO3
− + Al2Si2O5(OH)4 (1)

Feldspar weathering:

KAlSi3O8 + 4H2O + 6CO2 → H4SiO4 + 2K+ + 4HCO3
− + Al2Si2O5(OH)4 (2)
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Albite weathering:

NaAlSi3O8 + 2CO2 + 3H2O→ Na+ + 2HCO3
− + 2SiO2 + Al2Si2O5(OH)4 (3)

Amphibole hydrolysis:

Ca2Mg5Si8O22(OH)2 + 12H2O + 6CO2 → 2Ca2+ + 5Mg2+ + 8Si(OH)4 + 6HCO3
− (4)

Biotite hydrolysis:

K(Mg,Fe)3(AlSi3O10)(OH)2 + 14H2O + 4CO2 → K+ + 3Mg2+ + Fe2+ +3Al(OH)3 + 3Si(OH)4 + 4HCO3
− (5)

As the silicate alteration reaction progresse, the composition of the groundwater
changes, leading to an increase in cation HCO3

− content. This suggests that changes in
major cation abundance may be partly attributed to the alteration of aluminosilicates, as
indicated by the equations above. The concentration of bicarbonate in groundwater can be
used to determine the extent of alteration that has occurred. Chemical analyses indicated
that water-rock interaction plays a crucial role in this process, as demonstrated by the
high levels of HCO3

− present in the groundwater. Additionally, the acidic nature of the
groundwater from this aquifer provides further support for the significance of water–rock
interaction.

4.4. Isotopic Analysis and Origin of Groundwater

Isotopic compositions of groundwater and surface water, particularly δ18O and δ2H,
are commonly employed to investigate hydrogeological processes, such as groundwater
recharge, interactions between surface water and groundwater, and hydrological basin
modeling, by considering precipitation as an isotopic input The conventional method for
isotopic characterization entails comparing the acquired isotope values with the global
meteoric water line (GMWL), characterized by the mean annual isotopic composition of
precipitation across various global regions, and the local meteoric water line (LMWL).

Table 2 presents stable isotope ratios (δ18O and δ2H) of groundwater samples collected
from the 17 different boreholes (BH1 to BH17). The isotopic ratios are expressed in delta
notation (δ) in per mil (‰) relative to the V-SMOW for oxygen and hydrogen isotopes. The
δ18O values ranged from −10.98‰ (BH8) to −8.54‰ (BH11) and the δ2H values ranged
from −75.9‰ (BH8) to −62.3‰ (BH11). This indicated that there is some variation in the
isotopic composition of the groundwater between different boreholes, suggesting possible
differences in recharge sources or hydrological processes. BH1, BH5, BH11, and BH14
had relatively higher δ18O and δ2H values than other boreholes, suggesting a potential
commonality in their recharge sources or processes. Boreholes with lower δ18O and δ2H
values, such as BH7, BH8, and BH17, may indicate recharge from higher elevations or
colder temperatures, as lower isotope values are associated with such conditions.

To better interpret the data and understand the origin of the groundwater, it was
helpful to create a scatter plot of δ18O versus δ2H and compare it with the local meteoric
water line (LMWL) of the study area. Figure 11 illustrates that some water points align with
the local meteoric line corresponding to the High Atlas [50]. However, most of the points
are projected to the right of this line. These points display a relatively strong correlation
(R2 = 0.87) and form a line indicating an enrichment in heavy isotopes due to evaporation.
The evaporation line has the following equation: δ2H = 5.6 δ18O − 14.2% SMOW. Some
water points are significantly shifted to the right and end up outside the evaporation line.
This shift could be explained by a slight water/rock geothermal exchange at depth and
high temperature.
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Table 2. δ18O and δ2H of groundwater samples.

Name δ18O ‰ δ2H ‰

BH1 −9.5 −66.7
BH2 −9.65 −68.6
BH3 −9.63 −68.8
BH4 −9.62 −68.5
BH5 −8.77 −62.8
BH6 −10.14 −69.5
BH7 −10.53 −75.35
BH8 −10.98 −75.9
BH9 −9.8 −73.5

BH10 −10.2 −71.6
BH11 −8.54 −62.3
BH12 −9.2 −64
BH13 −10.63 −73.5
BH14 −10.5 −72.1
BH15 −9.86 −69
BH16 −9.07 −67.1
BH17 −10.48 −73.1
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The recharge altitudes were determined using the local altitude gradient equation
(18O ‰ = −0.0039 × Altitude + 2.2), as calculated by [50]. This method relies solely on
the 18O content of water samples that align with the meteoric water line of the High Atlas,
considering that the original 18O content of other water samples may have been altered
due to evaporation or geothermal exchange. The altitude of recharge was calculated only
for samples from the High Atlas Meteoric Water Line, as it was assumed that they kept
their original isotopic signature. The samples were from boreholes BH6, BH8, BH14, and
BH13. The results of the calculations, presented in Table 3, indicated that the altitude of
recharge ranges between 2600 m and 2800 m.

Table 3. Altitude of recharge of groundwater.

Name δ18O ‰ Altitude of Recharge

BH6 −10.14 2598
BH8 −10.98 2813

BH13 −10.63 2723
BH14 −10.52 2695
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5. Conclusions

In summary, the Zagora region, located in southeastern Morocco, relies heavily on
groundwater as its primary water supply. However, the limited aquifer recharge capacity
and the challenging geological conditions make sustainable water management a complex
task. Interestingly, private wells in the Zagora ditch evidence an abundance of water
resources, despite these issues. To shed light on the origins of the groundwater and its salin-
ity, comprehensive geochemical and isotopic studies were conducted in the region. This
crucial information assists in formulating robust water management strategies, which are
instrumental for improved well-construction planning and regulation and the alleviation
of high salinity’s impacts on the local water supply and agriculture systems. Our findings
indicated a varying water quality, with certain wells demonstrating conductivity values
beyond 5 mS/cm. The majority of groundwater samples exhibited high salinity and low
pH, which were attributed to the dissolved CO2. Geochemical evaluation uncovered two
chemical facies: chloride–sulfate calcic/magnesic and bicarbonate calcic/magnesic. We
observed that the presence of Na+ and Cl− likely resulted from the dissolution of halite. In
some samples, an overrepresentation of Na+ compared to Cl− was found, which was possi-
bly due to cation exchange. Furthermore, the concentration of Ca2+ and HCO3

− hinted that
their origin may be the dissolution of calcite and the weathering of calcium silicate minerals,
such as plagioclase. Isotopic analysis revealed that the groundwater originated from the
High Atlas, with a recharge altitude between 2600 m and 2800 m. This groundwater then
infiltrates the graben through fissures and regional fault networks. Overall, these findings
offer valuable insights into the groundwater dynamics in the Zagora region and underscore
the importance of sustainable management practices for its conservation.
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