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Non-Gaussian Harmonizable Fractional Stable Motion (HFSM) is a natural and important extension of the well-known Fractional Brownian Motion to the framework of heavytailed stable distributions. It was introduced several decades ago; however its properties are far from being completely understood. In our present paper we determine the optimal power of the logarithmic factor in a uniform modulus of continuity for HFSM, which solves an open old problem. The keystone of our strategy consists in Abel transforms of the LePage series expansions of the random coefficients of the wavelets series representation of HFSM. Our methodology can be extended to more general harmonizable stable processes and fields.

Introduction and statements of the main results

For any given constants α ∈ (0, 2] and H ∈ (0, 1), the Harmonizable Fractional Stable Motion (HFSM) is the continuous real-valued symmetric α-stable (SαS) stochastic process {X(t), t ∈ 1 R} defined as

X(t) := Re R e itξ -1 |ξ| H+1/α d M α (ξ) , (1.1) 
where M α is a complex-valued rotationally invariant α-stable random measure with Lebesgue control measure. When α = 2, {X(t), t ∈ R} is a Fractional Brownian Motion, usually denoted by {B H (t), t ∈ R}, whose sample path regularity and many other properties have been extensively studied in the literature. When 0 < α < 2, {X(t), t ∈ R} is one of the most important non-Gaussian self-similar SαS processes with stationary increments; we refer to the well-known book of Samorodnitsky and Taqqu [START_REF] Samorodnitsky | Stable Non-Gaussian Processes: Stochastic Models with Infinite Variance[END_REF] for a systemic account on these processes and many topics related with stable distributions. Non-Gaussian HFSM was introduced about 35 years ago by Cambanis and Maejima in [START_REF] Cambanis | Two classes of self-similar stable processes with stationary increments[END_REF]; however, its properties are far from being completely understood. Generally speaking, study of this process has been difficult for various reasons: lack of ergodicity, lack of finite second moment, and so on. Sample path behavior of HFSM such as the uniform modulus of continuity on a compact interval has been studied by Kôno and Maejima [START_REF] Kôno | Hölder continuity of sample paths of some self-similar stable processes[END_REF], Xiao [START_REF] Xiao | On uniform modulus of continuity of random fields[END_REF], Boutard [START_REF] Boutard | Analyse par ondelettes de champs aléatoires stables à accroissements stationnaires[END_REF], Ayache and Boutard [START_REF] Ayache | Stationary increments harmonizable stable fields: upper estimates on path behaviour[END_REF], Panigrahi et al [START_REF] Panigrahi | Maximal moments and uniform modulus of continuity of stable random fields[END_REF], by using the LePage series representation, modified chaining argument, and wavelet methods, respectively. More specifically, in their pioneering article [START_REF] Kôno | Hölder continuity of sample paths of some self-similar stable processes[END_REF], Kôno and Maejima applied a LePage series representation for the process {X(t), t ∈ R} to show that for any given numbers H ∈ (0, 1), α ∈ (0, 2), ρ > 0, and arbitrarily small δ > 0, almost surely sup

-ρ≤t <t ≤ ρ X(t ) -X(t ) t -t H log(1 + |t -t | -1 ) 1/α+1/2+δ < +∞. (1.2) 
In his quite recent PhD thesis [START_REF] Boutard | Analyse par ondelettes de champs aléatoires stables à accroissements stationnaires[END_REF], Boutard mainly established directional regularity and irregularity results on general (anisotropic) harmonizable stable random fields with stationary increments. In particular, Theorem 5.2.1 in [START_REF] Boutard | Analyse par ondelettes de champs aléatoires stables à accroissements stationnaires[END_REF] proves the following partial inverse to (1.2): for any given numbers H ∈ (0, 1), α ∈ (0, 2), u < v, and arbitrarily small δ > 0, almost surely sup u≤t <t ≤v X(t ) -X(t )

t -t H log(1 + |t -t | -1 ) 1/α-δ = +∞. (1.3)
It is a natural question to wonder whether or not the power of the logarithmic factor in the uniform modulus of continuity (1.2) is optimal. One is tempted to believe that it is not optimal, since in the Gaussian case α = 2 it is known for a long time that the optimal power for this factor is 1/2 and not 1. Yet, when α ∈ (0, 2), the question has remained open for many years. In the case α ∈ (0, 1), a negative answer to it has been given in [START_REF] Ayache | Stationary increments harmonizable stable fields: upper estimates on path behaviour[END_REF] and [START_REF] Boutard | Analyse par ondelettes de champs aléatoires stables à accroissements stationnaires[END_REF]. Indeed, [START_REF] Ayache | Stationary increments harmonizable stable fields: upper estimates on path behaviour[END_REF]Theorem 3.8] or [START_REF] Boutard | Analyse par ondelettes de champs aléatoires stables à accroissements stationnaires[END_REF]Theorem 4.1.2] for general harmonizable stable random fields with stationary increments implies the following:

Theorem 1.1 ( [START_REF] Ayache | Stationary increments harmonizable stable fields: upper estimates on path behaviour[END_REF][START_REF] Boutard | Analyse par ondelettes de champs aléatoires stables à accroissements stationnaires[END_REF]) If H ∈ (0, 1) and α ∈ (0, 1), then for any positive numbers ρ and δ, almost surely

sup -ρ≤t <t ≤ ρ X(t ) -X(t ) t -t H log(1 + |t -t | -1 ) 1/α+δ < +∞. (1.4)
The proof of this result in [START_REF] Ayache | Stationary increments harmonizable stable fields: upper estimates on path behaviour[END_REF] and [START_REF] Boutard | Analyse par ondelettes de champs aléatoires stables à accroissements stationnaires[END_REF] makes an essential use of a random wavelet series representation for harmonizable stable fields with stationary increments (see for instance Section 2 in [START_REF] Ayache | Stationary increments harmonizable stable fields: upper estimates on path behaviour[END_REF]). In the particular case of the HFSM {X(t), t ∈ R} this representation can be expressed, for all H ∈ (0, 1) and α ∈ (0, 2], as

X(t) = (j,k)∈Z 2 2 -jH Re ε α,j,k Ψ α,H (2 j t -k) -Ψ α,H (-k) .
(1.5)

In the above, for every (j, k) ∈ Z 2 , ε α,j,k is a complex-valued α-stable random variable defined as

ε α,j,k := R 2 -j/α e ik2 -j ξ ψ(-2 -j ξ) d M α (ξ), (1.6) 
and Ψ α,H is the deterministic real-valued function in the Schwartz class S(R) defined as

Ψ α,H (y) := R e iyξ ψ(ξ) |ξ| H+1/α dξ, for all y ∈ R, (1.7) 
where, ψ is the Fourier transform of a real-valued univariate Meyer mother wavelet (see e.g. [START_REF] Lemarié | Ondelettes et bases hilbertiennes[END_REF][START_REF] Meyer | Wavelets and Operators[END_REF][START_REF] Daubechies | Ten Lectures on Wavelets[END_REF]). Recall that ψ and ψ belong to S(R) and that ψ is compactly supported with support satisfying

supp ψ ⊆ R 0 := ξ ∈ R : 2π 3 ≤ |ξ| ≤ 8π 3 . (1.8)
Notice that the random series in (1.5) is almost surely absolutely convergent for each fixed t ∈ R (see Proposition 2.10 in [START_REF] Ayache | Stationary increments harmonizable stable fields: upper estimates on path behaviour[END_REF]), and that it is almost surely uniformly convergent in t on each compact interval (see (2.53) and Propositions 2.15, 2.16 and 2.17 in [START_REF] Ayache | Stationary increments harmonizable stable fields: upper estimates on path behaviour[END_REF], see also Theorem 2.7 in [START_REF] Ayache | Wavelet series representation and geometric properties of harmonizable fractional stable sheets[END_REF]). We mention in passing that [START_REF] Ayache | Wavelet series representation and geometric properties of harmonizable fractional stable sheets[END_REF] has extended the representation (1.5) to the Harmonizable Fractional Stable Sheet which is indexed by R N and whose increments are non-stationary. Thanks to stochastic integral representation (1.6), the complex-valued α-stable process ε α,j,k , (j, k) ∈ Z 2 can be expressed as a LePage random series as shown by Proposition 4.3 in [START_REF] Ayache | Stationary increments harmonizable stable fields: upper estimates on path behaviour[END_REF] which will be recalled at the beginning of Section 2 of the present article. This useful representation allowed [START_REF] Ayache | Stationary increments harmonizable stable fields: upper estimates on path behaviour[END_REF] and [START_REF] Boutard | Analyse par ondelettes de champs aléatoires stables à accroissements stationnaires[END_REF] to establish the almost sure fundamental inequality (see for instance (2.35) in [START_REF] Ayache | Stationary increments harmonizable stable fields: upper estimates on path behaviour[END_REF]):

Re (ε α,j,k ) ≤ C α,δ (1 + |j|) 1/α+δ , for all α ∈ (0, 1), δ > 0 and (j, k) ∈ Z 2 , (1.9)
which is one of the main ingredients in the proof of Theorem 1.1 via the wavelet representation (1.5). For establishing the fundamental inequality (1.9), in which C α,δ denotes a positive finite random variable only depending on α and δ, [START_REF] Ayache | Stationary increments harmonizable stable fields: upper estimates on path behaviour[END_REF] and [START_REF] Boutard | Analyse par ondelettes de champs aléatoires stables à accroissements stationnaires[END_REF] made an essential use of the fact that, when α ∈ (0, 1), the LePage series representation of ε α,j,k can be bounded, uniformly in k ∈ Z, by an almost surely convergent positive random series. Unfortunately, this method can hardly be extended to the case α ∈ [1, 2) since the latter random series is no longer convergent. The divergence of this series creates a major difficulty. Because of it, only a weaker form of the inequality (1.9) was obtained in [START_REF] Ayache | Stationary increments harmonizable stable fields: upper estimates on path behaviour[END_REF] and [START_REF] Boutard | Analyse par ondelettes de champs aléatoires stables à accroissements stationnaires[END_REF] (see for instance (2.36) in [START_REF] Ayache | Stationary increments harmonizable stable fields: upper estimates on path behaviour[END_REF]). Namely, if α ∈ [1, 2), then for any δ > 0, almost surely

Re (ε α,j,k ) ≤ C α,δ (1 + |j|) 1/α+δ log 3 + |j| + |k| for all (j, k) ∈ Z 2 .
(1.10)

In contrast with (1.9), the inequality (1.10) is not sharp enough for improving the uniform modulus of continuity (1.2) of HFSM via the wavelet representation (1.5).

In our present article we will introduce a new strategy for dealing with the major difficulty described above. The starting point of this new strategy is to apply an Abel transform to the LePage series representation of ε α,j,k . Thanks to the new strategy we are able to prove the following crucial proposition. Proposition 1.2 Let α ∈ [1, 2), δ > 0 and ρ > 0 be arbitrary and fixed. There exist an event Ω * of probability 1 and a positive finite random variable C, which depends on α, δ and ρ, such that on Ω * , the inequality

Re (ε α,j,k ) ≤ C(1 + j) 1/α+δ (1.11)
holds for all (j, k) ∈ Z + × Z satisfying

|2 -j k| ≤ ρ.
(1.12) Proposition 1.2 allows us to establish the main theorem of this paper, which shows that the improved uniform modulus of continuity for the HFSM {X(t), t ∈ R} provided by Theorem 1.1 when α ∈ (0, 1) is also valid when α ∈ [1, 2). Theorem 1.3 For any H ∈ (0, 1), α ∈ [1, 2), δ > 0 and ρ > 0, the inequality (1.4) holds almost surely.

For H ∈ (0, 1) and α ∈ (0, 2), the uniform modulus of continuity in Theorems 1.1 and 1.3 for the HFSM is more precise than the results in [START_REF] Kôno | Hölder continuity of sample paths of some self-similar stable processes[END_REF][START_REF] Xiao | On uniform modulus of continuity of random fields[END_REF][START_REF] Panigrahi | Maximal moments and uniform modulus of continuity of stable random fields[END_REF] on the uniform modulus of continuity for stable random fields including HFSM. We remark that the methods in the aforementioned references are different from the wavelet methods in [START_REF] Ayache | Stationary increments harmonizable stable fields: upper estimates on path behaviour[END_REF][START_REF] Boutard | Analyse par ondelettes de champs aléatoires stables à accroissements stationnaires[END_REF] and in the present paper. Also, we point out that the methodology of the present article can be extended to harmonizable stable processes and fields which are more general than HFSM; this is what we intend to do in future works.

It follows from (1.3) that the uniform modulus of continuity for HFSM given by Theorems 1.1 and 1.3 is quasi-optimal. The following theorem improves (1.3) and shows that optimality of the uniform modulus of continuity for HFSM is fundamentally different from that for the Gaussian case (α = 2) of the Fractional Brownian Motion {B H (t), t ∈ R}, where it is known that for any fixed real numbers u < v, almost surely,

0 < sup u≤t <t ≤v B H (t ) -B H (t ) t -t H log(1 + |t -t | -1 ) 1/2 < +∞.
Theorem 1.4 For any given real numbers H ∈ (0, 1), α ∈ (0, 2) and u < v, the equality (1.3) with δ = 0 holds almost surely: The rest of our article is organized as follows. Section 2 is devoted to the proof of the fundamental Proposition 1.2, and Section 3 to those of Theorems 1.3 and 1.4.

sup u≤t <t ≤v X(t ) -X(t ) t -t H log(1 + |t -t | -1 ) 1/α = +∞. ( 1 

Proof of Proposition 1.2

First, we give a represntation of the complex-valued α-stable stochastic process ε α,j,k , (j, k) ∈ Z 2 , defined through (1.6), as a LePage-type random series. The following proposition is a reformulated version of Proposition 4.3 in [START_REF] Ayache | Stationary increments harmonizable stable fields: upper estimates on path behaviour[END_REF] in our setting.

Proposition 2.1 Let α ∈ (0, 2) be a constant and let the positive finite constant a α := +∞ 0

x -α sin x dx -1/α . Then ε α,j,k , (j, k) ∈ Z 2 d = a α +∞ m=1 Γ -1/α m ϕ(ζ m ) -1/α 2 -j/α e ik2 -j ζm ψ(-2 -j ζ m )g m , (j, k) ∈ Z 2 , (2.1) where d 
= means equality of all finite-dimensional distributions. Notice that, for all (j, k) ∈ Z 2 , the random series in the right-hand side of (2.1) converges almost surely, and that (Γ m ) m∈N , (ζ m ) m∈N , and (g m ) m∈N are three mutually independent sequences of random variables, defined on the same probability space, which satisfy the following three properties.

(i) (Γ m ) m∈N is a sequence of Poisson arrival times with unit rate; in other words there is a sequence (E n ) n∈N of independent and identically distributed exponential random variables with parameter equals to 1 such that

Γ m = m n=1 E n for all m ∈ N. (2.2) (ii) (ζ m )
m∈N is a sequence of real-valued independent, identically distributed absolutely continuous random variables with probability density function ϕ given by ϕ(0) = 0 and

ϕ(ξ) = 4 -1 ε |ξ| -1 1 + log |ξ| -1-ε for ξ ∈ R \ {0}, (2.3) 
where ε is an arbitrarily small positive number; in fact ε will later be chosen in a convenient way related to δ which appears in (1.11).

(iii) (g m ) m∈N is a sequence of complex-valued, independent, identically distributed, centered Gaussian random variables such that E |Re (g m )| α = 1.

From now on, we will not distinguish the two stochastic processes in the left and right hand sides of the equality (2.1).

Definition 2.2

For each m ∈ N, set g 0,m := Re (g m ) and g 1,m := Im (g m ).

(2.4)

Moreover, for any (j, k) ∈ Z + × Z, let λ j,k 0,m := Re ϕ(ζ m ) -1/α 2 -j/α e ik2 -j ζm ψ(-2 -j ζ m ) and
(2.5)

λ j,k 1,m := Im ϕ(ζ m ) -1/α 2 -j/α e ik2 -j ζm ψ(-2 -j ζ m ) . Then, Re ϕ(ζ m ) -1/α 2 -j/α e ik2 -j ζm ψ(-2 -j ζ m )g m = λ j,k 0,m g 0,m -λ j,k 1,m g 1,m , (2.6) 
and consequently (see (2.1))

Re (ε α,j,k ) = a α +∞ m=1 Γ -1/α m λ j,k 0,m g 0,m -λ j,k 1,m g 1,m . (2.7)
Notice that the random series in (2.7) is almost surely convergent, since the random series in (2.1) satisfies this property.

Definition 2.3 For any l ∈ {0, 1} and (j, k) ∈ Z + × Z, we set S j,k l,0 := 0, and, for all m ∈ N,

S j,k l,m := m n=1 λ j,k l,n g l,n . (2.8) 
Definition 2.4 Let R 0 := ξ ∈ R : 2π/3 ≤ |ξ| ≤ 8π/3 be as in (1.8). For every j ∈ Z + , denote by (β j n ) n∈N the sequence of the independent and identically distributed Bernoulli random variables defined as

β j n := 1l R 0 (2 -j ζ n ) , (2.9) 
and by (B j m ) m∈N the sequence of the binomial random variables defined as

B j m := m n=1 β j n .
(2.10) Lemma 2.5 Let µ α,ε be the positive finite constant defined as

µ α,ε := sup ξ∈R 0 ϕ(ξ) -1/α | ψ(ξ)| = (4/ ) 1/α sup ξ∈R 0 |ξ| 1/α (1 + log |ξ|) 1+ α | ψ(ξ)|, (2.11) 
where the last equality results from (2.3) and (1.8). Then, almost surely for all (j, k)

∈ Z + × Z, l ∈ {0, 1} and n ∈ N, |λ j,k l,n | ≤ µ α,ε (1 + j) 1+ α β j n .
(2.12)

Proof It follows from (2.5), (2.3), the triangle inequality, (1.8), (2.9) and (2.11) that almost surely, for all (j, k) ∈ Z + × Z, l ∈ {0, 1} and n ∈ N,

|λ j,k l,n | ≤ 2 -j/α ϕ(ζ n ) -1/α ψ(2 -j ζ n ) ≤ (4/ ) 1/α |2 -j ζ n | 1/α 1 + j + log |2 -j ζ n | 1+ α | ψ(2 -j ζ n )| ≤ (4/ ) 1/α |2 -j ζ n | 1/α 1 + log |2 -j ζ n | 1+ α | ψ(2 -j ζ n )|(1 + j) 1+ α ≤ µ α,ε (1 + j) 1+ α β j n ,
which shows that (2.12) holds.

The following lemma provides the first upper bound for |S j,k l,m |.

Lemma 2.6 There exists a positive finite random variable C such that

|S j,k l,m | ≤ C (1 + j) 1+ α B j m log(1 + m) (2.13)
almost surely for all (j, k)

∈ Z + × Z, l ∈ {0, 1} and m ∈ N.
Proof The lemma is a straightforward consequence of (2.8), the triangle inequality, Lemma 2.5, Definition 2.4, (2.4) and the following remark which can easily be derived from Lemma 1 in [START_REF] Ayache | Rate optimality of wavelet series approximations of fractional Brownian motion[END_REF].

Remark 2.7 Let ( g m ) m∈N be an arbitrary sequence of real-valued centered, identically distributed Gaussian random variables (which are not necessarily independent). Then, there is a positive finite random variable C such that almost surely,

| g m | ≤ C log(1 + m) , for all m ∈ N. (2.14)
The following lemma provides the second upper bound for |S j,k l,m |.

Lemma 2.8 There exists a positive finite random variable C such that

|S j,k l,m | ≤ C m n=1 λ j,k l,n 2 log 3 + j + |k| + m ≤ C µ α,ε (1 + j) 1+ α B j m log 3 + j + |k| + m (2.15)
almost surely for all l ∈ {0, 1}, (j, k) ∈ Z + × Z and m ∈ N.

Proof First notice that the second inequality in (2.15) is a straightforward consequence of the first inequality in it and of (2.12) and (2.10). Hence, we only have to show that the first inequality in (2.15) is satisfied. For all l ∈ {0, 1}, (j, k) ∈ Z + × Z and m ∈ N, let Λ j,k l,m be the event defined as

Λ j,k l,m :=    ω ∈ Ω, S j,k l,m (ω) > 4σ l m n=1 λ j,k l,n (ω) 2 log 3 + j + |k| + m    , (2.16) 
where σ l > 0 denotes the common value of the standard deviations of the centered independent real-valued Gaussian random variables g l,n , n ∈ N. For proving the first inequality in (2.15), it is enough to show that for l ∈ {0, 1},

+∞ j=0 +∞ k=-∞ +∞ m=1 P Λ j,k l,m < +∞.
(2.17) Indeed, (2.17) means that

E +∞ j=0 +∞ k=-∞ +∞ m=1 1l Λ j,k l,m
< +∞ and consequently that

+∞ j=0 +∞ k=-∞ +∞ m=1 1l Λ j,k l,m
< +∞, almost surely.

Thus, for l ∈ {0, 1}, the random set of indices (j, k, m)

∈ Z + × Z × N : 1l Λ j,k l,m
= 1 is almost surely finite. The latter fact implies that the positive random variable C defined as

C := sup (l,j,k,m)∈{0,1}×Z + ×Z×N    4σ l + σ 2 l m n=1 λ j,k l,n 2 log 3 + j + |k| + m -1/2 S j,k l,m 1l Λ j,k l,m    ,
(2.18) with the conventions that 0 -1/2 = +∞ and (+∞)0 = 0, is almost surely finite. Moreover, it can easily be seen that the first inequality in (2.15) holds when C is defined through (2.18). Now we proceed with the proof of (2.17). Denote by E ζ (•) the conditional expectation operator with respect to F ζ , the σ-field spanned by the sequence of the random variables (ζ m ) m∈N . It is clear that, for all l ∈ {0, 1}, (j, k) ∈ Z + × Z and m ∈ N,

P Λ j,k l,m = E 1l Λ j,k l,m = E E ζ 1l Λ j,k l,m . (2.19)
Then, by using the fact that the conditional distribution of S j,k l,m with respect to F ζ is a centered Gaussian distribution with standard deviation equals

σ l m n=1 λ j,k l,n 2 
and the fact that 4 log(3 + j + |k| + m) ≥ 1, we obtain that almost surely

E ζ 1l Λ j,k l,m ≤ exp -2 -1 4 log(3 + j + |k| + m) 2 = 3 + j + |k| + m -8 .
Thus, it follows from (2.19) that

P Λ j,k l,m ≤ (3 + j + |k| + m -8 ,
which implies (2.17).

Remark 2.9 It results from (2.2) and the strong law of large number that m -1 Γ m a.s.

-----→ (2.20)

Remark 2.10 Let (E n ) n∈N be an arbitrary sequence of identically distributed exponential random variables (which are not necessarily independent). Then, there is a positive finite random variable C such that almost surely,

E n ≤ C log(1 + n) for all n ∈ N. (2.21)
To see this, denote by λ > 0 the common value of the parameters of the E n 's. Then

+∞ n=1 P E n > 2λ -1 log(n) ≤ +∞ n=1 n -2 < +∞.
Hence, (2.21) follows from the Borel-Cantelli Lemma.

Lemma 2.11 For l ∈ {0, 1} and (j, k) ∈ Z + × Z, the random series

χ l j,k := +∞ m=1 Γ -1/α m -Γ -1/α m+1 S j,k l,m (2.22) 
is almost surely absolutely convergent. Moreover, one has almost surely that

Re (ε α,j,k ) = a α χ 0 j,k -χ 1 j,k . (2.23) 
Proof In view of (2.15), the inequality

B j m log 3 + j + |k| + m ≤ log 3 + j + |k| m log(3 + m) , (2.24) 
and the fact that α ∈ [1, 2), in order to prove that the random series in (2.22) is almost surely absolutely convergent, it is enough to show that almost surely

sup m∈N m 1+ 1 α log(1 + m) Γ -1/α m -Γ -1/α m+1 < +∞ . (2.25)
From elementary calculations and (2.2), we derive that, for all m ∈ N,

Γ -1/α m -Γ -1/α m+1 = Γ m + E m+1 1/α -Γ 1/α m Γ 1/α m Γ 1/α m+1 = 1 Γ 1/α m+1 1 + E m+1 Γ m 1/α -1 .
(2.26) By using the inequality (1 + x) 1/α -1 ≤ α -1 x, for all x ∈ R + , we derive that for all m ∈ N, To this end we will use an Abel transform. For any integer M ≥ 2, let P M be the partial sum of order M of the random series in (2.7). That is

Γ -1/α m -Γ -1/α m+1 ≤ E m+1 αΓ m Γ 1/α m+1 . ( 2 
P M := a α M m=1 Γ -1/α m λ j,k 0,m g 0,m -λ j,k 1,m g 1,m .
(2.28) By using the notations in Definition 2.3, we can write P M as

P M = a α M m=1 Γ -1/α m S j,k 0,m -S j,k 0,m-1 - M m=1 Γ -1/α m S j,k 1,m -S j,k 1,m-1 = a α M m=1 Γ -1/α m S j,k 0,m - M -1 m=1 Γ -1/α m+1 S j,k 0,m - M m=1 Γ -1/α m S j,k 1,m + M -1 m=1 Γ -1/α m+1 S j,k 1,m = a α Γ -1/α M S j,k 0,M -Γ -1/α M S j,k 1,M + M -1 m=1 Γ -1/α m -Γ -1/α m+1 S j,k 0,m - M -1 m=1 Γ -1/α m -Γ -1/α m+1 S j,k 1,m .
Thus, in view of (2.22) and the fact that P M converges almost surely to Re (ε α,j,k ) as M → +∞, we see that, for proving (2.23), it is enough to show that, for l ∈ {0, 1},

Γ -1/α M S j,k l,M a.s.
-----→ M →+∞ 0 .

(2.29)

Putting together (2.15), (2.24), the first inequality in (2.20) and the fact that 1/α > 1/2, it follows that (2.29) is satisfied. This finishes the proof.

Lemma 2.12 For each j ∈ Z + , let

p j := P ω ∈ Ω, 2 -j ζ 1 ∈ R 0 = ε 2 
2 j+3 π 3 2 j+1 π 3 dξ ξ(1 + log ξ) 1+ε , (2.30) 
where the second equality follows from the facts that R 0 := ξ ∈ R : 2π/3 ≤ |ξ| ≤ 8π/3 and the probability density function of ζ 1 is the even function ϕ given by (2.3). Then there is an event Ω of probability 1 with the following property: for each fixed η ∈ (1/2, 1), there exists a finite positive random variable C η such that on Ω 

B j m ≤ C η p j m + m η , for all (j, m) ∈ Z + × N. ( 2 
C η := sup (j,m)∈Z + ×N p j m + m η -1 B j m (2.35)
is finite on the event Ω of probability 1. Moreover, it can easily be seen that (2.31) holds on Ω when C η is defined through (2.35). Now it remains to prove (2.32). For each j ∈ Z + and n ∈ N, denote by β j n the centered random variable defined as

β j n := β j n -p j , (2.36) 
where β j n is the Bernoulli random variable defined in (2.9). Let q be a positive integer which will be chosen later. It follows from the Markov inequality that for all j ∈ Z + and m ∈ N, (2.44) Indeed, it follows from (2.36), the facts that β j n is a Bernoulli random variable with parameter equals to p j (defined in (2.30)) and a ≥ 2 that

P B j m -p j m > m η ≤ m -2ηq E m n=1 β j n 2q . ( 2 
E β j n a = p j (1 -p j ) a + (1 -p j )(-p j ) a ≤ (1 -p j ) (1 -p j ) a-1 + p a-1 j p j ≤ p j .
This verifies (2.44). Let c 1 (q) be the finite deterministic constant, only depending on q, defined as ≤ c 1 (q)m q p j .

c 1 (q) := q r=1 (a 1 ,...,
(2.46) By combining (2.37) and (2.46), we obtain that for all (j, m) ∈ Z + × N, P B j m -p j m > m η ≤ c 1 (q)m -(2η-1)q p j .

(2.47) Since 2η -1 > 0, we choose the integer q large enough so that (2η -1)q > 1. Then, (2.32) follows from (2.47) and (2.30).

We are now ready to prove Proposition 1.2. Proof of Proposition 1.2 First, it follows from (2.25) that there is a positive finite random variable C 1 such that almost surely,

0 < Γ -1/α m -Γ -1/α m+1 ≤ C 1 m -1-1/α log(1 + m) , for all m ∈ N.
(2.48) Since 1/α > 1/2, we can choose and fix a constant η 0 ∈ (1/2, 1) such that

1 + 1 α -η 0 > 1 . (2.49) 
For each j ∈ Z + , denote by M j and M j the two nonempty sets of indices m defined as

M j := m ∈ N, p j m ≥ m η 0 (2.50) 
and

M j := N \ M j = m ∈ N, p j m < m η 0 , (2.51) 
where the probability p j ∈ (0, 1) is defined through (2.30). Then, for every j ∈ Z + , N = M j ∪ M j , (disjoint union) (2.52)

p j m + m η 0 ≤ 2p j m , for all m ∈ M j (2.53) and p j m + m η 0 < 2m η 0 , for all m ∈ M j . (2.54) 
In all the sequel l ∈ {0, 1} is arbitrary, and j ∈ Z + and k ∈ Z are arbitrary and such that (1.12) holds. It follows from (2.48), (2.13), (2.31), (2.54) and (2.49) that almost surely,

m∈M j Γ -1/α m -Γ -1/α m+1 S j,k l,m ≤ C 2 (1 + j) 1+ α m∈M j B j m m -1-1/α log(1 + m) 3/2 ≤ C 3 (1 + j) 1+ α m∈M j m -(1+1/α-η 0 ) log(1 + m) 3/2 ≤ C 4 (1 + j) 1+ α , (2.55) 
where C 2 and C 3 are two positive finite random variables not depending on j and k, and

C 4 := C 3 +∞ m=1 m -(1+1/α-η 0 ) log(1 + m) 3/2 < +∞ .
On the other hand, by using (2.48), (2.15), the inequality

log 3 + j + |k| + m ≤ log 3 + j + |k| log(3 + m), for all (j, k, m) ∈ Z + × Z × N, (1.12 
), (2.31), (2.53), and the inequality 1/2 + 1/α > 1, we have almost surely,

m∈M j Γ -1/α m -Γ -1/α m+1 S j,k l,m ≤ C 5 (1 + j) 1+ α log 3 + j + |k| m∈M j B j m 1/2 m -(1+1/α) log(3 + m) 3/2 ≤ C 6 (1 + j) 1+ α p j (1 + j) m∈M j m -(1/2+1/α) log(3 + m) 3/2 ≤ C 7 (1 + j) 1+ α p j (1 + j) , (2.56) 
where C 5 and C 6 are two positive finite random variables not depending on j and k, and

C 7 := C 6 +∞ m=1 m -(1/2+1/α) log(3 + m) 3/2 < +∞ .
It follows from (2.30) that

p j ≤ επ 6 2 j+3 -2 j+1 2 j+1 π 3 -1 1 + log 2 j+1 π 3 -1-ε ≤ 6(1 + j) -1-ε .
Thus,

p j (1 + j) ≤ √ 6
, for all j ∈ Z + .

(2.57) By (2.56) and (2.57), we have 

m∈M j Γ -1/α m -Γ -1/α m+1 S j,k l,m ≤ √ 6 C 7 (1 + j) 1+ α . ( 2 
(ε α,j,k ) ≤ a α 1 l=0 χ l j,k ≤ a α 1 l=0 m∈N Γ -1/α m -Γ -1/α m+1 S j,k l,m ≤ a α 1 l=0 m∈M j Γ -1/α m -Γ -1/α m+1 S j,k l,m + m∈M j Γ -1/α m -Γ -1/α m+1 S j,k l,m ≤ 2a α C 4 + √ 6 C 7 (1 + j) 1+ α .
This proves (1.11).

3 Proofs of Theorems 1.3 and 1.4

Proof of Theorem 1.3 Let ρ be a positive constant. For every j ∈ Z + , the two nonempty sets K j ( ρ ) and K j ( ρ ), which forms a partition of Z, are defined as

K j ( ρ ) := k ∈ Z, |k| ≤ 2 j ( ρ + 1) (3.1) 
and

K j ( ρ ) := k ∈ Z, |k| > 2 j ( ρ + 1) . (3.2) 
It follows from (1.5) that the HFSM {X(t), t ∈ R} can be expressed, for all t ∈ R, as

X(t) = X -(t) + X + 1 (t) + X + 2 (t), (3.3) 
where the process {X -(t), t ∈ R} is the low-frequency part of the HFSM defined, for every t ∈ R, as

X -(t) := -1 j=-∞ +∞ k=-∞ 2 -jH Re ε α,j,k Ψ α,H (2 j t -k) -Ψ α,H (-k) , (3.4) 
while the two processes {X + 1 (t), t ∈ R} and {X + 2 (t), t ∈ R}, whose sum gives the high-frequency part of the HFSM, are defined, for each t ∈ R, as

X + 1 (t) := +∞ j=0 k∈K j ( ρ ) 2 -jH Re ε α,j,k Ψ α,H (2 j t -k) -Ψ α,H (-k) (3.5) 
and

X + 2 (t) := +∞ j=0 k∈K j ( ρ ) 2 -jH Re ε α,j,k Ψ α,H (2 j t -k) -Ψ α,H (-k) . (3.6)
It is known from Proposition 2.15 in [START_REF] Ayache | Stationary increments harmonizable stable fields: upper estimates on path behaviour[END_REF] that {X -(t), t ∈ R} has almost surely infinitely differentiable paths. Thus, in view of (3.3), for proving the theorem it is enough to show that, for all H ∈ (0, 1), α ∈ [1, 2) and arbitrarily small δ > 0, we have almost surely

sup -ρ≤t <t ≤ ρ X + 1 (t ) -X + 1 (t ) t -t H log(1 + |t -t | -1 ) 1/α+δ < +∞ (3.7) and sup -ρ≤t <t ≤ ρ X + 2 (t ) -X + 2 (t ) t -t H log(1 + |t -t | -1 ) 1/α+δ < +∞. (3.8)
First, we prove (3.7). To this end, we apply Proposition 1.2 with ρ = ρ + 1. Let Ω * be the event of probability 1 in this proposition, and let t and t be two arbitrary real numbers such that -ρ ≤ t < t ≤ ρ. It follows from (3.1) that (1.12) holds for all (j, k) ∈ Z + × Z such that k ∈ K j ( ρ ). Hence, it results from (3.5) and (1.11) that on Ω * ,

X + 1 (t ) -X + 1 (t ) ≤ +∞ j=0 k∈K j ( ρ ) 2 -jH Re ε α,j,k Ψ α,H (2 j t -k) -Ψ α,H (2 j t -k) ≤ C 1 +∞ j=0 2 -jH (1 + j) 1/α+δ k∈K j ( ρ ) Ψ α,H (2 j t -k) -Ψ α,H (2 j t -k) ≤ C 1 +∞ j=0 2 -jH (1 + j) 1/α+δ k∈Z Ψ α,H (2 j t -k) -Ψ α,H (2 j t -k) , (3.9) 
where C 1 is a positive finite random variable not depending on t and t . Since the function Ψ α,H belongs the Schwartz class, this function and its derivative Ψ α,H satisfy, for some finite constant c 2 and for all y ∈ R, Next, let j 0 be the unique nonnegative integer such that

Ψ α,H (y) + Ψ α,H (y) ≤ c 2 1 + 2 ρ + |y| -3 . ( 3 
2 -j 0 -1 (2 ρ) < |t -t | ≤ 2 -j 0 (2 ρ), (3.12) 
that is

j 0 := log (2 ρ)|t -t | -1 log(2) , (3.13) 
where [•] denotes the integer part function. Using the mean-value Theorem, (3.10), (3.12) and (3.11), it can be shown, for all j ∈ {0, . . . , j 0 },

that k∈Z Ψ α,H (2 j t -k) -Ψ α,H (2 j t -k) ≤ c 2 2 j |t -t | k∈Z 1 + |2 j t -k| -3 ≤ c 2 c 3 2 j |t -t |. (3.14) 
It follows from (3.14), (3.13) and (3.12) that

j 0 j=0 2 -jH (1 + j) 1/α+δ k∈Z Ψ α,H (2 j t -k) -Ψ α,H (2 j t -k) ≤ c 2 c 3 |t -t |(1 + j 0 ) 1/α+δ j 0 j=0 2 j(1-H) ≤ c 4 t -t H log(1 + |t -t | -1 ) 1/α+δ , (3.15) 
where the positive finite constant c 4 does not depend on j 0 , t and t . On the other hand, one can derive from the triangle inequality, (3.10) and (3.11) that, for every j ≥ j 0 + 1,

k∈Z Ψ α,H (2 j t -k) -Ψ α,H (2 j t -k) ≤ 2c 2 c 3 ,
and consequently

+∞ j=j 0 +1 2 -jH (1 + j) 1/α+δ k∈Z Ψ α,H (2 j t -k) -Ψ α,H (2 j t -k) ≤ 2c 2 c 3 2 -(j 0 +1)H +∞ p=0 2 -pH (2 + j 0 + p) 1/α+δ ≤ 2c 2 c 3 2 -(j 0 +1)H (2 + j 0 ) 1/α+δ +∞ p=0 2 -pH 1 + p 2 + j 0 1/α+δ ≤ 2c 2 c 3 +∞ p=0 2 -pH (1 + p) 1/α+δ 2 -(j 0 +1)H (2 + j 0 ) 1/α+δ ≤ c 5 t -t H log(1 + |t -t | -1 ) 1/α+δ , (3.16) 
where the last inequality follows from (3.12) and (3.13) and where c 5 is a positive and finite constant not depending on j 0 , t and t . Putting together (3.9), (3.15) and (3.16) yields (3.7).

Next we show that (3.8) is satisfied. Let Ω * * be the event of probability 1 on which (1.10) holds, and let t and t be two arbitrary real numbers such that -ρ ≤ t < t ≤ ρ. It follows from (1.10) and (3.6) that on Ω * * ,

X + 2 (t ) -X + 2 (t ) ≤ +∞ j=0 k∈K j ( ρ ) 2 -jH Re ε α,j,k Ψ α,H (2 j t -k) -Ψ α,H (2 j t -k) ≤ C 6 +∞ j=0 2 -jH (1 + j) 1/α+δ k∈K j ( ρ ) log 3 + j + |k| Ψ α,H (2 j t -k) -Ψ α,H (2 j t -k) ≤ C 7 +∞ j=0 2 -jH (1 + j) 1/α+2δ k∈K j ( ρ ) log 3 + |k| Ψ α,H (2 j t -k) -Ψ α,H (2 j t -k) , (3.17) 
where C 6 and C 7 are two positive finite random variables not depending on t and t . By the mean-value Theorem and (3.10), we see that for all j ∈ Z + and k ∈

K j ( ρ ), Ψ α,H (2 j t -k) -Ψ α,H (2 j t -k) = 2 j |t -t | Ψ α,H (a -k) ≤ c 2 2 j |t -t | 1 + |a -k| -3 ≤ c 2 2 j |t -t | 1 + ||k| -|a|| -3 , (3.18) 
where a is some real number satisfying 2 j t < a < 

∈ K j ( ρ ), Ψ α,H (2 j t -k) -Ψ α,H (2 j t -k) ≤ c 2 2 j |t -t | 1 + |k| -2 j ρ -3
(3.20) Then (3.2) and (3.20) entail, for every j ∈ Z + , that

k∈K j ( ρ ) log 3 + |k| Ψ α,H (2 j t -k) -Ψ α,H (2 j t -k) ≤ c 2 2 j+1 |t -t | +∞ k=[2 j ( ρ+1)]+1 log 3 + k 1 + k -2 j ρ -3 ≤ c 2 2 j+1 |t -t | +∞ q=0 log 4 + q + 2 j ( ρ + 1) 1 + q + 2 j -3 ≤ c 2 2 j+1 |t -t | log 3 + 2 j ρ +∞ q=0 log 4 + q + 2 j 1 + q + 2 j -3 ≤ c 8 |t -t | 2 j j + 1 +∞ q=0 (1 + q + 2 j -5/2 ≤ c 8 |t -t | 2 j j + 1 +∞ 0 (x + 2 j -5/2 dx ≤ c 8 |t -t | 2 -j/2 j + 1, (3.21) 
where c 8 is a positive finite constant not depending on j, t and t . Next, it follows from (3.17) and (3.21) that on the event Ω * * of probability 1,

X + 2 (t ) -X + 2 (t ) ≤ C 9 |t -t |, (3.22) 
where the positive finite random variable

C 9 := c 8 C 7 +∞ j=0 2 -j(H+1/2) (1 + j) 1/2+1/α+2δ
does not depend on t and t . Finally, (3.22) implies that (3.8) holds.

Proof of Theorem 1.4 Let u < v be any fixed real numbers. For each j ∈ Z + , set

k j := 2 j-1 (u + v) . Then 2 -j k j -2 -1 (u + v) < 2 -j . ( 3 

.23)

Let θ be an even real-valued function in the Schwartz class S(R) whose Fourier transform θ (which is also an even real-valued function) has a compact support such that

supp θ ⊆ ξ ∈ R, 2 -1 ≤ |ξ| ≤ 1 . (3.24)
For all j ∈ Z + , let Since the random variables (W j ) j∈Z + are independent, (3.28) follows from (3.30) and from the second part of the Borel-Cantelli Lemma.

W j := 2 j R θ(2 j t -k j )X(t) dt = R θ(t) X(2 -j k j + 2 -j t) -X(2 -j k j ) dt. ( 3 
Recall from Corollary 4.2 in [START_REF] Ayache | Stationary increments harmonizable stable fields: upper estimates on path behaviour[END_REF] (see also [START_REF] Boutard | Analyse par ondelettes de champs aléatoires stables à accroissements stationnaires[END_REF]) and the continuity property of paths of {X(t), t ∈ R} that, for any fixed arbitrarily small δ > 0, there is a positive finite random variable C 4,δ such that almost surely X(t) ≤ C 4,δ 1 + |t| H log 1/α+δ 3 + |t| , for all t ∈ R.

( 

m→+∞ 1 ,

 1 which entails that there exist two positive finite random variables C < C such that almost surely, C m ≤ Γ m ≤ C m for all m ∈ N.

≤

  1 <...<νr≤m (a 1 ,...,ar)∈A 2q,r 2q a 1 , . . . all r ∈ {1, . . . , q}, A 2q,r := (a 1 , . . . , a r ) ∈ {2, . . . , 2q} r , p j , for all (n, j, a) ∈ N × Z + × {2, . . . , 2q}.

1 +

 1 |y -k| -3 < +∞.(3.11) 

P c 1 2

 2 .25) Notice that the second equality in(3.25) follows from the change of variable t = 2 j t -k j and the equality R θ(t) dt = θ(0) = 0 (see(3.24)). It is known from Proposition 5.1.4 and Remark 5.1.5 in[START_REF] Boutard | Analyse par ondelettes de champs aléatoires stables à accroissements stationnaires[END_REF] that the pathwise Lebesgue integrals in (3.25) are well-defined and almost surelyW j = Re R e i2 -j k j ξ θ(2 -j ξ) |ξ| H+1/α d M α (ξ) . (3.26)Observe that (3.24) and (3.26) imply that (W j ) j∈Z + is a sequence of independent real-valued SαS random variables whose scale parameters satisfy, for every j ∈ Z + ,σ(W j ) = c 1 2 -jH ,(3.27)where the positive finite constantc 1 := R |η| -αH-1 θ(η) α dη 1/α . Let us now show that lim sup j→+∞ 2 jH (j + 1) -1/α |W j | = +∞ (almost surely). (3.28)Recall from Chapter 1 of[START_REF] Samorodnitsky | Stable Non-Gaussian Processes: Stochastic Models with Infinite Variance[END_REF] that there are two constants 0 < c 2 < c 3 < +∞ such that any arbitrary real-valued SαS random variable Z with scale parameter 1 satisfiesc 2 z -α ≤ P |Z| > z) ≤ c 3 z -α , for all z ∈ [1, +∞). (3.29)By using the first inequality in (3.29), (3.27) and the fact that -jH -1 (j + 1) -1/α |W j | > log(j + 1) 1/α = +∞.(3.30) 

  .31) Proof For proving the lemma, it is enough to show that for any fixed η ∈ (1/2, 1), ∈ Z + ×N : j +m ≥ v for each v ∈ N. Thus, setting Ω := η∈Q∩(1/2,1) Ω η , we can derive from (2.34) and (2.33) that, for any η ∈ (1/2, 1), the positive random variable

	+∞	+∞	
		P B j m -p j m > m η < +∞ .	(2.32)
	j=0	m=1	
	Indeed, (2.32) implies that		
		P Ω η = 1,	(2.33)
	where the event	+∞	
	Ω η :=	B j m ≤ p j m + m η	(2.34)
		v=1 (j,m)∈I(v)	
	with I(v) := (j, m)		

  , . . . , a r belong to {1, . . . , 2q} and satisfy the latter expectation vanishes as soon as min{a 1 , . . . , a r } = 1. Thus, we only need to consider the case where min{a 1 , . . . , a r } ≥ 2, which implies r ≤ q because of the equality (2.40). Next notice that for any given r ∈ {1, . . . , q}, distinct integers 1 ≤ ν 1 < . . . < ν r ≤ m, and arbitrary numbers a 1 , . . . , a r belonging to {2, . . . ! × . . . × a r ! tuples (n 1 , . . . , n 2q ) of numbers belonging to {1, . . . , m} for which the equality (2.39) holds. Thus, one can derive from (2.38) and (2.41) that

	where a 1 r		
								a u = 2q .	(2.40)
							u=1	
	Then, by the independence of the centered random variables β j ν 1 , . . . , β j νr , we have
				E	2q	β j np	=	r	E β j νu	au	,	(2.41)
					p=1			u=1
	which implies that , 2q} and satisfying (2.40), there
	are exactly								
					2q a 1 , . . . , a r	:=	a 1	(2q)!
										.37)
	In order to estimate E	m	β j n	2q	, we write it as
			n=1						
		E		m	β j n	2q	=			E	2q	β j np .	(2.38)
			n=1				1≤n 1 ,...,n 2q ≤m	p=1
	2q								
	Notice that each	β j							
	p=1								
					2q	β j np =	r	β j νu	au	,	(2.39)
					p=1			u=1

np can be expressed, for some r ∈ {1, . . . , 2q} and some distinct integers ν 1 , . . . , ν r satisfying to 1 ≤ ν 1 < . . . < ν r ≤ m, as

  2 j t which implies that |a| ≤ 2 j ρ. (3.19) Combining (3.18) and (3.19) with (3.2), we obtain that for all j ∈ Z + and k

  .31) It follows from(3.23) and(3.31) that almost surely for all j ∈ Z + ,{|t|>2 j/2 } θ(t) X(2 -j k j + 2 -j t) dt |2 -j k j + 2 -j t| H log 1/α+δ 3 + |2 -j k j + 2 -j t| dt ≤ C 4,δ {|t|>2 j/2 } θ(t) 2 + (|u| + |v| + |t|) H log 1/α+δ 4 + |u| + |v| + |t| dt.Let j 0 be a positive fixed integer which is large enough so that 2 -j/2 ≤ 2 -2 (v -u), for all j ≥ j 0 .(3.37) By (3.23) and (3.37), we have2 -j k j + 2 -j t ∈ [u, v], for all j ≥ j 0 and t ∈ -2 j/2 , 2 j/2 . (3.38)Then, it follows from (3.34), (3.35) and (3.38) that for all j ≥ j 0 ,| W j | ≤ A

	≤ C 4,δ θ(t) 1 + Since θ ∈ S(R), we have {|t|>2 j/2 }	
	lim j→+∞	2 jH (j + 1) -1/α	{|t|>2 j/2 }	θ(t) X(2 -j k j + 2 -j t) dt = 0 (almost surely).	(3.32)
	Combining (3.25) with (3.28) and (3.32) gives
			lim sup		
						1/α .	(3.35)
	Observe that for proving the theorem, it is enough to show that
				A = +∞ a.s.	(3.36)
			θ(t) 2 -j t	H log(1 + |2 -j t| -1 )	1/α dt
			R		
		≤ A2 -jH	θ(t) |t| H log(2 j + 2 j |t| -1 )	1/α dt
			R		
		≤ A2 -jH (j + 1) 1/α	θ(t) |t| H 1 + log(1 + |t| -1 )	1/α dt.	(3.39)
					R

j→+∞ 2 jH (j + 1) -1/α | W j | = +∞ a.s.,

(3.33)

where

W j := {|t|≤2 j/2 } θ(t) X(2 -j k j + 2 -j t) -X(2 -j k j ) dt.

(3.34)

Let us now introduce the positive random variable A defined as

A := sup u≤t <t ≤v X(t ) -X(t ) t -t H log(1 + |t -t | -1 )
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Moreover, the fact that θ

Finally, putting together (3.33), (3.39) and (3.40) yields (3.36). This finishes the proof of Theorem 1.4.