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The coupling phase in cavity magnonics
Alan Gardin1,2, Jeremy Bourhill2,3, Vincent Vlaminck2, Christian Person2, Christophe Fumeaux1,
Vincent Castel2 & Giuseppe Tettamanzi1

Abstract

•Cavity magnonics relevant for quantum transducers, quantum memories (us-
ing dark mode physics), non-reciprocal devices [1]: such applications justify
studying cavity magnonics in multimode systems.

•Microwave photon/magnon coupling due to Zeeman coupling involves a cou-
pling phase factor which is usually rightfully neglected.

⇒ unless the system is “loop-coupled” (see next section for definition and
examples), coupling phases are unobservables.

• (Experimentally) Simplest system in which the coupling phases manifest:
two magnon modes coupling simultaneously to two cavity modes.

The various coupling phases accumulate in a single quantity θ: the physical
phase. Physical phase found to influence the presence of dark modes, and
the strength of the cavity-mediated coupling.

Relevance of the coupling phase

•Origin of the coupling phase φ: Zeeman coupling between macrospin S =
Sxx̂ + Syŷ + Szẑ and the cavity mode’s RF magnetic field h = hxx̂ + hyŷ
(h ⊥ H0ẑ static applied magnetic field)

• Interaction Hamiltonian using the rotating wave approximation [2]:

HI =

∫

Vm

d3r S · µ0h (1)

= ℏg
(
eiφcm† + e−iφc†m

)
(2)
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Figure 1: Representation of the
magnon/photon coupling. Coupling
phase φ measures the difference in di-
rection of the (local) yellow arrows.

with coupling strength g/2π ∝ η
√
ωc and

η =

√√√√√
(∫

Vm
d3rhx

)2

+
(∫

Vm
d3rhy

)2

Vm
∫
Vc
d3r|h|2 , φ = arg

{∫

Vm

d3rhx + i

∫

Vm

d3rhy

}

(3)

•A unitary transformation can gauge the phase away by rotating one of the
modes ⇒ if φ can be eliminated, it cannot have physical consequences

•Coupling phase can be “rotated away” when the system is not “loop-
coupled”, i.e. we have n modes but k < n couplings between modes: we
have n degrees of freedom but only k < n constraints
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Figure 2: Non loop-coupled systems
(k < n)
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Figure 3: Loop-coupled systems
(k ⩾ n)

An example with a physical phase

System definition

•System under study: two magnon modes (annihilation operatorsm0 andm1,
angular frequencies ωm − δm and ωm + δm) coupling to two cavity modes
(c0 and c1 , angular frequencies ωc− δc and ωc+ δc), with coupling strength
g0/2π to c0 and g1/2π to c1.

•Loop-coupled system: the various coupling phases combine to form a physi-
cal phase θ characterising the physics:
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Figure 4: Reduction of the coupling phases to a single physical phase θ through
unitary transformations.
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Figure 5: Spectra for g0 = g1 = 0.03ωc, ωc/2π = 5 GHz and δc/2π = 1 GHz. The
black dashed line is ωm. Polaritons ω1, ω2 cross for θ = 0 and anti-cross for θ = π.

Indirect magnon/magnon coupling at ωm = ωc
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Figure 6: Spectra for θ = 0 in solid lines and θ = π in dots. Other parameters
same as in Fig 5. Gθ is given by equation (4) below.

with θ-dependent indirect magnon/magnon coupling strength Gθ/2π:

Gθ =
δc

δ2c − δ2m

(
g20 − eiθg21

)
. (4)

Dark mode physics

Mθ

Mθ+π

M0

Mπ M0

Mπ

(a) 0 ⩽ θ ⩽ π

c0 c1
−δm

(b) θ = 0

c0 c1
−δm

(c) θ = π

c0 c1
−δm

g̃0

g̃0

g̃1 g̃1g̃0| cos θ
2 |

g̃0| sin θ
2 |

g̃1

Figure 7: Illustration of the different couplings in the system.

where

Mθ =
m0 + e−iθm1√

2
, g̃i =

√
2gi. (5)

•Dark mode: eigenmode that does not couple to the readout mechanism

•Cavity magnonics readout: cavity photons

•For δm = 0 and θ = 0, Mπ does not couple: dark mode

Outlook

•Coupling phase can have physical consequences in loop-coupled multimode
systems

•Resulting discrete gauge-invariant phase θ akin to a synthetic gauge field,
which can break time-reversal symmetry for specific values [3]

•Synthetic gauge field+dissipation engineering⇒ non-reciprocal behaviour [4]

However, the physical phase is fixed by the cavity geometry...
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