Jean-Guy Mailly
email: jean-guy.mailly@u-paris.fr

A Logical Encoding for k-m-Realization of Extensions in Abstract Argumentation

Keywords: Abstract Argumentation, Semantics Realizability, Logicbased Encoding

We study the notion of realization of extensions in abstract argumentation. It consists in reversing the usual reasoning process: instead of computing the extensions of an argumentation framework, we want to determine whether a given set of extensions corresponds to some (set of) argumentation framework(s) (AFs); and more importantly we want to identify such an AF (or set of AFs) that realizes the set of extensions. While deep theoretical studies have been concerned with realizability of extensions sets, there are few computational approaches for solving this problem. In this paper, we generalize the concept of realizability by introducing two parameters: the number k of auxiliary arguments (i.e. those that do not appear in any extension), and the number m of AFs in the result. We define a translation of k-m-realizability into Quantified Boolean Formulas (QBFs) solving. We also show that our method allows to guarantee that the result of the realization is as close as possible to some input AF. Our method can be applied in the context of AF revision operators, where revised extensions must be mapped to a set of AFs while ensuring some notion of proximity with the initial AF.

revise or merge AFs at the level of their extensions (in a way, using extensions as models in propositional belief revision [START_REF] Katsuno | Propositional knowledge base revision and minimal change[END_REF] or merging [START_REF] Konieczny | Merging information under constraints: A logical framework[END_REF]). Then, the generation step consists in mapping the revised (or merged) extensions with an AF or a set of AFs that realizes them. While some generation operators have been defined from a theoretical point of view, there has been no proposal of an algorithmic approach that would compute them.

In this paper, we study the realization problem, i.e. instead of answering the question "Can this set of extensions be realized?", we produce an AF (or a set of AFs) which realizes the given set of extensions. We propose an approach for solving the realization problem based on Quantified Boolean Formulas. More precisely, we generalize the concept of realizability by introducing two parameters: k the number of auxiliary arguments (i.e. those which do not belong to any extension) that may appear in the result AF(s), and m the number of AFs in the result. The question of k-m-realizability is then "Using k auxiliary arguments, can we find m AFs F 1 , . . . , F m such that the union of their extensions is exactly equal to a given set of extensions S?". We provide Quantified Boolean Formulas (QBFs) encodings that allow to solve this problem for some prominent semantics, and to obtain the resulting AF (or set of AFs). Then we study the question of minimal change which is of utmost importance in the application context of belief revision [START_REF] Coste-Marquis | On the revision of argumentation systems: Minimal change of arguments statuses[END_REF][START_REF] Diller | An extension-based approach to belief revision in abstract argumentation[END_REF] (or merging [START_REF] Delobelle | Merging of abstract argumentation frameworks[END_REF]). More precisely, we provide a QMaxSAT [START_REF] Ignatiev | Quantified maximum satisfiability[END_REF] variant of our encoding which guarantees that the resulting AF(s) will be as close as possible to the initial AF.

The paper is organized as follows. Section 1 describes background notions on argumentation and propositional logic (in particular, Quantified Boolean Formulas and Quantified MaxSAT). In Section 2, we introduce the generalization of realizability with two parameters: the number of auxiliary arguments and the number of AFs in the result. Section 3 describes the encoding of our new form of reasoning into QBFs, and Section 4 shows how QMaxSAT can be used to solve the optimization version. Finally, Section 5 discusses related work, and Section 6 concludes the paper.

1 Background Notions

Abstract Argumentation

Let us introduce the basic notions of abstract argumentation. Definition 1. An argumentation framework (AF) [START_REF] Dung | On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games[END_REF] is a directed graph F = A, R where A is the set of arguments, and R ⊆ A × A is the attack relation. We only introduce the extension semantics that are used in this work: Definition 2. Given F = A, R an AF, the set of arguments S ⊆ A is a stable extension iff S is conflict-free and ∀b ∈ A \ S, ∃a ∈ S s.t. (a, b) ∈ R; a complete extension iff S is admissible and ∀a ∈ A that is defended by S, a ∈ S.

Given an AF F, we use cf(F), ad(F), co(F) and st(F) to denote (respectively) the conflict-free sets, the admissible sets, the complete extensions and the stable extensions of F. Although we focus on these semantics, let us also mention the preferred extensions pr(F) which are the ⊆-maximal complete extensions, and the (unique) grounded extension gr(F) which is the ⊆-minimal complete extension. We refer the interested reader to [START_REF] Baroni | Abstract argumentation frameworks and their semantics[END_REF] for a more detailed overview of extension semantics. The notion of realizability of a set of extensions is defined as follows.

Definition 3. Given A a set of arguments and σ a semantics, the set S ⊆ 2 A is σ-realizable [START_REF] Dunne | Characteristics of multiple viewpoints in abstract argumentation[END_REF] (or just realizable, if σ is clear from the context) iff there is an AF F = A, R such that σ(F) = S.

Moreover, we say that S is compactly σ-realizable [START_REF] Baumann | Compact argumentation frameworks[END_REF] iff there is a compact AF F = A, R such that σ(F) = S, i.e. (E∈σ(F) E) = A (or, with words, each argument in F appears in at least one extension).

We can easily give examples of (non-)realizable sets.

Example 2. Let S 1 = {{a, b}, {a, c}} be a set of extensions. The AF F 1 given at Figure 2 realizes S 1 with respect to the stable semantics (i.e. st(F 1) = S 1).

It is also easy to exhibit a set of extensions that is not realizable w.r.t. the stable semantics. Let S 2 = {{a, b}, {a, c}, {b, c}} be a set of extensions. We suppose that S 2 is st-realizable. In that case, let F 2 = A 2 , R 2 be an AF with st(F 2) = S 2 and {a, b, c} ⊆ A 2 . By definition of the stable semantics, if {a, b} is a stable extension then each argument in A 2 \{a, b} is attacked by a or b, including c. If (a, c) ∈ R 2 , we have a contradiction with the fact that {a, c} is a stable extension. Similarly if (b, c) ∈ R 2 , then {b, c} cannot be a stable extension. So we conclude that F 2 does not exist, and S 2 is not st-realizable. Now we recall some basic notions of propositional logic. A propositional formula is built on a set of Boolean variables V , i.e. variables that can be assigned a (truth) value in B = {0, 1}, where 0 is interpreted as false, and 1 as true. A wellformed propositional formula is either an atomic formula (i.e. simply a Boolean variable), or built with connectives following the recursive definition:

negation: if φ is a formula, then ¬φ is a formula; conjunction: if φ, ψ are formulas, then φ ∧ ψ is a formula; disjunction: if φ, ψ are formulas, then φ ∨ ψ is a formula; implication: if φ, ψ are formulas, then φ → ψ is a formula; equivalence: if φ, ψ are formulas, then φ ↔ ψ is a formula.

The semantics of propositional formulas is defined with interpretations, i.e. mappings ω : V → B, that can be extended to arbitrary formulas:

-

ω(¬φ) = 1 -ω(φ); -ω(φ ∧ ψ) = min(ω(φ), ω(ψ)); -ω(φ ∨ ψ) = max(ω(φ), ω(ψ)); -ω(φ → ψ) = ω(¬φ ∨ ψ); -ω(φ ↔ ψ) = ω((φ → ψ) ∧ (ψ → φ)).
Some normal forms are defined based on these notions: a literal is either an atomic formula or the negation of an atomic formula, a clause is a disjunction of literals, and a cube is a conjunction of literals. A propositional formula is a CNF (Conjunctive Normal Form) if it is a conjunction of clauses. CNF formulas can also be represented as sets of clauses. A DNF (Disjunctive Normal Form) is a disjunction of cubes. Now, let us introduce Quantified Boolean Formulas (QBFs). QBFs are a natural extension of propositional formulas with two quantifiers: ∀ (universal quantifier) and ∃ (existential quantifier). Any propositional formula is a particular QBF. Then, if Φ is a QBF, then for x ∈ V , ∃x, Φ and ∀x, Φ are well formed QBFs as well. ∃x, Φ is true if it is possible to assign a truth value to x such that Φ is true, and ∀x, Φ is true if Φ is true for both possible truth values of x. If Qx, Qy, Φ is a QBF where Q is either ∃ or ∀, then we simply write Q{x, y}, Φ.

In the rest of the paper, we focus on prenex QBFs, which are QBFs that are written

Q 1 V 1 , Q 2 V 2 . . . , Q n V n , φ where: -V 1 , . . . , V n are disjoint sets of Boolean variables such that V 1 ∪ • • • ∪ V n = V ; -∀i ∈ {1, . . . , n}, Q i ∈ {∀, ∃} is a quantifier; -∀i ∈ {1, . . . , n -1}, Q i = Q i+1 (i.e.

quantifiers are alternated);

φ is a propositional formula called the matrix of the QBF.

We write -→ Qφ for any prenex QBF, i.e.

- → Q is a shorthand for Q 1 V 1 , Q 2 V 2 . . . , Q n V n .
Finally, we introduce an optimization problem related to QBFs, which is a generalization of MaxSAT [START_REF] Li | Maxsat, hard and soft constraints[END_REF] to quantified formulas. Consider a formula -→ Qφ H ∧ φ S where the matrix is the conjunction of two types of constraints: the hard constraints φ H and the soft constraints φ S represented as a CNF formula (i.e. a set of clauses). Then QMaxSAT (Quantified MaxSAT) [START_REF] Ignatiev | Quantified maximum satisfiability[END_REF] is the problem consisting in finding the largest possible subset of clauses φ * S ⊆ φ S such that -→ Qφ H ∧ φ * S is true.

Example 3. The QBF formula ∃{x, y}x ∨ y is true: there is at least one truth value for x and y such that x∨y is true (for instance, the interpretation ω(x) = 1 and ω(y) = 0). Now, if one needs to obtain an interpretation of the variables which makes the formula true such that its cardinality is maximal, one can transform the QBF formula into an instance of QMaxSAT: ∃{x, y}(x ∨ y) ∧ φ S , where the soft constraints are given by φ S = x ∧ y. 1 The interpretation of the variables {x, y} which satisfies x∨y and maximizes the number of satisfied (soft) unit clauses is ω such that ω (x) = ω (y) = 1, which satisfies both soft clauses.

Generalizing Realizability

Now we define our new types of realizability, where two natural numbers are given as parameters, k and m representing respectively the number of auxiliary arguments (i.e. those which do not appear in any extension) and the number of AFs in the result. We have described previously the interest of this new approach for representing the result of AF revision or merging operators [START_REF] Coste-Marquis | On the revision of argumentation systems: Minimal change of arguments statuses[END_REF][START_REF] Delobelle | Merging of abstract argumentation frameworks[END_REF]. Both parameters k and m are necessary in this case, since it is possible that some arguments from the initial AF do not appear in any extension of the result (then, k is the number of these arguments) and not any set of extensions can be represented by a single AF (which explains the need for the parameter m).

We can also think to a variant of the rationalisation problem [START_REF] Airiau | Rationalisation of profiles of abstract argumentation frameworks: Characterisation and complexity[END_REF] where agents provide (sets of) extensions instead of AFs, i.e. we assume a scenario where the set of arguments involved in a debate is known (but not the full processing of a debate, i.e. the attack relation), and several agents provide their opinion about the acceptability of arguments. Realization is a means of constructing possible representations of the debate. We start this section with the special case where m = 1, thus defining krealizablity in Section 2.1. The more general k-m-realizability is introduced in Section 2.2

k-Realizability

In the literature, two types of realizability have been defined. Either the set of extensions S is realizable with a compact AF (i.e. each argument that appears in the AF belongs to at least one extension), or it is "simply" realizable (i.e. some arguments may not appear in any extension). We define a variant of realizability that takes into account the exact number of arguments that appear in the AF but do not appear in any extension.

Definition 4 (k-Realizability).

Given A a set of arguments, k ∈ N, a semantics σ, and S ⊆ 2 A a set of extensions s.t.

E∈S E = A, we say that S is σ-k-realizable if there is an AF F = A, R s.t. σ(F) = S, with A = A ∪ A , where A ∩ A = ∅ and |A | = k.
We drop σ from the notation when it is clear from the context. Obviously, compact realizability corresponds to 0-realizability, while the question "Is S realizable?" is equivalent to "Is there some k ∈ N such that S is k-realizable?".

Example 4. To show the importance of fixing a good value for k, we borrow an example from [START_REF] Baumann | Compact argumentation frameworks[END_REF]. Consider the sets of arguments

A = {a 1 , a 2 , a 3 }, B = {b 1 , b 2 } and C = {c 1 , c 2 , c 3 }. We focus on the set of extensions S = {{a i , b j , c k } | i ∈ {1, 2, 3}, j ∈ {1, 2}, k ∈ {1, 2, 3}} \ {a 1 , b 1 , c 2 }, i.e
. each extension contains one of the a i arguments, one of the b j , and one of the c k , but the combination [START_REF] Baumann | Compact argumentation frameworks[END_REF] proves that the set of extensions S cannot be compactly realized under the stable semantics, i.e. it is not st-0-realizable. On the contrary, it is st-1-realizable, choosing for instance A = {z}. See Figure 3 for an example of F = A ∪ A , R such that st(F) = S. Fixing the set of auxiliary arguments seems reasonable in situations where one already knows all the possible arguments at hand (the set A), and the result of the argumentative process (i.e. the extensions, and then A which is the union of the extensions), but one needs to find the relations between arguments (i.e. the structure of the graph) that would explain the arguments acceptability. In this case, it is not possible to add any number of auxiliary arguments, but only k = |A \ A|. Moreover, from a technical point of view, fixing k allows to determine the number of Boolean variables required to encode the problem in logic, as described in Section 3.

{a 1 , b 1 , c 2 } is forbidden. We have A = A ∪ B ∪ C.

k-m-Realizability

Now, we focus on how to realize a set of extensions with a set of AFs. Indeed, if the set S cannot be realized by a single AF, whatever the number k of arguments, we need several AFs to do it, as it is the case when AFs are revised [START_REF] Coste-Marquis | On the revision of argumentation systems: Minimal change of arguments statuses[END_REF] or merged [START_REF] Delobelle | Merging of abstract argumentation frameworks[END_REF]. So we introduce a second parameter, m, that represents the number of AFs that are used to realize the set of extensions. This means that the goal is now to obtain a set of m AFs such that the union of their extensions corresponds to the given set S.

Definition 5 (k-m-Realizability). Given A a set of arguments, k, m ∈ N with m > 0, a semantics σ, and S ⊆ 2 A a set of extensions s.t. E∈S E = A, we say that S is σ-k-m-realizable if there exists a set of AFs

F = {F 1 = A, R 1 , . . . , F m = A, R m } such that (F ∈F σ(F)) = S, with A = A ∪ A , where A ∩ A = ∅ and |A | = k.
Again, we drop σ from the notation when it is clear from the context. The generation operators from [START_REF] Coste-Marquis | On the revision of argumentation systems: Minimal change of arguments statuses[END_REF][START_REF] Delobelle | Merging of abstract argumentation frameworks[END_REF] are a special case of 0-m-realizability.

Notice that any set of extensions S is 0-m-realizable under most semantics when m = |S|. If ∅ ∈ S, we can define F = {F 1 , . . . , F m } such that, in F i , the arguments in the extension E i ∈ S are unattacked, and the arguments that do not appear in E i are attacked by some argument in E i . Then, σ(F i) = E i and thus F 0-m-realizes S. If ∅ ∈ S, this particular extension can be realized under most semantics by an AF where all the arguments are self-attacking. Among the main semantics studied in the literature, only the stable semantics cannot realize ∅, thus S is 0-m-realizable under the stable semantics when ∅ ∈ S. 2 While this is a proof that S is 0-m-realizable, it does not mean that the set F is an adequate solution in any situation. For instance, in a context of AF revision [START_REF] Coste-Marquis | On the revision of argumentation systems: Minimal change of arguments statuses[END_REF], it is unlikely that the F i AFs will be related to the initial AF, and then this result F would not comply with the minimal change principle. Also, we show here that m = |S| is only an upper bound, but S may be realizable with only m AFs (where m < |S|).

This discussion can be summarized by Proposition 1.

Proposition 1. Let S be a set of extensions. S is 0-|S|-realizable under σ ∈ {co, gr, pr}. Moreover, if ∅ ∈ S, then S is 0-|S|-realizable under σ = st.

Example 5. Consider again S 2 = {{a, b}, {a, c}, {b, c}} from Example 2. As stated previously, it cannot be realized by a single AF under the stable semantics, i.e. it is not st-0-1-realizable (neither st-k-1-realizable with any k ∈ N). However, it is st-0-2-realizable, as can be seen with Fig. 4:

F = {F 1 , F 2 } from
F = {F 1 , F 2 } st-0-2-realizes S 2 3 k-m-Realizability as QBF Solving
Now we propose a QBF-based approach for solving k-m-realizability, i.e.

determining whether a set of extensions S is k-m-realizable, and providing a set of AFs which realizes S, when it exists.

We start with the simpler case of k-realizability in Section 3.1, and then we explain how we generalize the encoding to represent the set of m AFs in Section 3.2.

Encoding k-realizability with QBFs

We suppose that we know A the set of all the arguments that appear in the extensions, and A (with |A | = k) the set of arguments that do not appear in any extension but appear in the argumentation framework(s). Then, let A = A ∪ A be the set of all the arguments. We will define propositional formulas such that each model represents a set of arguments X ⊆ A and attacks in A × A. The approach is inspired by [START_REF] Besnard | Checking the acceptability of a set of arguments[END_REF]. Our goal is to write these formulas directly as sets of clauses, in order to be able to feed a QBF solver with them without a (possibly) expensive translation from an arbitrary formula into a CNF formula. We define the following Boolean variables:

for a ∈ A, in a is true iff a is in the set of arguments of interest; for a, b ∈ A, att a,b is true iff a attacks b.

Conflict-freeness

We define φ cf that represents the conflict-free sets in a classical way:

φ cf = a∈A,b∈A (att a,b → ¬in a ∨ ¬in b)
Stable Semantics Now, we focus on the stable semantics. Let us recall that a stable extension is a conflict-free set X ⊆ A that attacks every argument in A \ X, i.e. any argument is either a member of X, or attacked by a member of X. Thus, the stable semantics can be encoded by the formula φ st :

φ st = φ cf ∧ (a∈A (in a ∨ b∈A (in b ∧ att b,a)))
The second part of the formula expresses that each argument a is either in the set (in a), or attacked by an argument b in the set (in b ∧ att b,a). This enforces the set {a ∈ A | in a = 1} as a stable extension of the AF F = A, R , with

R = {(a, b) ∈ A × A | att a,b = 1}.
We need to transform the second part into a set of clauses. For facilitating this transformation, we introduce new variables. We remark that for each a ∈ A,

in a ∨ b∈A (in b ∧ att b,a) ≡ in a ∨ b∈A det b,a
where det b,a is a newly introduced variable that means that b defeats a (i.e. b is accepted and b attacks a). We formally encode the meaning of these variables by:

φ det = a∈A,b∈A det a,b ↔ (in a ∧ att a,b)
So now, we define φ st :

φ st = φ cf ∧ (a∈A (in a ∨ b∈A det b,a)) ∧ φ det
This formula is equi-satisfiable with φ st . Moreover, the models of φ st can be bijectively associated with the models of φ st , since the values of the det-variables are completely determined by the values of the in and att-variables. Now, to express φ st as a CNF formula, we need to rewrite φ det as an equivalent set of clauses. This is done as follows:

det a,b ↔ (in a ∧ att a,b) ≡ (¬det a,b ∨ in a) ∧(¬det a,b ∨ att a,b) ∧(¬in a ∨ ¬att a,b ∨ det a,b)
Admissibility For encoding admissibility, we need to express that an argument is defended by the set of arguments which is characterized. Thus we introduce a new kind of variable, for each a ∈ A, def a means that a is defended. Formally, this is encoded by

φ def = a∈A (def a ↔ b∈A (att b,a → c∈A det c,b))
This means that admissible sets can be encoded by

φ ad = φ cf ∧ φ det ∧ φ def ∧ a∈A in a → def a
Complete Semantics Finally, since a complete extension is an admissible set which contains exactly what it defends, we can encode the complete semantics by

φ co = φ ad ∧ a∈A def a → in a
Again, classical transformations allow to obtain φ ad and φ co as CNF formulas.

Encoding k-Realizability For A a set of arguments, we suppose that S = {E 1 , . . . , E n }, such that E i ⊆ A for each i ∈ {1, . . . , n}, is the set of extensions to be realized. The approach is generic: for any semantics σ, we suppose that φ σ is the propositional formula that encodes the relationship between an AF and its extensions, for the semantics σ. It works for any semantics such that reasoning is at most at the first level of the polynomial hierarchy, which can thus be polynomially encoded into propositional logic. So in the rest of the section, σ ∈ {cf, ad, st, co}. We need to encode S into a propositional formula as well:

φ S = Ei∈S φ Ei with φ Ei = a∈Ei in a ∧ a∈A\Ei ¬in a
The fact that the extensions of the AF must correspond to the extensions in S can be encoded as an equivalence:

φ S σ = φ σ ↔ φ S
In order to facilitate the transformation of this formula into a CNF, we introduce two new variables, x σ and x S , such that x σ ↔ φ σ and x S ↔ φ S . So we obtain

φ S σ = (x σ ↔ x S) ∧ (x σ ↔ φ σ) ∧ (x S ↔ φ S)
The different parts of this formula can be easily written as sets of clauses, either by standard manipulations of the formula, or (in the case where a DNF appears because of the standard manipulations) by a simple application of the Tseytin transformation method [START_REF] Tseytin | On the complexity of derivation in propositional calculus[END_REF]. Finally, the set S is σ-k-realizable if there is a valuation of the att-variables such that each possible valuation of the in-variables satisfies φ In order to obtain a fully defined prenex QBF that can be given as input to a QBF solver, let us remark that the det-variables, the def -variables, x σ , x S and the variables introduced by the Tseytin transformation must be existentially quantified at the third level of the QBF. The truth values assigned to the AT T variables can be obtained from a QBF solver (e.g. CAQE [START_REF] Rabe | CAQE: A certifying QBF solver[END_REF]), providing ω : AT T → {0, 1}. The AF F that realizes S is then defined by

F = A, R , with R = {(a, b) | ω(att a,b) = 1}.

Encoding k-m-realizability with QBFs

Now, to encode k-m-realizability instead of k-realizability, we need to introduce variables that will represent the structure of the m AFs that realize S. For a, b ∈ A and i ∈ {1, . . . , m}, att i a,b is true iff a attacks b in

F i and det i a,b is true iff a defeats b in F i (i.e. det i a,b ↔ in a ∧ att i a,b
). Then, we call φ i σ the formula φ σ where each att or det variable is replaced by the corresponding att i or det i .

To represent the fact that the union of the extensions of F = {F 1 , . . . , F m } corresponds to S, we write:

φ m,S σ = (i∈{1,...,m} φ i σ) ↔ φ S
In order to write this formula as a CNF, we apply the same technique as for k-realizability. For each i ∈ {1, . . . , m}, we introduce a variable x i σ , and we consider the formula x i σ ↔ φ i σ , that can be easily transformed into a set of clauses. Thus, we can replace φ m,S σ by the CNF φ m,S σ = ((i∈{1,...,m}

x i σ) ↔ x S) ∧ (i∈{1,...,m} (x i σ ↔ φ i σ)) ∧ (x S ↔ φ S)
where the first part of the formula is equivalent to the set of clauses (i∈{1,...,m}

(¬x i σ ∨ x S)) ∧ (¬x S ∨ x 1 σ ∨ • • • ∨ x m σ).

Optimal k-m-Realization

Now we suppose that the realization process is guided by a minimal change principle, i.e. there is an input AF F * = A * , R * , and the AFs produced must be as close as possible to F * . This is, for instance, an important feature of belief revision operators [START_REF] Coste-Marquis | On the revision of argumentation systems: Minimal change of arguments statuses[END_REF].

Before introducing optimal realization, we introduce the tools required to quantify the closeness between AFs.

Definition 6. The Hamming distance between two AFs

F 1 = A, R 1 and F 2 = A, R 2 is d H (F 1 , F 2) = |(R 1 \ R 2) ∪ (R 2 \ R 1)|.
The distance d H simply counts the number of attacks which differ between two AFs. To quantify the closeness between an AF and a set of AFs (the result of the realization), we sum these distances:

Definition 7. Given F = A, R and F = {F 1 = A, R 1 , . . . , F m = A, R m }, we define d H by d H (F, F) = Fi∈F d H (F, F i).
Definition 8 (Optimal k-m-Realization). Given F * = A * , R * an AF, A a set of arguments, k, m ∈ N with m > 0, a semantics σ, and S ⊆ 2 A a set of extensions s.t. E∈S E = A, we say that S is optimally σ-k-m-realized by

F = {F 1 = A * , R 1 , . . . , F m = A * , R m } with A * = A ∪ A , where A ∩ A = ∅ and |A | = k, if -(F ∈F σ(F)) = S,
and for any F satisfying the conditions above, d H (F * , F) ≤ d H (F * , F). Now we show how to adapt the QBF-based approach for k-m-realizability into a QMaxSAT approach for optimal k-m-realization. Assume that -→ Qφ k,m,S σ is the formula allowing to determine the k-m-realizability of S under the semantics σ (as described in the previous section). We introduce new variables that describe the attack relation of the initial AF

F * = A * , R * : for each pair of arguments (a, b) ∈ A * × A * , att * a,b means that (a, b) ∈ R * .
Then, for every i ∈ {1, . . . , m}, and every pair of arguments (a, b) ∈ A * × A * , we introduce the variable nd i a,b which means that there is no difference between the existence of the attack (a, b) in F * and F i . This is formally characterized by the formula

ψ i a,b = nd i a,b ↔ (att * a,b ↔ att i a,b)
(which can be easily transformed into a set of four clauses made of three literals each). Finally, we need a way to represent the attack relation in the initial AF F * . To do that, we define

θ(F *) = (a,b)∈R * att * a,b ∧ (a,b)∈(A * ×A *)\R * ¬att * a,b .
Now, we can define the QMaxSAT instance -→ Qφ H ∧ φ S where the hard constraints are

φ H = φ k,m,S σ ∧ (m i=1 (a,b)∈A * ×A * ψ i a,b) ∧ θ(F *)
and the soft constraints are

φ S = m i=1 (a,b)∈A * ×A * nd i a,b .
An optimal solution of this QMaxSAT instance can be decoded into a set of AFs F = {F 1 , . . . , F m } which optimally realizes the set of extensions S. This optimal solution can be obtained thanks to dedicated algorithms like the ones from [START_REF] Ignatiev | Quantified maximum satisfiability[END_REF]Section 4.1].

Observe that the generation operator AF card,AF σ from [START_REF] Coste-Marquis | On the revision of argumentation systems: Minimal change of arguments statuses[END_REF] (which searches a set of AFs that minimizes the cardinality of the result, and then the distances between graphs as a tie-breaker) can be computed by iteratively solving the QMaxSAT encoding for optimal k-m-realization, with m varying from 1 to |S|. In the case of the operator AF dg,AF σ (which minimizes the distances between graphs, and then the cardinality to break ties) we can solve k-m-realizability for every m ∈ {1, . . . , |S|}, select the sets of AFs which minimize the distance, and then (in case of ties) choose the one such that m is minimal.

The approach for AF revision defined in [START_REF] Diller | An extension-based approach to belief revision in abstract argumentation[END_REF] guarantees that the revised set of extensions is (classically) realizable. This means that the resulting AF can be obtained by solving (optimal) k-1-realization.

The generation operators for AF merging [START_REF] Delobelle | Merging of abstract argumentation frameworks[END_REF] cannot be computed with our approach, since they require to compare a set of AFs with another set of AFs (while here, we only compare one AF with a set of AFs, see Definition 7). Adapting our approach to AF merging generation operators is left for future work.

Discussion

The initial work on extension realizability [START_REF] Dunne | Characteristics of multiple viewpoints in abstract argumentation[END_REF] defines the concept of canonical AF, i.e. a specific AF that realizes a set of extensions S if this set is realizable. This canonical AF is useful for proving the existence of some AF (i.e. answering the question "Is S realizable?"), but this construction may not be sensible for concrete applications. Especially, when extension realization is used in a context of AF revision or merging [START_REF] Coste-Marquis | On the revision of argumentation systems: Minimal change of arguments statuses[END_REF][START_REF] Diller | An extension-based approach to belief revision in abstract argumentation[END_REF][START_REF] Delobelle | Merging of abstract argumentation frameworks[END_REF], the canonical AF that realizes the revised/merged extensions may not be a desirable outcome in general, since it can be completely unrelated with the initial AF(s), contrary to the result of optimal k-m-realization as described in Section 4.

The UNREAL system3 [START_REF] Linsbichler | A uniform account of realizability in abstract argumentation[END_REF] allows deciding realizability for Abstract Dialectical Frameworks [START_REF] Brewka | Abstract dialectical frameworks revisited[END_REF] and various subclasses thereof, including standard AFs. There are various differences between this approach and our work. First of all, it only considers "classical" realizability in the sense that the result of the operation is a single AF, i.e. it does not solve k-m-realizability with m > 1. This means that this approach will simply return "unsatisfiable" when the set of extensions S is not realizable by a single AF. Then, the system can provide one AF realizing the given set of extensions, and iterate over the (potentially exponentially large) set of AFs that solve the problem, but it cannot provide an optimal one like the QMaxSAT-based approach from Section 4 (or do to so, one would need to enumerate all the potential solutions, compute their cost and keep only the ones with the minimal cost, which is unlikely to be feasible in practice).

A problem similar to realization is studied under the name inverse problem [START_REF] Kido | A bayesian approach to direct and inverse abstract argumentation problems[END_REF]. However, their hypothesis is that the information about arguments acceptability is noisy, hence the use of a probabilistic approach to obtain the AF. It is not the case in the context of AF revision or merging which motivates our study.

The synthesis of AFs [START_REF] Niskanen | Synthesizing argumentation frameworks from examples[END_REF] shares a similar intuition with realization: given a set of extensions P and a set of extensions N (called respectively positive examples and negative examples, each of them being associated with a weight), the goal is to obtain an AF of minimal cost, where the cost is the sum of the weights of positive examples which are not an extension of the AF, and the weights of the negative examples which are extensions of the AF. Realization can be captured by stating P = S, and N = 2 A \ S, which is not efficient from the point of view of space, and by assuming that all examples have a infinite weight (i.e. no example should be violated).

The case of the grounded semantics is particular. Since there is exactly one grounded extension for any AF, a set of extensions S requires exactly m = |S| to be realized. A possible way to do it is strict extension enforcement [START_REF] Niskanen | Extension enforcement under grounded semantics in abstract argumentation[END_REF] which modifies an AF in order to obtain a new one with the expected grounded extension. Performing this operation for each E i ∈ S can provide the set F = {F 1 , . . . , F m } such that E i is the grounded extension of F i , for each i ∈ {1, . . . , m}.

Recent work has shown that any set of extensions S can be represented by a single Constrained Incomplete Argumentation Framework (CIAF) [START_REF] Mailly | Constrained incomplete argumentation frameworks[END_REF]. Such a CIAF is based on the Incomplete AF model, where arguments and attacks can be labeled as uncertain, and reasoning is made through completions, i.e. a set of classical AFs. CIAFs add a constraint on the set of completions, which allow to finely select the completions that will be used for reasoning. [START_REF] Mailly | Constrained incomplete argumentation frameworks[END_REF] shows that any set of extensions is 0-1-realizable if such a CIAF is expected as the result, instead of (classical) AFs. Adapting our technique to generate a CIAF instead of a (set of) AF(s) is an interesting future work.

Finally, realizability has been studied in the context of ranking-based [START_REF] Skiba | Realisability of rankings-based semantics[END_REF] or gradual semantics [START_REF] Oren | Inverse problems for gradual semantics[END_REF]. In the former case, the goal is to obtain an AF F such that applying a given ranking-based semantics on F produces a given ranking; it is shown that any ranking is realizable for various semantics. In the latter case, given the graph structure of a weighted AF, and an acceptability degree for each argument, one wants to obtain arguments weights such that applying a given gradual semantics to the weighted AF produces the expected acceptability degrees. In the same vein, [START_REF] Oren | Inferring attack relations for gradual semantics[END_REF] focuses also on gradual semantics of weighted AFs, but this time the arguments weights are known, and the goal is to obtain the graph structure. All the works are intuitively connected with the question of realizability, but strongly differ from our work because the notion of acceptability semantics is not based on extensions.

Conclusion

In this paper, we have proposed a generalization of the notion of extension realizability, with two parameters representing respectively the number of auxiliary arguments and the number of AFs in the result. We have defined a logic-based computational approach for this problem, paving the way to practical implementations based on QBF solvers. Our work also induces a computational approach for generating the result of AF revision [START_REF] Coste-Marquis | On the revision of argumentation systems: Minimal change of arguments statuses[END_REF]. This means that we do not only focus on realizability (i.e. answer to the question "is there a solution?"), but more generally on the issue of realization (i.e. "if there is a solution, then provide it").

This preliminary study opens several interesting research tracks. First, a natural extension of our work is to consider other semantics. In particular, the semantics that cannot be (polynomially) encoded into a propositional formula (e.g. the preferred semantics) may need some particular attention. At least two options can be considered: directly encoding φ σ as a QBF [START_REF] Egly | Reasoning in argumentation frameworks using quantified boolean formulas[END_REF], or using an iterated resolution approach (in the spirit of the CEGAR-based approaches used for extension enforcement [START_REF] Wallner | Complexity results and algorithms for extension enforcement in abstract argumentation[END_REF] or AF synthesis [START_REF] Niskanen | Synthesizing argumentation frameworks from examples[END_REF]). We also plan to implement our approach in order to empirically evaluate its efficiency, and the influence of the various parameters (the semantics σ, the number of auxiliary arguments k, the number of AFs in the result m) on the possibility to realize the given set of extensions. While the encoding described here are constructed step by step from the logical translation of argumentation basic principles (e.g. conflict-freeness, defense) and semantics (e.g. stable, complete), on the practical side our approach can benefit from some insights provided by existing logic-based argumentation tools (e.g [START_REF] Lagniez | CoQuiAAS: A constraint-based quick abstract argumentation solver[END_REF][START_REF] Niskanen | µ-toksia: An efficient abstract argumentation reasoner[END_REF]) in order to improve the implementation of the QBF encoding. Then, another interesting question is how to define (and encode in QBF) optimal k-m-realization when the optimality is not based on the distance between the result and one input AF, but on the distance between the result and a set of AFs, like in the case of generation operators for AF merging [START_REF] Delobelle | Merging of abstract argumentation frameworks[END_REF]. Finally, recent work has shown how deep learning can be used to improve the efficiency of enforcement tools [START_REF] Craandijk | Enforcement heuristics for argumentation with deep reinforcement learning[END_REF]. Studying whether such techniques can be used in a context of realization is an appealing question for future work.

 Given an AF, for a, b ∈ A, we say that a attacks b if (a, b) ∈ R. Moreover, a set S ⊆ A defends an argument c ∈ A if, ∀b ∈ A s.t. (b, c) ∈ R, ∃a ∈ S s.t. (a, b) ∈ R. Different notions of collective acceptance of arguments are defined by Dung, based on the notion of extension. An extension semantics is a function σ that maps an AF F = A, R to its set of extensions σ(F) ∈ 2 A . Most semantics are based on two simple notions: a set S ⊆ A is conflict-free iff ∀a, b ∈ S, (a, b) ∈ R; admissible iff S is conflict-free and S defends all its elements.

Example 1 .Fig. 1 :

 11 Fig. 1: F from Example 1

Fig. 2 : F 2 from Example 2 1. 2

 222 Fig. 2: F 2 from Example 2

Fig. 3 :

 3 Fig.3: An AF that st-1-realizes S

Figure 4 .

 4 We have st(F 1) = {{a, b}, {a, c}} and st(F 2) = {{a, c}, {b, c}}, hence F ∈F st(F) = S 2 .

 S σ , or said otherwise if the QBF ∃AT T, ∀IN, φ S σ is valid, where AT T = {att a,b | a, b ∈ A} and IN = {in a | a ∈ A}.

 Finally, we encode the k-mrealizability with a QBF ∃AT T, ∀IN, φ m,S σ where AT T = {att i a,b | a, b ∈ A, i ∈ {1, . . . , m}} and IN = {in i a | a ∈ A, i ∈ {1, . . . , m}}. Then each F i can be obtained, as previously, from the values of the att i -variables provided by the QBF solver.

Observe that φS is the conjunction of two unit clauses, x on the one hand, and y on the other hand.

Formally, if we allow empty AFs, then F ∅ = ∅, ∅ realizes the empty set under the stable semantics. However authorizing such an empty AF means that A = ∅, and then no other extension can be realized.

https://www.dbai.tuwien.ac.at/proj/adf/unreal

This work benefited from the support of the project AGGREEY ANR-22-CE23-0005 of the French National Research Agency (ANR).