Yu G Reshetnyak 
  
François Fillastre 
email: francois.fillastre@umontpellier.fr
  
Dmitriy Slutskiy 
  
G Yu 
  
Reshetnyak 
  
Isothermal Coordinates on Manifolds of Bounded Curvature I

The notion of two-dimensional manifold of bounded curvature was introduced by Alexandrov in [START_REF] Alexandrov | Curves on manifolds of bounded curvature[END_REF][START_REF] Alexandrov | Foundations of the inner geometry of surfaces[END_REF][START_REF] Alexandrov | Quasigeodesics[END_REF]. Two-dimensional Riemannian manifolds are particular cases of manifolds of bounded curvature. For manifolds of bounded curvature, the following notions of two-dimensional Riemannian geometry can be slightly generalized: length and integral curvature for curves, area and integral curvature of sets, geodesics (shortest arcs).

In the present article, we show that in the neighborhood of a point in a twodimensional manifold of bounded curvature, the metric is given by a generalized linear element of the form . ds 2 = λ(x, y)(dx 2 + dy 2 ) , where the function . λ is the exponential of the difference of two subharmonic functions. A short description of the results of the present work was given in the author's note [START_REF] Reshetnyak | Isothermal coordinates on manifolds of bounded curvature[END_REF] (Chap. 5).

The exact statement of the main results is given in paragraph 4 (Theorems A and B). Their proofs are based on several lemmas. In paragraphs 5, 6, 7 we give the statements of these lemmas and show how they imply the main theorems. The proofs of the basic lemmas are technically cumbersome and will be given in a second part. §1 Isothermal Coordinates in Two-Dimensional Riemannian Manifolds

Let M be a two-dimensional Riemannian manifold, . ds 2 = Edu 2 + 2Fdudv + Gdv 2 be its linear element with .E, F, G . C 2 functions. We consider that the manifold M is metrized by taking for the distance between two points of M the infimum of the lengths of the curves of the manifold M which join those points.

At any point of the manifold M the Gaussian curvature .K (u, v) is defined. By the curvature of a set . A ⊂ M, we mean

.ω( A) = ∬ A K(u, v) EG -F 2 dudv (1.1)
and, respectively, by the absolute curvature of a set A we mean

.|ω|( A) = ∬ A |K(u, v)| EG -F 2 dudv . (1.2) 
Let .L = {(u(s), v(s)) : 0 ≤ s ≤ l} be an arc length parameterization of a curve in the manifold M. If the functions u and v are . C 2 then at any point of the curve the geodesic curvature . k g is defined. By the turn of the curve L we mean

.κ g (L) = ∫ l 0 k g (s)ds , (1.3) 
and, respectively, by the absolute turn of the curve L, we mean

.| κ g |(L) = ∫ l 0 |k g (s)|ds . (1.4) 
The coordinates .(x, y) of the manifold M are called isothermal if the metric of the manifold in these coordinates has the form .ds 2 = λ(x, y)(dx 2 + dy 2 ) .

(1.5)

It is known that in any domain homeomorphic to a disc in a two-dimensional Riemannian manifold, we can introduce isothermal coordinates (see, for instance, [START_REF] Lavrentieff | Sur une classe de représentations continues[END_REF][START_REF] Lichtenstein | Zur theorie der konforme abbildungen; konforme abbildungen nichtanalytischer singularitätenfreier flächenstücke auf ebene gebiete[END_REF][START_REF] Vekua | Generalized analytic functions[END_REF]). In these coordinates, the Gaussian curvature is expressed by the formula . K(x, y) = -1 2λ(x, y) ∂ 2 ∂ x 2 ln λ(x, y) + ∂ 2 ∂ y 2 ln λ(x, y) , from which, by applying a known formula of the Poisson equation, we obtain:

. ln λ(x, y) =

1 π ∬ R ln 1 z -ζ K(ξ, η)λ(ξ, η)dξdη + h(x, y) , (1.6) 
where .z = x + iy, .i = √ -1, R is the domain of the change of variable . ζ = ξ + iη and h is a harmonic function over R. But .K (ξ, η)λ(ξ, η)dξdη is the curvature of an infinitesimally small domain . dE ζ ,

. Kλdξdη = dω(ζ) , and the formula (1.6) can be rewritten as follows:

. ln λ(x, y) =

1 π ∬ R ln 1 z -ζ dω(ζ) + h(x, y) . (1.7) 
If .L = {(x(t), y(t)) : a ≤ t ≤ b} is a regular curve in M, . x, y being isothermal coordinates on M, then the geodesic curvature at the point .(x(t), y(t)) of the curve L is equal to

. k g (t) = x y -x y √ λ(x 2 + y 2 ) 3/2 + 1 2 
-(ln λ) y x + (ln λ) x y √ λ(x 2 + y 2 ) 1/2 .
It follows that the turn of the curve is expressed by the formula The first term in the right-hand side is equal to the turn of the curve for the Euclidean metric .dσ 2 = dx 2 + dy 2 . Let us call it the rotation of the curve L and denote it by . κ(L).

Let . e(t) be a unit tangent vector and . ν(t) be a unit normal vector of the curve L at the point .(x(t), y(t)), directed so that the pair of vectors .(e, ν) is positively oriented. Then, obviously,

. -(ln λ) y dx + (ln λ) x dy = -∂ ∂ν (ln λ) dσ , dσ = dx 2 + dy 2 , where . ∂ ∂ν denoted the differentiation in the direction of the vector . ν in the plane of variables .(x, y). We obtain 1 2

∫ L ∂ ∂ν
(ln λ(x, y)) dσ .

In the expression under the sign of the integral, we use (1.6) to substitute .ln λ(z):

. κ g (L) = κ(L) -

1 2π ∬ R ∫ L ∂ ∂ν ln 1 z -ζ dσ dω(ζ) - 1 2 ∫ L ∂h ∂ν dσ .
As it is known from potential theory, the integral

. ∫ L ∂ ∂ν ln 1 z -ζ dσ
is equal to the angle under which the curve L is seen from the point . ζ in the plane of the variables x and y. Denoting this angle by .ϕ(L, ζ), we obtain the following formula:

.κ g (L) = κ(L) -

1 2π ∬ R ϕ(L, ζ)dω(ζ) - 1 2 ∫ L ∂h(z) ∂ν dσ . (1.8)
The metric space M is called a two-dimensional Riemannian manifold with boundary if it is isometric to some domain P in a two-dimensional Riemannian manifold, and the boundary of P consists of a finite number of pairwise non-intersecting simple closed curves. Also, it is supposed that an intrinsic metric is defined on P, induced by the metric of the ambient manifold (i.e., the distance between two points of P is equal to the infimum of the lengths of the curves, lying in the domain P and connecting these points). The set of the points of the space M corresponding by isometry to the points of the boundary of the domain P is called the boundary of the manifold. §2 Definition of Manifolds of Bounded Curvature A manifold of bounded curvature is defined as a metric space satisfying different axioms. The initial system of axioms suggested by A. D. Alexandrov was later updated by V. A. Zalgaller in [START_REF] Zalgaller | On the principles of the theory of two-dimensional manifolds of bounded curvature[END_REF]. One of the main result of the theory of manifolds of bounded curvature is the theorem on the possibility to approximate such manifolds by two-dimensional Riemannian manifolds with uniformly bounded absolute curvature. In what follows, beside the theorems mentioned above, no other result of the theory of manifolds of bounded curvature is used. Before giving the exact statements of the theorems, let us introduce the notion of convergence of metric spaces.

We will say that a sequence of metric spaces .(R n ) n converge to R as .n → ∞, if, for any n, there exists a homeomorphism . ϕ n from R onto . R n such that, uniformly on

.R × R, . ρ n (ϕ n (X), ϕ n (Y )) ----→ n→∞ ρ(X, Y ) ,
where .X ∈ R, . Y ∈ R, . ρ and . ρ n are the metrics on the spaces R and . R n , respectively.

Theorem A In order for a metric space to be a manifold of bounded curvature it is necessary and sufficient that for any point .x ∈ R, there exists a neighborhood U and a sequence of two-dimensional Riemannian manifolds with boundary . (U n ) n that converge to U as n goes to infinity and such that the absolute curvature of these manifolds are uniformly bounded.

The condition of the theorem can be strengthened a bit in its necessary part. Namely the following holds.

Theorem B Let M be a domain homeomorphic to a closed disc in a two-dimensional manifold of bounded curvature R. Then in R there exists a domain .M ⊃ M which is also homeomorphic to a closed disc, for which one can construct a sequence of two-dimensional Riemannian manifolds with boundary converging to it, and such that the absolute curvature and the absolute turn of the boundaries of these manifolds are uniformly bounded.

§3 Curves of Bounded Rotation

In the present article we use the properties of a class of curves in the plane, curves of bounded rotation. This class of curves was first considered most probably by Radon in [START_REF] Radon | On boundary-value problems for the logarithmic potential[END_REF], in connection with problems from potential theory. Curves of bounded rotation naturally appear in the theory of curves constructed by A. D. Alexandrov in [START_REF] Alexandrov | Theory of curves based on approximation of curves by broken lines[END_REF] and by the author of the present work in [START_REF] Reshetnyak | The method of orthogonal projections in the theory of curves[END_REF]. The complete explanation of this theory is under preparation for publication.

A curve .L = {z(t) : a ≤ t ≤ b} in the plane, where .z = x + iy, is a broken line if there is a sequence of points

. A 0 = z(t 0 ), A 1 = z(t 1 ), . . . , A m = z(t m ) . (t 0 = a < t 1 < • • • < t m-1 < t m = b)
such that each arc . A i-1 A i does not have multiple points and is a segment.

The vectors .a i = A i-1 A i are called the links of the broken line L, the points . A 0 , A 1 , .. . . , . A m are its vertices. The absolute value . ϕ i of the angle between the vectors . a i and . a i+1 is called the absolute rotation at the vertex . A i of the broken line L, and the sum

. |κ|(L) = m-1 i=1 ϕ i
is the absolute rotation of the broken line L.

Let .K = {z(t) : a ≤ t ≤ b} be a curve in the plane, L be a broken line, . A 0 , A 1 , .. . . , . A m-1 , . A m be the ordered vertices of this broken line. We will say that the broken line L is inscribed in the curve K if we can find a sequence of parameters

.t 0 < t 1 < • • • < t m-1 < t m such that . A j = z(t j ) for all . j = 0, 1, . . . , m -1, m.
Lemma Let K and L be two broken lines in the plane, such that L is inscribed in K. Then

. |κ|(L) ≤ |κ|(K) .

Let K be a curve in the plane. By the absolute rotation of the curve K we mean the supremum of the absolute rotations of the broken lines inscribed in this curve. We will denote the absolute rotation of the curve K by .| κ|(K).

The curve K is called a curve of bounded rotation if its absolute rotation is finite. 

. t l (s) = lim h→0 - z(s + h) -z(s) h , t r (s) = lim h→0 + z(s + h) -z(s) h . Moreover, .|t l (s)| = |t r (s)| = 1 for all s. (b) For all .s ∈ [0, l]: . lim h→0 + t l (s + h) = lim h→0 + t r (s + h) = t r (s) ; lim h→0 -t l (s + h) = lim h→0 -t r (s + h) = t l (s) .
(c) The set of points s for which .t l (s) t r (s) is at most countable.

Let .K = {z(s) : 0 ≤ s ≤ l} be a curve of bounded rotation in the plane, where the parameter s is the arc length. The angle . κ| (z(s)) = |(t l (s), t r (s))| is called the absolute rotation of the curve K at the point . z(s). Theorem 3.2 Let K be a curve in the plane, A and B be its extremities and C be an interior point. If the arcs .K 1 = AC and .K 2 = CB are curves of bounded rotation, then K is also a curve of bounded rotation, and moreover 

. |κ|(K) = |κ|(K 1 ) + |κ|(K 2 ) + |κ|(C) . Theorem 3.3 Let .K = {z(s) : 0 ≤ s ≤ l}
2 = λ(z)(dx 2 + dy 2 ) , (4.1) 
where .λ(z) ≡ λ(x, y) is a non-negative measurable function, defines a metric in a region of the plane. Let . λ be a Borel measurable function, i.e., such that the Lebesgue sets

. a = {λ(z) ≤ a} are Borelian for any a. In that case, . λ is measurable with respect to the length on any rectifiable curve. And therefore, for any arc length parameterized rectifiable curve .K = {z(s) : 0 ≤ s ≤ l}, the following integral is well-defined:

.s λ (K) =

∫ l 0 λ (z(s))ds . (4.2) 
.s λ (K) is called the length of the curve K for the linear element .ds 2 = λ(z)(dx 2 +dy 2 ).

A domain is a connected open set in the plane. A closed domain is a connected closed set in the plane, which is the closure of the set of its interior points.

Let M be a domain in the plane, and let . λ be a non-negative Borel measurable function over M. Let . z 1 and . z 2 in M. The distance between the points . z 1 and . z 2 for the linear element .ds 2 = λ(z)(dx

2 + dy 2 ) in the domain M is . ρ λ, M (z 1 , z 2 ) = inf s λ (K) ,
where the lower boundary is taken over the set of all curves of bounded rotation connecting the points . z 1 and . z 2 , such that any curve is a limit of curves belonging to the domain M.

Let M be a closed domain. We say that M satisfies the condition P if every two points of M can be connected by a curve of bounded rotation that is contained in M.

Let . λ be a Borel measurable function in a closed domain M satisfying the condition P. Suppose that the distance between two points .z 1 ∈ M and . z 2 ∈ M for the linear element .λ(dx 2 + dy 2 ) is defined as the exact lower bound of the length for the linear element .λ(dx 2 + dy 2 ) of the curves of bounded rotation, joining the points . z 1 and . z 2 and contained in M. It is obvious that if . z 1 and . z 2 are interior points of the domain M, then

. ρ λ, M (z 1 , z 2 ) = ρ λ, M • (z 1 , z 2 ) , (4.3) 
where . M • is the interior of M. It is not difficult to see that we always have

. ρ λ, M (z 1 , z 2 ) = ρ λ, M (z 2 , z 1 ) ≥ 0 . (4.4)
Also, the triangle inequality holds

. ρ λ, M (z 1 , z 2 ) + ρ λ, M (z 2 , z 3 ) ≥ ρ λ, M (z 1 , z 3 ) .
Indeed, let L and K be curves of bounded rotation from . z 1 to . z 2 in M and from . z 2 to . z 3 , respectively (for simplicity, we consider that M is a closed domain). These curves form a curve N of bounded rotation from . z 1 to . z 3 . We have

. s λ (K) + s λ (L) = s λ (N) ≥ ρ λ (z 1 , z 3 ) .
As the curves K and L are arbitrary,

. ρ λ, M (z 1 , z 2 ) + ρ λ, M (z 2 , z 3 ) = inf s λ (K) + inf s λ (L) ≥ ρ λ, M (z 1 , z 3 ) ,
what we wanted to prove.

If . λ is an arbitrary non-negative function, it can occur that . ρ λ, M (z 1 , z 2 ) = 0, even if .z 1 z 2 . That is why the function . ρ λ, M (z 1 , z 2 ), strictly speaking, is not a metric. In the case we are interested in, we will prove in the second part of this work that when

.z 1 z 2 , . ρ λ, M (z 1 , z 2 ) > 0.
That is why we keep calling the function . ρ λ, M a metric, even in the general case. The index M in the notation . ρ λ, M will be omitted every time we do not need to precise it.

Let us introduce some notation. Let . ω be a signed measure with support contained in a disc, and defined on the ring of Borel sets of the complex plane of the variable .z = x + iy, let M be a bounded domain in the plane, and let h be a harmonic function defined over M. Suppose that

.λ(z; ω, h) = exp 1 π ∬ M ln 1 z -ζ dω(ζ) + h(z) , (4.5) 
where the integral in the right part is understood as a Lebesgue-Stieltjes integral, and .ζ = ξ + iη is the integration variable. In the case when .h ≡ 0, we will denote the right-hand side of the equality (4.5) only by .λ(z; ω).

The measure . ω determines a metric . ρ λ, M in the domain M and is called the curvature of this metric.

A metric . ρ λ, M in a domain M is called subharmonic if the function . λ can be presented in the form . λ(z) = λ(z; ω, h) .

The logarithm of the function .λ(z; ω, h) is equal to the difference of two functions

. u 1 (z) = 1 π ∬ ln |z -ζ |dω -(ζ) + h(z) , u 2 (z) = 1 π ∬ ln |z -ζ |dω + (ζ) .
Each of these functions is subharmonic, because of the well-known Riesz Theorem from the theory of subharmonic functions (see, for instance, [START_REF] Rado | Subharmonic functions[END_REF]). The added term h can be arbitrary included as a part of either . u 1 or . u 2 . In particular, if . ω is a positive measure, then the logarithm of . λ, and hence the function . λ itself, are subharmonic.

Let . ρ λ be a metric over a domain M. It can happen that for some point .z 0 ∈ M,

. ρ λ (z 0 , ζ) = ∞ for any .ζ z 0 .
The points of the domain M that satisfy this condition are said to be points at infinity for the metric . ρ λ . In order for a point . z 0 to be a point at infinity for the metric . ρ λ, M it is necessary and sufficient that for any curve L of bounded rotation starting from the point . z 0 , the following inequality holds:

. s λ (L) = ∞ .

As it will be proved in the second part, if the metric . ρ λ, M is subharmonic, . z 0 is a point at infinity for the metric . ρ λ if .s λ (L) = ∞ holds for at least one broken line L starting from the point . z 0 .

The main result of the present work are the following two theorems.

Theorem I Let . ρ λ, M be a subharmonic metric on a domain M, where . λ(z) = λ(z; ω, h). Then M endowed with this metric is a two-dimensional manifold of bounded curvature. Moreover, all the points .z ∈ M for which .ω({z}) > 2π, and some of the points z for which .ω({z}) = 2π, are the points at infinity of M for the metric . ρ λ, M .

Theorem II Any domain in a two-dimensional manifold of bounded curvature whose closure is homeomorphic to a disc is isometric to some domain in the plane endowed with a subharmonic metric. Here, the domain in the manifold is supposed to be metrized such that the distance between an arbitrary couple of points is equal to the exact lower bound of the lengths of the curves on the manifold connecting these points and contained in this domain.

Let M be a domain in a two-dimensional manifold of bounded curvature isometric to a domain . M * of the plane endowed with a subharmonic metric . ρ λ, M * . Let.z = ϕ(X) be an isometric mapping of the domain M onto . M * . Let us consider the coordinates of the point .ϕ(X ) to be the corresponding coordinates of the point X in the manifold of bounded curvature. The coordinate system, defined in such way in a domain M, is called isothermal. In these terms, the result of Theorem II can be stated as follows.

In any domain that satisfies the condition of the theorem in a two-dimensional manifold of bounded curvature, one can introduce an isothermal coordinate system, i.e., a coordinate system for which the metric of the domain is determined by a generalized linear element

. ds 2 = λ(z)(dx 2 + dy 2 ), λ(z) = λ(z; ω, h) .
Theorems I and II are corollaries of a theorem about convergence of metrics, whose proof is based on three basic lemmas. The reduction of the proof of the Metrics Convergence Theorem, as well as the proof of the Theorems I and II, to the proof of the three basic lemmas is the content of this part of the work. The proofs of the lemmas themselves will be given in the second part. §5 Metrics Convergence Theorem Theorem III (Metrics Convergence Theorem) Let M be a bounded closed domain in the plane, whose boundary consists of a finite number of pairwise non-intersecting simple closed curves of bounded rotation. Let (ω 1 n ) n , (ω 2 n ) n be two sequences of positive measures with support contained in a given disc {|z| ≤ R}. Suppose that as n → ∞, the measures ω 1 n converge weakly to some measure ω 1 0 and the measures ω 2 n converge weakly to some measure ω 2 0 . Let us define

. ω n = ω 1 n -ω 2 n , ω 0 = ω 1 0 -ω 2 0 ; . λ n (z) = λ(z; ω n ), n ∈ N ,
and let ρ λ n be the metric defined over the domain M by the linear element ds 2 = λ n (z)(dx 2 + dy 2 ). If z 0 and ζ 0 are points in the domain M such that ω 1 0 ({z 0 }) < 2π and ω 1 0 ({ζ 0 }) < 2π, and

z n → z and ζ n → ζ 0 , then . ρ λ 0 (z 0 , ζ 0 ) = lim n→∞ ρ λ n (z n , ζ n ) .
A sequence of measures in a topological space R is said to converge weakly to a measure ω 0 , if, for any continuous bounded function f , defined on R, we have

. ∫ R f (X)dω 0 (X) = lim n→∞ ∫ R f (X)dω n (X) .
The proofs of the properties of the notion of weak convergence of measures that we use in what follows may be found in [START_REF] Alexandrov | Additive set-functions in abstract spaces[END_REF][START_REF] Alexandrov | Additive set-functions in abstract spaces[END_REF][START_REF] Alexandrov | Additive set-functions in abstract spaces[END_REF]. This statement can be formulated a bit differently: Under the condition of the theorem, the functions ρ λ n converge uniformly to ρ λ on any set F × F, where F is a closed subset of M without point z such that ω 1 0 ({z}) ≥ 2π. Let us prove that the Metrics Convergence Theorem can be reduced to the particular case when the measures ω j n , j = 1, 2, n ∈ N, have C 1 Lebesgue density, so that the metrics ρ λ n are Riemannian. Lemma 5.1 Let ω n be positive measures over the domain Q = {|z| ≤ R}, which converge weakly to ω 0 . For any n, let ω m,n m be a sequence of positive measures that converge weakly to ω n . Then, there is a sequence of indices (μ n ) n ≥1 such that when m n > μ n , then the measures ω m n ,n converge weakly to ω 0 .

Proof Let . A = sup n {ω n (Q)} .
Because the sequence (ω n ) n converges weakly, A < ∞. We have

. ω m,n (Q) -----→ m→∞ ω n (Q) . Let μ 1 n be such that, as m > μ 1 n , . ω m,n (Q) < A + 1 ,
and let {P 1 , P 2 , . . . , P k , . . .} be the set of all polynomials with rational coefficients over the plane, numbered in a particular order. Then for any k,

. lim m→∞ ∬ Q P k dω m,n = ∬ Q P k dω n .
Let now μ n ≥ μ 1 n be such that, as m ≥ μ n ,

. 

∬ Q P k dω m,n - ∬ Q P k dω n < 1 n for k = 1,
∬ Q P r dω n = ∬ Q P r dω 0 .
From the other side, as n ≥ r,

.

∬ Q P r dω m n ,n - ∬ Q P r dω n < 1 n ; from which it follows that . lim n→∞ ∬ Q P r dω m n ,n = ∬ Q P r dω 0 .
Thus, the measures ω m n ,n converge weakly to ω 0 on the set of all polynomials with rational coefficients. Because the sequence ω m n ,n (Q) n is bounded, and as m n > μ 1 n , and as any continuous function admits a uniform approximation by polynomials with rational coefficients, then ω m n ,n converge weakly to ω 0 as n → ∞. From Lemma 5.1, we have a sequence of indices μ 1 , μ 2 , . . . , μ n , . . . such that if m n > μ n , then as n → ∞ the measures ω j m n ,n converges weakly to

ω j 0 . Let . ω m,n = ω 1 m,n -ω 2 m,n .
As n → ∞, ω m n ,n converges weakly to the measure ω 0 . Let (z n ) n and (ζ n ) n be two sequences such that z n → z 0 , ζ n → ζ 0 , and moreover

ω 1 0 ({z 0 }) < 2π and ω 1 0 ({ζ 0 }) < 2π. The measure ω m,n gives a metric ρ λ m, n over M, where . λ m,n (z) = λ(z; ω m,n ) .
Applying the Metrics Convergence Theorem to the functions λ m,n (z) and λ n (z), under the hypothesis that for the regular case the theorem is proved, we obtain that

. ρ λ m, n (z n , ζ n ) -----→ m→∞ ρ λ n (z n , ζ n ) , if n is such that . ω 1 n ({z n }) < 2π, ω 1 n ({ζ n }) < 2π . The last condition clearly holds if n is large enough, n ≥ n 0 . Choose m n > μ n such that .| ρ λ mn, n (z n , ζ n ) -ρ λ n (z n , ζ n )| < 1 n (5.1)
and suppose . ω

j m n ,n = ω j n , λ m n ,n = λ n .
The measures ω j m n ,n converge weakly to ω j 0 when n → ∞, and they have C 1 Lebesgue density. Hence, by assumption,

. ρ λ n (z n , ζ n ) → ρ λ 0 (z 0 , ζ 0 ) . It follows from (5.1) that . ρ λ n (z n , ζ n ) ----→ n→∞ ρ λ 0 (z 0 , ζ 0 ) ,
what we had to prove. §6 Reduction of the Proof of the Metrics Convergence Theorem to the Proof of Three Basic Lemmas Lemma A (Lengths Convergence Lemma) Under the hypothesis of the Metrics Convergence Theorem, let (K n ) n be a sequence of curves of bounded rotation converging to K 0 , such that K 0 does not contain any point z with ω 1 0 ({z}) ≥ 2π. If the absolute rotations of the curves K n are uniformly bounded, then s λ n (K n ) → s λ 0 (K 0 ) and s λ 0 (K 0 ) < ∞. Lemmas A and B are sufficient to prove the Metrics Convergence Theorem when the closed domain M does not contain points z such that ω 1 0 ({z}) + ω 2 0 ({z}) ≥ 2π . Let us prove the metrics convergence Theorem for this particular case. We will assume that the measures ω 1 n , ω 2 n , n ∈ N \ {0}, have C 1 Lebesgue density and we consider curves K n and L n connecting, respectively, the points z 0 and z n , ζ 0 and ζ n and as n → ∞, converging to the points z 0 and ζ 0 . The construction will be different depending if the corresponding point belongs to the boundary or not. If z 0 is an interior point of the domain M, then for K n we can take the segment [z 0 , z n ]. Let now z 0 be a point of the boundary of M. Denote by z n the point on the boundary of M the closest to z n . Obviously for n large enough, n ≥ n 0 , the point z n belongs to the same component of the boundary of M than the point z 0 . Let us take for K n the curve made with the segment [z n z n ], together with the one of the two arcs z n z 0 of the boundary component of M, which has the smallest diameter. The curve L n is constructed in an analogous way.

Lemma B (Local

Let us prove that

. ρ λ 0 (z 0 , ζ 0 ) ≥ lim sup n→∞ ρ λ n (z n , ζ n ) . (6.1) 
Choose > 0 and a curve S ⊂ M of bounded rotation from z 0 to ζ 0 such that

. s λ 0 (S) ≤ ρ λ 0 (z 0 , ζ 0 ) + .
By completing the curve S by the arcs K n and L n , we obtain a curve S n . As n → ∞ the curves S n converge to the curve S, moreover the absolute rotations of the curves S n are uniformly bounded. Thus, by the Lengths Convergence Lemma,

. s λ n (S n ) ----→ n→∞ s λ 0 (S) .
For every n we have:

. ρ λ n (z 0 , ζ 0 ) ≤ s λ n (S n ) -→ s λ 0 (S 0 ) ≤ ρ λ 0 (z 0 , ζ 0 ) + ,
and passing to the limit we get:

. ρ λ 0 (z 0 , ζ 0 ) + ≥ lim sup n→∞ ρ λ n (z n , ζ n ) .
The inequality (6.1) is proved because > 0 is arbitrary.

Let us obtain the inequality

. ρ λ 0 (z 0 , ζ 0 ) ≤ lim inf n→∞ ρ λ n (z n , ζ n ) , (6.2) 
whose proof is based on the following lemma.

Lemma 6.1 Under the hypothesis of the Metrics Convergence Theorem, let ω j n (n ≥ 1) have C 1 Lebesgue density. Then, for any closed set F ⊂ M which does not contain points z such that ω 1 0 ({z}) + ω 2 0 ({z}) ≥ 2π, there exists a constant A < ∞ such that the absolute rotation of any curve K ⊂ F, shortest for the metric ρ λ n , is not greater than A.

Proof By the Local Estimate of Shortest Arcs Rotations Lemma, for every point z ∈ F there are a number A(z) and a neighborhood V(z) such that the absolute rotation of any shortest arc for the metric ρ λ n (n ≥ 1), connecting two points of the closure of the neighborhood V(z), does not exceed A(z) < ∞. By the Heine-Borel Lemma, there exists a finite system of neighborhoods

. V 1 = V(z 1 ), V 2 = V(z 2 ), . . . , V m = V(z m ) ,
covering the whole set F. Let A 0 be the largest of the numbers A(z 1 ), A(z 2 ),. . ., A(z m ), and let K ⊂ F be a shortest arc in the closed domain M for the metric ρ λ n , n ≥ 1. We denote by z 0 the starting point of the curve K. The point z 0 belongs to one of the neighborhood V j ; let, for instance, z 0 ∈ V j 0 . Let z 1 be the rightmost point of the curve K belonging to the closure of the neighborhood V j 0 . If z 1 is an extremity of the curve K, then we say that the construction is finished. Otherwise, z 1 lies on the boundary of V j 0 and belongs to some neighborhoods V j 1 . Let z 2 be the rightmost point of the curve K belonging to V j 1 . By continuing the construction, we will obtain at last a sequence of points . z 0 , z 1 , . . . , z p , . . . , of the curve K and a sequence of neighborhood . V j 0 , V j 1 , . . . , V j p , . . . , moreover, as it is seen from the construction, z l z k when l k. The neighborhoods V j 0 , V j 1 , . . . , V j p , . . . are all different because if, for instance, V j l = V j k and l > k, then the point z j l+1 must belong to the closure of V j k and lie on the curve K, more to the right than the point z j k+1 , that contradicts the definition of this last one. Because the number of neighborhoods V 1 , V 2 ,. . ., V m is finite, the construction ends after a finite number of steps, and hence, for some p ≤ m, z p is the endpoint of the curve K. As the absolute rotation of any of the arcs z l z l+1 of the curve K does not exceed A 0 , it follows that absolute rotation of the curve K itself does not exceed

. A = mA 0 + (m -1)π < ∞ ,
what we had to prove.

Let us return to the inequality (6.2) that we want to prove. Let (n k ) k be such that . lim

n k →∞ ρ λ n k (z n k , ζ n k ) = lim inf n→∞ ρ λ n (z n , ζ n ) .
Let L k be an arc from z n k to ζ n k , shortest for the metric ρ λ n k . By the lemma above, the absolute rotations of the curves L k do not exceed some constant A < ∞. Hence, by Theorem 3.6, from the curves L k we can extract a subsequence converging to a curve L 0 from z 0 to ζ 0 . For this sequence

. s λ n k (L k ) -→ s λ 0 (L 0 ) by the Lengths Convergence Lemma. But . s λ 0 (L 0 ) ≥ ρ λ 0 (z 0 , ζ 0 ) . We deduce that . lim inf n→∞ ρ λ n (z n , ζ n ) = lim n k →∞ s λ n k (L k ) ≥ ρ λ 0 (z 0 , ζ 0 ) ,
what we wanted to prove.

By comparing the inequalities (6.1) and (6.2) , we obtain that

. ρ n (z n , ζ n ) ----→ n→∞ ρ λ 0 (z 0 , ζ 0 ) .
Thus, for the case under consideration, Theorem III is proved.

For the proof of the Metrics Convergence Theorem in the general case we need the following lemma.

Lemma C In a closed domain M, let ρ λ, M be a subharmonic metric, λ = λ(z; ω), and let z ∈ M be a point in the domain M. Denote by C r (z 0 ) the circle {|zz 0 | = r } and by Q r (z 0 ) the disc {|zz 0 | ≤ r }. If z 0 is a point at infinity, then ω({z 0 }) ≥ 2π, and for any > 0 and N > 0, there are numbers r 1 and r 2 , such that 0 < r 1 < r 2 < , and the distance between C r 1 (z 0 ) and C r 2 (z 0 ), for the metric ρ λ, M , is greater than N. If z 0 is not a point at infinity, then ω({z 0 }) ≤ 2π and as r → 0, s λ (C r (z 0 )) and the diameter d r (z 0 ) of the disc Q r (z 0 ) for the metric ρ λ tend to zero.

Let us now prove the Metrics Convergence Theorem in the general case. Suppose that

.ω 1 0 ({z 0 }) + ω 2 0 ({z 0 }) < 2π, ω 1 0 ({ζ 0 }) + ω 2 0 ({ζ 0 }) < 2π .
Join the points z 0 and ζ 0 by a curve of bounded rotation which does not contain points z with ω 1 0 ({z}) ≥ 2π. It is not difficult to prove that

. ρ λ 0 (z 0 , ζ 0 ) < ∞ .
It follows that there exists a number R < ∞ such that for all n,

. ρ λ n (z n , ζ n ) < R .
Let us prove the inequality

. ρ λ 0 (z 0 , ζ 0 ) ≤ lim inf n→∞ ρ λ n (z n , ζ n ) . (6.3) Let X 1 , X 2 , . . . , X p , Y 1 , Y 2 , .
. . , Y q be all the points of the closed domain M for which (ω 1 0 + ω 2 0 )({z}) ≥ 2π, the points Y 1 , Y 2 , . . . , Y q being the points at infinity for the metric ρ λ 0 , M , and the points X 1 , . . . , X p being not. Let 2h be the smallest distance between the points z 0 , ζ 0 , X 1 , X , . . . , X p , Y 1 , Y 2 , . . . , Y q .

Choose > 0 and for any point Y j ( j = 1, . . . , q) consider the circles C j and C j of radii r j and r j , 0 < r j < r j < h, with center at Y j , such that the distance between the circle C j and C j for the metric ρ λ 0 is greater than R + 1. The ring K = {r j ≤ |z -Y j | ≤ r j } does not contain any point z with (ω 1 0 + ω 2 0 )({z}) ≥ 2π. In this case, the proven part of the Metrics Convergence Theorem applies, and we get that the distance between C j and C j for the metric ρ λ n ,K converges to the distance between these circles for the metric ρ λ 0 as n → ∞. Therefore, there exists n 0 such that for n > n 0 , the distance between the circles C j and C j for the metric ρ λ n is greater than R + 1 for all j = 1, 2, . . . , q.

Denote by

Q j the disc {|z -Y j | ≤ r j }. Let r k , 0 < r k < h, be such that for the circle C k of radius r k centered at X k , . s λ 0 (C k ) < p .
By the Lengths Convergence Lemma,

. s λ n (C k ) ----→ n→∞ s λ 0 (C k ) ,
and hence, there exists n 1 ≥ n 0 such that, for n > n 1

.

s λ n (C k ) < p .
Let K n be a shortest arc for the metric ρ λ n , M in the domain M that joins the points z n and ζ n . For n > n 1 , the curve K n does not enter into the disc Q j , because otherwise its length should be greater than R + 1, which contradicts the condition

.s λ n (K n ) = ρ λ n (z n , ζ n ) < R .
For any n, the curve K n can, however, enter into the disc P k = {|z -X k | < r k }. Let z 1 n be the first point of the curve K n which belongs to one of the circle C k , counting from z n , and let ζ 1 n be the rightmost point on the curve K n lying on the same circle C k . Counting from ζ 1 n , let z 2 n be the first point on the curve K n which belongs to one of the other circle C k (if there is no such a point, then we consider our construction as finished), and let ζ 2 n be the rightmost point of the curve K n which belongs to the same circle C k than the point z 2 n . Then, counting from ζ 2 n , we take the first point of the curve K n which belongs to the one of the remaining circles C k , etc. At the end of the day, we obtain a sequence of pair of points

. z 1 n , ζ 1 n , z 2 n , ζ 2 n , . . . , z l n , ζ l n
of the curve K n , and clearly l ≤ p, because each of the circles can be met at most once during the construction process. The arcs

. z n z 1 n , ζ 1 n z 2 n , . . . , ζ l n ζ n lie in the closed set . M \ p k=1 P k q j=1 Q j ,
which does not contain points z with ω 1 0 ({z}) + ω 2 0 ({z}) ≥ 2π and hence, by Lemma 6.1, the absolute rotation of each of these arcs does not exceed some number A < ∞ for all n. The points z Replace the arc z j n ζ j n of the curve K n by the arc of the corresponding circle C k . In the same time, the length of the curve K n for the metric ρ λ n will increase by at most p . By doing this replacement for all k, we obtain a curve K n , for which

. s λ n (K n ) ≤ s λ n (K n ) + .
The absolute rotation of the curve K n does not exceed p(A + 4π), hence the absolute rotation of the curves K n are uniformly bounded. Choose from (K n ) n a subsequence for which

.

s λ n (K n ) -→ lim inf n→∞ s λ n (K n ) ,
and from the last one, we extract a subsequence converging to some curve K 0 . Obviously z 0 ∈ K 0 and ζ 0 ∈ K 0 . We have:

.

ρ λ 0 (z 0 , ζ 0 ) ≤ s λ 0 (K 0 ) = lim inf n→∞ s λ n (K n ) ≤ lim inf n→∞ ρ λ n (z n , ζ n ) + .
Because > 0, the inequality (6.3) is proved.

Let us now prove the inequality

. ρ λ 0 (z 0 , ζ 0 ) ≥ lim sup n→∞ ρ λ n (z n , ζ n ) . (6.4)
Join the points z 0 and ζ 0 by a curve of bounded rotation, lying in the domain M, which does not contain any point Y j . Avoiding the point X j by following an arc of the circle C k , we construct from K a curve K , which also does not contain any point X j , and is such that

. s λ 0 (K ) < s λ 0 (K) + ,
where > 0 is arbitrary. Let K n be the curve obtained from K by joining the points z n and ζ n . We have

. s λ n (K n ) ----→ n→∞ s λ 0 (K ) . Therefore . s λ 0 (K) ≥ s λ 0 (K ) -= lim n→∞ s λ n (K n ) -≥ lim sup n→∞ ρ λ n (z n , ζ n ) -.
As K and > 0 are arbitrary, it follows that

. ρ λ 0 (z 0 , ζ 0 ) = inf s λ 0 (K) ≥ lim sup n→∞ ρ λ n (z n , ζ n ) ,
i.e., the inequality (6.4) is proved. From (6.3) and ( 6.4) , we obtain that

. ρ λ n (z n , ζ n ) ----→ n→∞ ρ λ 0 (z 0 , ζ 0 ) .

Let us now get rid of the restriction

. ω 1 0 ({z 0 }) + ω 2 0 ({z 0 }) < 2π , ω 1 0 ({ζ 0 }) + ω 2 0 ({ζ 0 }) < 2π .

Let > 0 and points z 0 and ζ 0 close to the points z 0 and ζ 0 , and let K 0 , K n and L 0 , L n be curves from, respectively, z 0 to z 0 , z n to z 0 , ζ 0 to ζ 0 , ζ n to ζ 0 . The construction will be different depending if the points z 0 , ζ 0 are boundary points or not. If z 0 is an interior point of the domain M, then the point z 0 can be chosen so that the segment K 0 = [z 0 z 0 ] does not contain any point z with (ω 1 0 + ω 2 0 )({z}) ≥ 2π and with (ω 1 0 + ω 2 0 )({z 0 }) = 0. For the curve K n , we can choose in this case the segment [z n z 0 ]. If z 0 is a boundary point of the domain M, then the boundary point z 0 can be chosen so that ω 1 0 ({z 0 }) < 2π and the arc z 0 z 0 of the boundary of M does not contain any point z with ω 1 0 ({z}) ≥ 2π and s λ 0 (K 0 ) < . Denote by z n the point of the boundary of the domain M the closest to z n . Obviously, for n large enough, the point z n belongs to the same component of the boundary of M than the point z 0 . For K n we take the curve made by the segments [z n z n ] and the arc z n z 0 of the boundary of M, which converge to the arc z 0 z 0 as n → ∞. The point ζ 0 and the curves L 0 and L n are built in an analogous way. Because

.L n ----→ n→∞ L 0 ,
and because the absolute rotation of the curves K n and L n are uniformly bounded, the Lengths Convergence Lemma implies that

. s λ n (L n ) ----→ n→∞ s λ 0 (L 0 ), s λ n (K n ) ----→ n→∞ s λ 0 (K 0 ) .
Hence, there exists n 0 such that for n > n 0

. s λ n (L n ) < , s λ n (K n ) < ,
and for these n,

.

ρ λ n (z n , z 0 ) < , ρ λ n (ζ n , ζ 0 ) < .
Then we have:

. ρ λ 0 (z 0 , z 0 ) < , ρ λ 0 (ζ 0 , ζ 0 ) < .
By what was proved,

. ρ λ n (z 0 , ζ 0 ) ----→ n→∞ ρ λ 0 (z 0 , ζ 0 ) ,
because for the points z 0 and ζ 0 , (ω

1 0 + ω 2 0 )({z 0 }) < 2π and (ω 1 0 + ω 2 0 )({ζ 0 }) < 2π. Therefore, there exists n 1 ≥ n 0 such that, for n > n 1 , . | ρ λ n (z 0 , ζ 0 ) -ρ λ 0 (z 0 , ζ 0 )| < and for these n, . | ρ λ n (z n , ζ n ) -ρ λ 0 (z 0 , ζ 0 )| ≤|ρ λ n (z n , ζ n ) -ρ λ n (z 0 , ζ 0 )| + | ρ λ n (z 0 , ζ 0 ) -ρ λ 0 (z 0 , ζ 0 )| + | ρ λ 0 (z 0 , ζ 0 ) -ρ λ 0 (z 0 , ζ 0 )| . But for n > n 1 , . | ρ λ n (z n , ζ n ) -ρ λ n (z 0 , ζ 0 )| ≤ ρ λ n (z n , z 0 ) + ρ λ n (ζ n , ζ 0 ) < 2 . Analogously, . | ρ λ 0 (z 0 , ζ 0 ) -ρ λ 0 (z 0 , ζ 0 )| < 2 . Thus, for n > n 1 . | ρ λ n (z n , ζ n ) -ρ λ 0 (z 0 , ζ 0 )| < 5 .
The theorem follows because > 0 is arbitrary.

In conclusion we remark that the condition

. ω 1 0 ({z 0 }) < 2π, ω 1 0 ({ζ 0 }) < 2π
of the Metrics Convergence Theorem cannot be omitted, that can be shown on easy examples.

§7 Proof of Theorem I

After what was said before, Theorem I seems to be almost obvious. It is sufficient to construct a proper sequence of measures . ω n having . C 1 Lebesgue density and converging weakly to . ω 0 , and to apply the Metrics Convergence Theorem; then Theorem I will seem to be proved, because of Theorem A from paragraph 2. However, we face a difficulty that the measure . ω 0 can have points z such that .ω 0 ({z}) = 2π, and the Metrics Convergence Theorem cannot be applied to these points. That is why the sequence . ω n should be constructed in some special way. This construction is realized in the proof of the following lemma.

Lemma 7.1 Let . λ = λ(ω, h)
be a function over the plane, and let M be a domain whose boundary consists of a finite number of pairwise non-intersecting simple closed curves of bounded rotation. Then there exists a sequence of Riemannian metrics . ρ λ n , where

. λ n = λ(ω n , h) ,
such that, as .n → ∞, . ω n converges weakly to . ω and the metrics . ρ λ n converges to the metric . ρ λ uniformly on any closed set .F ⊂ M, which does not have common points with the boundary of M and does not contain points at infinity for the metric . ρ λ .

Proof For every z we have

. ln λ(z) = 1 π ∬ ln 1 z -ζ dω + (ζ) - 1 π ∬ ln 1 z -ζ dω -(ζ) + h(z) .
Consider the function defined by

. u(z) = ∬ ln 1 z -ζ dω + (ζ) . Let . α h (z) = γ h exp h 2 |z | 2 -h 2 if |z| ≤ h , 0 i f |z| > h ,
where the constant . γ h is determined by the condition

. ∫ +∞ -∞ ∫ +∞ -∞ α h (z)dxdy = 1 . The function . α h is . C ∞ . We set .u h (z) = ∫ ∞ -∞ ∫ ∞ -∞ u(z + w)α h (w)dpdq ,
where .w = p + iq. Considering polar coordinates .( ρ, ϕ), .p = ρ cos ϕ, q = ρ sin ϕ, we obtain:

. u h (z) = ∫ ∞ 0 ∫ 2π 0 u(z + ρe iϕ )ρdϕ α h (ρ)dρ .
The function . -u is subharmonic, and hence the average value of this function on a circle cannot be smaller than the value of this function at the center of this circle. For the function u, the inverse inequality holds, i.e., .

2π

∫ 2π 0 u(z + ρe iϕ )ρdϕ ≤ u(z) , from which we obtain . u h (z) = ∫ ∞ 0 2πρu(z)α h (ρ)dρ ≤ u(z) for all z.
Let us write the expression for the function .u h (z) in the form of a logarithmic potential. We have:

.

u h (z) = ∬ u(z + w)α h (w)dpdq = ∬ ∬ ln 1 z + w -ζ α h (w)dpdq dω + (ζ) .
Substituting .ζ -w = ζ 1 in the inner integral, we get:

.

∬ ln 1 z + w -ζ α h (w)dpdq = ∬ ln 1 z -ζ 1 α h (ζ -ζ 1 )dξ 1 dη 1
and, hence,

. u h (z) = ∬ ∬ ln 1 z -ζ 1 α h (ζ -ζ 1 )dξ 1 dη 1 dω + (ζ) .
Changing the order of integration, we get

. u h (z) = ∬ ln 1 z -ζ 1 ∬ α h (ζ -ζ 1 )dω + (ζ) dξ 1 dη 1 = ∬ ln 1 z -ζ 1 f h (ζ 1 )dξ 1 dη 1 ,
where

. f h (ζ 1 ) = ∬ α h (ζ -ζ 1 )dω + (ζ) .
The function . f h is . C ∞ and it is the Lebesgue density of a measure that converges weakly to the measure . ω + as .h → 0.

Let us choose a sequence .(h n ) n , where .h n > 0, .h n → 0 as .n → ∞. We define

. ω n (E) = ∬ E f h n (z)dudv -ω -(E) ,
and let

. λ n (z) = λ(z; ω n , h) = exp 1 π u h n (z) - 1 π ∬ ln 1 z -ζ 1 dω -(ζ) + h(z) .
Then for any n, .λ n (z) ≤ λ(z) for all z, and . ω n converges weakly to . ω when .n → ∞.

Let us prove that the metrics . ρ λ n converge to the metric . ρ λ uniformly on any closed set F, which does not intersect the boundary of M and does not contain points which are points at infinity for the metric . ρ λ . For this purpose, it is sufficient to show that if .(z n ) n and .(ζ n ) n are two converging sequences of points, .z n → z 0 , .ζ n → ζ 0 , such that . z 0 and . ζ 0 are in the interior of M and none of them is a point at infinity of the domain M, then

. ρ λ n (z n , ζ n ) ----→ n→∞ ρ λ 0 (z 0 , ζ 0 ) .
When .ω + ({z 0 }) < 2π and .ω + ({ζ 0 }) < 2π, this follows from the Metrics Convergence Theorem.

Let us consider that a finite charge of the measure . ω + equal to . 2π is concentrated in one or in both of the points . z 0 and . ζ 0 . Let . Q ρ and . S ρ be the discs of radii . ρ with centers . z 0 and . ζ 0 , respectively, and let .d( ρ) and . δ(ρ) be the diameters of these discs for the metric . ρ λ . For any n, .λ n ≤ λ, so the diameters of the discs . Q ρ and . S ρ for the metrics . ρ λ n do not exceed .d( ρ) and . δ(ρ), respectively. Because . z 0 and . ζ 0 are not points at infinity for the domain M, then .d( ρ) → 0 and .δ( ρ) → 0 when . ρ → 0.

For . > 0, let . ρ > 0 such that . d(ρ) + δ(ρ) < 3 .

Let .z ∈ Q ρ and .ζ ∈ S ρ be in the interior of M and such that

. ω + ({z }) = 0, ω + ({ζ }) = 0 .

We have:

. | ρ λ (z 0 , ζ 0 ) -ρ λ (z , ζ )| ≤ 3 .
As .n → ∞, .z n → z 0 and .ζ n → ζ 0 . Hence, there is . n 1 such that, for .n > n 1 , .z n ∈ Q ρ , ζ n ∈ S ρ , and for such n

. | ρ λ n (z n , ζ n ) -ρ λ n (z , ζ )| ≤ ρ λ n (ζ n , ζ ) + ρ λ n (z n , z ) ≤ d(ρ) + δ(ρ) < 3 . Next, . | ρ λ n (z n , ζ n ) -ρ λ (z 0 , ζ 0 )| ≤ |ρ λ n (z n , ζ n ) -ρ λ n (z , ζ )| + | ρ λ n (z , ζ ) -ρ λ (z , ζ )| +| ρ λ (z , ζ ) -ρ λ (z 0 , ζ 0 )| hence . | ρ λ n (z n , ζ n ) -ρ λ (z 0 , ζ 0 )| < 2 3 + | ρ λ n (z , ζ ) -ρ λ (z , ζ )| .
By the Metrics Convergence Theorem, whose requirements are fulfilled by the points . z and . ζ ,

. ρ λ n (z , ζ ) ----→ n→∞ ρ λ (z , ζ ) .
Therefore, there is .n 2 > n 1 such that for . n > n 2

. | ρ λ n (z , ζ ) -ρ λ (z , ζ )| < 3 ,
and for these n,

. | ρ λ n (z n , ζ n ) -ρ λ (z 0 , ζ 0 )| < . Hence . ρ λ n (z n , ζ n ) ----→ n→∞ ρ λ (z 0 , ζ 0 ) ,
what we wanted to prove.

Proof of Theorem I

Proof Let ρ λ be a metric over an open domain M of the plane, where the function λ is defined by the equality . λ(z) = λ(z; ω, h) ; here h is a harmonic function, ω is a measure. We have to prove that the domain M endowed with the metric ρ λ is a manifold of bounded curvature. For this purpose it is sufficient to show that for any point z ∈ M, which is not a point at infinity for the metric ρ λ , there is a neighborhood that can be uniformly approximated by two-dimensional Riemannian manifolds with boundary with uniformly bounded curvature. We prove that the approximating manifolds can be chosen so that the requirements of Theorem B are also satisfied. Let z 0 be a point of M, which is not a point at infinity for the metric ρ λ , and let Q r 0 = Q r 0 (z 0 ) be a disc of radius r 0 centered at z 0 , which is contained in M and which does not contain points at infinity of the domain M. Let us set r 1 < r 0 . For z ∈ Q r 0 we have:

. λ(z) = exp 1 π ∬ Q r 0 ln 1 z -ζ dω(ζ) + h * (z) .
Over Q r 1 the function h * can be represented as a logarithmic potential:

. h * (z) =

1 π ∫ |z-z 0 |=r 1 ∂h * (ζ) ∂v ln 1 z -ζ dσ + h * (0) = 1 π ∬ Q r 0 ln 1 z -ζ dψ(ζ) + C ,
where ψ is a measure concentrated on the circle {|ζz 0 | = r 1 } and equal to the integral of the normal derivative ∂h * (ζ ) ∂ν by the arc length.

Let

. ω + ψ = ω , and let

. λ 0 (z) = exp 1 π ∬ Q r 0 ln 1 z -ζ d ω(ζ) .
For z ∈ Q r 1 , λ 0 (z) coincides with λ(z), and for z Q r 1 , in general, λ 0 (z) λ(z). It is obvious that the disc Q r 1 also does not contain points at infinity for the metric ρ λ 0 . For > 0, the previous lemma gives a measure ω 1 such that

. |ω 1 |(Q r 1 ) < | ω|(Q r 1 ) + 1 ,
and if λ 1 (z) = λ(z; ω 1 ), then

. | ρ λ 1 (z, ζ) -ρ λ 0 (z, ζ)| < 2 ,
and for any point

z ∈ Q r 1 , ω 1 ({z}) < 2π.
Next, we take a sequence of measures ω n having C 1 Lebesgue density, converging weakly to ω 1 and such that

. ω + n -→ ω + 1 , ω - n -→ ω - 1
weakly. If ρ λ n is the metric given by the measure ω n , then by the Metrics Convergence Theorem,

. ρ λ n (z, ζ) ----→ n→∞ ρ λ 1 (z, ζ) uniformly in Q r 1 .
Let n be such that

. |ω n |(Q r 1 ) < | ω|(Q r ) + 1, | ρ λ n (z, ζ) -ρ λ 1 (z, ζ)| < 2 .
We have obviously:

. | ρ λ n (z, ζ) -ρ λ 0 (z, ζ)| < ,
where λ n (z) = λ(z; ω n ). The metric ρ λ n is Riemannian. Let us estimate the absolute turn of the boundary C r 1 of the disc Q r 1 for this metric. If θ is the angle under which the arc of the circle C r 1 is seen from the center, using obvious notation:

. κ λ n (θ) = θ -

1 2π ∬ Q r 1 ϕ(θ, z)dω n (z) . It follows that . |κ λ n |(2π) = 2π 0 κ λ n ≤ 2π + 1 2π ∬ Q r 1 2π 0 ϕ(•, z)d|ω n |(z) .
In particular, we get:

. |κ λ n |(C r 1 ) < 2π + | ω|(Q r 1 ) + 1 .
Because > 0 is arbitrary, it is clear that for the point z 0 the requirements of Theorem B are satisfied if we take the disc Q r 1 (z 0 ) as the desired neighborhood U. Thus Theorem I is completely proved. §8 Proof of Theorem II

Let R be a domain in a manifold of bounded curvature homeomorphic to a closed disc, let .R 1 , .R 2 , .. . . , .R n , . . . . be domains homeomorphic to a closed disc in twodimensional Riemannian manifolds whose metrics converge uniformly to the metric of R, and moreover, the absolute curvatures of the domains . R n and the absolute turns of the boundaries of the domains . R n are uniformly bounded. Theorem B provides, for any point of a manifold of bounded curvature, the existence of a neighborhood R and of Riemannian manifolds . R n , which satisfy the condition mentioned above. Let . A < ∞ be a constant such that for every n

. |ω n |(R n ) < A, |κ|(L n ) < A ,
where . L n is the boundary of . R n . Because of the uniform convergence of the metrics, the diameter of the domains . R n are uniformly bounded. Let .D < ∞ be a constant such that, for all n, the diameter of the domain . R n is smaller than D.

Let X be a point in the interior of the domain R and let . X n be points in . R n such that for .n → ∞, .X n → X. Because of the uniform convergence of the metrics, there is a constant .h > 0 such that for any n, the distance of the point . X n to the boundary of the domain . R n will be greater than h.

Let us introduce in the domain . R n isothermal coordinates .(x, y), such that the unit disc . Q = {x 2 + y 2 ≤ 1} is the domain of the coordinate change, and the point . X n has coordinates .x = 0 and .y = 0. In these coordinates, the linear element of the domain . R n has the form . ds 2 = λ n (dx 2 + dy 2 ) ,

where . λ n = λ(ω n , h n ) (. ω n is the integral curvature of . R n , . h n is a harmonic function).
The measures . ω n , as it is seen from there construction, are uniformly bounded, and hence, one can extract from them a sequence converging weakly. Each of the functions . h n can be represented as a logarithmic potential with a mass concentrated on the boundary of the disc Q. If we prove that the masses of these potentials are uniformly bounded, then we will be able to apply the Metrics Convergence Theorem.

The function . h n can be expressed as a function of its normal derivatives . ∂h n ∂ν on the circle . C 1 = {|z| = 1} as follows:

. h n (z) = 1 π ∫ 2π 0 ∂h n (e iϕ ) ∂ν ln 1 z -e iϕ dϕ + c n ,
where . c n is a constant, .c n = h n (0).

Let us define on the circle . C 1 a measure . ψ n , such that for .

E ⊂ C 1 , . ψ n (E) = ∫ E ∂h n (e iϕ ) ∂ν dϕ .
Let us extend the measure . ψ n to all the Borelian of the plane, by defining for an arbitrary E . ψ n (E) := ψ n (E ∩ C 1 ) .

It clearly follows that:

.

h n (z) = 1 π ∬ Q ln 1 z -ζ dψ n (ζ) + c n , and . λ n (z) = λ(z; ω n + ψ n , c n ) .
Let us prove that the variations of the measures . ψ n and the constants . c n are uniformly bounded. Let us use the formula for the turn of a curve in a Riemannian manifold in isothermal coordinates. Let the parameter . θ (. 0 ≤ θ ≤ 2π) be the arc length of the circle . C 1 . The turn of the arc . 0θ of the circle . C 1 for the metric . ρ λ n is equal to

. κ λ n (θ) = θ - 1 2π ∬ Q ϕ(θ, z)dω n (ζ) - 1 2 ∫ θ 0 ∂h n (e iϕ ) ∂v dϕ ,
where .ϕ(θ, z) is the angle under which the angle . 0θ is seen from the point z of the disc Q. By hypothesis, for all n the absolute turn of the boundary . L n of the domain

. R n satisfies . 2π 0 κ λ n ≤ A .
We have:

. ψ n (θ) = ∫ θ 0 ∂h n (e iϕ ) ∂v dϕ = 2θ - 1 π ∬ Q ϕ(θ, z)dω n (ζ) -2κ λ n (θ) ,
from which it follows:

. 2π 0

ψ n = ∫ 2π 0 ∂h n (e iϕ ) ∂v dϕ ≤ 4π + 1 π ∬ Q 2π 0 ϕ(•, z)d|ω n |(ζ) + 2 2π 0 κ λ n ≤ 4π + 2A + 2A = 4(π + A) .
Thus the variation of the measures . ψ n is uniformly bounded.

Let

. ω n = ω n + ψ n .

As the variations of the measures . ωn are uniformly bounded, it is possible to extract a subsequence converging weakly. For the sake of simplicity, we will consider that the sequence .( ωn ) n already converges weakly to some measure . ω0 .

Let .(c n m ) m be a subsequence converging to some finite or infinite limit . c 0 , and let the measures . ω+ n converge weakly to a measure . ω1 0 . Let .z 1 , z 2 , . . . , z p be all the points on the discs for which the limit . ω1 0 of the upper variations of the measures . ωn is not less than . 2π. By the Metrics Convergence Theorem, the metrics . ρ λ nm , where . λ n m (z) = e -c nm λ n m (z) , converge to the metric . ρ λ0 , where . λ0 (z) = λ(z; ω 0 ) , uniformly on every closed set which does not contain the points .z 1 , z 2 , . . . , z p . Let ABC be a triangle whose vertices are lying on the circle . C 1 , and such that none of the points . z j belongs to the boundary of this triangle. The perimeter of the triangle ABC for the metric . ρ λ 0 is bounded. By the Lengths Convergence Lemma, . s λ nm (T) converge to .s λ 0 (T), as .n → ∞, where T is the boundary of the triangle ABC. It follows that .c 0 > -∞, because otherwise, .s λ nm (T) → 0, and from the uniform convergence of the metrics of the manifolds . R n to the metric of R, we conclude that the three boundary arcs AB, BC, and C A of the domain R have a common point, that is impossible.

Let us prove that .c 0 < ∞. Indeed, let . ζ 1 and . ζ 2 be two points in the disc Q which do not coincide with any of the points .z 1 , z 2 , . . . , z p and such that the distances between them for the metric . ρ λ 0 is equal to .d 0 > 0. Then the distances . d m = ρ λ nm (ζ 1 , ζ 2 ) converge to . d 0 as .m → ∞. The distance between the points . ζ 1 and . ζ 2 for the metric . ρ λ nm is equal to .e c nm d m , and if .c n m → ∞, then the diameters of . R n m are not bounded from above. This, however, contradicts the fact that . R n m converges to R, and hence that the diameter of R is finite. Therefore, .c 0 < ∞, and we obtain that . c 0 is a finite number.

To simplify the notation, we set

. ω n m = ω m , λ n m = λ m , c n m = c m .

In the disc Q, we have a sequence of metrics . ρ λ m , where .λ m (z) = λ(z; ωm , c m ), converging to a metric . ρ λ 0 uniformly on every closed set which does not contain the points .z 1 , z 2 , . . . , z p . For every .m ∈ N * , by definition of the convergence of metric spaces, there exists a mapping . ϕ m of the manifold R onto . R m . Let . α m be the mapping of the domain . R m onto the unit disc . Q = {|z| ≤ 1} given by the isothermal coordinates. We denote by

. β m = α m • ϕ m , the corresponding mapping from the domain R onto Q.

Let . f m be the inverse mapping of . β m . We define

. ρ m (z, ζ) = ρ R ( f m (z), f m (ζ)) .
We have

. ρ λ m (z, ζ) -ρ m (z, ζ) = ρ R m α -1 m (z), α -1 m (ζ) -ρ R ( f m (z), f m (ζ)) . (8.1) 
Because . α -1 m (z) = ϕ m ( f m (z)) for every z, the right-hand side of the equality (8.1) converges uniformly to zero in Q, and hence,

. ρ λ m (z, ζ) -ρ m (z, ζ) -→ 0 uniformly in Q. The metrics . ρ λ m converge to the metric . ρ λ 0 , uniformly on every closed set which does not contain any point of .z 1 , z 2 , . . . , z p . Hence, . ρm also converge to. ρ λ 0 uniformly on every closed set which does not contain any point of.z 1 , z 2 , . . . , z p . Let us prove that . ρm converges to . ρ λ 0 uniformly on the whole disc Q. First, let us remark that none of the points . z j is a point at infinity for the metric . ρ λ 0 . Indeed, assume that the point . z j is a point at infinity. Then for every .N > 0, there are circles . C r 1 = {|zz j | = r 1 } and . C r 2 = {|zz j | = r 2 } such that none of the remaining points .z 1 , z 2 , . . . , z p lies on these circles, and the distance between . C r 1 and . C r 2 for . ρ λ 0 is greater than N. But then for m large enough, the distance between . C r 1 and . C r 2 for the metric . ρ λ m will be greater than N. The disc Q with the metric . ρ λ m is isometric to . R m . It follows that for such m, the diameters of . R m are greater than N. Because N is taken arbitrarily, this contradicts the fact that the diameters of . R m are uniformly bounded. The obtained contradiction proves that the point . z j cannot be a point at infinity.

The metrics . ρ λ 0 and . ρm are metrics over two-dimensional manifolds with boundary. Hence, there are functions . δ( ) (resp. .δ m ( )) such that the diameter for . ρ λ 0 (resp. . ρm ) of any domain D, whose boundary is a simple closed curve, does not exceed . , if the diameter of the boundary of the domain D is less than . δ( ) (resp. .δ m ( )). Recall that the metrics . ρm are all isometric, and therefore we can consider that the functions .δ m ( ) are the same for all m.

We define .δ 0 ( ) = min{δ( ), δ m ( )} .

.

  t) λ(t)(x 2 + y 2 )dt = λ) y dx + (ln λ) x dy .

Lemma 5 . 2

 52 In order to prove the Metrics Convergence Theorem in the general case, it is sufficient to prove it when the measures ω j n have C 1 Lebesgue density. Proof For every n, let (ω j m,n ) m ( j = 1, 2) be a sequence of positive measures having C 1 Lebesgue density, and such that we have weak convergence . ω j m,n → ω j n .

  one of the circles C k and for n > n 1 . s λ n (C k ) < p .

§4 Statements of Results

  be an arc length parameterization of a curve of bounded rotation in the plane. The coordinates of the vector functions . t l (s) and .t r (s) are functions of bounded variation.We say that a sequence of curves .(K n ) n converges to a curve K as .n → ∞ if the curves K and . K n admit parameterizations .{z(t) : a ≤ t ≤ b} and .{z n (t) : a ≤ t ≤ b}, respectively, such that, as .n → ∞, .z n (t) → z(t) uniformly in the segment .[a, b]. Let the sequence of curves .(K n ) n converge to the curve K. Then Let K be a curve and let .(L n ) n be a sequence of broken lines inscribed in K, such that the largest of the diameters of the arcs, into which the vertices of the broken line split K, tends to zero as .n → ∞. Then

	Theorem 3.5 . lim n→∞	|κ|(L n ) = |κ|(K) .
	Theorem 3.6 From any set of curves that are contained in a bounded subset G of
	the plane and whose absolute rotations do not exceed some number . A < ∞, we can
	extract a converging subsequence.	
	At first, let us define what means that the quadratic differential form
	.ds	
	Theorem 3.4 .| κ|(K) ≤ lim inf n→∞	|κ|(K n ) .

Estimate of Shortest Arcs Rotations Lemma)

  Under the condition of the Metrics Convergence Theorem, let the measures ω 1 n and ω 2 n have C 1 Lebesgue density. Then for any point z ∈ M satisfying

	. ω 1 0 ({z}) + ω 2 0 ({z}) < 2π ,

there are a constant A < ∞ and a neighborhood V such that the absolute rotation of any curve, shortest for the metric ρ λ n and connecting two points of the closure of the neighborhood V, does not exceed A.

For any of the points . z j , let . Q j be an open disc centered at . z j , such that the discs . Q j , Q k for . j k, do not have common points and the diameter of the boundary of the disc . Q j for . ρ λ 0 is less than .δ 0 ( ). On the circle of each of the disc . Q j . ρ m -→ ρ λ 0 uniformly, and hence, there is . m 1 such that, for .m > m 1 the diameter of the disc . Q j for . ρm will be less than .δ 0 ( ). For such m the diameter of the disc . Q j for . ρm will be less than . . We set

Let . z 1 and . z 2 be two points of the disc, and . z 1 and . z 2 be the closest points on the set . P to . z 1 and . z 2 , respectively. For .m > m 1 , we have

The set . P is closed, and . ρm -→ ρ λ 0 uniformly on . P . Hence, there is . m 2 such that for . m > m 2

what we had to prove.

The mappings . f m from the disc Q, endowed with the metric . ρ λ 0 , onto the domain R are equicontinuous. Indeed, choose . > 0 and .m 3 > m 0 such that, for any .m > m 3 ,

Let z and . ζ be points in the disc Q such that

Then, for .m > m 3 we have:

so the mappings . f m are equicontinuous. It follows that we can choose a subsequence .( f m k ) m k of .( f m ) m converging uniformly to a continuous mapping . f 0 from the disc Q onto R. We have:

i.e., the mapping . f 0 is isometric. The function . f 0 is obviously itself a mapping from Q onto R, as the limit of a uniformly converging sequence of mappings from the disc Q onto R. Therefore, the disc Q endowed with the metric . ρ λ 0 is isometric to R. Hence Theorem II is completely proved.