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Examining individual learning patterns using generalised linear mixed 
models

Sean Commins1   · Antoine Coutrot2 · Michael Hornberger3 · Hugo J Spiers4 · Rafael De Andrade Moral5

 

Abstract
Everyone learns differently, but individual performance is often ignored in favour of a group-level analysis. Using data from four 
different experiments, we show that generalised linear mixed models (GLMMs) and extensions can be used to examine individual 
learning patterns. Producing ellipsoids and cluster analyses based on predicted random effects, individual learning patterns can be 
identified, clustered and used for comparisons across various experimental conditions or groups. This analysis can handle a range 
of datasets including discrete, continuous, censored and non-censored, as well as different experimental conditions, sample sizes 
and trial numbers. Using this approach, we show that learning a face-named paired associative task produced individuals that can 
learn quickly, with the performance of some remaining high, but with a drop-off in others, whereas other individuals show poor 
performance throughout the learning period. We see this more clearly in a virtual navigation spatial learning task (NavWell). Two 
prominent clusters of learning emerged, one showing individuals who produced a rapid learning and another showing a slow and 
gradual learning pattern. Using data from another spatial learning task (Sea Hero Quest), we show that individuals’ performance 
generally reflects their age category, but not always. Overall, using this analytical approach may help practitioners in education 
and medicine to identify those individuals who might need extra help and attention. In addition, identifying learning patterns may 
enable further investigation of the underlying neural, biological, environmental and other factors associated with these individuals.

Keywords  Learning · GLMMs · Spatial · Individual · Cluster analysis

Introduction

Learning is a dynamic process and fluctuates across time. 
Repeated examination of a task generally leads to improved 
performance; however, learning rates are individualistic, 

with some learning a task more quickly than others, while 
still others may never learn. Such variation across time and 
individuals is often well captured by variation around the 
mean, relying on repeated-measures analyses of variance 
(ANOVAs) or mixed-factorial ANOVAs when comparing 
group performance across time (see Barnhart et al., 2015; 
Bootsma et al., 2018; Raboyeau et al., 2010, across spatial, 
visuo-motor and lexical learning domains, and our own Farina 
et al., 2015). However, examining variation and how indi-
viduals perform a task across time is important. Given the 
replication crisis across many fields including psychology and 
the neurosciences, there is an increased emphasis on display-
ing all data points in a clear and explicit manner (see Allen 
et al., 2019, for data visualisation using raincloud plots). In 
addition to being more transparent, examination of individual 
performance and data may enable a better evaluation of outli-
ers, a comparison of performance in various settings (e.g. in 
education, see Braithwaite et al., 2019), an examination of 
individual diagnosis or treatment plans (Chiang et al., 2020; 
Simon, 2001) and the ability to account for individual behav-
ioural patterns (Seidler et al., 2015).
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Generalised linear mixed models (GLMMs) are widely 
used across many fields (Bolker et  al., 2008; Demétrio 
et al., 2014). The recognition that data may not be normally 
distributed and the addition of random effects to the linear 
predictor are important features of GLMMs. GLMMs have 
also been increasingly used in psychology and cognitive sci-
ence (Baayen et al., 2002), and the method has even been 
suggested as the main analytical tool for quantitative data 
(Meteyard & Davies, 2020). GLMMs are very versatile and 
have been used to examine many psychological and cogni-
tive constructs, such as associating grip strength with cogni-
tive decline in older adults (Quesque et al., 2020; Chou et al., 
2019), as well as in patients with varying forms of depres-
sion (Firth et al., 2018). In addition, they have been used 
to look at the relationship between cognitive processes and 
neural biomarkers, again in a variety of cohorts, from young 
adolescents (Paulus et al., 2019) to patients suffering from 
dementia (McDade et al., 2018). One of the great strengths 
of GLMMs is their use in the modelling and prediction of 
outcomes using longitudinal or repeated data. For example, 
Song et al. (2020) used baseline cardiovascular scores to 
predict cognitive decline and neural changes in the subse-
quent 21 years. Similarly, in a 2-year follow-up examination 
of adults with type 2 diabetes, Mattei et al. (2019) showed 
that those who adopted a Mediterranean diet demonstrated 
higher cognitive scores than those who did not.

GLMMs account for main and interaction differences (for 
fixed experimental effects, e.g. we may use mixed-model 
ANOVAs for Gaussian GLMMs). Importantly, GLMMs are 
used to estimate variance components associated to random 
effects. Such random effects may arise from individual dif-
ferences, with participants deviating from the grand mean 
with respect to time, location or other unknown factors. 
Although the inclusion of such random effects may be typi-
cally used as a control feature, it is also an ideal way to 
examine individual variation in performance with respect 
to task items or across time, such as learning, or examining 
the effects of sleep loss on attention. For example, Cochrane 
et al. (2021) used a GLMM (in comparison to their own 
model) to specifically examine and predict individual vigi-
lance scores from a number of sleep-related measures. Simi-
larly, Kliegl et al. (2011) provided a nice illustration of how 
individual performance can be examined using GLMMs. In 
this study, participants had to complete a visual attention 
task and respond as quickly as possible to stimuli presented 
on a screen (there were three experimental conditions—
response to changes in object, spatial and central fixation 
conditions). The authors assessed the significance of main 
(fixed) effects for all three conditions. Importantly, they also 
showed how individual responses vary within a condition 
and that individual responses may correlate across some 
conditions and not others (random effects). For example, the 
authors showed that responses of individuals in the spatial 

condition were very variable (with some performing very 
well compared to others), whereas in the object condition 
there was limited variability across individuals. Further, 
participants’ responses in the spatial condition correlated 
strongly (negatively) with responses for the central fixation 
condition, but did not correlate at all with the object condi-
tion. In addition, the authors show how individual responses 
differ and how correlations might change, depending on the 
model used.

Although used in the above examples, this type of extra 
individual-level analysis is seldom performed, with many 
studies including only random effects in their models to 
control for dependence between experimental or observa-
tional units, i.e. to simply reflect design. As a result, inter-
esting insights into individual learning (or indeed patterns 
of learning across conditions) may be lost. Further to this, 
and mirroring the criticisms of Meteyard and Davies (2020) 
regarding the multiplicity of approaches of GLMM reporting 
in general, there is little guidance as to how such individual-
level analysis should be examined. Here, we offer a set of 
approaches and show how GLMMs can be used to examine 
individual learning patterns by exploring individual-level 
random effects combined with outlier detection and cluster-
ing methodologies. We illustrate how a general framework 
may be applied using three different datasets, chosen specifi-
cally due to the different nature of the response variables to 
be analysed. The first (face-name pairs task) has discrete pro-
portions as a response, thereby constituting an example of 
data that can be analysed using a binomial GLMM. The sec-
ond (virtual navigation task) measured time as a response, 
which is a strictly positive and continuous response, and in 
this case right-censored, which can help illustrate continuous 
and censored GLMMs. The third (Sea Hero Quest) presents 
a strictly positive and continuous score as the response, and 
illustrates the use of continuous GLMMs with flexible func-
tions included in the linear predictor to model non-linear 
behaviour.

Methods

A number of datasets and procedures were used to exam-
ine how the GLMMs and analysis would deal with different 
types of data (continuous, non-continuous, censored, non-
censored), different numbers of participants and trials, and 
different learning tasks.

Behavioural procedures

The face-name pairs task was used as an example of dis-
crete non-censored data and was used to assess associative 
learning and memory in a previous experiment (see Caffrey 
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& Commins, 2022). The task consisted of eight face-name 
paired stimuli, presented twice in a block; there were four 
blocks in total (see Zeineh et al., 2003). Each face-name 
pair was presented in random order on screen for five sec-
onds. Either the four blocks were presented sequentially on 
the same day (massed condition) or one block of face-name 
pairs was presented each day for four days (spaced condi-
tion). After each of the four blocks, a test trial was given. 
Each trial consisted of the eight faces presented once in ran-
dom order, without their corresponding names. The number 
of correctly recalled names associated with each of the eight 
faces (out of eight) was used to measure learning perfor-
mance across the four blocks.

The first dataset was conducted in a controlled labora-
tory setting with 57 participants in the massed condition 
and 61 in the spaced condition. Both groups were well 
matched in terms of gender (massed: M/F = 31/30, spaced: 
M/F = 29/28), age (massed = 22.9 [SD = 1], spaced = 23.4 
[SD = 1.2]) and general IQ as measured by the National 
Adult Reading Test (NART; massed = 23.4 (SD = 1.6), 
spaced = 24.3 (SD = 1.7).

The second experiment was conducted online through 
the Qualtrics online survey platform and included 358 par-
ticipants in total (179 per condition, massed and spaced). 
Because of the uncontrolled online conditions, the condi-
tions were not well matched for gender (85 male/94 female 
for the massed condition and 70 male/109 female for the 
spaced condition) or age, with the massed group being 
older (mean = 29.4 [SD=13.1]) than the spaced group 
(mean = 24.1 [SD=8.8]).

We used both these datasets to explore how our analysis 
would deal with non-continuous data and differing numbers 
of participants.

The virtual navigation task (NavWell, Commins et al., 
2020) was used as an example of continuous data that 
was right-censored (i.e. with a maximum limit). This 
task is the human equivalent of the Morris water maze 
task that is generally used to assess spatial learning and 
memory (Morris, 1981). The task consists of participants 
virtually navigating around an enclosed circular arena (22 
virtual metres or 15.75 seconds to traverse its diameter) 
in an attempt to locate an invisible target, located some-
where on the ground. The hidden target only becomes 
visible once the participant traverses it. On subsequent 
trials, participants must try to recall this specific loca-
tion and make their way to the hidden target as quickly as 
possible. To aid their recall, two cues (large shapes) are 
located on the wall of the circular arena. Each participant 
is given 12 trials; participants must try to find the target 
within 60 seconds. If the participant cannot locate the 
target within this time, they are transported to the hid-
den target and instructed to look around the arena and 
try to recall the location on the subsequent trials. For 

those who successfully locate the target, they are also 
told to look around the arena and try to recall the specific 
location. Time taken to reach the target for each of the 
12 trials is used as the dependent measure. Lower scores 
reflect better spatial learning and memory. For this task, 
42 participants were included (M/F = 19/23; mean age 
28.3 [SD = 14, range 19–62]).

The Sea Hero Quest (SHQ) mobile video game (Coutrot 
et al., 2018; Spiers et al., 2021) was used to examine con-
tinuous, non-censored data that required semi-independent 
learning (the task contains increasing levels of difficulty). 
The SHQ task was designed to measure human spatial 
navigation ability through gameplay. Currently, over four 
million people across 195 countries have downloaded 
and played the game. The game has a number of different 
features, but it primarily involves participants virtually 
navigating a boat through a series of waterways and riv-
ers to find a target—the goal is to find a sea creature in a 
particular location and photograph it. Before setting off, 
participants are provided with a map that shows their cur-
rent location and the target location to which they need to 
navigate. The task has a number of different levels; each 
level is increasingly difficult and contains more twists and 
turns (i.e. takes longer to complete), as well as having riv-
ers that do not lead anywhere. There is no time limit to the 
task, but unlocking a more difficult level is dependent on 
completing the previous one. The length (in virtual metres) 
to reach the target is used to measure spatial learning. 
Gaming ability and difference in touchscreen handling/
proficiency of participants has been taken into account and 
controlled by normalising SHQ performance for the first 
two levels (see Coutrot et al., 2018, for details). Although 
the task relies primarily on spatial learning and memory, 
it also depends on other cognitive processes including 
the translation of a 2D map into a 3D game, planning of 
routes, and the continuous monitoring of progress during 
the game.

The overall dataset contains 3317 participants; how-
ever, to illustrate our proposed methodology, we have just 
looked at a random subset of this (n = 240), with four age 
groups (18–20, 21–40, 41–60 and 61–80 years, n = 60 per 
cohort). Within each cohort we tried to match for gender 
and to have an even spread of age. The resulting data give 
us the following for the four groups, respectively: M/F: 
30/30, mean age = 19.47, SD = 0.5; M/F: 31/29; mean 
age = 30.5, SD = 5.7; M/F: 31/29, mean age = 50.48, SD 
=5.4 and M/F: 33/27 mean age = 70.9, SD = 5.7.

Statistical procedures

Here we present the statistical methods used for each sample 
dataset. For a summary, see Table 1, which also includes 
the syntax used to fit the models in R (R Core Team, 2021).
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Face‑name pairs task

For this task, the response variable is the number of times 
the individual made a correct association between a face and 
a name. This response is discrete and bounded between 0 (all 
incorrect) and 8 (all correct). Typically, binomial models are 
used to analyse discrete proportion responses, also known as 
logistic regression (when the logit link is used). A normal 
distribution would be an inadequate assumption, since nor-
mal models assume unbounded and continuous responses.

Here we fitted a binomial GLMM using the logit link. Other 
options would be the probit or complementary log-log links, 
for example, but since there are only four trials, all link func-
tions would perform similarly (one would choose the com-
plementary log-log link, for instance, if the sigmoidal shape 
in the response were asymmetric). Since we are interested in 
studying the learning behaviour over time, and how it changes 
according to learning condition, we included a different linear 
effect of trial (as a continuous predictor, ranging from 1 to 4) 
per learning condition (massed vs. spaced) in the linear pre-
dictor, which yielded one intercept and one slope per learning 
condition (i.e. four fixed effects). The assumption of a linear 
effect in the linear predictor scale is common, but exploratory 
analyses are always useful to guide the analysis, and could 
suggest the inclusion of other terms in the linear predictor. We 
also included individual-level random intercepts and slopes, 
which are able to describe individual learning curves. These 
were assumed to be independent and to follow a normal dis-
tribution with mean zero and a variance to be estimated by 
the model (i.e. two variance components). Since we used a 
logit link function, the response is modelled in the log-odds 
scale. Consequently, the slope parameters represent here how 
one trial affects the log-odds of a correct response. Typically, 
we look at the exponentials of the slopes as the change in the 
odds of a correct response associated with one extra trial. For 
example, a slope of 0.8 yields e0.8 = 2.2 , which means that the 
odds of making correct associations in the next trial are 2.2 
times those in the current trial.

For the binomial distribution, the dispersion parameter is 
known (or fixed) and equal to 1. However, if the variability in 
the data is larger than expected by the binomial model, it is 
possible to estimate this dispersion parameter in a quasi-like-
lihood approach to accommodate the extra-variability. Other 
approaches include the use of mixtures of distributions, such 
as the beta-binomial, or the inclusion of an observational-level 
random effect within a GLMM framework.

Virtual navigation task

The response here is strictly positive (since it is the time taken 
for the individual to reach the target), and the right-censoring 
of the response is an important feature. This is because, if the 
individuals had not found the target within 60 seconds, the 

task would be interrupted. Therefore, for these cases, we have 
the information that it would have taken more than 60 sec-
onds for that individual to find the target, but we do not know 
exactly how long. This information can be incorporated in the 
modelling framework by using a different term in the likeli-
hood for censored observations, based on the survival func-
tion (for this case, defined as the probability of the observation 
being more than 60 seconds). Again, the normal distribution 
would not be suitable, since although the data are continuous, 
they are strictly positive (i.e. time cannot be negative).

There are many statistical distributions that can be used 
to model strictly positive data. Here, we chose to fit a right-
censored gamma GLMM. The gamma distribution is very 
flexible, and accommodates different shapes of continuous, 
positive and right-skewed data. The gamma distribution can 
be parameterised to have a mean and a dispersion parameter 
proportional to the variance. For the mean parameter, we 
included a linear effect of trial (as a continuous predictor, 
ranging from 1 to 12), that is, an intercept and a slope, in the 
linear predictor as fixed effects, and random and independent 
intercepts and slopes per individual, to describe individual 
learning curves. Additionally, we included the linear effect 
of trial in the linear predictor for the dispersion parameter, 
which allowed us to model the changes in variability as the 
trials progressed. Although the canonical link function for 
the gamma GLM is the inverse, the mean was modelled with 
a log link for ease of interpretability. The dispersion was 
also modelled with a log link, because it is a strictly positive 
parameter, and the log link maps the real values to strictly 
positive values. In this case, the slope coefficients represent 
the change in time until reaching the target associated with 
one extra trial in the logarithmic scale. Typically, we look 
at the exponentials of the slopes as a measure of multiplica-
tive change. For example, a slope of −0.5 yields e−0.5 = 0.6 , 
which means that the time needed to reach the target in the 
next trial will be 60% of the current time, i.e. 40% faster.

Other potential approaches would include the use of dif-
ferent link functions for the mean parameter, such as the 
identity link, or the canonical inverse link previously men-
tioned, the inclusion of semi-parametric terms in the linear 
predictor such as splines (to capture non-linear behaviour), 
or the use of alternative distributions to the gamma, such as 
the inverse Gaussian, Weibull or log-normal, among others. 
There is a plethora of probability distributions that accom-
modate positive continuous data, with a continuously grow-
ing literature on the development of new models aimed at 
time-until-event and censored data.

Sea Hero Quest

For this study, the response is also strictly positive and con-
tinuous, as it is the length of time to reach a target. In con-
trast to the virtual navigation task, the data are not censored, 
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Table 1   Nature of response variable, modelling framework, structure of the linear predictors and methods used for individual-level exploration 
of the learning behaviour across trials, for each dataset described in the methodology section

Dataset Nature of response variable Model Structure of linear predictors Individual-level exploration

Face-Name Pairs task Discrete proportions Binomial GLMM Linear predictor for the mean
Fixed effects of trial (linear) and 

learning condition
Random intercepts and slopes 

per individual (i.e. two random 
effects)

Linear predictor for the disper-
sion

Fixed dispersion of 1
R syntax (using lme4 package)
glmer(cbind(Score, 
total - Score) ~ 
Trial * Condi-
tion + (Trial || 
Condition:ID), fam-
ily = binomial, data 
= dataset_name)

Fitted curves
Bivariate normal ellipsoids
Clustering based on random 

effects

Virtual navigation task Positive continuous, right-
censored

Gamma GLMM Linear predictor for the mean
Fixed effect of trial (linear)
Random intercepts and slopes 

per individual (i.e. two random 
effects)

Linear predictor for the disper-
sion

Fixed effect of trial (linear)
R syntax (using gamlss package)
gamlss(Surv(time = 
Score, event = cen-
soring_index, type = 
"right") ~ Trial + 
re(random = list( ID 
= pdDiag(~ Trial))), 
sigma.formula = ~ 
Trial, family = 
cens(GA), data = 
dataset_name)

Fitted curves
Bivariate normal ellipsoids
Clustering based on random 

effects

Sea Hero Quest Positive continuous Gamma GLMM Linear predictor for the mean
Different fixed effects of trial 

(b-spline with three knots) per 
age category

Random b-splines (three knots) 
per individual (i.e. four ran-
dom effects)

Linear predictor for the disper-
sion

Different fixed effects of trial 
(b-spline with three knots) per 
age category

R syntax (using glmmTMB 
package)

glmmTMB(Score ~ 
bs(scale(Trial, 
3)) * Age + 
(bs(scale(Trial), 3) 
|| ID), dispformula 
= ~ bs(scale(Trial, 
3)) * Age, family = 
Gamma(link = log), 
data = dataset_name)

Fitted curves
Clustering based on random 

effects
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which means that the trials were not limited in terms of a 
maximum length. The behaviour of the response is non-
linear, and therefore a simple linear model with an intercept 
and slope would not be sufficient. This non-linearity would 
also not be properly described by a quadratic equation.

Here, we fitted a gamma GLMM, but instead of a linear 
effect of trial, we included semi-parametric smooth func-
tions based on b-splines. B-splines are linear combinations 
of values in the x-axis that offer a high degree of flexibility 
when modelling non-linear behaviours and at the same time 
are smooth. The b-splines used here had three knots across 
trials (again, taken as a continuous predictor, ranging from 
1 to 5). This totalled four estimated parameters to represent 
a curve. We estimated a different curve per age group, total-
ling 16 parameters, or fixed effects, in the linear predictor for 
the mean of the distribution. We also included individual-
level random effects, representing a different smooth curve 
per individual. Therefore, each individual is associated to 
four random effects, instead of two as described in the pre-
vious examples. These effects do not have a clear meaning 
such as an intercept and slope, but still hold the information 
used to generate the non-linear smooth curves that describe 
each individual’s learning behaviour. We also included the 
same fixed effects used for the mean parameter in the linear 
predictor for the dispersion, i.e. different smooth functions 
across trials per age group (also totalling 16 parameters). 
Both mean and dispersion were modelled with a log link 
for the same reasons outlined in the virtual navigation task 
example.

Producing ellipsoids based on the bivariate normal 
distribution

For the models that estimate individual-level curves based 
on random intercepts and slopes, it is possible to plot the 
random intercepts versus the random slopes, and produce 
ellipsoids based on the bivariate normal distribution. By 
looking at a 95% ellipsoid, for example, one might observe 
individuals who fall beyond the area delimited by the ellip-
soid and look further into their learning behaviour, since 
it may be considered “extreme”, or “outlying”, when com-
pared to others. Moreover, when comparing e.g. treatment 
levels, different ellipsoids may be produced for different 
groups, and simple statistics may be computed from these 
ellipsoids, such as area and eccentricity indices, which may 
aid comparison of treatment levels.

The power of this type of analysis lies on how interpret-
able the random effects are. For the intercepts versus slopes 
case, it is a great tool to discriminate individuals according 
to their learning behaviour. The plot can be divided into 
four quadrants (see Fig. 1). Points close to the origin repre-
sent individuals who have intercepts and slopes very simi-
lar to the overall mean. If the response variable is directly 

proportional to learning (e.g. for the face-name pairs task 
experiment), in a plot with random intercepts as the x-axis 
and random slopes as the y-axis, points further in the first 
and fourth quadrants represent the faster learners in the pool 
(larger slopes), while points in the second and third quad-
rants represent the slower learners (smaller slopes). Points 
further in the third and fourth quadrants represent learners 
who started at a lower level (smaller intercepts), while points 
further in the first and second quadrants represent learners 
who started at a higher level (larger intercepts). This rela-
tionship is reversed when the response is inversely propor-
tional to learning, e.g. for the virtual navigation task experi-
ment, where the response is the time taken until reaching the 
target (shorter times represent a higher level of learning).

For higher dimensions (e.g. four random effects per indi-
vidual) it becomes harder to visualise, but multi-dimensional 
ellipsoids based on the multivariate normal distribution can 
still be computed. However, in the example shown here 
(SHQ), the coefficients do not have easily interpretable 
meaning, and therefore ellipsoids are not explored.

Clustering individuals based on their random effects

The individual-level random effects may then be used to 
carry out clustering. This may help to uncover groupings 
in the data based on a summarised individual-level profile, 
if this profile is well represented by the random effects. In 
this paper we use hierarchical clustering based on Euclid-
ean distances between individuals and Ward’s method, but 
any other clustering method may be used. Ward’s method 
focuses on minimising the variability within clusters whilst 
maximising the variability between clusters.

Assessing model goodness of fit

It is important to carry out analyses of the model residuals to 
check goodness of fit. If the model does not fit the data well, 
then inferences made based on the estimated parameters may 
be misleading. For instance, type I errors may be inflated 
when the model does not accommodate extra-variability in 
the data (i.e. failure to account for overdispersion); in this 
case, the model estimates less uncertainty than there actually 
is (see Demétrio et al., 2014, for more details). If, however, 
the variance estimated by the model is greater than the vari-
ability in the data (i.e. underdispersion), type II errors will 
be inflated. For the face-name pairs task and SHQ study, to 
assess whether the model fitted the data well, we used half-
normal plots with a simulated envelope for the Pearson resid-
uals (Moral et al., 2017). These plots are such that if the data 
are a plausible realisation of the fitted model, most residuals 
will lie within the simulated envelope. For the virtual naviga-
tion task, since the model was fitted using the gamlss package 
(Rigby & Stasinopoulos, 2005) in R (R Core Team, 2021), 
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we used worm-plots for the randomised quantile residuals. 
These are similar to the half-normal plots described above, 
but they do not require the construction of a simulated enve-
lope, since the randomised quantile residuals should follow 
a uniform (0,1) distribution if the model fits the data well.

Simulation studies

To better understand the reliability and robustness of the 
GLMM estimates and predicted random effects, as well as to 
compare with the standard GLM (without random effects), 
we carried out simulation studies based on 18 different sce-
narios. We simulated from three main models (binomial 
GLMM with random intercepts and slopes, gamma GLMM 
with random intercepts and slopes, and gamma GLMM with 
only random intercepts), three sample sizes (20, 40 and 80 
participants) and two numbers of repeated measures/trials 
(4 and 8). For each scenario, we simulated 1000 datasets, 
and fitted the corresponding GLMMs and standard GLMs 
to each simulated dataset. The true models included an inter-
cept and a linear effect of trial in the linear predictor. The 
true parameter values were set as �

0
= −1.22 and �

1
= 1.11 

for the binomial GLMM, and �
0
= 2.60 and �

1
= −0.08 

for the gamma GLMMs, and the variances for the random 
intercepts and slopes were set as 0.46 and 0.22, respectively 
(inspired by the estimates obtained from the models fitted to 
the online face-name pairs task and virtual navigation task).

We compared the individual-level estimates (random 
effects for the GLMMs and regression coefficients for the 
standard GLMs) with the true individual random effects by 
calculating the sum of squared differences across all indi-
viduals, then averaging over the 1000 simulated datasets for 
each scenario, thereby obtaining mean squared errors. For 
the GLMM fixed effects and variance components estimates, 
we calculated the mean relative bias, which is obtained by 
averaging the relative bias (estimate minus true parameter 
value divided by the true parameter value) across all 1000 
simulated datasets for each scenario.

Software

All analyses were carried out in R (R Core Team, 2021). 
Binomial GLMMs were fitted using package lme4 (Bates 
et al., 2015), gamma GLMMs were fitted using package 

Fig. 1   Bivariate plot for random samples simulated from a normal dis-
tribution with mean zero and variance 4 to simulate random intercepts 
and variance 2 to simulate random slopes, for a fictitious sample of 20 
individuals. The plot includes a 95% ellipsoid based on the bivariate 
normal distribution. For this particular plot, individuals 6, 16 and 18 
present outlying behaviour. Individuals 6 and 16 present larger inter-
cepts, which could represent advantageous initial learning states if the 
response is directly proportional to learning (e.g. face-name pairs task 

experiment) or disadvantageous states if the response is inversely pro-
portional to learning (e.g. virtual navigation task experiment). Individ-
ual 16, however, presents a larger slope than the pool of individuals, 
while individual 6 presents a smaller slope. If the response is directly 
proportional to learning, then individual 16 would be a faster learner, 
while individual 6 would be a slower learner. Individual 18, on the 
other hand, presents a smaller intercept compared to the sample, but a 
slope close to zero, which represents an average learning rate
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glmmTMB (Brooks et al., 2017) and the gamma GLMMs 
for censored data were fitted using packages gamlss and 
gamlss.cens (Stasinopoulos et al., 2018). Model goodness 
of fit was assessed using package hnp (Moral et al., 2017). 
All data and code are made available at https://​github.​com/​
rafam​oral/​indiv​idual_​learn​ing_​GLMM.

Results

Face‑name pairs task

For the online face-name experiment, we began by assess-
ing the significance of the variance component associated 
with the slopes. There was evidence that its inclusion sig-
nificantly improved our model goodness of fit (LR = 154.67, 
df = 1, p < 0.0001), which means that different individuals 

have significantly different learning speeds (represented in 
our model by the slopes of the linear predictor, or the lin-
ear effect of trial). Looking at the fixed effects, there was 
a significant interaction between trial and group condition 
(LR = 12.12, df = 1, p = 0.0005) (Fig. 2a). The slope for 
the spaced group (0.86) is smaller than that for the massed 
group (1.11), i.e. on average the spaced condition is asso-
ciated to slower learning (see Table 2). These slopes are 
interpreted in the log-odds scale, which means that in the 
massed group, adding a new trial increases the log-odds of 
correctly matching a face and a name by 1.11, which trans-
lates to being e1.11 ≈ 3 times more likely to correctly match 
when compared to the previous trial. For the spaced group, 
individuals are, on average, e0.86 = 2.36 times more likely 
to obtain correct matching from one trial to the next one.

One of the perks of a mixed model is that we are able to 
obtain fitted curves at an individual level without having 

Fig. 2   a Observed (black lines) and predicted (blue curves) scores 
for individuals under massed vs. spaced learning conditions for the 
online experiment. The shaded areas represent the 95% confidence 
intervals for the true mean scores, based on the binomial GLMM 
(see Table  1). The curves from the massed and spaced conditions 
are statistically different (test for different slopes: LR = 12.12, 
df = 1, p = 0.0005). b Predicted random intercepts and slopes for 
each individual in the study who was at either a massed or spaced 

learning framework, as well as 85%, 90% and 95% ellipsoids based 
on the bivariate normal distribution, for the online experiment. 
Points falling outside of the 85% ellipsoids have their individual 
numbers indicated as potential outliers. The area of the ellipsis is 
calculated as A = πab, where a and b are the major and minor axes, 
respectively. Eccentricity is calculated as E = (1 − b2/a2)1/2. c Same 
as (a), but now for the in-person experiment; d same as (b), but now 
for the in-person experiment

https://github.com/rafamoral/individual_learning_GLMM
https://github.com/rafamoral/individual_learning_GLMM
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to estimate a large number of parameters. In this particular 
case, estimating a linear predictor for all 358 individuals 
would require 358 × 2 = 716 parameters. Instead, we esti-
mate an intercept and slope for each condition plus two vari-
ance components, related to random intercepts and slopes 
per individual, yielding four estimated parameters instead of 
716, while maintaining the predictive power. This is because 
individual random effects are obtained through their condi-
tional distribution given the data (McCulloch & Neuhaus, 
2011), instead of being individually maximised in the model 
likelihood. In fact, they are not even present in the likelihood 
function, since they are integrated out as latent, unobserved 
variables.

Since we now have individual-level intercepts and slopes, 
which are assumed to arise from normal distributions with 
mean zero and variances estimated by the mixed model, it 
becomes straightforward to rank individuals based on their 
random effects. This may be done looking only at the uni-
variate distribution of random intercepts or slopes, or at their 
bivariate distribution. Taking the random effects as a bivari-
ate sample from a bivariate normal distribution with a zero 
vector of means and a variance covariance matrix estimated 
by the mixed model, we produce ellipsoids at different prob-
ability levels (see Fig. 2b). Although the overall eccentric-
ity and area values for the two conditions are comparable, 
they do provide a good indication of spread. In this case, 
the massed condition has slightly more spread (area = 2.59) 
than the spaced (area = 2.44). Importantly, using this tech-
nique we can also examine individual learning patterns. We 
observe, for example, that individuals 54, 98 and 141 are 
some of the fastest learners in the massed learning condi-
tion, while individuals 116 and 174 are good learners in 
the spaced condition. Individuals 165 and 170 (massed) and 
individuals 129 and 83 (spaced) are relatively weak at learn-
ing this task. Those individuals in the fourth quadrant (23, 
111 [massed] and 157, 6 [spaced]) rapidly learn the task 
but plateau quickly. These individuals have high slope but 
low intercept values. In contrast, those in the second quad-
rant have high intercept but low slope values, with some of 

these individuals starting well but getting fewer face-name 
pairs correct with additional trials (e.g. individual 152 in the 
spaced condition).

For the in-person face-name experiment, we also 
assessed the significance of the variance component associ-
ated with the slopes. There was evidence that its inclusion 
significantly improved our model goodness of fit (LR = 7.18, 
df = 1, p = 0.0074), which means that different individuals 
have significantly different learning speeds. Looking at the 
fixed effects, the interaction between trial and group con-
dition was not significant (LR = 0.06, df = 1, p = 0.8089). 
The main effect of group condition was also not significant 
(LR = 2.14, df = 1, p = 0.1438), but the main effect of trial 
was (LR = 164.13, df = 1, p < 0.0001) (Fig. 2c). The slope 
for both groups was estimated to be approximately 0.70 (see 
Table 2), and is also interpreted in the log-odds scale. This 
means that adding a new trial increases the log-odds of cor-
rectly matching a face and a name by 0.70, which trans-
lates to being e0.70 ≈ 2 times more likely to correctly match 
when compared to the previous trial. Although examination 
of the in-person experiment showed no significant difference 
between the conditions, we see more spread in the massed 
(area = 1.137) than in the spaced condition (area = 0.998, 
Fig. 2d). Similar exploration of individual learning patterns 
shows that there are more individuals in the > 85% area of 
the top right quadrant for the spaced compared to the massed 
condition (e.g. 26, 29, 33).

Virtual navigation task

Examination of the virtual navigation task (NavWell) 
demonstrated that the estimate of the variance compo-
nent associated with the slope was very small (0.000006), 
and the likelihood ratio test statistic was very close to 
zero (LR < 0.0001, df = 1, p = 1). Therefore, the slopes 
seem to be very similar across all individuals. However, 
the effect of trial was highly significant (Fig. 3a), both 
in the linear predictor for the mean (LR = 142.43, df = 1, 
p < 0.0001) and in that for the variance (LR = 43.83, df = 1, 
p < 0.0001). This means that the learning increases from 
one trial to the other, with the time taken to reach the 
target decreasing by 1 − e

−0.084 = 8% , on average, for the 
subsequent trial. Also, the variance in the data decreases 
from trial to trial, on average, by 1 − e

−0.077 = 7.4% , until 
almost all participants have learned how to reach the tar-
get. Since the random slopes are based on a normal distri-
bution with very low variance, they are all very close to 
zero, i.e. there is little to no individual deviation from the 
overall mean slope (see Table 3). Nevertheless, we can still 
rank individuals based on their predicted random inter-
cepts. In this experiment, time decreases with learning; as 
a result, individuals in the second and third quadrants (e.g. 
29 and 17) show good learning across the trials, whereas 

Table 2   Coefficient estimates and standard errors for the binomial 
GLMM fitted to the face-name pairs task data, online and in person. 
SE = standard error

Parameter Online
estimate (SE)

In-person
estimate (SE)

Intercept (massed) −1.22 (0.10) −1.49 (0.17)
Slope (massed) 1.11 (0.06) 0.70 (0.06)
Intercept (spaced) −0.81 (0.10) −1.72 (0.17)
Slope (spaced) 0.86 (0.05) 0.68 (0.06)
�2

Intercept
0.46 0.56

�2

Slope
0.22 0.05
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individuals in the first and fourth quadrants (e.g. 14) are 
slower learners (Fig. 3b).

Even though the random slopes were very close to zero, 
we again carried out a hierarchical clustering analysis based 

on both the individual-level intercepts and slopes (however, 
the predicted slopes will play almost no role in the clus-
tering unless we scale both random intercepts and slopes 
to have unit variance). Over the full 12 trials, two clusters 

Fig. 3   a Observed (black lines) and predicted (blue curves) scores 
for individuals who took the NavWell virtual navigation task. The 
shaded area represents the 95% confidence intervals for the true 
mean scores, based on the right-censored gamma GLMM (see 
Table  1). b Predicted random intercepts and slopes for each indi-
vidual in the study, as well as 85%, 90% and 95% ellipsoids based 
on the bivariate normal distribution. c The two-cluster solution 
obtained when carrying out hierarchical clustering analysis based 
on the Euclidean distance and Ward’s method, using the predicted 

random intercepts and slopes per individual obtained from the 
right-censored gamma GLMM fitted to the full dataset. Blue curves 
are estimated from LOESS regression and are meant as a visual aid 
only. d Total within-cluster sums of squares (TWSS) for one- to 
seven-cluster solutions obtained when carrying out the cluster anal-
ysis to subsets of the data (trials 1–4, 1–6, 1–8, 1–10 and 1–12). 
Dendrogram and colour scheme representing the two-cluster solu-
tion obtained after fitting the model using trials (e) 1–4 and (f) 
1–12, i.e. the full dataset
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emerged—those individuals who could be classified as fast 
learners and those who showed a slower learning pattern 
(Fig. 3c and f). The majority of individuals (29/42, red num-
bers in Fig. 3f) showed a pattern that learned rapidly over 
the first four trials before plateauing across the remaining 
ones (cluster 1, Fig. 3c), whereas the others (blue individu-
als in Fig. 3f) show a more gradual learning pattern, slowly 
decreasing across trials (cluster 2, Fig. 3c). The slow versus 
fast learning in this setting is highly dependent on the ini-
tial performance of the individuals. The distinction between 
early and late trials can be confirmed by looking at the total 
within-cluster sums of squares using data from fewer trials 
(Fig. 3d). This showed that running more trials was impor-
tant for discriminating between the two groups. If the exper-
iment had been stopped at e.g. trial 6, it would be difficult 
to separate the individuals into two well-defined clusters, as 
we are able to do when looking at the full dataset.

An advantage of our analysis is that we can track indi-
vidual learning patterns across trials. For example, in tri-
als 1–4 there is a relatively even split in the numbers of 
individuals showing rapid learning (red, n = 23) and gradual 
learning (blue, n = 19) (Fig. 3e). This proportion changes 
with the addition of extra trials (Fig. 3f). Some individuals 
change their pattern across trials (e.g. individuals 32, 12 
and 29, clustered as slow learners [blue] for trials 1–4 but as 
fast learners [red] across trials 1–12). Others continue with 
the same pattern throughout (e.g. individuals 5, 14 and 39 
remain gradual [blue] learners).

Sea Hero Quest

Here we observe non-linear behaviour of the task scores 
across trials, as the trials are semi-independent of each 
other. This is why we opted to model this behaviour using 
b-splines. We do have few trials (only five), and could 
include the trial predictor as a categorical factor in our 
model, but we opted to use random b-splines per individual 
to showcase the use of these random effects. Interpretation 
of the b-spline estimated coefficients is now not as straight-
forward as in the previous examples. In fact, they introduce 

great flexibility at the cost of direct interpretability of the 
estimated coefficients. Nevertheless, we can still look at the 
fitted curves and make inferences the same way as before. 
Since this is a slightly more complex model, we experienced 
convergence issues when fitting it to the data when including 
a random b-spline with three degrees of freedom per indi-
vidual. The main convergence issues occurred when comput-
ing standard errors for the dispersion parameter estimates 
(see Table 4). This is likely due to having five points in the 
x-axis and fitting a model with four degrees of freedom, 
which essentially reproduces the marginal means at each 
point. However, the estimates obtained were reasonable and 
reproduced the behaviour in the data well at marginal and 
individual levels. We performed the likelihood ratio tests 
based on models fitted with random intercepts and slopes, 
which converged, allowing for the computation of log-like-
lihoods. The interaction between the non-linear effects of 
trial and age were highly significant for the linear predic-
tors for both the mean (LR = 112.08, df = 9, p < 0.0001) and 
dispersion (LR = 123.6, df = 9, p < 0.0001), suggesting that 
different age groups are associated with different non-linear 
learning behaviour (see Fig. 4a).

The output of the cluster analysis with four clusters 
clearly shows that age group dominates the clustering. 

Table 3   Coefficient estimates and standard errors for the censored 
gamma GLMM fitted to the virtual navigation task data. SE = stand-
ard error

Parameter Estimate (SE)

Intercept (mean) 3.60 (0.06)
Slope (mean) −0.08 (0.01)
Intercept (dispersion) −0.16 (0.07)
Slope (dispersion) −0.08 (0.01)
�2

Intercept
0.46

�2

Slope
< 0.01

Table 4   Coefficient estimates and standard errors for the gamma 
GLMM fitted to the Sea Hero Quest data. SE = standard error; S1 
= spline knot 1; S2 = spline knot 2; S3 = spline knot 3; N/A = not 
available due to convergence issues

Parameter Mean
estimate (SE)

Dispersion
estimate (SE)

Intercept (age 18–20) 3.52 (0.02) 4.78 (0.27)
S1 (age 18– 20) 1.86 (0.04) 8.57 (1.10)
S2 (age 18– 20) 0.36 (0.08) −22.49 (0.74)
S3 (age 18– 20) 1.35 (0.03) 20.21 (N/A)
Intercept (age 21– 40) 3.48 (0.02) 16.07 (N/A)
S1 (age 21– 40) 1.83 (0.03) −14.06 (N/A)
S2 (age 21– 40) 0.62 (0.07) −26.58 (0.70)
S3 (age 21– 40) 1.35 (0.03) 6.41 (0.81)
Intercept (age 41– 60) 3.60 (0.03) 3.25 (0.25)
S1 (age 41– 60) 1.73 (0.10) 2.22 (1.11)
S2 (age 41– 60) 0.20 (0.16) −3.63 (0.97)
S3 (age 41– 60) 1.54 (0.05) −0.26 (0.52)
Intercept (age 61– 80) 3.59 (0.02) 3.19 (0.29)
S1 (age 61– 80) 1.59 (0.14) −0.04 (1.04)
S2 (age 61– 80) 1.07 (0.20) −4.12 (0.79)
S3 (age 61– 80) 1.75 (0.06) −1.10 (0.42)
�2

Intercept
0.02 -

�2

S1
0.04 -

�2

S2
0.31 -

�2

S3
0.06 -
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This is noteworthy because age group plays no role within 
the clustering algorithm itself; only the individual-level 
random effects do, and still we see a clear separation by 
age group, with individuals 18–40 in cluster 1, 21–60 in 
cluster 2, 41–80 in cluster 3, and 61–80 in cluster 4 (see 
Fig. 4b). An interesting feature of the cluster analysis 
(Fig. 4c) is that there are many individuals who have a 
learning pattern not typical for their age group. For exam-
ple, there are some individuals in the 21–40 age category 
(green) who show learning patterns more similar to the 
18–20 age group (red). In addition, the 41–60 age category 
(blue) is split fairly evenly, with a group of individuals 
showing learning patterns more similar to a younger age 
group (red and green) and a second group showing pat-
terns more similar to the 61–80 age group (purple). Using 
this level of analysis may allow for early identification 
of individuals with spatial learning issues. This split in 
the 41–60-year-old cohort suggests that the data are best 
divided into three rather than four clusters (Fig. 4d).

Finally, we analysed each of the four experiments using 
linear models (see supplementary Table) to assess whether 
GLMMs would reveal anything extra at the overall (non-
individual) level. In general, the results were comparable 
across the two methods.

Simulation studies

The results from the simulation studies suggest that (1) 
the GLMMs display better performance than the standard 
GLMs when estimating individual differences, based on 
both random intercepts and slopes (Fig. 5a and b); (2) the 
performance improves slightly when the numbers of par-
ticipants and trials increase (Fig. 5a and b); (3) the fixed 
effects are estimated well and reliably for the GLMM, with 
slight performance improvement with an increase in the 
number of participants, and better improvement observed 
with an increase in the number of trials (Fig. 5c); and (4) 
the estimates of the variance components in the GLMM 

Fig. 4   a Predicted scores (solid curves) for individuals of different 
age groups from the Sea Hero Quest experiment, and associated 
95% confidence intervals for the true mean scores (shaded areas) 
based on the gamma GLMM (see Table 1). b Observed scores for 
each individual split by cluster, obtained from the four-cluster solu-
tion of the hierarchical cluster analysis carried out using the ran-

dom effects from the model, using the Euclidean distance matrix 
and Ward’s method. c Dendrogram representing the full hierarchi-
cal clustering analysis, with colour scheme reflecting age group for 
each individual. d Total within-cluster sums of squares (TWSS) for 
one- to seven-cluster solutions obtained when carrying out the clus-
ter analysis of the full dataset
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are reliable and improve when sample size and number of 
trials increase, with poorer performance observed when 
fitting the gamma GLMM assuming random intercepts and 
slopes when the true model only has random intercepts 
(albeit still improved with larger sample sizes and number 
of trials; Fig. 5d).

Discussion

Here we show that the use of GLMMs can be broadened, so 
that individual variation in a dataset is not just controlled for 
but used to provide a deeper analysis on individuals’ per-
formance. While we have applied our approach to discrete, 
continuous, censored and non-censored data to demonstrate 
the possibility of using it across multiple datasets, the analy-
sis may be suitable for datasets beyond these. Furthermore, 
while we have focused on learning among individuals and 
whether patterns of learning could be identified, a similar 
type of analysis may equally be applied to other psycho-
logical constructs and across other fields (e.g. examination 

of individual growth patterns in plants, effectiveness of a 
drug or therapeutic programme in individual patients). In 
terms of our face-name associative learning task, we able to 
report significant effects for condition (massed vs spaced) 
for the online experiment but not for the in-person experi-
ment. Moreover, we were able to examine individual learn-
ing patterns, and show where an individual may lie along the 
slope/intercept and whether they exhibit outlying behaviour. 
Further, individuals’ performance can be compared across 
conditions as well as within conditions. For example, with 
the in-person experiment, individuals in the spaced condi-
tion showed more extreme patterns, with many displaying 
very good learning (high intercept and slope values) com-
pared to those in the massed condition.

Although cluster analysis did not reveal any significant 
patterns in the face-name task, two distinct patterns of 
learning emerged with the virtual navigation NavWell task. 
One pattern showed an initial rapid period of learning, pla-
teauing at strong performance that was sustained for the rest 
of the trials. The second cluster showed a slower and more 
gradual learning pattern that saw individuals learn across all 

Fig. 5   Logarithm (base 10) of the mean squared error (MSE) of the 
individual-level random intercepts (a) and slopes (b) predicted by the 
generalised linear mixed models (GLMMs) and the standard gener-
alised linear models (GLMs, which do not include random effects) 

across 1000 simulated datasets for 18 simulation scenarios. Mean 
relative bias for the fixed effects (c) and variance components (d) cal-
culated across 1000 simulated datasets for 18 simulation scenarios for 
the GLMMs
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the trials. This finding may support recent research show-
ing that humans vary substantially in their spatial learning 
(Newcombe, 2018). Using a virtual college campus, Weis-
berg and Newcombe (2016) were able to classify individu-
als as integrators, non-integrators and imprecise navigators 
depending in whether individuals were able to form a cog-
nitive map from different environments. Our results would 
support the idea of individual variation among individuals, 
showing patterns of both fast and slower learners. Although 
the water maze task is relatively simple, it is one of the 
most popular tools used to study learning and memory in 
both human and non-human animal research (Thornberry 
et al., 2021; Vorhees & Williams, 2006), as well as being 
an important assay for different diseases and neurological 
conditions (Goodrich-Hunsaker et al., 2010). Despite its 
popularity, group results rather than individual patterns of 
learning are typically reported (e.g. Woolley et al., 2015, 
and our own work, Farina et al., 2015). As a result, impor-
tant information underlying the mechanism of spatial 
learning may be missed. The two patterns of water maze 
learning may be supported by different neural patterns. For 
example, it is known that the hippocampus supports fast 
learning, while other structures including the striatum and 
neocortex support slower learning (Kumaran et al., 2016). 
However, learning is dynamic, and this is reflected in indi-
viduals changing from one pattern to another across trials; 
again, this may be indicative of dynamic neural interactions 
between different learning systems (see e.g. Kosaki et al., 
2015). Further investigation is warranted to examine the 
underlying biological and/or environmental factors that sup-
port the different patterns.

One of the interesting findings to emerge from the SHQ 
data is that learning patterns show good correspondence to 
the age group. As might be expected, the learning patterns 
are similar between the 18–20-year-olds and 21–40-year-
olds, who show good learning across the five levels of 
difficulty, especially when compared to the older groups. 
This is not unexpected, as spatial cognition declines with 
age (Techentin et  al., 2014), and the Irish sample fits 
readily to what has been observed internationally with 
the larger SHQ data (see Coutrot et al., 2018). However, 
here we can examine individual performance in more 
detail and check to see how such individuals compare to 
their age-matched cohort. We show that some individuals 
demonstrate patterns that more closely match a younger 
or older cohort, rather than their own. For example, the 
41–60 age group is particularly interesting, as some indi-
viduals show patterns that are more similar to a younger 
cohort (21–40), while many others show patterns more 
similar to the older group (61–80). Indeed, our cluster 
analysis shows that three clusters may better account for 
the data than four. This age group may therefore represent 
an important transition period in terms of spatial learning. 

Further research is needed to examine whether this transi-
tion is similar for other cognitive processes. In addition, 
as spatial learning deficits may be an early indicator of 
dementia and Alzheimer’s disease (Coughlan et al., 2018), 
the ability to identify individuals in a younger age cohort 
who perform as if much older may help to provide an early 
warning and may be useful as a cognitive digital marker 
for future disease. However, caution is warranted, as the 
age groups chosen for our analysis were wide, spanning 
20 years (e.g. 41–60) for the most part (except for the 
18–20 cohort); therefore, it is possible that those in their 
early 40s show patterns similar to the 21–40 age group. 
Similarly, those in their late 50s may show patterns similar 
to the 61–80 age group; further analyses are needed to 
examine this. It is also important to note that the SHQ data 
present only four distinct trials, and therefore using splines 
to model the non-linear behaviour may lead to overfitting. 
However, the objective here was to describe these trends 
as well as possible through individual random effects, so 
that the subsequent cluster analyses could reveal learn-
ing patterns with respect to the participants’ ages. If, in 
contrast, the objective had been to predict responses for 
different trials, then a less flexible linear predictor could 
have been more adequate.

It is important to mention that model choice plays a 
significant inferential role. If the GLMM is mis-spec-
ified, this can lead to erroneous conclusions. Model 
misspecification includes, but is not limited to, choice 
of distribution that is incompatible with the response 
variable (e.g. use of a normal distribution to model dis-
crete data), choice of inappropriate link function (e.g. 
use of a symmetrical link for a binomial model, such as 
the logit or probit, when the data exhibit asymmetrical 
behaviour), failure to account for overdispersion (when 
the variability in the data is larger than accounted for by 
the model; there are many model extensions capable of 
dealing with this phenomenon), omission of important 
predictors (e.g. not accounting for experimental design 
or failure to include important interactions) and failure 
to model dispersion appropriately (e.g. when dispersion 
changes according to treatment). Similarly, the choice 
of distance and clustering method can significantly alter 
the results of the clustering analysis. Therefore, it is 
important to use appropriate distances and compare the 
results from different clustering methods. Future simula-
tion studies will be helpful for understanding how dif-
ferent types of model misspecification (linear predictor 
specification, choice of link function, etc.) and different 
clustering techniques affect the outcomes when analysing 
individual differences.

One particular strength of GLMMs is that they can 
address missing data, especially for longitudinal studies. 
For participants who did not complete all tasks in a study 

Antoine Coutrot



Behavior Research Methods	

1 3

(after dropout), GLMMs can still provide predictions, 
which will be based on the overall mean intercepts and 
slopes when there is not enough information to predict 
individual random effects. This allows one to make better 
use of the information available in the data, rather than, as 
an alternative, omit data from participants when the avail-
able data points are insufficient to estimate a proposed 
model. Similarly, for time-until-event responses, when a 
participant did not complete the task in the allotted time 
(e.g. NavWell data), the data are right-censored, which 
means that if the participant had been given enough time, 
they would have eventually completed the task. Therefore, 
we know that the time taken to complete is greater than 
the allotted time; however, we do not know exactly what 
that time is. One alternative is to omit these observations 
and carry out a conditional analysis. However, this analy-
sis would not make use of all the available information 
in the data. Therefore, it is best to incorporate into the 
likelihood the fact that we know the time is greater than a 
certain threshold, which yields inferential results uncon-
ditional to the fact that the participant did not complete 
the task.

In conclusion, we have demonstrated the flexibility of 
using GLMMs when using repeated measures. Examina-
tion of individual differences is important to identify outli-
ers or simply those who do or do not perform well. Such an 
approach may be useful for educators or in a clinical setting 
to help identify individuals who might need further assis-
tance or attention. Furthermore, identifying clusters of indi-
viduals and learning patterns may allow further investigation 
of the underlying biological, environmental and other factors 
that may help explain why such patterns occur.

All data and R scripts are made available through http://​
www.​github.​com/​rafam​oral/​indiv​idual_​learn​ing_​GLMM.
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