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Abstract: The growing awareness of the environment and sustainable development has prompted
the search for solutions involving the development of bio-based composite materials for insulating
applications, offering an alternative to traditional synthetic materials such as glass- and carbon-
reinforced composites. In this study, we investigate the thermal and microstructural properties of
new biocomposite insulating materials derived from flaxseed-gum-filled epoxy, with and without
the inclusion of reinforced flax fibers. A theoretical approach is proposed to estimate the thermal
conductivity, while the composite’s microstructure is characterized using X-ray Computed Tomog-
raphy and image analysis. The local thermal conductivity of the flax fibers and the flaxseed gum
matrix is identified by using effective thermal conductivity measurements and analytical models.
This study provides valuable insight into the thermal behavior of these biocomposites with varying
compositions of flaxseed gum and epoxy resin. The results obtained could not only contribute to a
better understanding the thermal properties of these materials but are also of significant interest for
advanced numerical modeling applications.

Keywords: flax fiber; flaxseed gum; biocomposite material; thermal conductivity; analytical models;
X-ray computed tomography

1. Introduction

Today, increasing global consumption is accelerating the scarcity of resources, and
developing alternatives poses a major challenge, particularly in the context of climate
change and the replacement of fossil fuels [1]. Consequently, it is time to promote the
use of renewable resources whose agro-sourced origin would enable the integration of
a circular economy with a regional and local dimension. The use of agro-resources, in
particular agricultural residues, holds great interest for the development of biocompos-
ite materials, offering both environmental benefits and competitive production costs [2].
Natural biocomposites have great potential in a wide range of applications, including in
the automotive industry, packaging, and household goods [3,4]. Indeed, they can serve
as cost-effective materials while offering a wide range of structural properties [5]. Fiber-
reinforced biocomposites, especially those derived from flax, are emerging as promising
substitutes for synthetic fibers in polymeric composites. They have attracted interest due to
their ecological attributes, cost-effective production, and mechanical characteristics. Several
studies have taken advantage of them in various applications, particularly the automotive
industry and building insulation [6–8].

Due to their interesting mechanical and thermal properties, the characteristics of
flax-fiber-based biocomposites was investigated by various researchers [9–13]. In [14], a
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biocomposite was developed using low-cost raw materials resulting from the flax industry.
Non-woven flax fibers were chosen as a reinforcement, while mucilage polysaccharides,
extracted from flaxseeds, served as a matrix. [15] investigated the possibility of using flax
stems as reinforcement in a polylactic acid (PLA) matrix to produce a lightweight, fully
bio-based composite with improved mechanical properties. Additionally, [16] provided
an overview of flax fibers, the methods used to process these fibers, and the composites
developed using different types of matrices. This overview aims to provide a succinct and
fundamental resource for future research into flax-based composites.

Recently, [17,18] developed a new biocomposite-based flax fiber and flaxseed gum
extracted from flax seeds as a matrix. This combination has exhibited interesting thermal
and mechanical properties. An extensive thermal characterization of these biocomposite
materials was conducted by considering various ratios of flaxseed gum, epoxy resin,
and flax fibers. However, measuring the intrinsic thermal conductivity of individual
components such as short flax fibers and flaxseed gum within the composite has proven to
be challenging. Obtaining these thermal properties is essential, especially for modeling the
thermal conductivity of the composites while varying their composition.

In the present study, a combined experimental and theoretical approach was pro-
posed to estimate the unknown thermal properties of these insulating biocomposites. This
approach is based on using analytical models that require the microstructural character-
istics for each component, including porosity, fiber volume fraction, and matrix volume
fraction [19,20].

In the literature, microstructure characterization of the biocomposites can be con-
ducted using X-ray Computed Tomography (X-ray CT) imaging and image analysis. This
technique enables the assessment of both quantitative and qualitative information in
three dimensions [21,22]. It was used to quantify the volume fraction, dimensions, and
orientation distribution of jute [23] and carbon fiber in composites [24]. To analyze poros-
ity, [25] investigated the size distribution and morphology of pore networks in carbon
fiber/epoxy composites using X-ray CT, while [26] analyzed the porosity and microstruc-
ture of natural coir fibers for their potential as reinforcements in composites. In the context
of improving braided composites, [12] studied the effect of voids in bio-based composites
formed from natural fibers and bio-resin. Additionally, image processing techniques were
used to calculate the size, pore size distribution, and shape of polycaprolactone-based
biocomposites [13].

The current study aimed to predict the effective thermal conductivity of a novel
flax-based biocomposite insulating material. The porosity and volume fraction of each com-
ponent were thoroughly obtained from image analysis. Such data are required for thermal
conductivity calculations. The originality of this study lies in the combined experimental
and analytical approach used to estimate the intrinsic conductivity of each component
of the material. Indeed, it is particularly difficult to measure them directly using typical
experimental devices. In addition, this study also aims to explore the potential applications
of these biocomposite as insulating materials in various applications.

2. Materials and Methods

Flaxseed gum polysaccharide (FG) used as a matrix for the composites was extracted
according to the procedure described in [27]. The extraction process involved mixing
10% flax seeds with tap water and soaking for 1 h at 40 ◦C for 6 h with a stirring speed of
400 rpm. After filtering the seeds, the flax gum was precipitated with ethanol [8]. The epoxy
resin (Epolam 2020) and its hardener were purchased from Sigma Aldrich, St. Louis, MO,
USA. The flax fibers used for reinforcing composites were purchased from Van Robaeys
Frère (Guillem, France) and were 1 mm in length. Biocomposite samples were prepared as
follows: flaxseed gum (mucilage) was mixed with 160 mL of water and left to stand for
12 h. Then, epoxy resin and fibers (if used) were added to the polysaccharide solution to
reach a mixture containing 20% organic matter. This mixture was poured into a silicone
mold (44 mm in diameter and 2 mm in height) and frozen at −80 ◦C. Subsequently, the
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samples were subjected to freeze drying for 72 h at 2 mbar (primary drying), followed
by an additional 24 h at 0.002 mbar (secondary drying). Once the freeze-drying process
was completed, the samples were baked in an oven at 80 ◦C for 5 h. Finally, the samples
were polished to create cylindrical samples that were 20 mm in height with parallel top
and bottom surfaces. Figure 1 shows the pictures of three samples and the images of their
cross-section structure obtained with scanning electron microscopy (SEM).
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Figure 1. Pictures and SEM images of the cross-section morphology of the three composites: FG20,
FG80, and FFG.

2.1. Description of Materials

Table 1 presents the composition, density, and measured thermal conductivity of the
fabricated samples. A total of six samples were analyzed, with different mass ratio of
flaxseed gum, epoxy resin, and flax fibers. The FG100, FG80, and FG20 samples do not
contain flax fibers and are composed of 100%, 80%, and 20% by mass ratio of flaxseed gum,
respectively, with the remaining proportion being epoxy resin. The fibrous flaxseed gum
composites (FFG) contain a mixture of flaxseed gum, epoxy resin, and flax fibers. A dense
sample of epoxy resin was also analyzed. The sample, referred to as “chopped fibers”, consists
of compressed panels entirely made of random flax fibers measuring 1 mm in length.

Table 1. Mass fraction and thermo-physical properties of composite samples.

Sample mFG
(%)

mFibers
(%)

mEpoxy
(%)

Bulk Density
(g/cm3)

Thermal
Conductivity
(W·m−1·K−1)

FG100 100.0 0.0 0.0 228.9 ± 9.3 0.054 ± 0.001

FG80 80.0 0.0 20.0 0.231 ± 8.2 0.065 ± 0.001

FG20 20.0 0.0 80.0 0.219 ± 3.0 0.057 ± 0.001

FFG 12.0 48.0 40.0 0.194 ± 5.3 0.064 ± 0.001

Epoxy resin (dense) 0.0 0.0 100 1.1 0.782 ± 0.001

Chopped fibers (1 mm
in length) - 100.00 - 0.108 0.048 ± 0.001
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Bulk density measurements (Table 1) were performed using an Electronic Digital
LCD Gauge Stainless Nonius Caliper Micrometer 150 mm 6-inch MIS and a VWR LP
3102 balance. Composite samples were polished with a Struers Tegrapol 21 polisher and
80 g/cm2 sandpaper to obtain parallel surfaces and a height of 20 ± 0.5 mm. For this, the
volume of the samples was measured with calipers (4 samples per test) and weighed to an
accuracy of 0.01 g.

Thermal conductivity measurements of materials were conducted using a C-Therm
Technologies TCi Analyzer. The system is based on a modified transient plane source
(MTPS) technique. It is important to note that all measurements were performed at ambient
temperature. The experimental procedure conforms to ASTM D7984 [28].

2.2. Microstructural Characterization of Samples

The samples underwent characterization using X-ray CT and image analysis to analyze
their microstructure and quantify the porosity and volume fraction of each component. The
X-ray CT scans were conducted at INSA Lyon, France, using a laboratory X-ray scanner.
The data acquisition system recorded a total of 1120 projections, evenly distributed over
a 360◦ rotation along the vertical axis of the sample. To obtain the 3D reconstructions,
the recorded projections were processed using Xact software (http://xactsoftware.co.in/
accessed on 5 September 2023).

To optimize both the quality of the images and the number of scans, the samples were
scanned in smaller representative elementary volumes (REVs) of approximately 1 cm3. For
each sample, a total of four REVs scans were randomly performed, with 8 µm in voxel size.
It is important to note that during the image analysis, pores, and flax fibers in contact with
the edges of the REV were excluded from the calculation.

Segmentation of the images was conducted using the LABKIT plug-in [29], which
is an integrated feature within the ImageJ software [30]. An example of the quality of
segmentation is shown in Figure 2, where black voxels represent void spaces, and grey
voxels correspond to the solid phase within the sample.
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Figure 2. Example of FG20 sample segmentation using LABKIT plug-in. (A) Original X-ray CT image,
and (B) binary image.

To determine the volume fraction of each component within the composite, we divided
the volume of the segmented component by the total volume of the REV. This process was
repeated for each REV, and the average volume fraction was then calculated.

2.3. Analytical Approach for Estimating Thermal Conductivity

This section focuses on the proposed theoretical approach based on three steps. Firstly,
analytical models allow the estimation of the effective thermal conductivity of fibrous
composites, including chopped flax fibers (in air). Then, analytical models are used to

http://xactsoftware.co.in/
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determine the effective thermal conductivity of the porous matrix of composites. Finally,
mixing laws are used to predict the local thermal conductivity (non-porous) of the matrix,
λFG(s), with a given FG100/epoxy volume fraction ratio.

2.3.1. Thermal Conductivity of the Fibrous Media

The analytical model of Schuetz and Glickman [31] allows for the prediction of the
thermal conductivity of fibrous media. This model was previously used in similar types of
bio-based composites containing juncus maritimus fiber media [32]. The effective thermal
conductivity is determined using the following expression:

λe f f = λFG(1 − νFb) + νFb

(
2 − fs

3

)
λFb(s) (1)

with 1 − νFb = ϕ+ νFG(s),

where,
λeff: is the effective thermal conductivity of the fibrous composite.
λFG: is the effective thermal conductivity of the porous flaxseed gum (FG) matrix.
λFb(s): is the local thermal conductivity of the flax fibers (s = solid).
νFb: is the volume fraction of the flax fibers.
ϕ: is the porosity.
fs: is a morphological parameter (fs = 1 for fibers).

It can be noted that this model can be used in the case of fibrous composites in air [26].
In this case, λFG is replaced by λg:

λe f f = λg(1 − νFb) + νFb

(
2 − fs

3

)
λFb(s) (2)

with 1 − νFb = ϕ.
where,
λg: is the thermal conductivity of the air.

2.3.2. Thermal Conductivity of the Porous Flaxseed Gum Matrix

As presented in the materials and methods section, the non-fibrous composites are
made from flaxseed-gum-filled epoxy resin. To determine the conductivity of the non-
porous phase in the matrix λFG(s), three analytical models were selected: Russell, Maxwell,
and Bruggeman [33,34]. These models were chosen based on their capability for estimating
thermal conductivity for different shapes of pores within the composite material.

Russell proposed a mathematical model (3) to predict the thermal conductivity in
composites composed of cubic cells arranged in a row, i.e., series and parallel arrangements:

λFG =
λFG(s)

[
λFG(s) +ϕ

2
3

(
λg − λFG(s)

)]
λFG(s) +

(
λg − λFG(s)

)(
ϕ

2
3 −ϕ

) (3)

where the components are as follows:

λFG: is the effective thermal conductivity of the porous flaxseed gum matrix.
λFG(s): is the local thermal conductivity of the non-porous flaxseed gum matrix.
ϕ: is the porosity of the flaxseed gum matrix.

The Maxwell model, also known as the Maxwell–Eucken model, is an effective
medium approximation used to estimate the thermal conductivity of porous materials. This
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model (4) assumes that the fluid phase is composed of randomly dispersed spheres [33]. The
equation of the effective thermal conductivity of a porous matrix can be expressed as follows:

λFG = λFG(s)

λg + 2λFG(s) + 2ϕ
(

λg − λFG(s)

)
λg + 2λFG(s) −ϕ

(
λg − λFG(s)

) (4)

The Bruggeman model, also referred to as the Bruggeman homogenization model, is
used to predict the effective thermal conductivity of porous materials that contain spherical
or cylindrical inclusions [35]. In this study, the pores can be assumed to be nearly spherical,
and the expressions for the effective thermal conductivity can be expressed as follows (5):

λFG =
λFG(s)

[
1 −

(
1 − λg

λFG(s)

)
2
3 ϕδ

]
[1 + (δ − 1)ϕ]

(5)

where δ is determined from the Equation (6) for spherical particles:

δ =
3λFG(s)

2λFG(s) + λg
(6)

2.3.3. Local Thermal Conductivity of the Flaxseed Gum Matrix

To estimate the local thermal conductivity of the non-porous matrix, λFG(s), with a
given volume fraction ratio of FG and epoxy resin, the analytical models require deter-
mination of the intrinsic thermal conductivity of FG and epoxy resin in the matrix. The
thermal conductivity of the solid phase can be calculated using the mixing law of series (7)
or parallel (8) mixing laws:

1
λFG(s)

=
X

λFG100(s)
+

(1 − X)

λEpoxy(s)
(7)

λFG(s) = XλFG100(s) + (1 − X)λEpoxy(s) (8)

where,

X: is the volume fraction of the pure flaxseed gum (FG100) in the solid matrix.
λFG100(s): is the intrinsic thermal conductivity of the non-porous FG100.
λEpoxy(s): is the intrinsic thermal conductivity of the non-porous epoxy resin.

3. Results and Discussion
3.1. Microstructure Analysis

Figure 3 shows the microstructure of the samples obtained from X-ray CT images with
a voxel size of 8 µm. The porosity network within flaxseed-gum-filled epoxy composites,
encompassing different ratios of flaxseed gum/epoxy, highlights the presence of three
distinct types of pores: (i) inter-lamellar pores separating two adjacent lamellae, with an
average distance ranging from 2 to 300 µm; (ii) spherical and sub-spherical globular pores
resulting from air trapped in the matrix during the fabrication process, which have an
average maximum diameter of 1500 µm; and (iii) microcracks that developed due to the
thermal stresses during the freezing process, with an orientation identical to that of the
inter-lamellar pores.
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Figure 3. 2D visualization of the sample’s microstructure and pores shape.

The parallel lamellar alignment structure showed in samples FG20, FG802 and FG100 is
a result of the extraction of lyophilized ice crystals in the vertical direction of the specimens.
This similar lamellar structure was observed in previous studies involving graphene/epoxy
and ceramic composites [36,37]. The architecture of FG20 displays a well-organized arrange-
ment of lamellae, while FG80 and FG100 show some defects and microcracks. Reducing the
epoxy content from 80% to 20% leads to a trend towards a less structured microstructure.
In the fibrous composite (FFG), the incorporation of flax fibers into the flaxseed gum matrix
resulted in substantial alterations to its microstructure. The images also revealed more
spherical pores compared to the FG20 and FG80 samples, indicating good compatibility
between the fibers and the matrix. Additionally, the absence of cracks and deformations in
the fibrous composite suggests good structural cohesion.

Table 2 summarizes the porosity and volume fraction of the flaxseed-gum-filled epoxy
and fibers in the samples obtained from the segmentation method. The porosity values
range from ~61% ± 3.0 for FG20 to ~68% ± 2.4 for FG80 and FG100. This increase in
porosity was attributed to alterations in the microstructure, such as the opening of inter-
lamellar pores (Figure 3), as well as the development of some microcracks in FG80 and
FG100 due to the increase in the volume fraction of the flaxseed gum in the matrix. These
microcracks create additional pathways for fluid flow within the matrix, leading to an
overall higher porosity. These results also highlight the impact of the mucilage/epoxy ratio
on the porosity within the matrix. In addition, the panel made from chopped fibers (in air)
has a higher porosity (76% ± 1.0) due to the absence of a fiber-binding component.

Table 2. Porosity and volume fraction of the flaxseed-gum-filled epoxy and fibers in the samples.

Sample νFG (%) νfibers (%) Porosity (%)

FG100 32.0 - 68.0 ± 2.4
FG80 32.0 - 68.0 ± 2.5
FG20 39.0 - 61.0 ± 3.0
FFG 19.0 16.0 65.0 ± 1.1

Chopped fibers (1 mm) - 24.0 76.0 ± 1.0
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3.2. Thermal Conductivity Estimation

To determine the effective thermal conductivity of heterogeneous materials using
analytical models, it is necessary to know the thermal conductivity of each component
constituting the composites. As these are porous materials, it is essential to determine
the conductivity of the non-porous phase of the matrix, as well as that of the flax fibers.
Furthermore, as the matrix itself is made up of pure flaxseed gum (FG100) and epoxy
resin, it is crucial to identify the conductivity of each of these components separately. The
following sections discuss in detail the method used to determine the thermal conductivity
of each component of the composite, using analytical models and mixing laws.

3.2.1. Thermal Conductivity of the Non-Porous Flaxseed-Gum-Filled Epoxy Matrix

As shown in Figure 3, the segmented images of the non-fibrous composites revealed
two clearly identifiable phases: a continuous solid phase composed of flaxseed-gum-filled
epoxy and a dispersed phase corresponding to the pores. However, since flaxseed gum and
epoxy resin have a close attenuation coefficient, the images showed only one component,
making it difficult to distinguish between the two components. Thus, both flaxseed gum
and epoxy were considered as a one solid component. To determine the local thermal
conductivity of this non-porous phase, the three analytical models Russell (3), Maxwell (4),
and Bruggeman (5) (Cf. Section 3.2), based on different pore shapes, were used. As shown
in Figure 4, the histograms present the variation in the local thermal conductivity of the
two heterogeneous samples FG20 and FG80. These results indicate minimal discrepancies
among the conductivities obtained from the three models. This suggests that the shape of
the pores has limited influence on the thermal conductivity variation. The porosity has
a more significant impact on conductivity than pore shape. Thus, in the next section, the
usual Maxwell model is retained for its compatibility with the spherical shape of the pores
present in the matrix, compared with the other tested models. The conductivity of the
non-porous samples FG80 and FG20 are 0.181 and 0.123 W·m−1·K−1, respectively.
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3.2.2. Local Thermal Conductivity of Chopped Flax Fibers

The thermal conductivity measurements obtained from panels of chopped fibers
(1 mm in length) were used to estimate the intrinsic thermal conductivity of individual
flax fibers (without porosity). The analytical model of Schuetz and Glickman (2) was
applied to a panel containing randomly oriented fibers in air (Figure 5B). This model
considers the thermal conductivity of the solid fibers λFb(s), the porosity, and the morpho-
logical parameter fs of the solid phase. Considering the experimental thermal conductivity
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(0.048 W·m−1·K−1) and the porosity (76% ± 1.0) obtained from X-ray CT images, the local
thermal conductivity of the fibers, λFb(s),was determined using the following expression:

λFb(s) =
3

2 − fs
λFb −ϕλg

1 −ϕ = 0.35
(

W·m−1·K−1)
(9)

where,

λFb: is the effective thermal conductivity of the flax fibers (in air).
λg: is the thermal conductivity of the air (λg = 0.026 W·m−1·K−1).
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Figure 5. X-ray CT images of the segmented flax fibers from (A) the fibrous composite (FFG) and
(B) the panel’s fibers (in air).

In the literature and to our knowledge, there are no previous studies available in the
literature that specifically provide the local thermal conductivity of randomly oriented
short flax fibers. However, for well-oriented flax fibers, a study conducted by [38] provided
results of experimental measurements of the thermal conductivity of flax fibers. In the
longitudinal direction, the thermal conductivity was 1.232 (W·m−1·K−1), while in the
transverse direction, it was 0.17 (W·m−1·K−1). These measurements diverge from our
results because we used shorter and randomly oriented fibers, compared to their well-
oriented fibers.

Note that in the Section 3.2.4, a second method for determining fiber conductivity
based on the experimental conductivity of the fibrous composite will be proposed. The
results obtained from both methods will then be compared and discussed.

3.2.3. Intrinsic Thermal Conductivity of the Pure Flaxseed Gum (FG100) and Epoxy Resin

To estimate the matrix’s thermal conductivity for a given flaxseed gum/epoxy ratio,
it is necessary to identify the intrinsic conductivity of the pure flax gum (FG100) and the
epoxy resin present in the matrix. For this purpose, the experimental conductivities of the
three samples, FG100, FG80, and the epoxy resin, were used. The effective conductivity
of their solid phase (non-porous) was deduced from Maxwell’s model by knowing the
porosity (Table 2). Then, knowing the volume fractions of the pure flaxseed gum (FG100)
and epoxy in the matrix, their local conductivity (FG100 and epoxy) was deduced using
the series and parallel mixing laws (Equations (7) and (8)).

The volume fraction of epoxy resin νEpoxy(s) in each sample was determined using Equa-
tion (10) [32], where mEpoxy(s) represents the mass fraction of the epoxy and ρmatrix(s)/ρEpoxy(s)
is the ratio of the density of the matrix to that of the epoxy (Table 1).

νEpoxy(s) = mEpoxy(s)
ρmatrix(s)

ρEpoxy(s)
(10)
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where,
ρmatrix(s) =

ρmatrix
1 − ϕ

with

νFG(s) = 1 − νEpoxy(s)

By knowing the volume fractions (Table 3) and the conductivity of the non-porous
fraction of the three samples, FG100, FG80, and the epoxy resin (Table 1), the thermal
conductivity of FG100 and epoxy resin can be obtained from mixing laws. From the linear
trend curves of Equations (11) and (12), the slope and y-intercept can be deduced. This
yields λFG100 and λEpoxy (Figure 6).

1
λFG(s)

= X

(
1

λFG100(s)
− 1

λEpoxy(s)

)
+

1
λEpoxy(s)

(11)

λFG(s) = X(λ FG100(s) − λEpoxy(s)

)
+ λFG100(s) (12)

Table 3. Volume fraction of FG100 and epoxy resin in the matrix.

Sample νFG100 (%) νEpoxy (%)

FG100 100.00 0.00
FG80 80.30 19.70
FG20 59.20 40.80
FFG 35.00 65.00

Epoxy resin 0.00 100.00
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For FG100 sample, the thermal conductivities (λFG100) were around 0.056 and
0.057 (W·m−1·K−1) for both parallel and series models, respectively. Thus, an average
value of 0.0565 W·m−1·K−1 can be considered for FG100. The thermal conductivity of
epoxy resin is around 0.28 and 0.288 (W·m−1·K−1) for parallel and series models, respec-
tively. Thus, a mean value of 0.284 W·m−1·K−1 can be considered for epoxy. It can be
noted that in the literature, the thermal conductivity of epoxy varies between 0.18 and
0.26 (W·m−1·K−1) [39,40]. These values are of the same order of magnitude as that obtained
and tend to show the validity of the approach.

3.2.4. Local Thermal Conductivity of Flax Fibers Based on the Effective Conductivity of the
Fibrous Composite

In Section 3.2.2, the local thermal conductivity of the flax fibers was estimated from
the experimental conductivity of the chopped fibers in air. An alternative method is also
proposed for determining the local conductivity of fibers from the fibrous composite (FFG)
(Figure 5A).
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Given the known thermal conductivities of FG100 and epoxy resin, and their respective
volume fractions (Table 3), the thermal conductivity of the non-porous FFG matrix was
deduced: λFG(s) was around 0.180 W·m−1·K−1. Considering that the porosity of FFG is
65% (Table 2) and by applying Maxwell’s model, the estimated thermal conductivity of the
porous matrix, λFG, was 0.069 W·m−1·K−1.

Using the fiber volume fraction obtained through image analysis, the conductivity of
the porous matrix (0.069 W·m−1·K−1) and the experimental effective conductivity of the
FFG (λeff), the local conductivity of the fibers, λFb(s), was deduced from Equation (13). The
obtained value was approximately 0.123 (W·m−1·K−1).

λFb(s) =
3

2 − fs
λe f f − (1 − νFb)λFG

νFb
= 0.123

(
W·m−1·K−1)

(13)

Note that this value is lower than the λFb(s) = 0.35 (W·m−1·K−1) obtained in
Section 3.2.2. In [32,41], this overestimation of the thermal conductivity of fibers in air was
explained by the potential contribution of radiation inside highly porous Juncus maritimus
fibers. Accordingly, the obtained value (0.123 W·m−1·K−1) is close to the average thermal
conductivity of treated flax fibers 0.1187 (W·m−1·K−1), obtained by [19].

3.2.5. Estimating the Thermal Conductivity of the Porous Matrix for Different Volume
Fractions of Flaxseed Gum

Figure 7 illustrates the evolution of flaxseed gum conductivity as a function of
FG100 volume ratio. The conductivities of FG100 and epoxy were obtained by fitting
linear trend curves using the two mixing laws in series and parallel, as discussed in
Section 3.2.3. This curve represents all experimental and theoretical data points concerning
matrix thermal conductivity in both fibrous and non-fibrous composites. A good agreement
between experimental and theoretical results was observed. Since the parallel and series
mixing laws yield values close to each other, the average value between the two models could
be considered as a reliable estimation of the thermal conductivity of the composite matrix.
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4. Conclusions

The present study aims to estimate the thermal conductivity of newly developed
insulating composites made from flax fibers and a flaxseed-gum-filled epoxy matrix. An
analytical approach was applied to estimate the local thermal conductivity of the matrix
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and fibers using analytical models. In addition, the microstructure of the composites was
characterized using X-ray CT and image analysis.

The composite’s microstructure shows a lamellar structure with three types of pores:
inter-lamellar, spherical and microcracks. The parallel alignment of the lamellae is due to
the freeze-drying process. The lamellar structure of the flaxseed gum matrix, containing
80% epoxy (FG20), appears more organized and uniform than FG20 and FG100. The incor-
poration of reinforced fibers in the matrix (FFG sample) results in a structural modification
that reinforces the composite’s cohesion.

To overcome the lack of experimental data on the local thermal conductivity of the
solid (non-porous) phase in composites, analytical models based on the two-phase con-
tinuous/discontinuous principle were used in this study. The results revealed that the
shape of the pores has a negligible effect on the conductivity variation, while the porosity
significantly influences the thermal conductivity of the composite material.

Since the matrix is made up of two homogeneous components, FG100 and epoxy
resin, determining the conductivity of each component is crucial to assessing the overall
conductivity of the matrix. Consequently, the average conductivity of pure flaxseed gum
FG100 (0.145 W·m−1·K−1) and pure epoxy resin (0.284 W·m−1·K−1) was estimated using
both parallel and series mixing laws.

The local thermal conductivity of flax fibers was determined from chopped flax fibers
(in air) 1 mm long. Glickman’s analytical model was used for this calculation, revealing a
thermal conductivity of 0.35 W·m−1·K−1. However, this value may be overestimated due
to the radiation contribution. An alternative estimation was therefore proposed, based on
the fibrous composite (FFG). As expected, the fiber’s thermal conductivity obtained was
around 0.123 W·m−1·K−1. This value is close to the average thermal conductivity of the
pure flaxseed gum, FG100 (0.145 W·m−1·K−1).

Obtaining the thermal conductivity of this composite material can be challenging, as
it is difficult to directly measure the intrinsic thermal conductivity of each (non-porous)
component using conventional experimental devices. However, determining the intrinsic
conductivity of each component of the composite material could provide the basis for more
advanced numerical modeling of the composite material in the future.

Finally, the thermal properties of these materials highlight their ability to provide effec-
tive thermal insulation, allowing the development of lightweight biocomposites capable of
competing with synthetic foams commonly used in the automotive and building insulation
fields. The renewable nature, natural origin, and biodegradability of these materials make
them attractive for the development of competitive products in these sectors.
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