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Abstract

An identifying code of a closed-twin-free graph G is a set S of vertices of G such that
any two vertices in G have a distinct intersection between their closed neighborhoods and
S. It was conjectured in [F. Foucaud, R. Klasing, A. Kosowski, A. Raspaud. On the size
of identifying codes in triangle-free graphs. Discrete Applied Mathematics, 2012] that there
exists an absolute constant c such that for every connected graph G of order n and maximum
degree ∆, G admits an identifying code of size at most ∆−1

∆ n + c. We provide significant
support for this conjecture by proving it for the class of all bipartite graphs that do not
contain any pairs of open-twins of degree at least 2. In particular, this class of bipartite
graphs contains all trees and more generally, all bipartite graphs without 4-cycles. Moreover,
our proof allows us to precisely determine the constant c for the considered class, and the
list of graphs needing c > 0. For ∆ = 2 (the graph is a path or a cycle), it is long known
that c = 3/2 suffices. For connected graphs in the considered graph class, for each ∆ ≥ 3,
we show that c = 1/∆ ≤ 1/3 suffices and that c is required to be positive only for a finite
number of trees. In particular, for ∆ = 3, there are 12 trees with diameter at most 6 with a
positive constant c and, for each ∆ ≥ 4, the only tree with positive constant c is the ∆-star.
Our proof is based on induction and utilizes recent results from [F. Foucaud, T. Lehtilä.
Revisiting and improving upper bounds for identifying codes. SIAM Journal on Discrete
Mathematics, 2022].

1 Introduction

Let G = (V (G), E(G)) be a graph with vertex-set V (G) and edge-set E(G). Any subset S ⊂
V (G) is called a vertex subset of G. The (open) neighborhood of a vertex v of G is the set NG(v)
of all vertices of G adjacent to v. The vertices of G in NG(v) are also called the (first) neighbors
of v in G. Moreover, the set NG[v] = {v}∪NG(v) is called the closed neighborhood of v. Vertices
u, v ∈ V (G) are called open (closed) twins in G if and only if they have the same open (closed)
neighborhood. Graphs with no open or closed twins are called twin-free.

An identifying code C of a graph G is a vertex subset of G that (i) dominates each vertex v of
G (that is, either v ∈ C or that v has a neighbor in C) and (ii) separates each pair u, v of distinct
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vertices of G (that is, there is a vertex of G in C that belongs to exactly one of the two closed
neighborhoods N [u], N [v]). Note that graph G admits an identifying code only when no two
vertices of G are closed twins. Hence, we say that graphs with no closed twins are identifiable,
that is, they admit an identifying code (for example, the whole vertex set). A vertex subset of a
graph G satisfying the property (i) is called a dominating set of G and subset satisfying property
(ii) is called a separating set of G. It is natural to ask for a minimum-sized identifying code of
an identifiable graph G. The size, denoted by γID(G), of such a minimum-sized identifying code
of G is called the identification number (or ID-number for short) of G.

Identifying codes were introduced in 1998 [12], motivated by fault-detection in multiprocessor
networks. Since then, numerous other applications of identifying codes have been discovered,
such as threat location in facilities using sensor networks [17], logical definability of graphs [15]
or canonical labeling of graphs for the graph isomorphism problem [1]. Besides, since the 1960s
and long before the introduction of identifying codes of graphs, many related concepts such as
separating systems or test covers have been independently studied. All of them put together
form the general area of identification problems in graphs and other discrete structures, see for
example [3, 14, 16] and bibliography [11] for over 500 papers on the topic.

A natural question that arises in the study of identifying codes is the one of extremal values
for the identification number: how large can it be, with respect to some relevant graph param-
eters? When only the order n of the graph is considered, it is known that the identification
number of an identifiable graph with at least one edge lies between log2(n+1) [12] and n−1 [9];
both values are tight for graphs with edges and the extremal examples have been characterized
in [13] and [5], respectively.

Nevertheless, it was observed in [5] that when the maximum degree ∆ of the graph G is small
enough with respect to the order n of the graph, the (n − 1)-upper bound can be significantly
improved (for connected graphs) to n− n

Θ(∆5)
. The latter was thereafter subsequently reduced

to n− n
Θ(∆3)

in [8]. This raises the question of what is the largest possible identification number

of a connected identifiable graph of order n and maximum degree ∆. Towards this problem, the
following conjecture was posed, which is the main topic of this paper.

Conjecture 1 ([6, Conjecture 1]). There exists a constant c such that for every connected
identifiable graph on n ≥ 2 vertices and of maximum degree ∆ ≥ 2,

γID(G) ≤ ∆− 1

∆
n+ c.

Note that for ∆ ≤ 1, the only connected identifiable graph is the one-vertex graph. From
the known results in the literature [2] and [10], the above conjecture holds for ∆ = 2 (that is,
for paths and cycles) with c = 3/2. The following lemma recapitulates the results for the case
that ∆ = 2.

Lemma 2 ([2, 10]). Let G be an identifiable graph on n vertices and of maximum degree ∆ = 2.
Then:

(1) For all paths G: γID(G) =
⌊
n
2

⌋
+ 1 ≤ ∆−1

∆ n+ 1;

(2) For G isomorphic to either a 4-cycle or a 5-cycle: γID(G) =
⌊
n
2

⌋
+ 1 ≤ ∆−1

∆ n+ 1;

(3) For all even cycles G of order n ≥ 6: γID(G) = n
2 = ∆−1

∆ n;

(4) For all odd cycles G of order n ≥ 7: γID(G) = n
2 + 3

2 = ∆−1
∆ n+ 3

2 .
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Hence, for the rest of this extended abstract, we assume that ∆ ≥ 3. If true, Conjecture 1
would be tight: for any ∆ ≥ 3, there are arbitrarily large graphs of order n and maximum
degree ∆ with identification number ∆−1

∆ n [8]. A bound of the form n − n
103(∆+1)3

[8] proved

using probabilistic arguments is the best known general result towards Conjecture 1 (for the sake
of comparison, the conjectured bound can be rewritten as n− n

∆ + c). For triangle-free graphs,
this was improved to n − n

∆+o(∆) in [6], and to smaller bounds for subclasses of triangle-free

graphs, such as n− n
∆+9 for bipartite graphs and n− n

3∆/(ln∆−1) for triangle-free graphs without

(open) twins. The latter result implies that Conjecture 1 holds for triangle-free graphs without
any open twins, whenever ∆ ≥ 55 (because then, 3∆/(ln∆ − 1) ≤ ∆). It holds for bipartite
graphs without (open) twins by [7]. Until this work, the conjecture remained open even for
trees, and one of the challenges for proving it on trees was to allow open-twins of degree 1 (note
that for any set of mutual open-twins, one needs all of them but one in any identifying code).

Our work. We investigate Conjecture 1 for bipartite graphs of maximum degree ∆ ≥ 3 and
we prove it (with c = 1

∆ ≤ 1
3) for a large subclass of connected bipartite graphs with no twins

of degree 2 or greater. In particular, this subclass contains connected bipartite graphs with no
4-cycles and hence, all trees as well. Moreover, for each ∆ ≥ 3, we characterize the graphs of
this class with maximum degree ∆ for which c > 0. It is given by the collection F∆, whereby

F∆ = {K1,3} ∪ Ttree for ∆ = 3; and F∆ = {K1,∆} for ∆ ≥ 4,

where Ttree is a set of 11 trees of maximum degree 3 and diameter at most 6. See Figure 1 for the
full list of the 11 trees in Ttree. Here, K1,∆ is a star on ∆+ 1 vertices. Note that, for maximum
degree at least 3, all bipartite graphs are identifiable. Hence, throughout the rest of the paper,
we tacitly assume all our graphs (of the considered graph class) to be identifiable. Our main
results are stated as follows.

In the following proposition we present the exact ID-number for every connected identifiable
bipartite graph G on at least n ≥ 3 without twins of degree at least two which have γID(G) >
∆−1
∆ n.

Proposition 3. Let G be a graph of order n, maximum degree ∆ ≥ 3 and isomorphic to a
graph in F∆. Then, we have

γID(G) =
∆− 1

∆
n+

1

∆
.

Our next (main) result proves the conjecture for all other connected bipartite graphs of
maximum degree ∆ ≥ 3 and not in the collection F∆.

Theorem 4. Let G be a connected bipartite graph of order n, of maximum degree ∆ ≥ 3, with
no twins of degree 2 or greater, and not isomorphic to any graph in the collection F∆. Then,
we have

γID(G) ≤ ∆− 1

∆
n.

We will see that Theorem 4 is tight for many connected bipartite graphs without twins of
degree at least 2. When ∆ = 3 there are infinitely many examples for such graphs. Furthermore,
we give in Proposition 17 an infinite family of graphs for any ∆ ≥ 4 which has identification
number quite close to the conjectured bound; as ∆ increases, our construction gets closer and
closer to the conjectured bound.

Definitions and notations. For any vertex v of G, the symbol degG(v) denoting the degree
of the vertex v in G is the total number of neighbors of v in G. A leaf of a graph G is a vertex
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1

(a) T1: γID(T1) =
14
3 +

1
3 = 5.

1

(b) T2: γID(T2) =
14
3 +

1
3 = 5.

1

(c) T3: γID(T3) =
20
3 +

1
3 = 7.

1

(d) T4: γID(T4) =
20
3 +

1
3 = 7.

1

(e) T5: γID(T5) =
20
3 +

1
3 = 7.

1

(f) T6: γID(T6) =
26
3 +

1
3 = 9.

1

(g) T7: γID(T7) =
26
3 +

1
3 = 9.

1

(h) T8: γID(T8) =
32
3 +

1
3 = 11.

1

(i) T9: γ
ID(T9) =

32
3 + 1

3 = 11.

1

(j) T10: γ
ID(T10) =

38
3 + 1

3 = 13.

1

(k) T11: γ
ID(T11) =

44
3 + 1

3 = 15.

Figure 1: The family Ttree of trees. The set of black vertices in each figure constitutes an
identifying code of the tree.

of degree 1 in G. The (only) neighbor of a leaf v in a graph G is called the support vertex of v
in G. Any vertex of a graph G that is not a leaf of G is usually referred to as a non-leaf vertex
of G. The length (or the number of edges) of a longest induced path in a graph G is called
the diameter of G. On many occasions throughout this article, we shall have the need to look
at a subgraph of a graph G formed by deleting away some vertices or edges from G. To that
end, given a graph G and a set S containing some vertices and edges of G, we define G− S as
the subgraph of G obtained by deleting from G all vertices (and edges incident with them) and
edges of G in S.

Structure of the paper. Following the current Introduction, Section 2 is entirely dedicated
to the proof of Theorem 4. Section 3 deals with the tightness of the conjectured bound and we
conclude in Section 4.
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2 Proof of main result

Throughout this section, unless otherwise mentioned, all (connected bipartite) graphs we con-
sider are identifiable. We prove Proposition 3 and Theorem 4 here. Toward proving Proposi-
tion 3, we next look at the star graphs. For any ∆ ≥ 3, the complete bipartite graph K1,∆ is
called a ∆-star, or simply a star. Noting that for any ∆-star S the set of all its leaves constitutes
a minimum identifying code of S, it can therefore be readily verified that Proposition 3 is true
for all ∆-stars.

Lemma 5. For a ∆-star S with ∆ ≥ 3 and on n (= ∆+1) vertices, we have γID(S) = ∆−1
∆ n+ 1

∆ .

In particular, Lemma 5 shows that ∆-stars satisfy the conjectured bound with c = 1
∆ . To

fully establish Proposition 3 now, one needs to only show the veracity of the result for the rest
of the graphs in F3, that is, the trees in Ttree. To describe the trees in Ttree and other graphs
later in a more unified manner, we start by defining a particular “join” of graphs with stars. Let
G′ be a graph and S be any star. Then, let G′ �v S denote the graph obtained by identifying a
vertex v of G′ with a leaf l of S (for example, if S and P are a 3-star and 4-path, respectively,
each with a leaf v, then the graphs in Figures 1(a) and 1(b) are S�vS and P �vS, respectively).
We call the G′�v S the graph G′ appended with a star and it is said to be obtained by appending
S (by its leaf l) onto (the vertex u of) G′. In the case that the vertex v of G′ is inconsequential
to the context or is (up to isomorphism) immaterial to the graph G, we may simply drop the
suffix v in the notation G′ �v S and denote it as G′ � S (for example, if P is a 2-path and S is
a star, then P �v S is (up to isomorphism) the only graph irrespective of which vertex of the
2-path v is). As a convention, we continue to call the vertices of G′ � S by the same names as
they were called in the graphs G′ and S. In other words, the graph G′ � S is said to inherit its
vertices from G′ and S. In particular, if G′�S is obtained by identifying the vertex v of G′ and
a leaf l of S, both the names v and l (as and when convenient) also refer to the identified vertex
in G′ � S.

For any positive integer p, let [p] denote the set {1, 2, . . . , p}. Let G0 be a fixed graph, p ≥ 1
be an integer and for each i ∈ [p], let Si be a ∆i-star for ∆i ≥ 3. Now, we may carry out the
process of inductively appending stars by defining Gi = Gi−1 �vi−1 Si for all i ∈ [p], where vi−1

is a vertex of Gi−1. Then the graph Gp is called the graph G0 appended with p stars. In the case
that each Si is isomorphic to a ∆-star S for ∆ ≥ 3, we call the graph Gp the graph G0 appended
with p ∆-stars. In the particular case that G0 = S0 is itself a ∆0-star for ∆0 ≥ 3, we simply
call Gp an appended star. Further, if ∆ = ∆0 = ∆1 = · · · = ∆p, then we call the graph Gp

an appended ∆-star. We next furnish some general results for any identifiable graph appended
with a star.

Lemma 6. Let G′ be an identifiable graph and let G = G′ �v S, where v is a vertex of G′ and
S is a ∆-star for ∆ ≥ 3. Then G is also identifiable and γID(G) ≤ γID(G′) + ∆− 1.

The next lemma shows that if G is a graph obtained by starting from an identifiable “base”
graph G0 and iteratively appending stars thereon, then the graphs G and G0 share the same
constant c in Conjecture 1. It is worth mentioning here that Lemma 7 is central to our inductive
proof arguments later whereby, if a graph G is structurally a “smaller” identifiable graph G′

appended with a star, then by using Lemma 7 and an inductive hypothesis that the “smaller”
graph G′ = G−S satisfies the conjectured bound, one can show that so does the “bigger” graph
G.
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Lemma 7. Let c be a constant, G0 be an identifiable graph on n0 vertices, of maximum degree
∆0 and be such that γID(G0) ≤ ∆0−1

∆0
n0 + c. For an integer p ≥ 1 and for all i ∈ [p], let Si be a

∆i-star for ∆i ≥ 3. Also, for all i ∈ [p], let Gi = Gi−1 �vi−1 Si, where vi−1 is a vertex of Gi−1,
and let G = Gp be the graph G0 appended with p stars on n vertices and of maximum degree
∆. Moreover, assume that ∆max = max{∆i : 0 ≤ i ≤ p}. Then, we have

γID(G) ≤ ∆max − 1

∆max
n+ c ≤ ∆− 1

∆
n+ c.

Corollary 8. For an integer p ≥ 1 and for all i ∈ [p], let Si be a ∆i-star for ∆i ≥ 3. For each
i ∈ [p], let Gi = Gi−1�vi−1Si, where vi−1 is a vertex of Gi−1, and let G = Gp be an appended star
on n vertices and of maximum degree ∆. Moreover, assume that ∆max = max{∆i : 0 ≤ i ≤ p}.
Then, we have

γID(G) ≤ ∆max − 1

∆max
n+

1

∆0
≤ ∆− 1

∆
n+

1

3
.

We next look at the identification numbers of the trees T2 and T3 in the collection Ttree.

Lemma 9. Let T2 and T3 be the trees as in Ttree on n vertices and of maximum degree ∆ = 3.
Then, γID(T2) = 5 = 2

3 × 7 + 1
3 = ∆−1

∆ n+ 1
3 and γID(T3) = 7 = 2

3 × 10 + 1
3 = ∆−1

∆ n+ 1
3 .

Lemma 9 therefore establishes the result in Proposition 3 for the trees T2 and T3 in Ttree.
Next, we look at other paths appended with stars which are not isomorphic to either the graph
T2 or T3. In particular, we show that all paths appended with stars other than T2 and T3 satisfy
Conjecture 1 with constant c = 0.

Lemma 10. Let G = P �v S be a graph on n vertices, where S is a ∆-star with ∆ ≥ 3, P is
a path and v is a vertex of P . Moreover, let G be of any of the following types: either (1) P is
not a 4-path; or (2) P is a 4-path and v is a non-leaf vertex of P ; or (3) P is a 4-path, v is a
leaf of P and ∆ ≥ 4. Then, in each of the cases, we have γID(G) ≤ ∆−1

∆ n.

Lemma 10 shows that all trees of the form P � S, where P is a 4-path and S is a star, but
not isomorphic to T2 satisfy the bound in Conjecture 1 with c = 0. Our next lemma shows that
all trees of the form Ti�S, for i ∈ {2, 3}, where S is a star, but not isomorphic to T3 also satisfy
the bound in Conjecture 1 with c = 0.

Lemma 11. Let G = Ti �v S, for i ∈ {2, 3}, be a graph on n vertices and of maximum degree
∆ ≥ 3 such that G ̸∼= T3, where, v is a vertex of Ti and S is a ∆S-star with ∆S ≥ 3. Then, we
have γID(G) ≤ ∆−1

∆ n.

We next turn to the trees in the collection Ttree other than T2 and T3 and show that they
satisfy Proposition 3. These are precisely the appended 3-stars of maximum degree 3 and of
diameter at most 6. One characteristic of appended ∆-stars is that they all have an even
diameter. Using that, the following proposition unifies the identification number for all such
appended 3-stars in Ttree.

Proposition 12. Let G be an appended 3-star on n vertices, of maximum degree ∆ = 3 and
of diameter at most 6. Then, we have γID(G) = 2

3n+ 1
3 .

By Lemmas 5, 9 and Proposition 12 therefore, we have the proof of Proposition 3. In the
next two lemmas, however, we show that all other appended stars not in the collection Ttree
satisfy the conjectured bound with c = 0.
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Lemma 13. Let G be an appended 3-star on n vertices, of maximum degree ∆ = 3 and of
diameter at least 8. Then, we have γID(G) ≤ 2

3n = ∆−1
∆ n.

Lemma 14. Let G be an appended star on n vertices and of maximum degree ∆ ≥ 4. Then,
we have γID(G) ≤ ∆−1

∆ n.

We next focus on the proof of Theorem 4. Before we start the proof sketch of Theorem 4, we
cite two lemmas from [7]. These two lemmas allow us to show that in order to prove Theorem 4,
one needs to consider the connected bipartite graphs G only of the form G′ �v S, whereby G′ is
necessarily connected and bipartite as well. Thus, as we see in the proof sketch, induction plays
a central role in proving Theorem 4.

Lemma 15 ([7, Lemma 4]). Let G be a connected bipartite graph on n ≥ 4 vertices, with s
support vertices and not isomorphic to a 4-path. Then, we have γID(G) ≤ n− s.

Lemma 16 ([7, Theorem 6]). Let G be a connected bipartite graph on n ≥ 3 vertices, with ℓ
leaves and with no twins of degree 2 or greater. Then, we have γID(G) ≤ n+ℓ

2 .

Our restrictions to the graph class in Theorem 4 are due to the restrictions in Lemma 16.
With that, we are now ready to provide the proof sketch of our main theorem.

Proof. (Theorem 4). The proof is by induction on the 2-tuple (n,m) ordered by dictionary order
denoted by <d, say, where m is the number of edges of the graph G. Since we have ∆ ≥ 3,
this implies that n ≥ 4. However, n = 4 implies that G is a 3-star and thus is isomorphic
to a graph in F3. Therefore, we take the base case of the induction hypothesis to be when
(n,m) = (5, 4) (note that for n = 5, by the connectivity of G, the latter has at least 4 edges).
In the base case now, one can check that G ∼= P � S, where P is a 2-path and S is a 3-star.
Therefore, by Lemma 10(1), the result is true in the base case. Let us assume that the induction
hypothesis is true for all connected bipartite graphs G′ on n′ vertices and m′ edges such that
(5, 4) ≤d (n′,m′) <d (n,m), of maximum degree ∆′ ≥ 3, not isomorphic to a graph in F∆′ and
with no twins of degree 2 or greater.

Let ℓ and s be the number of leaves and support vertices, respectively, in G. If s ≥ n
∆ , then,

by Lemma 15, we have γID(G) ≤ n− s ≤ n− 1
∆n = ∆−1

∆ n and, hence, we are done. Moreover,

if ℓ ≤ ∆−2
∆ n, then, again, we have γID(G) ≤ n+ℓ

2 ≤
(
1 + ∆−2

∆

)
n
2 = ∆−1

∆ n and we are done in

this case too. We therefore assume that both s < n
∆ and that ℓ > ∆−2

∆ n. The latter inequality
implies that there is at least one leaf and, hence, at least one support vertex as well in G. In
this case, we have ℓ

s > ∆ − 2. Moreover, as G is not a star, the maximum number of leaves
adjacent to a support vertex is ∆ − 1. Hence, there exists a support vertex which is adjacent
to exactly ∆ − 1 leaves. So, let u be one such support vertex in G with exactly ∆ − 1 leaves
adjacent to it. This implies that G = G′�x S, where S is a ∆-star with u as its universal vertex
and G′ is necessarily a connected bipartite graph. Let n′ = |V (G′)|. To begin with, by the use of
Lemmas 10 and 14, one can check that, for n′ ≤ 4, the desired result holds for G. We therefore
assume that n′ ≥ 5. Moreover, since G′ is connected, it must have at least 4 edges and, thus, we
must have (5, 4) ≤d (n′,m′). Again, by Lemmas 10, 11, 13 and 14, it can be verified that if G′

is isomorphic to a graph in F∆′ , then the desired result holds. We therefore assume that G′ is
not isomorphic to any graph in F∆′ . Now, if G′ has no twins of degree 2 or greater, then by the
induction hypothesis, γID(G′) ≤ ∆−1

∆ n′ = ∆−1
∆ (n − ∆). Thus, by Lemma 7, the result holds.

Hence, for the rest of this proof, we assume that G′ has vertices x and y, say, which are twins
of degree 2 or greater in G′. Recall that x is adjacent to u in G. Moreover, y is not. We also
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notice that x, y is a unique pair of vertices which are twins of degree at least 2 in G′. Observe
that x and y must have a common neighbor v of degree at least 3 in G (or else the vertices in
the common neighborhood of x and y in G′ are twins of degree at least 2 in G, a contradiction).
We then look at the graph G′′ obtained from G by removing all edges of the type xw, where w
is a neighbor of x and w ̸= u, v. Let n′′, m′′ and ∆′′ be the number of vertices, number of edges
and the maximum degree, respectively, of G′′. Then, we have (5, 4) ≤d (n′′,m′′) <d (n,m). By
some structural analysis of the graph G′′, we are able to show next that neither G′′ contains
any twins of degree 2 or greater nor G′′ is isomorphic to any graph in F∆′′ . Therefore, by the
induction hypothesis, we have γID(G′′) ≤ ∆−1

∆ n (notice that n = n′′).
Let C ′′ be a minimum identifying code of G′′. If C ′′ is an identifying code of G too, then we

are done. So, in what follows, let us assume that C ′′ is not an identifying code of G. Therefore,
there exists a pair p, q of vertices of G that are not separated by C ′′ in G. This must be because
adding back an edge of type xw, where w ̸= u, v is a neighbor of x in G, causes the vertices p
and q to have the same neighborhoods (in G) in C ′′. This is possible if and only if at least one
of the following three cases occurs.

(1) p = v and q = w, without loss of generality, and x ∈ C ′′; or

(2) p = x, without loss of generality, q ̸= w, qw ∈ E(G′′) and w ∈ C ′′; or

(3) p = x and q = w, without loss of generality.

However, one can verify that Case (3) does not occur. Hence, we only analyze the first two
possibilities in the above list (it can be verified that they cannot occur simultaneously). In Case
(1), we are able to show by some case analysis that it is always possible to construct from C ′′

an identifying code C of G such that |C| = |C ′′|. Thus, we are done in Case (1). In analyzing
Case (2), we conclude that it is enough to look at the graph for maximum degree ∆ = 3. In
this case, if w is of degree 2 in G, then again we are able to construct from C ′′ an identifying
code C of G such that |C| = |C ′′|. So, assuming that degG(w) = 3, we look at another graph
G⋆ = G − {a, b, y}, where a and b are the leaves G inherits from S with the common support
vertex u of G. It is clear that G⋆ has no twins of degree 2 or greater. We also show further that
G⋆ is not isomorphic to any graph in F3 (3 being the maximum degree of G⋆). Thus, by the
induction hypothesis, we have γID(G⋆) ≤ 2

3(n − 3). So, let C⋆ be a minimum size identifying
code of G⋆. Then, again, by a case analysis, we are able to construct from C⋆ an identifying
code C of G such that |C| = |C⋆|+ 2 and thus, γID(G) ≤ |C| ≤ 2

3n and the result holds.

3 Extremal examples

We now consider some classes of bipartite graphs (without twins of degree 2 or greater) for which
Conjecture 1 is tight. With tightness we mean that graph G on n vertices has γID(G) ≥ ∆−1

∆ n.
Clearly, Conjecture 1 is tight for every graph in F∆. Moreover, it is tight for double stars (that
is, S1 �u S2, where S1 is a (∆− 1)-star, S2 is a ∆-star and u is the universal vertex of S1) with
2∆ − 2 leaves. Another class of graphs of maximum degree ∆ = 3 for which the conjecture
is tight is the 3-corona of a path P : we obtain the 3-corona of a graph G by identifying each
vertex v of G with a leaf of a 3-path Pv (see [7]). Moreover, when both n and ∆ are large, there
are graphs which almost attain the conjectured bound. This is shown next, by noticing that for

large ∆, the value
∆−1+ 1

∆−2

∆+ 2
∆−2

is close to ∆−1
∆ .
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1
Figure 2: Graph Gt,∆ as in Proposition 17 with t = 3 and ∆ = 4. The set of black vertices constitutes
an identifying code of Gt,∆.

Proposition 17. Let C2t be a cycle on 2t ≥ 6 vertices. Let an n-vertex intermediate graph be
formed by appending onto every vertex of the cycle ∆− 2 ≥ 2 copies of ∆-stars. Thereafter, for
each vertex ci of the cycle, subdivide a single edge between ci and an adjacent support vertex
of the intermediate graph. Let the final graph be called Gt,∆ (see Figure 2 for an example with
t = 3 and ∆ = 4). Then, we have

γID(Gt,∆) =
∆− 1 + 1

∆−2

∆+ 2
∆−2

n.

4 Conclusion

We have made significant progress towards Conjecture 1 by proving it for a large class of bipartite
graphs: those with no twins of degree at least 2, including all trees and all bipartite graphs with
no 4-cycles.

A possible next step could be to prove the conjecture for all bipartite graphs, or perhaps
even, for all triangle-free graphs. The much weaker bound of n − n

3∆/(ln∆−1) was proved for

triangle-free graphs in [6]. Even progress on the (sub)cubic case would be interesting. The
currently best known upper bounds for triangle-free subcubic graphs and cubic graphs are 8n

9
and 5n

6 , respectively (see [4, Corollary 4.46]; the proof uses the technique developed in [6]).
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