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Abstract

In this paper, we propose a method for constructing a neural network viscosity in order to reduce
the non-physical oscillations generated by high-order Discontiuous Galerkin (DG) methods. To
this end, the problem is reformulated as an optimal control problem for which the control is the
viscosity function and the cost function involves comparison with a reference solution after several
compositions of the scheme. The learning process is strongly based on gradient backpropagation
tools. Numerical simulations show that the artificial viscosities constructed in this way are just as
good or better than those used in the literature.

1 Introduction

In computational fluid dynamics, Discontinuous Galerkin (DG) methods can be used as an alternative
to finite volumes (FV) methods when a high order of convergence is desired. Indeed, by using polyno-
mials coupled with the weak form of the equation to approximate the solution, DG methods allow to
reach arbitrarily high orders of convergence [CS01, HW07]. However, when the solution exhibits shocks
or strong gradients, these high order methods introduce non-physical oscillations, which can deterio-
rate the accuracy of the solution and lead to stability issues. Since shocks and strong gradients easily
appear in non-linear conservative systems, even from continuous initial conditions, countermeasures
are required to stabilize DG methods.

Classical approaches to reduce oscillations and stabilize DG methods are based on slope limiters,
filtering techniques or artificial viscosity methods. Slope limiter methods were initially developed for
FV methods and then adapted to DG schemes: they use a troubled-cell indicator to identify cells
with oscillations and then define fluxes at the cells interfaces with second order polynomial approxi-
mation and total variations diminishing property [CS89, CLS89]. An alternative is to consider WENO
(Weighted Essentially Non Oscillating) type reconstruction to take advantage of the full high-order
approximation in the identified troubled cells and their neighbours [ZS13, QS04, ZCQ20]. Regarding
filtering techniques, they involve applying a linear filter using the modal representation of the solution
locally in each cell to smooth out the solution [HK08, Hes17]. Finally the artificial viscosity method
consists in adding a non-linear viscous term to the equation, which makes the solution smoother, thus
saving the DG methods from situations that they cannot handle correctly. The viscous term can then
be tuned with a local coefficient, which should only be activated in problematic areas and should vanish
as the characteristic length of the mesh tends to zero.

In this paper, we will focus on artificial viscosity methods. A few different approaches have emerged
to deal with different problems. For instance, the artificial viscosity can be function of the divergence of
the velocity field [MLM09], function of the modal decay of the solution in each cell [PP06] or function
of the entropy production [GPP11]. A comparative study of some models has been carried out in
[YH20], and shows that these different models behave differently from each other, and that the most
suitable model may depend on the test case considered. In addition, each of these models relies on
some parameters that have to be adjusted empirically, making the process of finding the right viscosity
coefficient even more difficult.
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A more recent approach consists in exploiting the capabilities of neural networks in pattern recog-
nition to design data-driven tools. In short, neural networks can be described as non-linear functions
with many parameters —from thousands to millions— that can be adjusted using gradient descent in
order to optimize a given criterion. Examples of this approach can be found in several related topics:
neural networks are used as troubled-cell indicator for high order schemes in [RH18], as classifiers
of functions’ regularity to control oscillations in spectral methods in [SRH21], or as predictor of the
degree of reconstruction for MOOD algorithm in [BLT20]. Last but not least, in [DHR20] the authors
design an artificial viscosity for DG methods using neural networks. In all these examples, the authors
use supervised learning, where the criterion to optimize is an error between the output of the neural
network and a given target. In [DHR20] for instance, for each test case of the training dataset, the
target is set to the artificial viscosity model (among a given set of options) that performs best for this
specific test case. This method makes the neural network converge toward a kind of good interpolation
between known models. However supervised learning in this way is not necessarily the best option, or
may not even be possible in some other contexts. Indeed, an appropriate target is not always available;
and when it is, as is the case in the example previously described, using it as a target will not allow
the neural network to explore new designs.

In this paper we use a different way to train parameterized functions in numerical schemes, that is
not bounded by these limitations. We train the neural network directly in the numerical scheme, and
compare the resulting numerical solution to a target solution, instead of considering the output of the
neural network itself. This approach relieves us from any prior expectation on what the output of the
neural network should look like and only focuses on the result, while having the additional advantage
to include effects of the neural network through many iterations of the scheme computing the gradient
by automatic differentiation framework. We speak about ”differentiable physic approach” [THM+21].
This approach have been very recently used to learn discretization [BSHHB19, DKN+22].

This approach can be see as an optimal control approach, which we design a closed-loop control
of the system to fit the reference solution. A comparable approach is reinforcement learning, which
is equivalent to optimal control without using the temporal transition scheme, but only examples of
transitions. To our knowledge, this approach has been used for the construction of limiters in [SKCB23]
and for adjusting the weights in WENO schemes [WSLD19].

One of the main ingredients of this approach is the use of deep learning frameworks (like TensorFlow
or PyTorch), not only for the implementation of the neural network, but extended to the implemen-
tation of the whole numerical scheme. Indeed, the optimization of the parameters is performed with
a gradient descent algorithm, which requires the computation of the gradient of the error. Since the
error involves the numerical solution produced through many iterations of the parameterized numerical
scheme, all the computations need to be differentiated. By implementing the numerical scheme in a
deep learning framework, the computation of this highly complex gradient can be fully automated,
making the optimization algorithm fairly easy to code. However, the complexity of the gradient is in
itself an obstacle to the proper functionning of the algorithm, both because of its high computational
cost and because of potential gradient instability. In this paper, we propose an algorithm to adress
both of these limitations, and provide results of this algorithm when applied to the design of a neural
network viscosity for DG schemes.

The remaining of this paper is organized as follows. In section 2, we introduce a general framework
for the approach we used in this work. In section 3, we describe in details our implementation of this
framework to the design of an artificial viscosity for DG schemes in 1D. Finally, section 4 gives numerical
results for the advection equation, Burgers’ equation and Euler’s equation, with considerations on the
influence of some parameters.

2 An optimal control method for parameterized schemes

In this section we describe the method we use to construct an artificial viscosity. Since this method
is not specific to this problem, we describe it in general terms, as a general framework to optimize
parameters in a numerical scheme for partial differential equations. In our application, these parameters
are the weights of a neural network designed to output the coefficient for the artificial viscosity.
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2.1 Optimization problem

As an example, let us consider a general hyperbolic equation

∂tU+∇ · F(U) = 0,

with U : Rd × R∗
+ → Rs the vector of unknowns and F : Rs → Rs×d the flux of the equation. Let us

consider a given discretization of space (finite volumes, DG, WENO schemes, etc.) and time (explicit
Euler, Runge-Kutta, etc.), resulting in a numerical scheme of the form

Un+1 = S(Un, π(Un)) = Sπ(U
n), (1)

where Un is the approximation of the solution U at time tn, Sπ is an iteration of the numerical scheme
on one timestep, and π is a part of the numerical scheme that can be modified to serve as a control
to the scheme. For instance, π could be a slope limiter for a finite volumes method, a process to
compute the weights of a WENO scheme, or —as in this paper— an artificial viscosity coefficient for
a discontinuous Galerkin method, among many other possibilities.

In order to express the problem as an optimization problem, we denote by V N
π (U0) the quantity

V N
π (U0) = L

(
Sπ(U

0), S2
π(U

0), . . . , SN
π (U0)

)
, (2)

where Sn
π corresponds to n iterations of the scheme

Sn
π (U

0) = (Sπ ◦ · · · ◦ Sπ︸ ︷︷ ︸
n times

)(U0),

and L is a generic cost function. Thus V N
π (U0) is a cost function depending on a discrete solution

made of N successive iterations of the numerical scheme Sπ. It can be for example an error committed
by the scheme compared to a reference solution a penalization of the control.

Since there is usually little hope to find a control π that minimizes V N
π (U0) for all possible initial

conditions U0, we focus on a specific distribution of initial conditions P, and consider the following
optimization problem:

min
π

∫
V N
π (U0) dP(U0). (3)

In order to find a solution to this optimization problem, we choose to parameterize π with a set of
parameters θ, for instance by implementing πθ as a neural network. The optimization problem thus
becomes

min
θ
J(θ) = min

θ

∫
V N
πθ
(U0) dP(U0). (4)

This problem is similar to the optimization problem solved by policy gradient methods in reinforcement
learning [SLH+14].

2.2 Gradient descent and back-propagation

Our approach to solve the optimization problem (4) is to use a mini-batch gradient descent algorithm,
relying on automatic differentiation for the computation of the gradient. The gradient descent algo-
rithm consists in starting from an arbitrary set of parameters, and iteratively improve it by performing
updates of the form

θ ← θ − η∇θJ(θ),

or any other alternative, e.g with momentum, Adam, and so on. The mini-batch version of the
algorithm consists in replacing the gradient ∇θJ(θ) by an approximation using a Monte-Carlo method,
meaning that the integral over the distribution P of initial conditions is replaced by a sum over a sample
(U0

1 , ..., U
0
K) of P:

∇θJ(θ) ≃
K∑

k=1

∇θV
N
πθ
(U0

k ).

In principle this approximation does not prevent the convergence of the algorithm while making it
much faster. In our case, if the distribution P is infinite, such an approximation is even required for
the computation of the gradient to be possible.
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From here, the difficulty lies in the computation of ∇θV
N
πθ
(U0) for a given U0. Figure 2 shows the

computational graph of this quantity, from which can be derived the following formulae:

(
∇θV

N
πθ

)
=

N∑

n=1

(
∇θS

n
πθ

)(
∇UnL

)
,

(
∇θS

n+1
πθ

)
=

(
∇θ(Sπθ

◦ Sn
πθ
)
)
=

(
∇θS

n
πθ

)(
∇USπθ

)
+
(
∇θSπθ

)
,

where, for any function g(x), the gradient ∇xg refers to the transpose of its Jacobian matrix. Assuming
that all these quantities are well defined, meaning that both L and Sπθ

are differentiable, we thus obtain
a way to compute the gradient ∇θV

N
πθ
(U0).

In practice, all these computations are done automatically. Indeed, in the same way that deep
learning frameworks (e.g Tensorflow, Pytorch) allow to automatically compute the gradient of a neural
network w.r.t its parameters using the backpropagation algorithm, the same frameworks can be used
to compute the gradient of any parameterized numerical scheme Sπθ

w.r.t θ, provided that Sπθ
is

implemented using the differentiable functions of the framework. More than that, the backpropagation
algorithm can be applied to any number of iterations of the numerical scheme, and even to the complete
computational graph for V N

πθ
(U0) shown in Figure 2. In particular, this method illustrates one way

these deep learning frameworks can prove useful for optimization tasks in scientific computing.
Let us conclude this section with a few observations on this approach to solve problem (4). A

first advantage of this optimization algorithm lies in the fact that it does not require any reference π,
since the error is not computed on the output of πθ directly, but instead on the numerical solution
that stems from πθ. A second advantage is that the optimized function J(θ) can take into account
many iterations of the numerical scheme Sπθ

, thus including effects of the control πθ that would go
unnoticed on shorter time scales. In our application to an artificial viscosity, these long time effect
would be the diffusion related to a too high viscosity, as opposed to the short term oscillations related
to a too low viscosity. Finally, note that this method contrasts with classical reinforcement learning
algorithms in that this method leverages our knowledge of the transition process between two successive
states, here Un and Un+1. Indeed, classical reinforcement learning usually build implicitly (model free
approaches) or explicitly (model based approaches) an approximation of this transition process by
analyzing examples of transitions, whereas in our case the full knowledge of this transition process, ie
of the numerical scheme, can be used to compute the gradient of J(θ) directly.

2.3 Optimization on sub-trajectories using the reference solutions

Let us mention two obstacles to the application of the method described above. The first one stems
from the depth of the computational graph when the number of iterations N grows higher and higher.
Indeed, as N increases, the computation of ∇θV

N
πθ

becomes not only more and more expensive, but
also more and more subject to gradient instability issues, similarly to very deep neural networks. The
second obstacle is that although the algorithm does not require a reference control π, it does rely on a
function L that quantifies the error of a numerical solution, and which may not be easy to determine.

One way we have found to partially address both of these issues is to use a reference numerical
scheme Sref, accurate and robust, and the reference solutions U1

ref, ..., U
N
ref provided by it. First it helps

with the measure of the error committed by Uθ, by providing an expected result to compare with.
But we can also use the reference solutions to limit the number of iterations the gradient actually goes
through to a given number m < N , by replacing problem (4) by:

min
θ
J(θ) =

∫ N−m∑

n=0

V m
θ (Un

ref) dP(U0) = min
θ

∫ N−m∑

n=0

V m
θ (Sn

ref(U0)) dP(U0). (5)

In this formulation of the problem, instead of minimizing the error on an entire trajectory with N
iterations, we minimize the sum of the errors on all the sub-trajectories with m iterations, starting
from a point in the reference solution. This process thus limits the size of the computational graph for
J(θ), while still allowing the parameterized scheme Sπθ

to be trained on data at times arbitrarily far
from t = 0, which would not be the case if we simply picked a small N . Note that for the computation
of ∇θJ(θ) with this new formulation, the sum over the sub-trajectories is also approximated by a
Monte-Carlo method, similarly to the integral over the initial conditions. This approach does not
allow to capture very long time effects of the control but only on medium size time sequences. For a
number of applications such as the construction of limiters or viscosity this seems to be sufficient.
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2.4 Algorithm

The whole method is described in Algorithm 1. Note that, as mentioned in the previous section, both
the integral over the initial conditions and the sum over the sub-trajectories of length m in (5) are
approximated by a Monte-Carlo method, resulting in a kind of double mini-batch gradient descent
algorithm. Something not mentioned in this algorithm for the sake of simplicity, but very useful to
track the progression of the training, is the computation of a validation loss at the end of each epoch,
consisting in the evaluation of J(θ) on a set of sub-trajectories generated at the beginning of the
training. Also note that in this algorithm, Sπθ

and Sref could actually consist of several iterations of
the corresponding numerical schemes, so that the actual timestep ∆t satisfies some stability conditions.
Equivalently, we could say that the error L(Un, · · · , Un+m) could be computed on a subset of instants,
thus lowering the memory requirements for the storage of the reference solutions.

Algorithm 1: training algorithm

1 Start from a random set of parameters θ
2 for each episode do
3 Generate random initial conditions (U0

1 , . . . , U
0
K) ∼ P

4 Compute reference trajectories from U0
k up to SN

ref(U
0
k ) for all k ∈ {1, . . . ,K}

5 for each epoch do
6 Randomly select a set I of indices (k, n) ∈ {1, . . . ,K} × {0, . . . , N−m}
7 Compute sub-trajectories from Sn

ref(U
0
k ) up to Sm

πθ
(Sn

ref(U
0
k )) for all (k, n) ∈ I

8 Compute J(θ) =
∑

(k,n)∈I Vπθ
(Sn

ref(U
0
k ))

9 Update parameters θ with ∇J(θ)
10 end

11 end

3 Design of an artificial viscosity for discontinuous Galerkin
schemes

This section is dedicated to our application of the method previously described to the design of an
artificial viscosity for discontinuous Galerkin schemes in one dimension. Sections 3.1 and 3.2 describe
the problem and the key elements of the method, like the numerical scheme, the control π, the cost
function L. Then sections 3.3 to 3.3 give some details on the implementation.

3.1 Discontinuous Galerkin method and artificial viscosity

In this application, we are interested in using discontinuous Galerkin (DG) schemes to solve hyperbolic
equations of the form

∂tU+ ∂xF(U) = 0, (6)

with U : R+×[xmin, xmax]→ Rs the conservative variables, and F : Rs → Rs the physical flux.
In order to discretize equation (6) with a discontinuous Galerkin method, we consider a spatial mesh

of the interval [xmin, xmax] made of nx cells of equal length ∆x, and introduce a basis of polynomials
(ϕ1, ..., ϕp) of degree at most p − 1 on the reference interval [−1, 1]. Assuming that the components
of U are polynomials of degree at most p − 1 on each cell, with no constraint of continuity at the
interfaces of the cells, the i-th variable on the j-th cell can be written

Ui,j(x, t) =

p∑

k=1

Ui,j,k(t)ϕk(x̂), 1 ≤ i ≤ s, 1 ≤ j ≤ nx,

involving the change of variable to the reference interval: x̂ = −1+2 ((x−xmin) mod ∆x)/∆x ∈ [−1, 1].
Assuming that F(U) are also polynomials of degree at most p − 1 on each cell, it has a similar
decomposition with coefficients (Fi,j,k). Then, integrating (6) against each of the ϕk leads to the
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following semi-discrete weak formulation:

dU

dt
M + (F ⋆ − FS) = 0, (7)

whereM =
(∫ 1

−1
ϕkϕℓ

)
k,ℓ

, S =
(∫ 1

−1
ϕk∂xϕℓ

)
k,ℓ

, and F ⋆ involves the estimated values at the interfaces

of the cells, using a local Lax-Friedrichs flux. Here, the product dU
dt M is to be understood as

(
dU

dt
M

)

i,j,k

=
∑

ℓ

dUi,j,ℓ

dt
Mℓ,k.

Finally, a Runge-Kutta method is used for the time integration of (7). We refer to [HW07] for more
details.

An important benefit of discontinuous Galerkin schemes is that they can be made to converge
in O(∆xp) for any arbitrary order p, by using polynomials of high enough degree (p − 1 in one
dimension). However, when the solution exhibits strong gradients or shocks, high-order DG schemes
produce oscillations as those shown in Figure 1, which can ruin the accuracy of the scheme and
produce fatal instabilities (e.g negative pressure in the Euler equations). For this reason, a method
that is sometimes used consists in adding an artificial viscosity term to the equation to solve, in order
to smooth out the solution:

∂tU+ ∂xF(U) = ∂x(µ∂xU). (8)

The artificial viscosity above depends on a coefficient µ = µ(x, t) ∈ R that can locally increase or
decrease the amount of smoothing, and that is expected to vanish as the length ∆x of the cells tends
to zero to recover the original equation asymptotically. In practice, since the places where the viscosity
is needed depend on the solution, the viscosity coefficient is taken as a function of U:

µ = π(U).

Denoting G = µ∂xU = π(U)∂xU and (Gi,j,k) its coefficients in the discontinuous polynomial basis,
the discontinuous Galerkin scheme now reads:

GM = π(U) (U⋆ − US),
dU

dt
M +

(
(F ⋆ − FS)− (G⋆ −GS)

)
= 0.

where U⋆ and G⋆ involve the estimated values at the cells interfaces using a centered numerical flux.
After time discretization, still with a Runge-Kutta method, we have thus completely defined the
numerical scheme Un+1 = Sπ(U

n).
Function π is the one that we intend to design with the use of the method described in the previous

section. As discussed in the introduction, some models for π can already be found in the literature,
and [YH20] compare some of them. In the result section, we compare our own viscosity to two of these
models, referred to as the derivative-based (DB) and highest modal decay (MDH) models respectively,
briefly described in appendix A.

3.2 Definition of the cost function

To design the cost function L used to determine the control π, we compare the associated numerical
solution U1, · · · , UN (or of a sub-trajectory Un, · · · , Un+m) to a reference solution Uref by summing a
local-in-time cost function C over iterations:

L(U1, . . . , UN ) =

N∑

n=1

C(Un, Un
ref).

For the reference solution, we use the numerical solution of a second-order MUSCL scheme on a fine
grid, which ensures that the reference solution is both accurate and oscillation-free. The local-in-time
cost function C, also concerned with both the accuracy of the solution and the presence of oscillations,
is taken as a combination of three terms:

C(Un, Un
ref) = ωosc Cosc(U

n, Un
ref) + ωacc Cacc(U

n, Un
ref) + ωvisc Cvis(U

n).

6



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

1.5

2

x

u
(x
)

exact solution

32 cells

128 cells

512 cells

Figure 1: Example of oscillations with discontinuous Galerkin schemes. Linear advection with periodic
boundary conditions, solutions after one period. All solutions were obtained using a DG scheme of
order 4.

For simplicity, we give below the expression of each term in the scalar case. In case of a system, we
simply take the average cost.

The aim of the first term is to detect the numerical oscillations. After some testing, we have
obtained interesting results with the following W 2,1 semi-norm:

Cosc(U
n, Un

ref) = ∆xref
∑

i

∥Dxx(Πref(U
n))i −Dxx(U

n
ref)i∥1 ,

where, for any approximate quantity V, Vi refers to its value in cell i, Πref(U
n) is the projection of

the piecewise polynomial solution of the DG scheme on the fine mesh of the reference FV scheme,
and Dxx(U)i =

1
∆x2

ref
(Ui−1 − 2Ui + Ui+1) a finite-difference second derivative. One can obviously use

other measures of oscillations or costs penalizing positivity losses or violations of the local maximum
principle.

The second term measures the accuracy of the scheme and is given by the discrete L1 norm of the
difference between U i and U i

ref:

Cacc(U
n, Un

ref) = ∆xref
∑

i

∥Πref(U
n)i − (Un

ref)i∥1 ,

We compare the two solutions on the fine grid in order to highlight the oscillations.
Finally, since the artificial viscosity is a non-physical process, it is natural to look for the smallest

viscosity which still allows to kill the oscillations. To do so, we use as the third term an L2 penalisation:

Cvis(U
n) = ∥πθ(Un)∥22 ,

with the norm computed directly from the piecewise polynomial viscosity. This cost is standard in
optimal control problems.

Finally, a good starting point for the weights ωosc, ωacc and ωvisc could be such that all three terms
contribute about as much to the overall error, but further empirical tweaking is necessary to get to
the best compromise between diffusion and oscillations, as illustrated in the result section.

3.3 Neural network viscosity function

To apply Algorithm 1, it remains to define the neural network used for the viscosity function πθ(U)
and how it is used in the scheme Sπ.

Neural network architecture. In this work we use a residual neural networks (ResNet) as intro-
duced in [HZRS16], with adequate padding and no pooling so that the size of the output is the same
as the input. This is a standard architecture for deep convolutionnal neural network. The hyper-
parameters of this architecture are its depth, i.e. the number of blocks, its width, i.e. the number of
filters per convolution, and the kernel size of these convolutions. We got good results with a very
small version of it depicted in Figure 5: one block, width 16 and kernel size 3, for a total of about
2000 trainable parameters. We use the rectified linear unit (ReLU) activation function, except for
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the last layer that uses the softplus activation function. Also the last layer is initialized with kernel
zero and constant bias −3 so that the initial output of the neural network is a constant vector with
value softplus(−3) ≃ 0.02. The purpose of this initialization is to start the training with a reasonable
viscosity that makes the numerical scheme stable.

Pre-processing and post-processing The raw input for the neural network is the approximated
solution Un at a given time, which comes as a tensor of values at each quadrature point of each
cell. The cells are of equal length but the quadrature points are not uniformly distributed across the
cells, which results in an overall non uniform discretization of the solution. Since convolutional neural
networks –as the one we use– are not adapted to non uniform discretization, the input needs to be
encoded in some way before being fed to the neural network. We opted for a concatenation between
the value of the solution at the quadrature point and the relative position of the said quadrature point
in the cell, in the form of a one-hot encoding: the first quadrature point of the cell is mapped to the
vector (1, 0, ..., 0) ∈ Rp, the second to (0, 1, 0, ..., 0) ∈ Rp, and so on, p being the number of quadrature
points per cell. Figure 4 gives an example of this encoding on a single variable.

Notably, the input of the neural network does not include information about the resolution of the
solution, and therefore the artificial viscosity produced by the neural network is only adapted to the
resolution the neural network has been trained with. In order to use the neural network with different
resolution, we multiply the ouptut by a scaling factor, the same way it is done in [DHR20]. This
scaling factor s is constant across each cell and involves the size of the cell ∆x as well as the jumps of
the solution at its interfaces [[U ]]L and [[U ]]R:

s = min{∆x,max{|[[U ]]L|, |[[U ]]R|}}

Also, this scaling helps the artificial viscosity getting closer to zero where the solution is smooth, which
prevents unnecessary diffusion. Figure 4 depicts the whole process for the computation of the viscosity
on a fictive cell.

Integration in the numerical scheme Since the evaluation of the neural network is relatively
expensive compared to the rest of the numerical scheme, we choose to compute the artificial viscosity
only once at the beginning of the timestep, as illustrated in Figure 3. Thus, we do not update its value
at each stage of the Runge-Kutta method. We found that this simplification allowed faster computing
with no perceptible loss of accuracy.

3.4 Training data

In this work we try and learn from initial conditions that have a general form, expressed as partial
Fourier series:

U0 : x ∈ [0, 1] 7→
20∑

i=0

an

n cos(2πnx) + bn
n sin(2πnx), (9)

with coefficients an and bn following a uniform distribution on [−1, 1]s. Of course, it is possible to use
other type of dataset without difficulties. For instance, for the Euler equations (see Section 4.3), we
will use this kind of initialization on the primitive variables instead of the conservative ones. Positive
initial conditions can be necessary for some variables: in this case, we subtract to the above functions
their minima and add a small positive value ε = 0.1.

As the neural network is non-local, the learned viscosity may depend on the solutions generated
during the training. In particular, if the network is trained with one particular equation, it may not
perform as well on another equation. However, it would be possible to train the network directly on
several equations, even if it has not been done in this work.

4 Numerical Results

In the following three sections we give numerical results for three different equations : the advection
equation, Burgers’ equation and Euler’s system respectively. We give some details regarding the
training and the influence of some parameters in the advection case, and then simply give the results
for Burgers and Euler.
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Figure 5: The architecture we use to compute the artificial viscosity: a small ResNet with only one
block. Conv(w, k) represents a 1D convolution with w filters of size k.
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In all the numerical results presented below, we use the following parameters unless stated other-
wise:

• DG scheme: order p = 4, Gauss-Lobatto quadrature points, 32 cells on [0, 1], timestep ∆t = 1e−5,
RK4 discretization in time,

• Reference FV scheme: order 2 (MUSCL), 2048 cells on [0, 1], timestep ∆t = 10−5, RK2 dis-
cretization in time,

• Entire trajectories of N = 4096 iterations, sub-trajectory of m = 512 iterations,

• K = 8 initial conditions per episode,

• 20 batches of size 16 per episode, arbitrary high number of episodes.

Values for the weights ωosc, ωacc and ωvisc will be specified for each test-cases.

4.1 Advection equation

We will start by validating the approach on the advection equation given by

{
∂tρ+ a ∂xρ = 0,
ρ(t = 0, x) = ρ0(x),

where ρ : R+ × [0, 1]→ R is the advected density and a ∈ R is a constant velocity that we take equal
to 1. We consider periodic boudary conditions For the initial condition ρ0, we test the viscosity on a
common composite function with different kinds of discontinuities:

ρ0(x) = 1 +





e−((x−0.125)/0.03)2 if x < 0.25,
1, if 5/16 ≤ x < 7/16,
1−

∣∣(x− 5
8 )× 16

∣∣ if 9/16 ≤ x < 11/16,√
1− (16x− 14)2 if 13/16 ≤ x < 15/16,

0 otherwise.

.

In order to notice the effects in long time of the different viscosities, we consider the solution after
two periods at t = 2. We take advantage of the simplicity of the problem to discuss the effect of the
hyper parameters of the optimization problem, i.e. the weights ωosc, ωacc and ωvisc involved in the
cost function and the size m of the sub-trajectories.

For simplicity we start by training an artificial viscosity using only two of the three terms in the
loss. Since the term in Cosc on the one hand and the terms in Cacc and Cvisc on the other seem
adversarial, we consider using only Cosc and Cvisc (ωacc = 0), or only Cosc and Cacc (ωvisc = 0). Let
us consider the first case. Figure 6 shows a typical training in these conditions: at first, the neural
network greatly decreases the amount of viscosity, before adding some back in order to find a better
compromise between the two parts of the loss. In order to visualize the resulting viscosity and solution,
the neural network is applied with a specific test case, but note that the training was done with random
initial conditions as described in section 3.4.

An important factor in the equilibrium reached is the value chosen for the weights ωosc, ωvisc and
ωacc. Figure 7 illustrates this by showing the resulting solutions and viscosities when ωosc is set to 10−5

and when ωvisc varies (ωacc still being set to zero). As expected, when the L2 penalization increases,
the viscosity gets smaller and smaller, which results in less diffusion but more oscillations. Indeed, as
observed in Table 1, both Cosc and L∞ error increases with ωvisc. Figure 8 and Table 2 show what
happens when it is ωvisc which is set to zero and ωacc which varies, ωosc still being set to 10−5. The
results are similar, but show more diffusion overall.

Another important parameter of the algorithm is the number m of iterations in a sub-trajectory,
on which the gradient of the loss is computed. Picking a big value for m makes the computation
of the gradient more expensive, but allows to include more long-term effects of the viscosity. Figure
9 shows some resulting viscosities with different values for m. It would seem that as m increases,
the model becomes less and less diffusive, because more diffusion appears in longer sub-trajectories
and affect the gradient. In order to learn a minimal viscosity that will eliminate the oscillations it
is therefore important to optimize our network on long enough trajectories so that the effect of the
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Figure 6: (Advection) Top: Evolution of the validation loss during training. The contribution of the
different terms are shown in color. Middle and bottom: Solution (middle) and viscosity (bottom) on
a test case using the neural network viscosity at different points in its training. The test case uses
periodic boundary conditions and consists of two periods (ie final time t = 2).

Model ωosc ωacc ωvisc Cosc Cacc Cvisc L2 L∞

DG NN

10−5 0 2 · 103 9.32e+03 1.10e-01 1.73e-10 5.91e-02 5.26e-01
10−5 0 4 · 103 9.36e+03 9.32e-02 1.03e-10 5.95e-02 5.34e-01
10−5 0 6 · 103 9.41e+03 8.35e-02 7.44e-11 5.97e-02 5.37e-01
10−5 0 8 · 103 9.45e+03 7.57e-02 5.85e-11 5.98e-02 5.43e-01

Table 1: (Advection - variation ωvisc) Errors for each model presented in Figure 7.

Model ωosc ωacc ωvisc Cosc Cacc Cvisc L2 L∞

DG NN

10−5 0.2 0 9.26e+03 1.38e-01 3.47e-10 5.86e-02 5.18e-01
10−5 0.8 0 9.27e+03 1.28e-01 2.87e-10 5.88e-02 5.26e-01
10−5 1.6 0 9.25e+03 1.28e-01 2.94e-10 5.88e-02 5.26e-01
10−5 3.2 0 9.27e+03 1.19e-01 2.55e-10 5.89e-02 5.22e-01

Table 2: (Advection - variation ωacc) Errors for each model presented in Figure 8.
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Figure 7: (Advection - variation ωvisc) Solution (top) and viscosity (bottom) on a test case with neural
network viscosities obtained with different weights ωvisc, the other two weights being set to ωosc = 10−5

and ωacc = 0. The test case uses periodic boundary conditions and consists of two periods (ie final
time t = 2).
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Figure 8: (Advection - variation ωacc) Solution (top) and viscosity (bottom) on a test case with neural
network viscosities obtained with different weights ωacc, the other two weights being set to ωosc = 10−5

and ωvisc = 0. The test case uses periodic boundary conditions and consists of two periods (ie final
time t = 2).

diffusion is clearly visible in the cost functions. Otherwise, the method learns a too large viscosity since
its negative effect will not be visible enough in the cost functions. Also, a smaller m do not necessarily
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decrease the training time even if the computation of the gradient is cheaper since the number of steps
of gradient descent may be larger.
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Figure 9: (Advection - variation m) Solution (top) and viscosity (bottom) on a test case with neural
network viscosities obtained using sub-trajectories with different length m. The test case uses periodic
boundary conditions and consists of two periods (ie final time t = 2).

Finally, we compare our viscosity to two reference viscosities: the ”derivative-based” (DB) viscosity,
and the ”highest modal decay” (MDH) viscosity, described in appendix A. Figure 10 shows the result
with 32 cells for the discontinuous Galerkin scheme, which is the same resolution as the one used for
the training of the neural network. Interestingly enough, our viscosity generalises pretty well to other
resolutions, thanks to the scaling described in section 3.3. As an illustration, Figures 11, 12 and 13
compare the same three viscosities but used with 64, 128 and 256 cells respectively. Note that in these
three examples, the model ”DG NN” uses the same viscosity as in Figure 10, trained on 32 cells only.
The results on the different figures and given by Table 3 show that the neural network viscosity gives
the best compromise between accuracy and oscillations or between L2 and L∞ errors. Indeed, the
MDH method has a lower L2 error but oscillates more and has a larger L∞ error. The DB approach
is clearly more diffusive for this long time problem.

4.2 Burgers equation

We now consider the Burgers equation given by




∂tρ+ ∂x

(
ρ2

2

)
= 0,

ρ(t = 0, x) = ρ0(x),

with ρ : R+ × [0, 1] → R and complemented with periodic boundary conditions. The network, the
hyper-parameters and the training process are exactly the same as for the advection equation, with
coefficients ωacc = 0.5, ωosc = 10−5 and ωvisc = 5. In order to avoid any issues with non-entropic
solutions the DG scheme could converge to, we only consider positive functions in the dataset. The
remarks made on the hyper-parameters, the learning in the previous section on advection remains
valid here. We therefore propose to give direct results comparing a learned viscosity with classical
viscosities. To do this, we consider an initial condition that has not been used in the training phase of
the neural network viscosity:

ρ0(x) = 1 + sin(2πx), x ∈ [0, 1],
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Figure 10: (Advection - comparison with DB and MDH) Solution (top) and viscosity (bottom) on
a test case with different viscosities: no viscosity (DG), derivative-based viscosity (DG DB), highest
modal decay viscosity (DG MDH) and our neural network based viscosity (DG NN). The test case
uses periodic boundary conditions and consists of two periods (ie final time t = 2).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

1.5

2

ρ
(x
)

Exact DG DG DB DG MDH DG NN

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

1

2

·10−4

x

µ
(x
)

Figure 11: (Advection - comparison with DB and MDH) Solution (top) and viscosity (bottom) on a
test case with 64 cells instead of the usual 32. The different viscosities used are the derivative-based
(DB), the highest modal decay (MDH) and our neural network based viscosity (NN). The test case
uses periodic boundary conditions and consists of two periods (ie final time t = 2).

with final time t = 1.
On Figures 14 and 15, we observe as before that the classical DG method without viscosity term

generates large oscillations closed to the discontinuity. Contrary to the transport case, the MDH
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Figure 12: (Advection - comparison with DB and MDH) Solution (top) and viscosity (bottom) on a
test case with 128 cells instead of the usual 32. The different viscosities used are the derivative-based
(DB), the highest modal decay (MDH) and our neural network based viscosity (NN). The test case
uses periodic boundary conditions and consists of two periods (ie final time t = 2).
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Figure 13: (Advection - comparison with DB and MDH) Solution (top) and viscosity (bottom) on a
test case with 256 cells instead of the usual 32. The different viscosities used are the derivative-based
(DB), the highest modal decay (MDH) and our neural network based viscosity (NN). The test case
uses periodic boundary conditions and consists of two periods (ie final time t = 2).

method is here the more diffusive method. Note that the MDH viscosity acts at the beginning of the
simulation and then vanishes as the approximate solution becomes smooth. The neural network and
the DB methods gives very similar results with less numerical diffusion and small oscillations. Note
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Model Cells Cosc Cacc Cvisc L2 L∞

DG

32 9.97e+03 5.24e-02 0.00e+00 9.03e-03 6.05e-01
64 9.89e+03 2.62e-02 0.00e+00 4.71e-03 5.95e-01
128 1.01e+04 1.36e-02 0.00e+00 2.52e-03 5.81e-01
256 1.05e+04 7.23e-03 0.00e+00 1.37e-03 5.60e-01

DG DB

32 9.18e+03 2.49e-01 3.30e-07 7.82e-02 6.04e-01
64 9.18e+03 1.56e-01 6.11e-08 3.94e-02 5.10e-01
128 9.21e+03 8.57e-02 7.16e-09 1.86e-02 5.06e-01
256 9.22e+03 4.36e-02 6.94e-10 9.13e-03 5.02e-01

DG MDH

32 9.57e+03 5.94e-02 0.00e+00 1.22e-02 5.57e-01
64 9.56e+03 2.49e-02 0.00e+00 5.37e-03 5.57e-01
128 9.69e+03 1.26e-02 0.00e+00 2.75e-03 5.50e-01
256 1.00e+04 6.60e-03 0.00e+00 1.45e-03 5.37e-01

DG NN

32 9.41e+03 8.35e-02 4.76e-09 1.78e-02 5.37e-01
64 9.30e+03 4.14e-02 3.96e-10 8.48e-03 5.22e-01
128 9.27e+03 2.20e-02 2.86e-11 4.98e-03 5.08e-01
256 9.34e+03 1.28e-02 3.00e-12 3.11e-03 4.94e-01

Table 3: (Advection - comparison with DB and MDH) Errors for each model presented in Figure 10.

that the neural network is slightly less oscillating at the bottom of the discontinuity. In conclusion,
this test-case shows that the neural network viscosity still provides good results for such a non-linear
equation with generates discontinuities.

4.3 Euler system

Finally we present results for the Euler system:




∂tρ+ ∂x (ρu) = 0,
∂t(ρu) + ∂x

(
ρu2 + p

)
= 0,

∂tE + ∂x (Eu+ pu) = 0,

where ρ : R+ ×R→ R denotes the density, u : R+ ×R→ R the velocity, p : R+ ×R→ R the pressure
and E : R+ × R → R the energy. The system is completed with a perfect gas law, resulting in the
following relation :

E =
p

γ − 1
+
ρu2

2
,

where γ is the adiabatic constant taken equal to 1.4 here. Once again we use the same parameters as
before, the only difference being that πθ now has three inputs, one for each conservative variable. The
output is still a single viscosity coefficient µ(x), since the same viscosity is applied to each equation.
The neural network is trained using the coefficients ωacc = 0, ωosc = 10−5 and ωvisc = 103 in the loss.
The training dataset is made using initial conditions with the three variables ρ, u, p chosen according
to (9) with the correction to ensure the positivity of the density and the pressure.

We compare the different viscosity approaches on two classical test cases: the Sod problem and the
Shu-Osher problem. In these test cases the DG scheme without viscosity is unstable and therefore is
not presented.

The Sod test-case uses the initial condition

(ρ0, u0, p0)(x) =

{
(1, 0, 1), if x < 0.5
(0.125, 0, 0.1). otherwise

on the interval [0, 1] with final time t = 0.2. We consider also Dirichlet boundary conditions. On Figure
16, we compare the different schemes associated with the different viscosity models on a mesh with
100 cells. As for the Burgers equation, the MDH viscosity provides the worst results. This problem
can be explained by the fact that the hyper-parameters of the MDH method, taken from [YH20], may
not be optimized to this specific test-case. The result between the DB model and the neural network
model are close. Our approach seems better in the contact wave and a little bit more oscillating on
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Figure 14: (Burgers - comparison with DB and MDH) Solution (top) and viscosity (bottom) of different
models for Burgers equation with 32 cells
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Figure 15: (Burgers - comparison with DB and MDH) Solution (top) and viscosity (bottom) of different
models for Burgers equation with 64 cells
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Figure 16: (Euler - Sod) Sod test case, 100 cells

the shock. On a grid with 200 cells 17, the neural network viscosity seems slightly more accurate for
all the different components of the solution. It is confirmed by the errors presented in Table 4, which
both L2 and L∞ errors are smaller on the two meshes.

Model Cells Cosc Cacc Cvisc L2 L∞

DG DB
100 3.13e+02 2.47e-03 2.04e-08 3.36e-05 5.08e-02
200 3.04e+02 1.12e-03 2.48e-09 1.03e-05 3.93e-02

DG MDH
100 2.86e+02 2.88e-03 0.00e+00 5.27e-05 5.43e-02
200 3.00e+02 1.24e-03 0.00e+00 1.27e-05 3.90e-02

DG NN
100 3.30e+02 1.36e-03 4.97e-09 1.48e-05 4.21e-02
200 2.94e+02 5.86e-04 7.09e-10 2.92e-06 3.11e-02

Table 4: Errors for each model on the Sod test case.

The second test case is the Shu-Osher test case, whose initial condition is given by:

(ρ0, u0, p0)(x) =

{
(3.857143, 2.629369, 10.333333) if x < −4
(1 + 0.2 sin(5x), 0, 1) otherwise

,

on the interval [−5, 5] with final time t = 1.8. The solution is composed of several smooth oscillations
and a discontinuity. As before, we compare the different approaches on a given mesh with 200 cells.
The results in Figure 19 and Table 5 shows that our model and the DB model gives very similar results
with a slight advantage for the DB model.

5 Conclusion

In this paper, we propose an optimal control approach to optimize a parametric numerical scheme based
on its effect after several iterations. The method is a simple gradient method to optimize a given cost
function, where the gradient is calculated across a large number of iterations by automatic differenti-
ation. We apply it to the construction of an artificial viscosity for DG methods for one-dimensional
hyperbolic equations. The numerical results on different simulations show that the obtained neural
network viscosities result in equivalent or better results compared with classical artificial viscosities
(Derivative Based or Highest Model Decay viscosities).
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Figure 17: (Euler - Sod) Sod test case, 200 cells
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Figure 18: (Euler) Shu-Osher test case, 100 cells
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Figure 19: (Euler) Shu-Osher test case, 200 cells

Model Cells Cosc Cacc Cvisc L2 L∞

DG DB
100 2.47e+03 4.09e-01 1.73e-04 1.01e-01 1.18e+00
200 2.40e+03 1.61e-01 2.16e-05 2.92e-02 1.08e+00

DG MDH
100 2.37e+03 5.76e-01 1.98e-05 1.79e-01 1.31e+00
200 2.25e+03 2.53e-01 6.00e-13 5.21e-02 1.25e+00

DG NN
100 2.38e+03 3.49e-01 5.46e-06 8.24e-02 1.22e+00
200 2.42e+03 1.71e-01 5.29e-06 2.95e-02 1.23e+00

Table 5: (Euler) Errors for each model on the Shu-Osher test case.

There are several possible ways to extend this work. First, non-physical oscillations have so far
been detected with the semi-norm W 2,1 of the error with respect to the reference solution. Another
possibility would be to design a data-driven detector of the non-physical oscillations like in [BZSF20].

It will also be naturally important to extend this work to 2D/3D problems. Note however that
a major difficulty comes from the number of iterations taken into account in the computation of the
gradient. In our one-dimensional problem, we succeed in considering up to 1000 time steps. However,
this was possible because of the coarse meshes and small networks. For two-dimensional problems,
the sizes of the mesh and the network may be larger and the memory resources may be saturated. To
overcome this difficulty, the method could be coupled with a reinforcement approach [WSLD19] or a
neural ODE method [CRBD18], for which the gradient are computed by duality.

Finally, the same methodology could also be applied to other problems like estimating optimal
slope limiters or WENO stencils.

A Reference artificial viscosity models

In the result section, we compare our viscosity to two models of reference, that we briefly describe here
in the context of a discontinuous Galerkin scheme of order p in one dimension.

The first one is the simplest one, refered to as the derivative-based (DB) model in the comparative
study [YH20], and reads

πDB(U) = min(µβ , µmax), µβ = cβ(
∆x
p−1 )

2|∂xu|, µmax = cmax
∆x
p−1 max

cell
|s|,
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where u is the unique variable in the scalar case and the velocity for the Euler equation, s is the local
wave speed, and cβ and cmax are empirical parameters, set to 1 and 0.5 respectively.

The second one is refered to as the highest modal decay (MDH) model in [YH20] and was first
proposed in [PP06]. In this model, the viscosity is computed from the variable ρ which refers to the
unique variable in the scalar case, and to the density for the Euler equation. The MDH model relies
on a modal expansion of ρ in each cell,

ρ(x, t) =

p−1∑

k=0

ρ̂k(t)ψk(x), ψk Legendre polynomials on the cell considered,

and more specifically on the ratio between the norm of the highest mode and the overall norm:

r = log10
∥ρ̂p−1ψp−1∥2L2

∥ρ∥2L2

.

The viscosity is then taken smoothly increasing with r from 0 to µmax as follows:

πMDH(U) = µmax





0 if r < r0 − cK
1
2

(
1 + sin π(r−r0)

2cK

)
if r0 − cK < r < r0 + cK

1 otherwise

The threshold r0 depends on the order p as

r0 = −
(
cA + 4 log10(p− 1)

)
,

and cA and cK are empirical parameters set to 2.5 and 0.2 respectively. These computations give a
value for the viscosity coefficient on each cell, which is interpolated by a polynomial of degree 2 that
has this value in the middle of the cell, and the average value between the two cells involved at the
interfaces, resulting in a continuous function.
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