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Instance segmentation of surgical instruments is a long-standing research problem, crucial for the development of many
applications for computer-assisted surgery. This problem is commonly tackled via fully-supervised training of deep learning
models, requiring expensive pixel-level annotations to train.
In this work, we develop a framework for instance segmentation not relying on spatial annotations for training. Instead, our
solution only requires binary tool masks, obtainable using recent unsupervised approaches, and binary tool presence labels,
freely obtainable in robot-assisted surgery. Based on the binary mask information, our solution learns to extract individual tool
instances from single frames, and to encode each instance into a compact vector representation, capturing its semantic features.
Such representations guide the automatic selection of a tiny number of instances (8 only in our experiments), displayed to a
human operator for tool-type labelling. The gathered information is finally used to match each training instance with a binary
tool presence label, providing an effective supervision signal to train a tool instance classifier.
We validate our framework on the EndoVis 2017 and 2018 segmentation datasets. We provide results using binary masks obtained
either by manual annotation or as predictions of an unsupervised binary segmentation model. The latter solution yields an
instance segmentation approach completely free from spatial annotations, outperforming several state-of-the-art fully-supervised
segmentation approaches.

1. Introduction

Endoscopic videos from minimally-invasive procedures of-
fer rich information describing the surgical act. The automatic
analysis of such information opens up several opportunities to
better understand surgical practice and to improve it (Francis
et al., 2018; Lavanchy et al., 2021; Mascagni et al., 2022).
Surgical computer vision provides the necessary tools to pro-
cess raw endoscopic videos, enabling the extraction of dense
information for downstream applications. Among the various
surgical computer vision tasks, automatic instrument locali-
sation and identification represent an essential component of
many downstream applications, like surgical skill assessment
(Lavanchy et al., 2021), augmented reality (Tanzi et al., 2021),
3D scene reconstruction (Wang et al., 2022) and 3D pose
estimation (Allan et al., 2018). This problem is often formal-
ized by means of either semantic or instance segmentation.
Semantic Segmentation (SeS) aims at directly labelling each
image pixel as either belonging to the background class or to
a certain tool type class. Instance Segmentation (IS) aims at
localising and identifying individual tool instances, providing,
for each instance, a separate mask and a tool-type class labels.
Such tool instantiation information, i.e. the availability of a
separate segmentation mask for each tool instance present in
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the image, is extremely precious for downstream applications
like automatic skill assessment, as it enables individual tool
tracking over time. State-of-the-art approaches commonly
tackle tool segmentation via fully-supervised training of deep
learning models (Shvets et al., 2018; Jin et al., 2019; Kong
et al., 2021; Kurmann et al., 2021). Such approaches require
the availability of pixel-level semantic and instance labels,
extremely expensive to collect via manual annotation at a large
scale. This confines the training of such models to small
annotated datasets, limiting their generalization ability.
Recently, alternatives to standard fully-supervised approaches
have been proposed for the task of binary tool segmentation,
a type of SeS featuring only two classes, tool and background
(Sahu et al., 2020; Sestini et al., 2023; Pakhomov et al., 2020;
Sestini et al., 2021; da Costa Rocha et al., 2019). Most of
these solutions rely on semi-synthetic dataset generation, for
example by combining simulation data and domain translation
approaches (Sahu et al., 2020). While appealing, their appli-
cation is still potentially limited by the domain gap between
synthetic and real data, and by the need for ad-hoc setups to
collect synthetic data. A few alternative works have shown
the potential of prior instrument knowledge to train deep
learning models for binary segmentation, without requiring
spatial annotations. This has been done by exploiting prior
knowledge on instrument motion and shape (Sestini et al.,
2023), or, in the robotic context, by incorporating 3D tool
models and kinematic data (Pakhomov et al., 2020; Sestini
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Fig. 1: Examples of frame-wise and sequence-wise binary tool presence labels for a robot-assisted surgery sequence from the EndoVis 2017 dataset (each color
represents a tool type). All the tools can be attached to the system at the same time, while being visible only in certain frames.

et al., 2021; da Costa Rocha et al., 2019).
Despite these growing efforts to reduce the dependency on
manual annotations, research has remained confined to the
binary segmentation task. We believe that this is due to the
rigid problem formalization imposed by common instance
and semantic segmentation approaches: such approaches do
not benefit from the potential availability of binary segmen-
tation masks, as they would still require pixel-level labels
to train. Furthermore, this problem formalization prevents
the incorporation of significantly cheaper sources of semantic
information, compared to spatial annotations, like binary tool
presence labels. Specifically, we define as frame-wise these
binary tool presence labels describing which tool types are
effectively visible in each frame; we define as sequence-wise
these labels indicating which tool types are potentially visible
in each frame (see Figure 1 for examples of a sequence).
While frame-wise labels are usually obtained via manual
annotation - although much cheaper than spatial annotation
- sequence-wise labels can be automatically obtained from
different sources. In robot-assisted surgery, for example,
robotic systems can often record which tools are attached
(Kurmann et al., 2021). This information only indicates that a
certain tool could be visible at some point while it is attached,
but does not guarantee its visibility in any specific frame
(therefore a sequence-wise visibility). As a generalization,
surgical phase and step annotations could provide similar
information, when a mapping between phases/steps and tools
can be approximately defined, for example by knowing which
tools are commonly used in each phase/step (Padoy et al.,
2012). While the use of frame-wise labels has been explored
by weakly-supervised tool detection methods (Vardazaryan
et al., 2018; Nwoye et al., 2019), no segmentation solutions
have yet included them in their training pipelines. Further-
more, to the best of our knowledge, no approaches have yet
explored the use of automatically obtainable sequence-wise
labels.

In this work we propose a framework for instance seg-
mentation model training, which embraces the recent progress
on unsupervised binary segmentation and the availability
of cheap binary tool presence labels, either frame-wise or
sequence-wise. Compared to pixel-level annotations, binary
tool presence labels are not spatially localized. Weakly-
supervised tool detection approaches (Vardazaryan et al.,

2018; Nwoye et al., 2019) exploit the class-activation maps
provided by a classifier trained on the frame-wise binary tool
presence labels, in order to localize the tools in the image
space. However, such localization is commonly limited to
discriminant parts of the tools, like the tip, thus not suitable
for segmentation. In addition, such approaches cannot handle
sequence-wise labels, as these labels do not provide a ground
truth signal for the training of the frame-wise classifier. To
tackle these challenges our solution first learns to localize indi-
vidual tool instances and to encode each of them in a compact
feature representation. These instance-wise representations
are then used to select a small number of tool instances
(prototype instances, 8 only in our experiments), which are
presented to a human operator for tool-type labelling. The
gathered information is finally used to match each instance
to a semantic label from the corresponding set of binary tool
presence labels, providing an effective supervision signal for
the training of an instance classifier.
To this aim, we make the following contributions:

• we develop an unsupervised approach for tool instanti-
ation (Figure 2, Tool instantiation). This step allows
training a model to extract a separate binary segmentation
mask for each tool instance present in a frame. With no
availability of pixel-level labels, we fabricate a pseudo-
supervision signal from the connected component in-
stantiation of the binary masks, and refine it using sim-
ple assumptions on instrument positioning in the image
space. This signal is used to train the instantiation model,
directly predicting the position of each instance centroid
in the image space in the form of a 2D displacement field;

• we develop a self-supervised approach for feature rep-
resentation learning (Figure 2, Feature representation
learning): this step allows training a model to encode
each tool instance in a compact representation, capturing
its semantic features. With no availability of pixel-level
semantic labels, we learn such representations by relying
on intrinsic temporal information from video sequences.
Specifically, we design a contrastive learning approach
based on local instance tracking to draw positive and
negative samples. This step allows obtaining power-
ful instance-wise feature representations, providing the
necessary information to solve the final classification
training step;



Fig. 2: Overview of the proposed Spatial Annotation Free framework for Instance Segmentation (SAF-IS). Top: training architecture highlighting the three core
steps. Tool instantiation is learnt from binary masks, potentially obtained using recent unsupervised segmentation methods. Feature representation learning is
performed using a contrastive learning strategy, powered by local temporal tracking. This step allows us to extract a feature representation of each tool instance
in the training set. Instance classification is performed by incorporating a minimal amount of human-provided information (prototype labels, as few as 8 in our
experiments) and cheaply obtainable binary tool presence labels. Bottom: SAF-IS inference architecture.

• we develop an approach to learn instance classification
from the binary tool presence labels (Figure 2, Instance
classification). The feature representations of all the
training instances, learnt at the previous step, are used
to guide the automatic selection of a tiny number of
prototype instances, displayed to a human operator for
tool-type labelling. The gathered information is prop-
agated to the whole training set, allowing us to label
each training instance with a pseudo tool-type label
(prototype labels). This information is combined with the
available binary tool presence labels (either frame-wise
or sequence-wise) using a teacher-student approach. This
step allows matching each training instance to a semantic
label from the corresponding set of binary tool presence
labels, providing an effective supervision signal for the
training of the student instance classifier;

• at inference time the trained architecture can perform
instance segmentation on single frames, by extracting
individual tool instances, encoding each of them
in a compact feature representation, and separately
classifying them (Figure 2, bottom).

2. Related Work

Surgical instrument segmentation is a long-standing re-
search problem. Before the Deep Learning (DL) break-
through, the problem was tackled by totally relying on prior
knowledge about surgical tools, like color distribution (Wei
et al., 1997), shape (Bouget et al., 2015) or orientation in the
field-of-view (Voros et al., 2006).
Following the DL irruption in the field, a great research effort
has been dedicated to designing powerful fully-supervised
architectures, boosting segmentation accuracy. Such solutions
are presented below in Section 2.1, focusing in particular on
instance segmentation approaches. Although fully-supervised
methods have achieved unprecedented segmentation results

on benchmark datasets, their scalability is restricted by the
need for manual annotations, which confines their training to
small annotated datasets, limiting their generalization ability.
To address this challenge, various approaches have been
suggested, which we present in Section 2.2.

2.1. Fully Supervised Solutions
Following the DL breakthrough in the field of surgical

computer vision, research works have mostly addressed the
problem of surgical tool segmentation using fully-supervised
DL approaches. In particular, encoder-decoder architectures
based on Convolutional Neural Networks (CNNs) have been
widely adopted, in concurrency with a semantic segmentation
formulation of the problem. (Garcia-Peraza-Herrera et al.,
2017; Shvets et al., 2018; Pakhomov et al., 2019; Hasan
and Linte, 2019) propose different variations of the U-Net
architecture (Ronneberger et al., 2015), exploring different
loss functions, residual connections, dilated convolutions and
ad-hoc augmentation pipelines. Multi-task learning has also
been adopted, coupling the segmentation task with image-
based localisation of tool landmarks (Laina et al., 2017) and
task-oriented saliency maps prediction (Islam et al., 2021).
While the segmentation task can be solved for single frames,
temporal information has been proven to boost performance,
especially in the case of partially occluded tools (Jin et al.,
2019).

Recently, instance segmentation approaches have started
gaining traction. Several of the proposed approaches are based
on the popular Mask-RCNN architecture (He et al., 2017).
(Kong et al., 2021) directly train a Mask-RCNN architecture
for the task of surgical instrument instance segmentation.
ISI-Net (González et al., 2020) adds a temporal-consistency
module for improved segmentation results. (Kurmann et al.,
2021) propose a mask-then-classify approach, adopting an
anchor-free approach for instrument instantiation, based on
direct localisation of instruments centroids. Differently from
the above-listed methods, (Zhao et al., 2022) simultaneously
tackle the problems of instance segmentation and tracking



using a transformer architecture based on the popular Track-
Former and DETR models (Carion et al., 2020; Meinhardt
et al., 2022).
In this work we also adopt an instance segmentation problem
formalization, showing its benefits beyond fully-supervised
training.

2.2. Non Fully-Supervised Solutions

Motivated by the need to reduce the burden of manual
annotation, several solutions have tackled the segmentation
problem by including unlabelled data in the training process,
exploiting small sets of labelled data, weak annotations or
prior knowledge. Such solutions, mostly focusing on the
binary segmentation problem, are presented below.
Semi-Supervised solutions: this family of approaches in-
corporates unlabelled data in the training process, while still
requiring access to a set of manually annotated data. Different
solutions to combine unlabelled and labelled data have been
explored. (Ross et al., 2018) pre-train a CNN on unlabelled
data, by means of a pretext task carried out using a cycle-
GAN architecture, and then fine-tune the model on annotated
data. A similar pipeline can be followed by replacing the
pre-text task with self-supervised representation learning on
the unlabelled data, as experimentally proven by (Ramesh
et al., 2022). (Zhao et al., 2020) tackle the problem of
sparsely annotated data, propagating low hertz annotations
to intermediate unlabelled frames using optical-flow. (Kalia
et al., 2021) incorporate unlabelled data from different do-
mains in the training process to improve generalization to
these domains. This is achieved by mapping annotated frames
from the labelled set to the unlabelled domain using a cycle-
GAN architecture, allowing for better generalization.
Weakly-Supervised solutions: weakly-supervised training is
a learning paradigm trying to solve a task using annotations
cheaper to obtain compared to the ones required by the fully-
supervised paradigm. Such annotations could be a simpli-
fication of the ideal ground truth annotations, like scribbles
in place of masks for the segmentation task, or annotations
providing indirect/incomplete supervision for the targeted task
(e.g. binary tool presence labels for tool localisation tasks).
For segmentation, the application of weakly-supervised train-
ing remains confined to the binary task. (Lee et al., 2019)
propose a framework to integrate scribble-like annotations,
speeding up the annotation process. (Yang et al., 2022)
automatically obtain a pseudo-supervision signal by attaching
an electromagnetic sensor to the surgical instruments. While
cutting the cost of annotations, the approach is inherently
limited by regulatory constraints, which limit the extent of
validation of this study.
Weak annotations, in the form of frame-wise binary tool
presence labels, have mostly been used to tackle the problem
of bounding-box localisation. (Vardazaryan et al., 2018) train
a multi-label classifier to predict tool presence from single
frames; the designed architecture features an extended spatial
pooling layer yielding class-specific feature maps, used during
inference to localise the tools. Similarly (Nwoye et al.,
2019) use Wildcat Pooling (Durand et al., 2017) to obtain

localisation maps, adding a convolution-LSTM module for
improved temporal consistency. Differently from these two
approaches, (Xue et al., 2022) use binary tool presence labels,
in combination with green-screen recorded images of surgical
instruments, to obtain a pseudo-supervision signal consisting
of noisy and redundant bounding boxes. A bounding-box
regressor is then trained on the noisy supervision signal,
and its predictions for a certain tool are averaged together
according to their confidence score.
The use of frame-wise binary tool presence labels has re-
mained limited to the bounding-box detection task, as the
standard approach involving using class-activation maps lim-
its the localisation to discriminative parts of the tools, miss-
ing out significant parts of the instruments like the shafts.
Furthermore, research works on weakly-supervised learning
have mostly focused on frame-wise labels, which still require
a certain annotation effort. This has led to overlooking
the opportunity given by sequence-wise binary tool presence
labels, particularly valuable, for example, in robot-assisted
surgery.
Prior knowledge based solutions: as proven by early works
on tool segmentation, general assumptions on color distri-
bution of endoscopic frames, instrument position and prior
shape knowledge, can be a sufficient source of information to
localise surgical instruments. (Liu et al., 2020), for example,
generate segmentation pseudo-labels using handcrafted cues,
such as color distribution; binary segmentation results are then
refined exploiting feature correlation between adjacent video
frames. (Sestini et al., 2023) propose FUN-SIS, an approach
exploiting general assumptions on instrument motion and
shape-priors to train a binary segmentation model, achieving
results comparable to the ones of fully-supervised solutions.

In this work we combine the use of prior knowledge and
binary tool presence labels to learn instance segmentation of
surgical instruments. Prior knowledge on instrument posi-
tioning in the field-of-view is exploited to instantiate binary
segmentation masks. Weak information, in the form of binary
tool presence labels, both frame-wise and sequence-wise, is
then incorporated to achieve accurate instance classification.

3. Methodology

The proposed SAF-IS framework for Spatial Annotation
Free Instance Segmentation explicitly separates the task into
three core components: tool instantiation, feature represen-
tation and instance classification. Differently from standard
semantic/instance segmentation approaches, SAF-IS does not
require spatial annotation of the training data. Instead, it relies
on the availability of binary segmentation masks, which can
be cheaply obtained using emerging unsupervised approaches,
and binary tool presence labels.
The full framework is presented in Figure 2 and detailed
below.

3.1. Tool Instantiation

Instrument instantiation is here defined as the problem of
predicting, from an endoscopic image I, the set of binary



Fig. 3: Overview of the proposed strategy to generate a pseudo-supervision
signal to learn instrument instantiation. Given an image I, its binary mask MB

is instantiated using a Connected Component (CC) algorithm, yielding the set
of tool masks {MCC

i }, with i in [1,NCC]. From them, the displacement field
DCC and the overlap mask MOV can be automatically obtained. A random
tool instance is then selected from the training set, and pasted on I, MB, DCC ,
producing their augmented versions I∗, MB∗, DCC∗.

masks {MInst
i }, with i in [1,NInst], each one corresponding

to an individual instrument visible in the image. When the
ground truth instantiation is known, the problem is often
formulated as bounding-box prediction (Kong et al., 2021;
González et al., 2020). However, the effectiveness of this
approach has been questioned in (Kurmann et al., 2021),
which proposed an alternative solution based on direct regres-
sion of instance centroids’ position. We here adopt a similar
formulation, showing its benefits with respect to bounding-
box prediction beyond fully-supervised learning.
The instantiation problem is here formalized as learning the
mapping between the image I ∈ RW×H×3 and the displacement
field D ∈ RW×H×2, uniquely assigning each tool pixel to an
instance. Given a pixel p = [px, py], D|p is equal to the
vector v = [ci

x − px, ci
y − py] if p belongs to a certain instance

i, having its centroid in [ci
x, c

i
y], or to the null vector [0, 0],

if p belongs to the background. Given a training set with
known ground truth instantiation D, such mapping can be
learnt by an instantiation model, implemented as a neural
network, by using a fully-supervised training formulation, as
in (Kurmann et al., 2021). This can be achieved by optimizing
the loss LFS

I , implemented as the pixel-wise distance between
the ground truth displacement field D and the instantiation
model prediction D̃:

LFS
I = |D − D̃|. (1)

At inference time, given a new image I and the correspond-
ing predicted displacement field D̃, the set of instance masks
{MInst

i } can be easily extracted by identifying the instance cen-
troids, as the pixels where the displacement field converges,
and assigning each tool pixel to the centroid pointed by the
corresponding displacement vector.

Training: In our case, only the binary mask MB is

known. Without a ground truth instantiation, we rely on the
assumption that surgeons tend to avoid overlapping surgical
instruments in the field-of-view, in order to reduce the chances
of mutual tool occlusions and unwanted tool interactions.
Given an image I and the corresponding binary mask MB, if
tools do not overlap, the instance masks can be obtained by
separating the Connected Components (CC) of MB through
standard computer vision methods like the Spaghetti algo-
rithm (Bolelli et al., 2019). The displacement field DCC , ap-
proximating the ground truth D, can then be directly obtained
from the set of NCC tool masks {MCC

i }, with i in [1,NCC], by
subtracting each tool pixel position from the centroid [ci

x, c
i
y]

of the corresponding mask MCC
i . While effective in the case of

non-overlapping tools, CC labelling systematically fails when
tools overlap. In order to mitigate this problem we artificially
modify the supervision signal obtained from CC instantiation,
as follows:

• potential overlapping tools identification: in mini-
mally invasive surgery surgeons adopt the principle of
triangulation to increase their ability to visualize and
access anatomy (Russo, 2012). As a result, surgical
tools commonly enter the camera’s field-of-view from
the sides. Therefore, given the set of CC masks {MCC

i },
MCC

i is considered a potential overlapping instance if
it covers the full horizontal length of the frame (see
Figure 3 for an example). All pixels corresponding to
potential overlapping instances are collected in the binary
overlap mask MOV , and discarded from loss computation
as described later in this Section;

• instance pasting augmentation (AugmPaste): given an
image I, its binary mask MB and its CC displacement
field DCC , a random tool instance is selected from a
different training sample and pasted on them, yielding the
augmented image I∗, the augmented binary mask MB∗

and the augmented displacement field DCC∗ (Figure 3).
This augmentation step allows us to artificially simulate
the presence of overlapping instances, making up for the
discarded instances at the previous step.

Given the image I∗, in addition to the displacement field D̃,
we let the instantiation model predict the binary segmentation
mask M̃B, which we multiply by D̃ to ensure that the displace-
ment vector for pixels belonging to the background is a null
vector [0, 0]. For simplicity, we keep the notation D̃ to refer to
the result of such product.
Given the image I∗, the corresponding network predictions D̃
and M̃B, the binary mask MB∗, the displacement field DCC∗

and the overlap mask MOV , the instantiation model is trained
by optimizing the loss LI :

LI = |DCC∗ − D̃|(1 − MOV ) + LCE(MB∗, M̃B), (2)

where LCE is a standard pixel-wise cross-entropy loss.
Inference: given an image I and the trained instantiation

model, the predicted displacement field D̃ must me mapped
to the set of instance masks {M̃Inst

i }, with i in [1, ÑInst], and
ÑInst being the number of predicted instances in a frame.



Fig. 4: Overview of the proposed instantiation strategy. Given an image I the trained instantiation model predicts the masked displacement field D̃. A square
grid is then overlapped to D̃, and the squares with high convergence (per-pixel average > εC) are then extracted, and separated by Connected Component (CC)
labelling, yielding a set of ÑInst centroid regions. Each tool pixel is then assigned to the corresponding centroid, yielding the set of instance masks {M̃Inst

i }, with
i in [1, ÑInst].

Fig. 5: Overview of the tracking strategy used to generate positive samples for contrastive learning. Given two consecutive frames, the centroids at time t,
obtained from the displacement field Dt are mapped to the It+1 space using optical flow OF, computed between the two images It and It+1. The projected
centroids are then matched to the ones obtained from the displacement field Dt+1. This allows building the set of tubes {Ti}, with i in [1, ÑInst]. Tubes are
progressively grown by repeating this process for consecutive frames.

While for the ground truth displacement field D each tool pixel
vector points exactly to the corresponding centroid pixel, this
is not guaranteed for the predicted D̃. Therefore we define as
centroids the regions of D̃ with a high rate of displacement
vectors convergence. Practically, we overlap a square grid
to D̃ and compute, for each square, the per-pixel average
number of vectors pointing inside it. If such number is above
a predefined threshold εC , the square is considered a centroid
square. Connected squares are grouped together, to yield the
set of centroid regions {ci}, with i in [1, ÑInst]. The instance
masks can then be extracted by assigning each tool pixel p to
the centroid ci closest to the point identified by p + D̃|p. This
yields the set of predicted instance masks {M̃Inst

i }, with i in
[1, ÑInst] (Figure 4). In our framework the predicted instance
masks are subsequently used to learn instance-wise feature
representations, as now discussed.

3.2. Feature Representation Learning

In the absence of pixel-level semantic labels, we rely
on self-supervision to learn robust and meaningful feature
representations of each tool instance, tailored for the instance

segmentation task. The problem of self-supervised representa-
tion learning has been often addressed by means of contrastive
learning in literature (Jaiswal et al., 2020). While general
contrastive learning approaches usually learn global frame-
level feature representations, we find this formulation to be ill-
posed for the instrument segmentation problem, as it lacks the
spatial granularity necessary to discriminate between different
instances. Therefore we design an instance-level contrastive
learning approach, exploiting the unsupervised instantiation
described above and intrinsic temporal information from
video sequences.
Given an image I and the set of instance masks {M̃Inst

i }

predicted by the instantiation model, we want to map each
instance to a feature vector Fi, capturing its semantic content.
We obtain feature vectors using a feature extractor model
implemented using a standard ResNet-50 architecture. Specif-
ically, for each instance, we pass I through the model and
multiply the intermediate feature maps by M̃Inst

i , resized to
match their dimensions, to obtain the corresponding instance-
wise feature vector Fi. Then, given a feature representation
Fi, intrinsic temporal information from the video sequence is
used to draw positive and negative examples for contrastive



Fig. 6: Left: visualization of learnt feature representations of the EndoVis 2017 (Allan et al., 2019) training set instances, clustered (Nkm equal to 8) and projected
in the 2D space using t-SNE algorithm (Van der Maaten and Hinton, 2008). Each instance point is colored with a different shade of grey to represent the cluster
id. Prototype instance features are marked with ⋆, and the corresponding masks are overlaid on the frame and highlighted by a bounding-box, to facilitate their
labelling by a human operator. The color of the mask overlays represents the ground truth tool type that the user would assign. In practice, this annotation
step can be carried out in 8 mouse clicks only. Right: prototype instance labels propagation to the training set. Each instance-wise feature projection is colored
accordingly to its prototype label, assigned via propagation from the prototype instance.

loss computation. Specifically:

• positive examples {F+i } are sampled from the instance
tube Ti, built from the frame-by-frame tracking of the
instance i. Such tracking is described in Figure 5. Given
the consecutive images It and It+1, and their correspond-
ing sets of instrument instances, tracking is solved by
projecting the centroids of It into It+1 space using the
optical flow OF, computed between It and It+1. Each
It centroid is then matched to the closest It+1 centroid.
Optical flow projection allows us to robustly handle tool
movements between consecutive frames, reducing the
chances of wrong matching;

• negative examples {F−i } can be sampled either from
different tubes belonging to the same frame or from tubes
far apart in time.

The feature extractor network is then trained by optimizing the
loss LF between {F+i } and {F−i }:

LF = LS CL({F+i }, {F
−
i }), (3)

where LS CL is the Supervised Contrastive Loss formulation
proposed in (Khosla et al., 2020), with each instance tube
treated as a separate class. The learnt feature representations
are exploited in the next step for classifier training.

3.3. Instance classification
Given the set of available tool type classes {S i}, with i in

[1,Ncls], a classifier model must now be trained to learn the
mapping between instance features and class labels from that
set. In the absence of pixel-level semantic labels, we rely
on binary tool presence labels to solve this task, cheaper to
collect via manual annotation, or even automatically obtain-
able (e.g. sequence-wise labels from robotic systems). As

binary tool presence labels are not spatially localised, the
matching between training tool instances and binary tool pres-
ence labels must be defined. The class-activation approach,
commonly adopted for weakly-supervised object detection,
requires frame-wise ground-truth annotations about tool pres-
ence, which makes it inapplicable to sequence-wise labels. We
therefore propose a more flexible solution, applicable to both
frame-wise and sequence-wise labels. Our solution is designed
to solve the matching problem by injecting a minimal amount
of human knowledge, specifically collected to maximize its
information content while minimizing the annotation effort.
Specifically, we automatically select a tiny number of highly
representative instances (protoype instances) and ask a human
operator to label them. The gathered information is then used
to match binary tool presence labels and instances, providing
an effective supervision signal for classifier training. The two
steps are now detailed.

Prototype labelling: given the complete set of learnt
features for all the instances in the training set, unsupervised
clustering is applied. In our experiments we make use of
the standard K-Means++ clustering algorithm (Arthur and
Vassilvitskii, 2006), with the number of clusters Nkm regarded
as an hyper-parameter. The Nkm instances corresponding to
the clusters’ centroids are defined as prototype instances. A
human operator would now be required to assign a label
S P from the set {S i} to each prototype instance. In order
to propagate the prototype instance labels to the rest of the
training instances, we require all instances belonging to the
same cluster to share the same semantic label S P. Figure 6
provides a visualization the of prototype instance labelling
process, and of the result of prototype label propagation. In
principle, a number of clusters Nkm equal to Ncls, the total
number of tool type classes available, is sufficient to correctly
label the whole training dataset, and potentially to directly



Fig. 7: Overview of the proposed weakly-supervised instance classification module. Given an image I, the corresponding set of instance-wise features {Fi},
with i in [1, ÑInst], is obtained from the instance masks M̃Inst

i . Each feature is mapped to the corresponding prototype label S P
i , which, as shown in this case,

does not necessarily correspond to the ground truth label. Each feature is also independently passed through the Teacher (T) and Student networks (S), yielding
the predicted probabilities P̃T

i , P̃S
i , and the corresponding predicted labels S̃ T

i , S̃ S
i (for the sake of readability only the latter are shown in the picture). T is

trained optimizing the loss LT computed using the prototype labels {S P
i }. Simultaneously, T predictions are used to compute the assignment costs C⟨iC ,iP⟩ for

each iP permutation of each iC combination of the weak labels {S W
i }, with i in [1,NW ]. The ordered set [S̄ W

i ], with i in [1, ÑInst], corresponding to the minimum
assignment cost, is used to compute the loss LS for Student network optimization.

deploy the instance segmentation model: given an unseen
image I and a predicted tool instance mask M̃Inst

i from that
image, inference would then be performed by extracting the
corresponding feature vector Fi and associating it to the pro-
totype label S P of the cluster closest to Fi in the feature space.
However, in practice, as the feature learning step is imperfect,
the prototype labels can be noisy, as experimentally shown
in Section 5. Nonetheless, we show that the information
provided by prototype labels can be used to match binary
tool presence labels and instances, providing an effective
supervision signal for classifier training.

Binary tool presence labels incorporation: let us consider
the set of binary tool presence labels {S W

i } with i in [1,NW ],
subset of the set of tool-type labels {S i}, associated to a
certain frame. As discussed in Section 1, this information
can be defined as frame-wise, if the labels indicate which tool
types are effectively visible in the frame, or sequence-wise,
if they indicate which tool types are visible at some point
in the sequence the frame belongs to, but not necessarily in
such frame. Binary tool presence information, either frame-
wise or sequence-wise, does not provide tool localisation
information, and is therefore defined as weak with respect to
the segmentation task. While cheaply obtainable, such weak
labels are often overlooked by segmentation approaches, as
they pose several challenges:

• differently from pixel-level labels, binary tool presence
labels are not directly matched to a specific instance,
making them hard to digest for standard segmentation
architectures, designed to learn from pixel-level annota-
tions;

• depending on the system/annotation protocol used to col-
lect the information, the presence of multiple instances of
the same tool type may not be recorded. In the Cholec80
dataset (Twinanda et al., 2016), for example, frame-wise

binary tool presence labels do not keep track of multiple
tool instances;

• sequence-wise labels commonly do not reflect which
tool types are effectively visible in each frame. In the
case of robotic surgery, for example, tools are attached
beforehand to the robotic system, potentially remaining
unused for relatively long periods of time. Similarly
for surgical phases, certain tools, like the ones used for
coagulation, may be linked to every phase of a procedure,
while being visible only for small amounts of time.

In order to make effective use of such information, each tool
instance in a frame must be matched to a weak label from the
set {S W

i } associated to that frame. Once the matching is found,
a classifier model can be trained on the matched labels. In
practice, the binary tool presence labels softly constrain the
training of the classifier, providing a reduced set of tool-type
labels among which the ground truth one for each instance is
to be found.

Let us consider an image I, the sets of instance masks,
features and prototype labels {M̃Inst

i }, {Fi}, {S P
i }, with i in

[1, ÑInst], and the set of weak labels {S W
i }, with i in [1,NW ]

associated to I. Mining such weak labels requires to find
the function ξ, matching the set of ÑInst features to the set
of NW weak labels. However, in the most general case, such
transformation is:

• non injective, as there could be multiple instances sharing
the same tool label S W

i ;

• non surjective, as a certain tool label S W
i may not be

present in a specific frame.

This implies that given the set of ÑInst tool instances in a
frame, different combinations of ÑInst elements of the NW

weak labels are plausible. To simplify the problem, and



avoid degenerate solutions, we assume that if the number of
instances ÑInst in a frame is equal or smaller than the number
of weak labels for that frame, every instance is assigned to a
different label. Specifically, we identify the set of plausible
weak labels combinations as follows:

• if ÑInst < NW , all the possible combinations of ÑInst

elements of the NW labels are plausible;

• if ÑInst == NW , we assume that the set of NW labels is
the only plausible combination;

• if ÑInst > NW , all the possible combinations with repeti-
tions of ÑInst elements of the NW labels are plausible.

Among the set of plausible weak labels combinations, the
correct label combination must be identified, and the matching
between each instance and each weak label in such combina-
tion must be determined. This could be achieved by associ-
ating to each iP permutation of each iC plausible combination
of the weak labels an assignment cost C⟨iC ,iP⟩. Each couple
⟨iC , iP⟩ yields an ordered set of weak labels [S W⟨iP,iC⟩

i ], with
i in [1, ÑInst]. Among them, the ordered set minimizing the
assignment cost could be selected and used for the classifier
training.
To solve this problem we propose a teacher-student approach
(Figure 7), exploiting the knowledge gathered from the proto-
type labels. Teacher and Student are two identical classifiers
that map a feature vector Fi to the vectors P̃T

i , P̃S
i , respectively.

P̃T
i , P̃S

i represent the predicted probability of the instance to
belong to each of the Ncls classes, according to Teacher and
Student, respectively. From P̃T

i , P̃S
i the class with the highest

probability S̃ T
i , S̃ S

i is regarded as the predicted label. The
Teacher network is trained to map each feature Fi to the
corresponding prototype label S P

i , by optimizing the instance
classification loss LTi :

LTi = LCE(P̃T
i , S

P
i ). (4)

For each couple ⟨iC , iP⟩, its assignment cost C⟨iC ,iP⟩ can then
be computed as the average cross-entropy loss between the
predicted probabilities [P̃T

i ] and the weak labels [S W⟨iP,iC⟩
i ],

corresponding to that couple, as follows:

C⟨iC ,iP⟩ =
1

ÑInst

ÑInst∑
i=1

LCE(P̃T
i , S

W⟨iC ,iP⟩

i ). (5)

The ordered set of weak labels [S̄ W,iP,iC
i ], corresponding to the

couple ⟨iC , iP⟩ minimizing the assignment cost, is selected.
The Student network is then trained by optimizing the instance
classification loss LS i , between the predicted probabilities [P̃S

i ]
and the matched weak labels [S̄ W,iP,iC

i ]:

LS i = LCE(P̃S
i , S̄

W⟨iC ,iP⟩

i ). (6)

In practice, the Teacher network applies the knowledge
gathered from the prototype labels to identify the correct
ordered set of weak labels used for Student training. Doing
so, the Teacher approximates the function ξ, matching each of

the ÑInst tool instances to a weak label from the set {S W
i }.

This general framework applies to both frame-wise and
sequence-wise binary tool presence labels. In the case of
frame-wise labels, ξ becomes surjective, significantly re-
ducing the space of possible solutions and facilitating the
matching.

X

4. Experimental Set-up

The proposed framework was validated on the MICCAI
2017 and 2018 EndoVis Robotic Instrument Segmentation
Challenge datasets. The two datasets are now introduced
(Section 4.1), together with the specific design choices and
training details (Section 4.2).

4.1. Datasets

EndoVis2017 (Allan et al., 2019): the original challenge
dataset consists of 10 video clips, resampled at a frame rate
of 1 frame-per-second, of abdominal porcine procedures,
performed using the da Vinci robotic system. Each clip
contains 300 high-resolution frames (1024 × 1280). During
the challenge 8x225 frames were released for training, while
the remaining 8x75 frames and two additional clips were held
out by the organizers for testing. A total of 7 tool classes
are present in the dataset. We provide results on this dataset
according to the same evaluation protocol as (Shvets et al.,
2018), by performing 4-fold cross-validation on the 8x225
released training data (regrouped in 4 splits). We report the
average metric over the 4 splits, for direct comparison with
state-of-the-art approaches.

EndoVis2018 (Allan et al., 2020): the original challenge
dataset contains 19 video clips, resampled at a frame rate
of 1 frame-per-second, of abdominal porcine procedures,
performed using da Vinci robotic system. Each video contains
a total of 300 high-resolution frames (1024 × 1280). During
the challenge 15 clips were released for training, while the
remaining clips were held out by the organizers for testing.
The dataset was originally annotated for anatomy and tool-
part segmentation, and did not feature instrument type labels.
(González et al., 2020) annotated with pixel-level semantic
labels 149 frames for each of the 15 training clips, and split
them into a training set consisting of 11 clips, and a validation
set containing the remaining 4 clips. The same 7 tool classes
from EndoVis2017 dataset were used. We provide results
on this dataset according to the same evaluation protocol as
(González et al., 2020), by training on the 11 training clips,
and validating on the remaining 4 clips.

As the proposed SAF-IS approach requires binary instru-
ment masks to train, we provide results using both manually
annotated binary masks and automatically segmented masks
generated using the unsupervised FUN-SIS approach (Sestini
et al., 2023). The mean binary IoU for the FUN-SIS approach
on the EndoVis2017 and EndoVis2018 datasets is equal to
83.7% and 81.3%, respectively.

Frame-wise binary tool presence labels were automatically



generated for each frame as the unique pixel-level semantic
labels present in the corresponding ground truth semantic
masks. Sequence-wise binary tool presence labels were also
automatically generated, by considering each video clip in
the datasets as a sequence, and assigning to each clip, as
sequence-wise labels, the full set of unique semantic labels
present in the ground truth semantic masks of all the frames in
the clip. For 46.12% of the frames in the EndoVis2018 dataset
the sequence-wise labels do not correspond to the frame-wise
labels (40.72% for EndoVis2017 dataset), i.e., for a certain
frame, its sequence-wise labels contain at least a tool type
which is not visible in it (but which is present at some point in
the clip it belongs to).

4.2. Design Choices & Training Details
Tool instantiation: the instantiation model is implemented

as a U-Net architecture with SegFormer encoder (Xie et al.,
2021), available from the Segmentation Models library in
PyTorch. Training was carried out for 60 epochs using the
Adam optimizer with a learning rate equal to 1e-3 and a
batch size of 32, applying standard photometric and geometric
augmentations from the Albumentation library to the original
images, resized to a 256 × 256 resolution. During inference,
centroids were selected by overlapping the predicted displace-
ment field with a square grid of 32 × 32 resolution (i.e. each
grid square of 8 × 8 pixel dimension); a threshold εC of 5 was
used to select centroid squares (i.e. squares with a per-pixel
average of at least 5 displacement vectors pointing at them
were selected as centroids). The impact of grid resolution and
threshold value is investigated in Section 6.

Feature representation learning: the feature extractor
network is implemented as a ResNet-50 architecture. Each
instance mask is multiplied by the output of the conv3 4
layer. Instance-wise features are obtained by applying a global
average pooling to the output of the conv5 3 layer, having
2048 feature channels. Training was carried out for 80 epochs
using the Adam optimizer with a learning rate equal to 5e-
5 and a batch size of 64, applying standard photometric and
geometric augmentations to the original images, resized to
a 512 × 512 resolution. For the contrastive loss LS CL a
temperature factor equal to 0.1 was used.

Instance classification: for the main experiments (Section
5.2), K-Means++ clustering algorithm was applied with a
total number of clusters Nkm equal to 8 (therefore 8 instances
were required to be labelled by a human user). While in
the real scenario such assignment would be performed by
a human operator, as discussed in Section 6, it was here
automatically performed by associating to each prototype
instance the semantic label of the ground truth instance of
the same frame having the maximum overlap according to the
Intersection-over-Union metric.
The classification networks (Teacher, Student) were imple-
mented as a 2-layer fully-connected network, with interme-
diate feature size of 512 and batch normalization. Training
was carried out for 40 epochs using the Adam optimizer
with a learning rate equal to 1e-4 and a batch size of 128,
applying standard photometric and geometric augmentations
to the original images, resized to a 512 × 512 resolution.

5. Experiments and Results Analysis

We now present the experimental validation of the proposed
SAF-IS framework, and compare it with state-of-the-art ap-
proaches. Tool instantiation results and complete instance
segmentation results are separately presented in Sections 5.1
& 5.2, respectively.

5.1. Tool Instantiation

In order to analyze tool instantiation quality, we evalu-
ate results according to a class-agnostic Average-Precision
metric, computed for two values of threshold Intersection-
Over-Union (IoU): AP@0.5 (50%), AP@0.7 (70%). We
present results obtained by our unsupervised approach using,
as binary masks, both manual annotations (SAF-IS CCM)
and unsupervised FUN-SIS predictions (SAF-IS CCF). In
addition, we report results for the instantiation model trained
in a fully-supervised manner on the ground truth displacement
field (SAF-IS GT). As, to the best of our knowledge, no other
work has previously attempted unsupervised instantiation of
binary tool masks, we compare our solution against a Mask-
RCNN baseline, trained under the same fully-supervised
(MRCNN GT) and unsupervised modalities (MRCNN CCM,
MRCNN CCF). However, as Mask-RCNN is an anchor-
based approach, the local masking for automatically identified
overlapping tools (MOV , described in Section 3.1), is not
easily implementable, and would require substantial architec-
tural modifications which are beyond the scope of this work.
Therefore we limit the augmentation strategy for unsupervised
Mask-RCNN experiments to instance pasting, described in
Section 3.1.

Results presented in Table 1 show how our proposed so-
lution outperforms Mask-RCNN across both datasets and for
all three training modalities. A similar result for the fully-
supervised training modality was already presented in (Kur-
mann et al., 2021). These experiments highlight the benefits of
tool instantiation based on direct centroid regression, beyond
full-supervision, for the unsupervised setting. Indeed, the
unsupervised SAF-IS solution using binary annotated masks
(SAF-IS CCM) closely follows the fully-supervised one (SAF-
IS GT), with an average gap of -∆3.3% AP@0.5 across
the two datasets. In addition, the greatest performance gap
between SAF-IS and Mask-RCNN is found when using FUN-
SIS binary masks to train (CCF): +∆17.5% AP@0.5 and
+∆11.15% AP@0.7, in the EndoVis 2017 dataset. This result
shows how our solution is particularly suitable to handle a
noisy supervision signal. Finally, the performance gap be-
tween SAF-IS CCF and SAF-IS CCM is significantly smaller
for the AP@0.5 metric (-∆4.48% on average across the two
datasets) compared to the AP@0.7 metric (-∆9.74%). This
can be attributed to the lower quality of FUN-SIS binary
segmentation masks, causing a performance drop when a high
IoU threshold is used: the lower 50% IoU threshold, instead,
being less affected by possible inaccuracies in the binary
segmentation masks, highlights the high instantiation quality.



Superv. Method
EndoVis

2017 2018
AP@0.5 AP@0.7 AP@0.5 AP@0.7

GT MRCNN 76.11 61.87 75.01 63.12
SAF-IS 88.40 72.12 78.57 66.00

CCM
MRCNN 71.26 55.98 73.99 60.04
SAF-IS 85.36 63.70 75.92 61.08

CCF
MRCNN 63.81 44.99 62.48 42.31
SAF-IS 81.31 56.14 71.01 49.17

Table 1: Tool instantiation results for the proposed SAF-IS approach and Mask-RCNN on EndoVis 2017 and 2018 datasets, trained according to three modalities:
fully-supervised (GT) and unsupervised using Connected Component labelling of manually annotated masks (CCM) and FUN-SIS predicted masks (CCF).

Method
Supervision Type EndoVis

Pixel-level Weak 2017 2018
S I B P FW SW

Ternaus(Shvets et al., 2018) ✓ 35.27 /

MF-TN†(Jin et al., 2019) ✓ 37.35 /

DMF-TN†(Zhao et al., 2020) ✓30% 45.83 /

DMF-TN†(Zhao et al., 2020) ✓20% 43.71 /

DMF-TN†(Zhao et al., 2020) ✓10% 33.64 /

M&C†‡(Kurmann et al., 2021) ✓ ✓ 65.70 /

ISI-Net†(González et al., 2020) ✓ ✓ 55.62 73.03
MRCNN(Kong et al., 2021) ✓ ✓ 42.28 /

Tra-SeTr†(Zhao et al., 2022) ✓ ✓ 60.04 76.20
SAF-IS ✓ ✓0.3% 43.86 56.62
SAF-IS ✓ ✓0.3% ✓ 53.73 63.38
SAF-IS ✓ ✓0.3% ✓ 52.64 63.57
SAF-IS ✓0.3% 30.47 54.08
SAF-IS ✓0.3% ✓ 45.86 58.03
SAF-IS ✓0.3% ✓ 42.41 57.75

Table 2: Instance segmentation results for the proposed SAF-IS approach, state-of-the-art methods on EndoVis 2017 and 2018 datasets. Supervision signals
used by each approach are reported: pixel-level semantic labels (S, percentage of labelled data reported for semi-supervised approaches), pixel-level instance
labels (I), required by fully-supervised instance segmentation approaches, binary segmentation masks (B, for SAF-IS, if not checked FUN-SIS predicted masks
are used), prototype labels (P, 8 labels in total in these experiments, ∼0.3% of total training instances), frame-wise tool presence labels (FW) and sequence-wise
tool presence labels (SW). † methods using temporal information at inference time. ‡ methods using additional tool-part annotations for training.

5.2. Tool Instance Segmentation
In order to evaluate instance segmentation results, and

compare them with other state-of-the-art segmentation ap-
proaches, we adopt the commonly used IoU EndoVis chal-
lenge metric defined in (González et al., 2020). It is worth
noticing that such metric treats the segmentation problem as
pixel-wise classification, without providing information about
instantiation quality. Table 2 reports results of our SAF-IS
framework and for several state-of-the-art solutions. For each
method the table highlights the type of supervision used for
training. State-of-the-art approaches are all trained in a fully-
supervised manner using pixel-level semantic annotations
(S), in combination with pixel-level instance annotations for
instance segmentation methods (I). Our SAF-IS framework
does not require pixel-level semantic or instance annotations
to train, relying instead only on prototype instance labels (P)
- 8 for the experiments reported in this Table - and weak
labels, in the form of frame-wise (FW) or sequence-wise (SW)
tool presence labels (results for both modalities are reported).

In addition SAF-IS can be trained using manually annotated
binary masks (B) if available, or rely on the predictions of the
unsupervised FUN-SIS approach (results for both modalities
are also reported).

Results presented in Table 2 show that our SAF-IS ap-
proach, trained using only binary tool presence labels and
8 prototype labels, outperforms fully-supervised and semi-
supervised solutions adopting a semantic segmentation prob-
lem formulation (Ternaus, MF-TN, DMF-TN), despite not
requiring any spatial annotation. On the EndoVis 2017 dataset
our solution also outperforms a standard Mask-RCNN (MR-
CNN), trained on manually annotated segmentation masks and
bounding-boxes for ground truth instantiation. In addition to
pixel-level semantic and instance annotations, the solutions
outperforming our SAF-IS approach also rely on temporal
information during inference (†) and additional tool-part seg-
mentation annotations (‡). It is worth noticing that temporal
modelling is a natural extension for SAF-IS, as tool tracking
information is already extracted as part of the instance-wise



Augm. EndoVis

OV PS 2017 2018
AP@0.5 AP@0.7 AP@0.5 AP@0.7

74.85 56.585 71.56 58.08
✓ 77.74 54.82 77.58 62.00

✓ 81.91 59.82 70.54 57.98
✓ ✓ 85.35 63.70 75.92 62.08

(a)

Augm. EndoVis

OV PS 2017 2018
AP@0.5 AP@0.7 AP@0.5 AP@0.7

67.82 47.86 65.23 43.94
✓ 71.80 45.69 71.91 48.99

✓ 72.41 49.42 67.99 47.12
✓ ✓ 81.31 56.14 71.01 49.16

(b)

Table 3: Results of the ablation study on unsupervised instrument instantia-
tion from manually annotated (a) and FUN-SIS predicted (b) binary masks,
highlighting the separate and combined impact of: masking of potentially
overlapping instances (OV) and pasting of random tool instances (PS).

feature learning step. Finally, a comparison between SAF-
IS models trained on frame-wise (FW) and sequence-wise
(SW) binary tool presence labels, shows the effectiveness of
our teacher-student solution to extract a reliable supervision
signal from the automatically obtainable sequence-wise labels,
with an average gap between the two of less than 1.2% IoU,
across datasets and binary mask sources. Qualitative results
are shown in Figures 12 & 13 at the end of the manuscript.

6. Ablation Studies

In order to provide a deeper insight into the SAF-IS
framework, we now present and discuss ablation studies
on three critical design choices: the augmentation strategy
for tool instantiation, the inference parameters for tool
instantiation and the number of prototype labels required for
instance classification.

6.1. Tool Instantiation Augmentation Strategy

In order to train the displacement network for instrument
instantiation, a pseudo-supervision signal is generated from
the binary masks using a Connected Component algorithm.
Such signal is subsequently refined by 1) preventing training
on potentially overlapping instances (OV) and 2) pasting
random tool instances (PS) to artificially simulate the case of
overlapping instances (Section 3.1).
Table 3 provides results of an ablation study exploring
different combinations of the two augmentation strategies.
Such results show the effectiveness of the two augmentation
strategies, and of their simultaneous use. In the case of
binary annotated masks, instance masking (OV) provides an
average improvement of +∆4.46% AP@0.5 and +∆1.08%
AP@0.7 across the two datasets, compared to the setting

where no augmentation is used; instance pasting (PS) provide
an average improvement of +∆3.03% AP@0.5 and +∆1.56%
AP@0.7; the two strategies combined provide an average
improvement of +∆7.02% AP@0.5 and +∆5.55% AP@0.7.
On the EndoVis 2018 dataset, paste augmentation appears
less effective: this could be due to the fact that several frames
in it present at least 4 separate tool instances, making the
additional pasting redundant, and potentially detrimental as
frames can become too cluttered.

6.2. Tool Instantiation Inference Parameters

In order to obtain instance masks, a square grid is over-
lapped to the predicted displacement field; centroid squares
are then selected as the ones whose per-pixel average of
vectors pointing inside them is greater than the threshold
value εC . The grid resolution (equal to 32 × 32 in our
main experiments) and the threshold εC (equal to 5 in our
main experiments) regulate the trade-off between precision
and recall of the obtained instance masks. We experimentally
evaluate the impact of the two parameters by varying them in
a grid-like manner, with grid resolution in [8, 16, 32, 64, 128]
and εC in [1, 3, 5, 7, 10]. Their different combinations are used
to obtain instance masks from the same displacement fields.
The AP@0.5 between the obtained masks and the ground truth
instances is reported in Figure 8 for both the EndoVis2017 and
EndoVis2018 datasets.
The presented results, together with the qualitative results
shown in Figure 9, clearly highlight the impact of the two
parameters. For intermediate grid resolution values (32 × 32,
64 × 64), the impact of εC is minimal. However, as the
grid solution decreases (16 × 16, 8 × 8), an high value of εC
negatively affects the quality as instantiation, as the average
convergence rate on large squares tends to be lower. This
can be also observed from the qualitative instantiation results
shown in Figure 9, top-right, where no candidate squares
reach the threshold. Vice-versa, high grid resolution values
(128 × 128) tend to be more negatively affected by a low εC ,
as it leads to the identification of many false positive centroids
(instantiation results from Figure 9, bottom-left).

6.3. Prototype Labels Number

In SAF-IS, the Teacher network is required to gather
knowledge from the prototype labels, in order to be able
to identify the correct ordered sets of weak labels used for
Student training. Prototype labels, therefore can have a
crucial influence on the quality of instance classification. In
addition, they represent the manual annotation necessarily
required by SAF-IS for training, as both binary tool masks
and binary tool presence labels can be automatically obtained.
Therefore we now present, in Table 4, the impact on the
segmentation performance, of the number of clusters Nkm used
for K-Means clustering, equal to the number of prototype
labels assigned by a human operator. In order to provide
a complete overview, we present segmentation results ob-
tained via instance classification by direct K-Means inference,
Teacher classifier prediction and Student classifier prediction,



Fig. 8: Impact of grid square resolution and threshold value εC on the tool instantiation quality for the EndoVis2017 dataset (left) and EndoVis2018 dataset
(right). The combination used in our main experiments is highlighted in red.

Fig. 9: From left to right, original image, predicted displacement field, and examples of centroid regions and instantiation masks for different combinations of
grid resolution and threshold εC . Mask colors indicate the ID assigned to the tube each instance belongs to. The combination adopted in our main experiments
is highlighted in red.

Fig. 10: Left: visualization of the learnt feature representations of the EndoVis 2017 training set instances, projected in the 2D space using t-SNE algorithm
(Van der Maaten and Hinton, 2008). Each instance point is colored according to the corresponding ground truth tool class. Right: K-Means++ clustering
and prototype labels obtained using different number of clusters Nkm; projected features and prototype instances are colored accordingly to the corresponding
prototype labels.

when trained using sequence-wise or frame-wise binary tool
presence labels. In addition, Figure 10 provides a visualization
of the learnt feature distribution, the clustering process and the
automatically selected prototype instances.
Result analysis provides different insights into the method.
First of all, although a marginal improvement exists, in-
creasing the number of prototype instances does not provide
substantial performance gains for the Student network. This

result may indicate that effective feature learning is a crucial
methodological bottleneck, which cannot be solved by simply
increasing the number of human-assigned labels. Secondly,
the presented results highlight the consistent improvement in
performance provided by the Student network, trained on the
weak labels matched through the Teacher model. Although
the Teacher learns to substantially replicate K-Means cluster-
ing classification, as shown by their similar performance, this



Nkm K-Means Teacher Student
SW FW

8 43.86 45.66 52.64 53.73
16 38.52 41.34 50.02 52.64
32 42.33 45.26 51.23 52.44
64 44.76 48.38 52.84 53.37

(a)

Nkm K-Means Teacher Student
SW FW

8 30.47 30.88 42.21 45.86
16 37.86 41.81 46.95 47.33
32 32.49 36.40 46.40 48.00
64 36.10 41.02 46.91 47.96

(b)

Nkm K-Means Teacher Student
SW FW

8 56.62 56.80 63.57 63.38
16 56.03 57.25 60.63 61.96
32 56.11 57.48 62.80 64.76
64 53.80 57.22 62.24 63.88

(c)

Nkm K-Means Teacher Student
SW FW

8 54.08 54.14 57.75 58.03
16 56.53 57.04 57.40 58.53
32 55.53 55.86 58.45 59.48
64 55.52 56.02 57.92 59.85

(d)

Table 4: Results of the ablation study investigating the impact of the number of clusters Nkm on final segmentation results, using, for instance classification, direct
K-Means inference, Teacher predictions and Student predictions, trained using sequence-wise (SW) or frame-wise (FW) binary tool presence labels. Results
obtained using a): manually annotated binary masks on the EndoVis2017 dataset, b): FUN-SIS predicted binary masks on the EndoVis2017 dataset, c): manually
annotated binary masks on the EndoVis2018 dataset, d): FUN-SIS predicted binary masks on the EndoVis2018 dataset. Segmentation results were evaluated
using the challenge IoU metric. The best results across the number of clusters are highlighted in bold.

is enough to perform a good weak label matching, responsible
for Student’s superior performance.

7. Discussion

The results presented in Sections 5 & 6 confirm the
soundness of the proposed SAF-IS framework for instance
segmentation. Our solution trains on endoscopic videos paired
with binary segmentation masks, potentially obtained in an
unsupervised way, and is designed to incorporate binary tool
presence labels, either frame-wise or sequence-wise. Human
annotation effort can here be limited to labelling a tiny set of
prototype instances, automatically selected by our approach,
with inexpensive classification labels: the ablation study
presented in Section 6 shows that the size of such set can be
reduced to 8 instances (∼0.26% of the total number of training
instances), with no significant performance drop. This result
goes significantly beyond existing semi-supervised solutions
like (Zhao et al., 2020), where a significant set of frames
(up to 30%) needs to be labelled with pixel-level annota-
tions, while still providing inferior segmentation performance.
Indeed, our complete spatial annotation-free solution, using
FUN-SIS predicted binary masks for training, outperforms
fully-supervised and semi-supervised semantic segmentation
approaches like MF-TN and DMF-TN by a consistent margin
on the EndoVis 2017 dataset. Furthermore, our SAF-IS
framework effectively incorporates sequence-wise binary tool
presence labels, commonly overlooked in the literature. This
small gap in performance between frame-wise and sequence-
wise training modalities (Table 2), shows that sequence-wise
labels can be an effective source of supervision, while being
completely free to collect.
Although a performance gap still exists with top-performing
fully-supervised instance segmentation approaches, we be-
lieve there exist several directions of improvement to close
such a gap. First of all, temporal modelling could be easily

learnt from the already available tracking information, cur-
rently exploited only at training time for feature learning.
Secondly, as highlighted by the ablation study on cluster
number, feature learning represents a crucial methodological
bottleneck: if the learnt feature representations are sub-
optimal, the unsupervised clustering may fail to separate
tools belonging to different classes, hindering the following
classifier training. In the current implementation, feature
learning is performed in a completely unsupervised way, with
no help from external information. Weak information about
binary tool presence may be included at this stage to perform
a more informed positive and negative feature sampling.

In addition to these direct improvements, SAF-IS, not
requiring pixel-level labels, can leverage recent break-through
solutions like SAM (Segment Anything Model, Kirillov et al.
(2023)) to directly obtain instance-wise masks for the follow-
ing feature learning and tool classification training. Figure
11 shows qualitative results from SAM (without text prompts,
not yet released at the time of this submission) on the En-
doVis2017 dataset, compared to SAF-IS predictions. Even
if SAM segmentation results are currently over-segmenting
tools, breaking them up into individual parts, our SAF-IS
instantiation predictions could be used to group these parts,
exploiting the high-quality boundary segmentation that SAM
can already provide.
In conclusion, SAF-IS major contribution lies in its ability
to lift the need for spatial annotation of the training data.
This may open up new research directions aimed at better
exploiting human annotation effort, for example by focusing
it on particularly representative or challenging samples.

8. Conclusion

In this work we developed and validated SAF-IS, a Spatial
Annotation Free framework for Instance Segmentation of sur-
gical instruments. The proposed framework embraces recent



Fig. 11: Top row: SAM (Kirillov et al., 2023) segmentation results on the EndoVis2017 dataset. Central row: SAF-IS instantiation results obtained from binary
manually annotated masks. Bottom row: SAF-IS instantiation results obtained from FUN-SIS predicted binary masks. Each instance is colored using a random
color, which is not meant to represent tool type classes.

Fig. 12: Qualitative segmentation results from the EndoVis2017 dataset, highlighting, for our SAF-IS approach, the source of binary segmentation masks (BS)
and the type of binary tool presence labels (frame-wise or sequence-wise). All the SAF-IS results are obtained using 8 prototype labels. Row 1: ground
truth; rows 2-5: SAF-IS Student trained on (2) manually annotated binary masks and frame-wise tool presence labels, (3) manually annotated binary masks
and sequence-wise tool presence labels, (4) FUN-SIS predicted binary masks and frame-wise tool presence labels, (3) FUN-SIS predicted binary masks and
sequence-wise tool presence labels.

breakthrough solutions for unsupervised binary segmentation,
building on top of them to perform instance segmentation

without requiring pixel-level semantic or instance annotations
to train. Instead, SAF-IS exploits the binary tool masks to



Fig. 13: Qualitative segmentation results from the EndoVis2018 dataset. Ground truth and SAF-IS Student results presented in the same order as Figure 12
above.

learn to encode each instance in a compact feature repre-
sentation, and solves the instance classification problem by
relying on cheaply obtainable binary tool presence labels.
A supplementary video highlighting crucial methodological
aspects and providing additional qualitative results is available
at https://vimeo.com/860204311. In conclusion, we
hope this work can show the potential of prior knowledge and
weakly-supervised training for tool instance segmentation,
encouraging the search for alternatives to full-supervision for
increasingly complex surgical computer vision tasks.
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