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A symmetric low-regularity integrator for the
nonlinear Schrödinger equation

Yvonne Alama Bronsard ∗

Abstract

We introduce and analyze a symmetric low-regularity scheme for the nonlinear Schrödinger (NLS)
equation beyond classical Fourier-based techniques. We show fractional convergence of the scheme in
L2-norm, from first up to second order, both on the torus Td and on a smooth bounded domain Ω ⊂ Rd,
d ≤ 3, equipped with homogeneous Dirichlet boundary condition. The new scheme allows for a symmetric
approximation to the NLS equation in a more general setting than classical splitting, exponential integra-
tors, and low-regularity schemes (i.e. under lower regularity assumptions, on more general domains, and
with fractional rates). We motivate and illustrate our findings through numerical experiments, where we
witness better structure preserving properties and an improved error-constant in low-regularity regimes.

1 Introduction

We consider the nonlinear Schrödinger (NLS) equation,

i∂tu(t, x) = −∆u(t, x) + |u(t, x)|2u(t, x), (t, x) ∈ R× Ω (1)

with Ω ⊂ Rd or Ω = Td, d ≤ 3, and an initial condition

u|t=0 = u0. (2)

When ∂Ω 6= ∅, we assume that Ω is a smooth bounded domain and we assign homogeneous boundary
conditions which will be encoded in the choice of the domain of the operator i∆. In the convergence analysis
we will consider either periodic or homogeneous Dirichlet boundary conditions. Nevertheless, one could
also consider different types of boundary conditions such as homogeneous Neumann boundary conditions by
defining the functional spaces accordingly (see Section 2).

Throughout this article we will be interested in providing a reliable approximation of (1) when the initial
data u0 are non-smooth, in the sense that they belong to Sobolev spaces of low order. Namely, we will
be interested in studying numerical schemes which approximate the time dynamics of (1) at low regularity.
The numerical study of low-regularity approximations to nonlinear evolution equations has gained lots of
attention in the past years, and numerous contributions have been made in this direction. The first results
were established on the torus for the Korteweg-De Vries (KdV) equation and then the NLS equation with
the pioneering works of [26] and [35]. These results could be further greatly extended, see for instance
[45, 34, 39, 31] and [37, 43, 30, 15] for the KdV and NLS equations respectively. More types of dispersive
equations could be dealt with, including for example the Dirac equation [41] or the “good” Boussinesq
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equation ([29]), and a general framework for constructing low-regularity approximations up to arbitrary
order and for a class of dispersive equations on the torus was obtained in [14].

The construction of these time integrators (called resonance-based schemes, exponential-type low-regularity
integrators, or Fourier integrators) strongly depended on Fourier-based expansions, and hence were restricted
to periodic boundary conditions. Recently, this restriction was withdrawn to treat more general domains
Ω ⊂ Rd and boundary conditions, as well as more general nonlinearities (see [40, 2, 3, 6, 28]).

The general aim of low-regularity integrators is that they converge under lower regularity assumptions,
contrarily to classical methods (see [3] for a comparative analysis on general smooth domains). Their major
drawback is that they do not preserve the geometric structure of the underlying system. The NLS equation
(1) is time reversible, meaning that u(−t, x) is again solution of (1), and both the density and the energy
are conserved quantities: {

‖u(t)‖L2 = ‖u0‖L2 ,
E(t) = E0,

t ∈ I, (3)

where I is the interval of existence of the solution, and where for H1-solutions we have

E(t) =
1

2

∫
|∇u|2(t, x)dx+

1

4

∫
|u|4(t, x)dx.

Hence, when designing a numerical scheme it is natural to take into account both of these conserved quan-
tities, and to retain (as much as possible) these properties also on the discrete level by introducing so-called
structure preserving schemes, see [23] for an extensive introduction on the subject. The latter has received
great interest thanks to their good long-time near-preservation of the actions of the integrable properties of
the equation, and have been successfully studied in the past for the approximation of the NLS equation (1).
Examples of such schemes are splitting schemes ([32], [20]), relaxation finite difference type schemes ([11]),
symmetric exponential integrators ([17]) or Crank-Nicolson Galerkin methods ([24]), just to name a couple
of them. For an overview of symmetric methods for NLS see [17, 20, 5]. While these classical structure pre-
serving schemes provide excellent approximations to smooth solutions in general even up to long times, they
often break down and lead to severe loss of convergence for non-smooth solutions. Low-regularity integrators
which are suited for non-smooth solutions on the other hand do not preserve the structure of the underlying
equation. The natural question which thus arises is: What about low-regularity structure preserving schemes
for solving the NLS equation (1)? Only very little is known in this direction, see the work of [33] on the KdV
equation, [44] on the cubic Klein-Gordon equation, and [7] on the isotropic Landau–Lifschitz equation. Also
worth to be mentioned is the work of [43] which introduces for the first time a first-order Fourier integrator
for the NLS equation (1) set on T which almost conserves the mass.

In this article, we introduce a symmetric low-regularity integrator for solving the NLS equation (1) which
allows for low-regularity approximation while maintaining good long-time preservation of the two conserved
properties (3) on the discrete level. We carry-out a rigorous convergence analysis in L2(Ω) on smooth
domains Ω ⊂ Rd and obtain improved error estimates at low-regularity compared to classical symmetric
methods. Our numerical findings not only show better structure preservation properties but also show a
much better error constant at low-regularity than previously proposed methods (see Figure 1).

In the finite dimensional ODE setting it is well-known that symmetric methods are of even order. In the
context of PDEs this is a much more delicate question as convergence is met only when sufficient regularity
assumptions are imposed on the solution. Thanks to the gain of symmetry, we show second order L2-
convergence of the symmetric scheme under less regularity assumptions than what is required by classical
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symmetric schemes ([32, 11, 12, 24]), while asking for slightly more regularity than asymmetric second-order
low-regularity schemes ([2]) which however do not preserve the structure of the system (see Figures 2 and
3). Optimal first order low-regularity convergence rates could be obtained. See Section 1.2 for a detailed
discussion on the subject.

The scheme we present here is based on the first-order low-regularity scheme first introduced in [35] which
is given by,

Φτ (un) := eiτ∆
(
un − iτ(un)2ϕ1(−2iτ∆)un

)
, u0 = u0, (4)

where ϕ1(z) = ez−1
z , and τ is the time step. In order to symmetrize the above scheme we introduce the

adjoint method as the map
Φ̂τ = Φ−1

−τ ,

and compute (see [23])
Φ̂τ/2 ◦ Φτ/2.

This yields the following implicit symmetric low-regularity scheme,

un+1 = ϕτ (un) = eiτ∆un − i τ
2
eiτ∆

(
(un)2ϕ1(−iτ∆)un

)
− i τ

2

(
(un+1)2ϕ1(iτ∆)un+1

)
(5)

= eiτ∆un + ψ
τ/2
E (un) + ψ

τ/2
I (un+1)

= eiτ∆un + Ψτ (un, un+1),

which satisfies the discrete analogue of the time-reversible property of (1).
We highlight the properties which the scheme (5) inherits through numerical experiments, where we cou-

ple the time-integrators with the standard Fourier pseudo-spectral method which encodes periodic boundary
conditions. The case of homogeneous Dirichlet boundary conditions remains very similar, yet for complete-
ness we also include a convergence plot in this case where we expand the solution as a sine series expansion.
First, in the case of periodic boundary conditions, we observe in Figures 1a and 1b the favorable convergence
properties of the scheme (5) for H1 and H2 data respectively. We notice that the error constant of the
symmetric scheme is much better than the asymmetric first-order low-regularity integrator (Low-reg 1), and
is also better than the asymmetric second-order low-regularity integrator (Low-reg 2). Figure 1c similarly
shows the favorable convergence behaviour when considering homogeneous Dirichlet boundary conditions.
Secondly, we study in Figures 2 and 3 the structure preserving properties of the new symmetric low-regularity
integrator (5) against previous asymmetric low-regularity integrators. We witness that the asymmetric first
and second-order low-regularity integrators (Low-reg 1, Low-reg 2) are unable to preserve the density and
energy (see (3)), whereas the symmetric integrator (5) appears to nearly-preserve both conserved properties
over long-times. We note that in the finite dimensional ODE setting a general theory for symmetric methods
applied to integrable reversible systems has been established in [23] allowing for long-time near-conservation
of first-integrals. In the infinite dimensional case the understanding of the long-time behaviour of numerical
solutions is an ongoing challenge in the field of geometric integration and few results are known, see for
example [20, 21, 22, 18]. We expect that it would be possible to prove long-time near-preservation of the
density and energy of the scheme (5) by using the results of [23], and by benefitting of an analysis using mod-
ulated Fourier expansions (see [18, 22]) or using normal form techniques ([21, 10]) to show near-conservation
of the energy. This delicate analysis is out of scope for this paper, where here we focus on the low-regularity
error estimates on the solution itself. Finally, we refer to Figure 4 for a broad indication of the relative
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computational cost of each of the three low-regularity integrators, and discuss the added cost of imple-
menting the symmetric implicit scheme (5). We observe that the asymmetric second-order low-regularity
integrator (Low-reg 2) costs in CPU-time approximately the same as the symmetric integrator (5). Whereas
when comparing with the asymmetric first-order scheme (Low-reg 1) we have that the improved convergence
properties of the scheme (5) make up for the extra cost of solving the implicit system (5) at every time step.
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Figure 1: Convergence plot for data in H1 (Figure (a)) and data in H2 (Figure (b) and (c)) of the asymmetric first and
second-order low-regularity integrators (pink, dark blue), the symmetric method (5) (red), the classical Lie splitting,
Strang splitting, and Euler Exponential method (light blue, yellow, and green). We observe order reduction of the
classical Euler Exponential and Lie and Strang splitting methods (Figure (a), H1(T)-data), and of the Strang splitting
method (Figure (b), H2(T)-data, and Figure (c), H2([0, 1])-data). Figures (a) and (b) are with periodic boundary
conditions, while Figure (c) is with homogeneous Dirichlet boundary conditions. The slopes of the continuous black
lines are one and two, respectively. We took the final time T = 1, and the number of Fourier modes K = 211.
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Figure 2: Plot (a) : We graph the L2-norm ‖u(t)‖L2(T) up until time T = 50 of three low-regularity integrators.
The asymmetric first and second-order low-regularity integrators (pink, blue), and the new symmetric low-regularity
integrator (red). We also graph the exact value ‖u0‖L2(T) (black). Plot (b): We only graph the asymmetric second-
order low-regularity integrators (blue), and the symmetric low-regularity integrator (red) together with the exact
L2-norm of the initial value (black). We fixed the number of Fourier modes K = 29, the time step τ = 0.05, and took
an initial data u0 ∈ H2.
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Figure 3: Plot (a) : We graph the relative energy E(t)/E(t0) (see (3)) up to T = 50 of the same three low-regularity
integrators as in Figures 2a and 2b. Plot (b): We only graph the relative energy of the asymmetric second order
low-regularity integrators (blue), and the symmetric low-regularity integrator (red). We again fixed the number of
Fourier modes K = 29, the time step τ = 0.05, and took an initial data u0 ∈ H2.
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Figure 4: We plot the CPU time versus the L2-error. Namely, we compare the computational cost for running the
first and second-order low-regularity scheme (pink, dark blue), with the low-regularity symmetric integrator (5) (red).
We took the same parameter values as in Figure 1.

This numerical study motivates the use of the scheme (5), which conserves better the underlying geometric
structure of the equation, exhibits a better error constant, and can be implemented at relatively low additional
cost despite its implicit nature.

Remark 1.1 (Implicit versus explicit low-regularity schemes). We make the important remark that unlike
the previous (asymmetric) low-regularity integrators [35, 14, 36, 37, 40, 2, 3] the above symmetrized scheme
(5) is an implicit one. We have witnessed that the implicit nature of the scheme does not adversely affect the
computational cost of the method (see Figure 4). Nevertheless, one could query on the necessity of the implicit
nature of the symmetric low-regularity scheme. In the case of second-order wave-type equations, instead of
considering implicit symmetrized schemes one could study explicit three-time step symmetric schemes using
Gautschi-type methods. Indeed, for the cubic Klein-Gordon equation set on T, an explicit symmetric three
time-step low-regularity integrator could be obtained by [44]. While this approach is suited to second order
equations, by combining the work of [44] together with the uniformly accurate low-regularity integrator [16]
adapted to the non-relativistic regime, an interesting open problem would be to obtain in the non-relativistic
limit an explicit symmetric three time-step low-regularity approximation to the NLS equation (1).

Having motivated the scheme (5) we now provide the underlying idea behind its construction. To provide
a better intuition to the reader we will work in the twisted variable and place ourselves on the torus Ω = T
in order to make use of Fourier-based expansions (see also [35]).

1.1 Derivation of the scheme

We switch to the twisted variable v = e−it∆u. We observe that v satisfies

i∂tv = e−it∆(|eit∆v|2eit∆v), v0 = u0.
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Equivalently, by integrating the above and mapping Duhamel’s formula in Fourier space we have

v(tn+1) = v(tn)− i
∑

k=−k1+k2+k3

eikxeitn(k2+k2
1−k

2
2−k

2
3)Iτ , (6)

where the oscillatory integral is given by

Iτ =

∫ τ

0

eiω1sh(s)ds, (7)

and h(s) = eiω2sg(s), ω1 = 2k2
1, ω2 = k2 − k2

1 − k2
2 − k2

3 = −2k1(k2 + k3) + k2k3 and

g(s) = vk1(tn + s)vk2(tn + s)vk3(tn + s).

The central question revolves around making a suitable choice of discretization of the oscillatory integral
Iτ , with the aim of minimizing the regularity assumption required by this approximation. The underlying
idea behind the construction of the previous (asymmetric) low-regularity integrators (or resonance-based
schemes) is to choose an approximation of the integral Iτ which allows for a practical implementation (by
not performing exact integration), while optimizing the local error in the sense of regularity. Namely, by
recalling that 2k2

1 corresponds to second order derivatives in Fourier space while the terms kmkj (for m 6= j)
correspond to product of first order derivatives, the idea is to separate the dominant (ω1) and lower-order
(ω2) frequencies. The lower-order and non-oscillatory part h(s) is then approximated by a Taylor series
expansion centered at s = 0,

h(s) = h(0) +O(sw2g),

and the dominant part eiω1s is integrated exactly. This yields the first-order low-regularity scheme (4) with
a local error of O(τ2∂xv). At low regularity this is more advantageous than classical techniques (such as ex-
ponential integrators [25] or splitting methods [32]) which do not embed the dominant frequency interactions
into the scheme and obtain a local error of O(τ2∂2

xv).
The key idea behind obtaining the symmetric scheme (1) is to make a different Taylored discretization of

the lower-order and non-oscillatory part h(s). Namely, we again integrate exactly and embed the dominant
part eiω1s into the numerical scheme, while this time approximating the non-dominant part in the following
symmetric fashion,

h(s) ≈ h(0)1[0,τ/2] + h(τ)1(τ/2,τ ], s ∈ [0, τ ], (8)

where 1A is the indicator function on the set A. By plugging this approximation for h into the oscillatory
integral (7) yields two terms: an explicit and an implicit one. The explicit term is given by,∫ τ/2

0

eiω1sh(0)ds = τ
eiω1τ/2 − 1

iω1τ
vnk1

(tn)vnk2
(tn)vnk3

(tn) =
τ

2
ϕ1(ik2

1τ)vnk1
(tn)vnk2

(tn)vnk3
(tn).

Using the definition of the twisted variable, equation (6), and by mapping the above back to physical space
yields the explicit nonlinear term ψ

τ/2
E (un) in the scheme (5). Similarly, one obtains the nonlinear implicit

term in (5) by using the definitions ω1 = 2k2
1, ω2 = k2 − k2

1 − k2
2 − k2

3 and noticing that

h(τ) = eik
2τ
((
e−ik

2
2τvnk2

(tn+1)
)(

e−ik
2
3τvnk3

(tn+1)
)(

e−ik
2
1τvnk1

(tn+1)
))

and∫ τ

τ/2

eiω1sh(τ)ds =eik
2τ

((
e−ik

2
2τvnk2

(tn+1)
)(

e−ik
2
3τvnk3

(tn+1)
)∫ τ/2

0

e2ik2
1(τ−s)ds

(
e−ik

2
1τvnk1

(tn+1)
))

=eik
2τ
((
e−ik

2
2τvnk2

(tn+1)
)(

e−ik
2
3τvnk3

(tn+1)
) τ

2
ϕ1(−iτk2

1)
(
e+ik2

1τvnk1
(tn+1)

))
.
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We note that a general approach to obtain the approximation (8) is to first give a symmetric approx-
imation to the non-oscillatory part g(s) by iterating Duhamel’s formula inside vk(tn + s) in a symmetric
fashion. Namely, vk(tn + s) is approximated on [0, τ2 ] by the linear term in the Duhamel formula centered
about s = 0 (yielding the approximation g(0), see (6)). While on ( τ2 , τ ], vk(tn + s) is approximated by
the linear term in the Duhamel formula centered about s = τ (yielding the approximation g(τ)). We then
proceed by approximating the lower-order oscillatory part eiω2s in a symmetric fashion. In order to obtain
higher-order symmetric low-regularity approximations, we would iterate inside g(s) both of these Duhamel
expansions (centered about s = 0 on [0, τ2 ] and about s = τ on ( τ2 , τ ]) up to higher order. The construction
of higher-order low-regularity symmetric integrators will be dealt with in future work.

Remark 1.2 (Third order local error bound). We make an important point related to the third-order local
error structure of the scheme (5). Thanks to the symmetry of the scheme (5) we can expect to have second-
order convergence under suitable regularity assumptions on the solution. From the above calculations in
Fourier one easily observes that we naturally need three additional derivatives in order to obtain a third-
order local error bound of the scheme (5). Indeed, by Taylor expanding around the midpoint one observes
that the error induced by the discretization (8) of Iτ requires the boundedness of a term of the form,∫ 0

−τ
eiω1( s+τ2 )

(
eiω2( s+τ2 ) − 1

)
dsg(0) (9)

+

∫ τ

0

eiω1( s+τ2 )
(
eiω2( s+τ2 ) − eiω2τ

)
dsg(0).

For the above to yield a third order term one needs to bound a term of order O(τ3ω1ω2v̄k1vk2vk3) which
corresponds in physical space to asking for three additional derivatives on v̄. This is to be compared with
classical (symmetric) schemes which usually have a local error of O(τ3∂4

xv) (see for example [32] for splitting
schemes), and to asymmetric resonance-based schemes which merely asks for O(τ3∂2

xv), ([14, 38]).

While we motivated this symmetric low-regularity integrator on a periodic domain, we show that it also
allows for a low-regularity approximation on general smooth domains by establishing its convergence at
low-regularity (see Section 1.2). Throughout the remainder of this article we will work on general smooth
domains Ω ⊂ Rd and make use of semi-group theory to derive our scheme and establish our convergence
result on general domains (see Section 4). This differs from the first structure preserving low-regularity
integrators [33, 7] which are restricted to periodic boundary conditions.

We now enter the main bulk of this paper, which answers the question of what can be rigorously proven
on the L2-convergence of the scheme (5) when set on a general smooth domain.

We state and prove L2-fractional convergence results, from first to second order, both on the torus Td and
on a smooth bounded domain Ω ⊂ Rd, under moderate regularity assumptions on the solution u. These are
stronger convergence results than the more typical Hσ(Td) (σ > d

2 ) -convergence analysis, which is restricted
to an analysis in smooth Sobolev spaces and to periodic boundary conditions. We state our results in the
next subsection.

1.2 Result

Theorem 1.3 (Ω = Td). Let T > 0, d ≤ 3, and u0 ∈ Hα(Td) with α ∈ [1 + d
4 , 3]. Let u ∈ C([0, T ], Hα(Td))

be the unique solution of (1). Then there exist τmin > 0 depending on T and on ‖u0‖Hα , and CT a positive
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function depending on T and sup[0,T ] ‖u(t)‖Hα , such that for every time step size τ ≤ τmin the numerical
solution un given in equation (5) has the following error bound:

‖u(nτ)− un‖L2 ≤ CT (sup
[0,T ]

‖u(t)‖Hα)τ1+γ , 0 ≤ nτ ≤ T, (10)

for α and γ ∈ [0, 1] which satisfy 
α > 1 + d

2 and 0 ≤ γ ≤ α−1
2 ,

α = 1 + d
2 and 0 ≤ γ < d

4 ,

α < 1 + d
2 and 0 ≤ γ ≤ α− 1− d

4 .

(11)

We now consider the case where Ω is a smooth bounded domain. Given that in this case the space Xs (see
Section 2) in which the solution belongs depends not only on Sobolev regularity but also on compatibility
conditions which the solution must satisfy on the boundary, we divide the statement of our results depending
on the compatibility conditions imposed on u|∂Ω, (and on the order of convergence).

Theorem 1.4 (Ω ⊂ Rd smooth bounded domain). Let Ω be a smooth bounded domain of Rd. We consider
the NLS equation (1), equipped with homogeneous Dirichlet boundary conditions. Given any T > 0, and
d ≤ 3, there exists τmin > 0 depending on T and the norm of the initial data such that we have the following:

1. Given any u0 ∈ (H1+d/4 ∩H1
0 )(Ω) we have first-order convergence of the symmetric scheme (5),

‖un − u(nτ)‖L2 ≤ CT τ,

for all τ ≤ τmin, and 0 ≤ nτ ≤ T .

2. More generally, given any u0 ∈ (Hα ∩H1
0 )(Ω) with α ∈ [1 + d

4 , 2] we have the fractional convergence
estimates (10) for α and γ which satisfies (26). In particular, we have

‖u(nτ)− un‖L2 ≤ CT


τ1+α−1

2 if 1 + d
2 < α ≤ 2,

τ1+ d
4−ε for α = 1 + d

2 ,

τα−d/4, for 1 + d
4 ≤ α < 1 + d

2 ,

for 0 ≤ nτ ≤ T , τ ≤ τmin, and for any ε > 0.

3. By allowing for more compatibility condition on the boundary we have the following second-order con-
vergence result for an initial data u0 ∈ X3 = {u ∈ H3(Ω) : u|∂Ω = 0,∆u|∂Ω = 0 in L2(∂Ω)},

‖un − u(nτ)‖L2 ≤ CT τ2,

for all τ ≤ τmin, and 0 ≤ nτ ≤ T .

We start by making a few remarks on Theorem 1.3, set on the torus Td. Let us first mention that
the symmetric low-regularity integrator (5) requires less regularity assumptions than classical symmetric
schemes (see [19, 32, 12, 24]). Indeed, for example the authors [19] require H2 solutions to obtain first order
convergence of a Lie splitting scheme for NLS, and the author [32] requires H4-solutions for second-order
convergence of a Strang splitting method, whereas we require H1+ d

4 and H3 to obtain first and resp. second
order convergence.

We compare this result to previous convergence results of explicit low-regularity integrators for the
NLS equation (1), which are not symmetric and hence do not have good structure preservation properties
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(see Figures 2, 3). To the best of our knowledge, this is the first fractional convergence results of a low-
regularity schemes to be obtained from first to second order. We compare our full first and second-order
convergence result with the work of [2], which also obtains first order convergence in L2(Td) for solutions
u(t) ∈ H1+d/4(Td). For the second order convergence in L2 of their asymmetric second-order low-regularity
integrator the author [2] asks for solutions u(t) ∈ H2+d/4, whereas the symmetric low-regularity integrator
(5) requires a bit more regularity, namely H3 solutions. Moreover, convergence of order τ1+γ in Hr-norm,
r > d/2, for u0 ∈ H2γ+r+1(Td) easily follows from the proof of Theorem 1.3. This is to be compared with
asymmetric resonance-based schemes which would typically ask for u0 ∈ Hγ+r+1(Td), r > d

2 . See [35, 38]
for a first and resp. second order analysis. We refer to Remark 1.2 which discusses the necessity of requiring
three additional derivatives on the solution to obtain second-order convergence of the scheme (5).

We finish by comparing our result with the work of [7], which introduced a symmetrized low-regularity
integrator for the Schrödinger map (SM), where they relate the SM flow to the NLS equation set on 1-d
torus T via the Hasimoto transform. The analysis of their scheme is however restricted to the 1-d torus,
and to first order convergence in smooth Sobolev spaces Hr(T), r > 1/2. The results we present here go
beyond the more typical Hr(T) error analysis (r > 1

2 ), by pushing down the error analysis to L2 for first
and up to second order convergence. Furthermore, we do not restrict ourselves to Fourier-based techniques,
and hence to periodic boundary conditions, as is testified by Theorem 1.4. Using the techniques presented
in this article, one can also obtain a symmetric low-regularity approximation to the Schrödinger map in a
more general setting than [7].

We now comment upon Theorem 1.4. To our knowledge, this is the first convergence result which goes
beyond the first-order convergence analysis of a low-regularity integrator when set on a smooth bounded
domain Ω ⊂ Rd. We refer to [40, Corollary 20] where the authors show first order convergence in L2(Ω) of
the asymmetric low-regularity scheme (4) while analogously asking for (H1+ d

4 ∩H1
0 )(Ω) solutions.

We also compare our result to the work of [24] which introduces a mass and energy conserving variant
of the Crank-Nicolson method as its time-discretization. They show first order convergence on a smooth
bounded domain Ω ⊂ Rd under -among other assumptions- ut ∈ L2(0, T ;H2(Ω)), and obtain second order
convergence under -among other assumptions- utt ∈ L2(0, T ;H2(Ω)), while assuming u ∈ C([0, T ], H2(Ω))

throughout their analysis. In contrast to the above classical results Theorem 1.4 permits less regularity
assumptions on u(t), namely less than H2-solutions for first order, and less than H4-solutions for second
order. We note that the analysis presented here works analogously when adding a potential term uV to
equation (1), as is considered in [24]. One would need to ask for the same regularity assumption (and
boundary conditions) on V as is required on u in the above theorem. This follows exactly as done in [2].
The case of a rougher potential (V ∈ L∞(Ω)) is dealt in the works of [24, 8, 9].

We also mention that for the 1-d NLS equation with Neumann boundary conditions a low-regularity
integrator has been introduced by [6], where using harmonic analysis techniques they could prove up to
almost first order convergence with H1-data.

1.3 Outline of the paper

In Section 2 we set the scene and introduce the spaces and norms, together with crucial nonlinear estimates,
which we will work with throughout the error analysis section. In Section 3 we analyze the implicit nature
of the scheme; we show that it is well-defined and establish a crucial a priori estimate on the numerical
solution. Finally, in Section 4 we prove the fractional global error estimates presented in Theorems 1.3 and
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1.4. First, in Section 4.1 the fractional local error bounds are obtained, followed by Section 4.2 where the
stability estimate is shown, and from which the convergence results then naturally follow.

2 Norms, spaces, and nonlinear estimates

The norm and space used during the error analysis will depend on the domain Ω and boundary conditions
imposed. We will treat the case where Ω = Td with periodic boundary conditions, and the case of homo-
geneous Dirichlet boundary conditions when placed on a smooth bounded domain of Rd. In the case where
Ω = Td the domain of the operator L = −∆ is D(L) = H2(Td), whereas for Dirichlet boundary conditions
we have that D(L) = (H2 ∩H1

0 )(Ω). We can define powers of L, Ls, for s ≥ 0 using the spectral resolution,
and define the space Xs(Ω) = D(Ls/2) as the domain of the operator Ls/2, where X0(Ω) = L2(Ω). We
define the norm on Xs(Ω) by the usual graph norm

‖u‖2s = ‖u‖2 + ‖Ls/2u‖2, s ≥ 0,

where ‖u‖ = ‖u‖L2 is the L2(Ω)-norm. We will be interested in characterizing the space Xs(Ω) depending
on the domain Ω at study.

2.1 The case of periodic boundary conditions

In the case of periodic boundary conditions we have that

Xs(Td) = Hs(Td) :=

u =
∑
k∈Zd

uk
eikx√
(2π)d

∈ L2(Td) : |u|2s ,
∑
k∈Zd

|k|2s|uk|2 <∞


with equivalence of norms

‖u‖2s = ‖u‖2L2(Td) + ‖(−∆)s/2u‖2L2(Td) =
∑
k∈Zd

(1 + |k|2s)|uk|2 = ‖u‖2Hs ,

where uk =
1√

(2π)d

∫
Td
ue−ikxdx.

2.2 The case of Dirichlet boundary conditions

We will be interested in characterizing the domain Xs(Ω) for s ∈ [0, 2] ∪ N (see Theorem 1.4).
In the case where s = m ∈ N we have the following characterization (see [42, Lemma 3.1])

Xm = {u ∈ Hm(Ω) : ∆ju = 0 in L2(∂Ω) for j < m/2},

with equivalence of the norms on Hm(Ω) and Xm for functions in Xm.
To treat the case where s is not an integer we first introduce the following fractional Sobolev-type spaces

known as the Sobolev-Slobodetskij, Gagliardo or Aronszajn space. Given any s > 0 of the form s = m + σ,
with m ∈ N and σ ∈ (0, 1), we define

Hs(Ω) = {u ∈ Hm(Ω) : Dαu ∈ Hσ(Ω) for any α s.t. |α| = m},

endowed with the norm

‖u‖2Hs =

m∑
|α|=0

‖Dαu‖2 +
∑
|α|=m

|Dαu|2Hσ .
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For s = m an integer the space Hs(Ω) coincides with the usual Sobolev space Hm(Ω), and for σ ∈ (0, 1) we
have

Hσ(Ω) =

{
u ∈ L2(Ω) : |u|2Hσ :=

∫
Ω

∫
Ω

|u(x)− u(y)|2

|x− y|d+2σ dxdy <∞
}
.

We note that all of the fractional Sobolev spaces which we introduce here can also be defined by using
interpolation theory. Indeed, the above space is an intermediary Banach space between L2(Ω) and H1(Ω),
and can be defined by interpolation as

Hσ(Ω) = [L2(Ω), H1(Ω)]σ,

see [13, Appendix 1] and [46]. Finally, for s ∈ (1/2, 2] we define

Hs
D(Ω) = {u ∈ Hs(Ω) : u|∂Ω = 0 in L2(∂Ω)},

it follows from the above that D(L) = H2
D(Ω). We can now express Xs in terms of Sobolev spaces for

s ∈ [0, 2]\ 1
2 (see [46, Theorem 16.12]),

Xs(Ω) =

{
Hs(Ω) if 0 ≤ s < 1

2

Hs
D(Ω) if 1

2 < s ≤ 2
,

with norm equivalence
C−1||u||Hs ≤ ‖u‖s ≤ C||u||Hs , u ∈ Xs, (12)

for some constant C > 0. In the special case where s = 1/2 we have that X1/2 = H
1/2
00 is the intermediate

space defined by

H
1/2
00 (Ω) := {u ∈ H1/2(Ω) : |u|2

H
1/2
00

:=

∫
Ω

u2(x)

dist(x, ∂Ω)
dx <∞},

with equivalence of norms on X1/2 as in (12), see [4, Prop 2.2].

2.2.1 Bilinear and nonlinear estimates

In this section we introduce bilinear estimates that are fundamental for the global error analysis, which we
now motivate. The results we present in this article go beyond the more typical Hs error analysis (s > d

2 ),
by pushing down the analysis to L2 and obtaining fractional rates of convergence, from first up to second
order. In particular, to obtain these fractional rates when γ < d/4, we need to work in the low-order Sobolev
spaces H2γ (see Section 4). In order to obtain sharp low-regularity error estimates in theses spaces we call
upon three bilinear estimates (see equations (14), (15), and (16) below) which are taylored to require the
least regularity assumptions on u when bounding the local error terms (see also Remark 2.1).

Let γ ≥ 0 and ε > 0. Throughout the error analysis we will use the following bilinear estimates, depending
on the values of γ. In the regime γ > d/4 we call upon the classical bilinear estimate

‖uv‖H2γ . ‖u‖H2γ‖v‖H2γ , for γ >
d

4
, (13)

whereas in the regime γ ∈ [0, d/4) we exploit the following three bilinear estimates,

‖uv‖ . ‖u‖
H
d
4

+γ‖v‖H d
4
−γ for 0 ≤ γ < d

4
, (14)

‖uv‖H2γ . ‖u‖
H
d
4

+γ‖v‖H d
4

+γ for 0 ≤ γ < d

4
, (15)
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and
‖uv‖H2γ . ‖u‖

H
d
2

+ε‖v‖H2γ for 0 ≤ γ ≤ d

4
, (16)

for any ε > 0. The above estimates are particular cases of [27, Theorem 8.3.1], valid either on Rd or Td.
Furthermore, for a smooth bounded domain Ω ⊂ Rd, Stein’s extension theorem ([1, p.154]) guarantees the
existence of a total extension operator, bounded both from L2(Ω) to L2(Rd) and from Hm(Ω) to Hm(Rd),
for any m ∈ N. By interpolation, this operator is bounded from Hs(Ω) to Hs(Rd) for any s ≤ m (see [1, p.
208]). The estimates (13), (14), (15) and (16) consequently hold on Ω by extending u and v to Rd, applying
the estimates on their extensions, and restricting their product to Ω.

Remark 2.1 (Bilinear estimates in low-order Sobolev spaces H2γ , γ < d/4). A natural bilinear estimate
which is essential for an analysis in the spaces H2γ , γ < d/4, is the estimate (16). This estimate is an
analogue of the estimate (13) in the smooth case where γ > d/4. These two estimates allow to start and
fall back on the same space H2γ . However, the estimate (16) requires more regularity on u than on v

(d2 + ε > 2γ, for γ < d/4), and asks for H
d
2 +ε-regularity on the solution. One can obtain more optimal

bounds which require less regularity assumptions by equally distributing the regularity on u and on v. Indeed,
by assuming that u and v have the same regularity, applying the estimate (15) requires d

4 + γ additional
derivatives, which is better than d

2 + ε for γ < d/4. While the estimate (14) is used when v requires 2γ

derivatives more than u, and balances the regularity requirement to again ask for d
4 + γ on both u and v (see

Proposition 4.2).

We now consider the nonlinearity, which we denote by

f(u, ū)(t, x) = −iu2(t, x)ū(t, x). (17)

One can easily deduce from the inequalities (13) and (16) together with the equivalence of norms on Xs the
following estimates on the nonlinearity (17)

‖f(w, w̄)‖s ≤ cs,σ‖w‖2σ‖w‖s ≤ Cs,σ(‖w‖σ)‖w‖s

‖f(v, v̄)− f(w, w̄)‖s ≤ cs,σ‖v − w‖s
∑2
k=0 ‖v‖kσ‖w‖2−kσ ≤ Cs,σ(‖v‖σ, ‖w‖σ)‖v − w‖s

, (18)

where σ = d
2 + ε, cs,σ > 0, and Cs,σ(‖u‖, ‖v‖) denotes a generic constant which depends continuously on the

bounded arguments ‖u‖ and ‖v‖. In the regime s > d
2 the above holds with σ = s.

Remark 2.2 (An analysis for very rough solutions). The main ingredient throughout the error analysis
section of this article rests upon the crucial bilinear estimates given above, and restricts the solution to
belong to the Sobolev space Hs, s > d/2. In order to consider very rough solutions u ∈ Hs, s ≤ d/2 one
needs to call upon more refined tools such as discrete Bourgain spaces when working on the torus ([37]), and
discrete Strichartz estimates when working on the full space ([36]). This delicate error-analysis is out of
scope for this paper.

Lastly, as we are interested in obtaining fractional error estimates we will call upon the following estimate
several times throughout the error analysis section. For γ ∈ [0, 1], we have,∥∥∥∥ (eit∆ − 1)

(−t∆)γ
u

∥∥∥∥ ≤ 21−γ‖u‖. (19)
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The above estimate easily follows from the usual bound

|eix − 1| ≤ 21−γ |x|γ , γ ∈ [0, 1],

and using the discrete spectral decomposition of the operator L = −∆.
We finish this section by stating the definition of a commutator-type term, which is used in order to

obtain low-regularity error estimates (see Section 4.1). For H(v1, · · · , vn), n ≥ 1, a function and L a linear
operator, we define the commutator-type term C[H,L] as

C[H,L](v1, · · · , vn) = −L(H(v1, · · · , vn)) +

n∑
j=1

∂vjH(v1, · · · , vn) · Lvj .

In our setting, H(v1, v2) = f(v1, v2) = −iv2
1v2 is the nonlinearity given in (17), L = i∆, and hence

∂v1
f(v1, v2) = −2iv1v2 and ∂v2

f(v1, v2) = −iv2
1 (20)

and
C[f, i∆](v1, v2) = −∆(v2

1v2) + 2v1v2∆v1 + v2
1∆v2 = −2(|∇v1|2v2 + 2v1∇v1 · ∇v2). (21)

3 The implicit nature of the scheme

In this section we deal with the question of solving the nonlinear equation (5) at a given time step. We also
provide an a priori bound on the numerical solution ϕτ (v) in terms of v, which is crucial for the convergence
analysis. We recall from Figure 4 that the implicit nature of the scheme does not adversely affect the
computational cost of the method.

In the following, we fix v ∈ Xσ for some σ > d/2. We note that v will play the role of the element un in
the scheme (5). We then introduce the map

z 7→ S(z) = eiτ∆v + ψ
τ/2
E (v) + ψ

τ/2
I (z),

and wish to prove that it admits a unique fixed point given by ϕτ (v).
We start by introducing some useful estimates on the map S.

Proposition 3.1. Given any σ > d/2 we have

‖S(z1)− S(z2)‖σ ≤ τM(‖z1‖σ, ‖z2‖σ)‖z1 − z2‖σ, and ‖S(eiτ∆z1)− eiτ∆z1‖σ ≤ τM̃(‖z1‖σ),

where M(‖z1‖, ‖z2‖) and M̃(‖z1‖) denote generic constants which depend continuously on their arguments
‖z1‖ and ‖z2‖.

Proof of Proposition 3.1. The proof follows directly from the definition of the map S, the scheme (5) and of
the estimate (18).

The following theorem shows that the implicit scheme (5) is well-defined, and admits an a priori bound.

Theorem 3.2. Let R > 0 and σ > d/2. There exists τR > 0 such that, for all τ ≤ τR and v ∈ Xσ with
‖v‖σ ≤ R, we have that ϕτ (v) defined in (5) is given by

ϕτ (v)
Hσ
= lim

j→+∞
Sj(eiτ∆v). (22)

Moreover, under the same conditions, we have

‖ϕτ (v)‖σ ≤ 2R. (23)
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Proof of Theorem 3.2. For notational convenience we let xj = Sj(x0), with x0 = eiτ∆v. We first show by
induction that for sufficiently small τ we have the bound

‖xj‖σ ≤ 2R, j ≥ 0. (24)

We choose τR > 0 such that τRM(2R, 2R) ≤ 1/2 and τRM̃(R) ≤ R/2, with M and M̃ from Proposition 3.1.
We assume that ‖xj‖σ ≤ 2R, ∀j ≤ J . It follows that for τ ≤ τR we have,

‖xJ+1 − x0‖σ ≤
J∑
j=1

||S(xj)− S(xj−1)||σ + ‖S(x0)− x0‖σ

≤
J∑
j=0

(
j∏

k=1

τM(‖xk‖σ, ‖xk−1‖σ)

)
‖S(x0)− x0‖σ

≤ R

2

J∑
j=0

1

2j

≤ R.

By recalling that, by assumption, ‖x0‖ = ‖v‖ ≤ R, we conclude from the above that

‖xJ+1‖σ ≤ 2R,

and hence by induction bound (24) holds.
It then follows that for all τ ≤ τR, (xj)j∈N is a Cauchy sequence. Indeed, for m > p we have

‖xm − xp‖σ ≤
m−1∑
j=p

‖S(xj)− S(xj−1)‖σ ≤
R

2

∞∑
j=p

1

2j
−→
p→∞

0.

This implies that the sequence (xj)j∈N converges in Xσ to the unique fixed-point ϕτ (v) of S, and the
characterization (22) follows. Finally, by passing to the limit in (24) we obtain the desired a priori bound
(23) on ϕτ (v), which concludes the proof.

4 Error Analysis

In this section we will prove the following proposition.

Proposition 4.1. Let T > 0, and γ ∈ [0, 1]\{d4}. Then there exists τmin > 0 such that for every time step
τ ≤ τmin the numerical solution un given in equation (5) has the following error bound:

‖u(nτ)− un‖L2 ≤ CT (sup
[0,T ]

‖u(t)‖Hα)τ1+γ , 0 ≤ nτ ≤ T, (25)

where α is given by {
α = 2γ + 1 if d4 < γ ≤ 1

α = γ + 1 + d
4 if 0 ≤ γ < d

4

, (26)

and where τmin depends on T and on ‖u0‖Hα , and CT is a positive function of its argument, depending
on T .
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Given a fixed convergence rate this proposition expresses the regularity assumptions needed in order to
obtain this rate, while on the other hand given a fixed regularity assumption on the initial data Theorems
1.3 and 1.4 express the convergence rates one can attain with the method (5). We now link these results.

Proof of Theorem 1.3 and Theorem 1.4. By writing the convergence rate γ in terms of the regularity as-
sumptions needed on the solution, it directly follows from the above proposition that the convergence rate
(10) holds for α and γ which satisfy:{

1 + d
2 < α ≤ 3, γ = α−1

2

1 + d
4 ≤ α < 1 + d

2 , γ = α− 1− d
4 .

(27)

The proof of Theorem 1.3 then follows by using the fact that if (10) holds for some α̃ ∈ [1 + d
4 , 3], γ̃ ∈ [0, 1],

then the error bound also holds for any α ≥ α̃, and γ ≤ γ̃. In particular, we recover the case α = 1 + d
2 in

Theorem 1.3 by applying the second line in (27) with (α̃, γ̃) = (1 + d
2 − ε,

d
4 − ε) to obtain convergence for

0 ≤ γ < d
4 . See Figure 5 which illustrates graphically the convergence result.

γ

α

•
d/4

•1 + d/2

•1 + d/4

•3

•
1

•
0

Figure 5: Illustration of the interplay between the regularity parameter α and the convergence rate parameter γ in
the convergence result stated in Proposition (4.1) and Theorem 1.3. We plot the regularity assumption (u(t) ∈ Hα)
needed in order to obtain convergence of order τ1+γ .

The proof of Theorem 1.4 follows in the same manner, with the added constraint of the boundary
conditions. Namely, we require u ∈ C([0, T ], Xs) and s = 2γ + 1 or γ + 1 + d/4, where the boundary
conditions are imposed in the definition of the space Xs. See Section 2 for the definition of the spaces Xs.

In order to prove Proposition 4.1 we combine local error bounds together with a stability argument to
conclude via a Lady Windermere’s fan argument. We start by showing the local error bound of order τ2+γ

with the regularity assumptions stated in Proposition 4.1.

4.1 Local error analysis

We decompose the local error term as follows,

u(tn + τ)− ϕτ
(
u(tn)

)
=

∫ τ

0

ei(τ−s)∆f
(
u(tn + s), ū(tn + s)

)
ds− ψτ/2E

(
u(tn)

)
− ψτ/2I

(
ϕτ
(
u(tn)

))
= R1(τ, tn) +R2(τ, tn) +R3(τ, tn),
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with

R1(τ, tn) =

(∫ τ/2

0

ei(τ−s)∆f
(
eis∆u(tn), e−is∆ū(tn)

)
ds− ψτ/2E

(
u(tn)

))
(28)

+

(∫ τ

τ/2

ei(τ−s)∆f
(
eis∆u(tn), e−is∆ū(tn)

)
ds− ψτ/2I

(
eiτ∆u(tn)

))
,

R2(τ, tn) = ψ
τ/2
I

(
eiτ∆u(tn)

)
− ψτ/2I

(
ϕτ
(
u(tn)

))
, (29)

and

R3(τ, tn) =

∫ τ

0

ei(τ−s)∆
(
f
(
u(tn + s), ū(tn + s)

)
− f

(
eis∆u(tn), e−is∆ū(tn)

))
ds.

We start by estimating the first error term R1(τ, tn). This term is the one which asks for the most
regularity, and hence dictates the regularity assumptions required on the solution, and thereby the initial
data. We then proceed by estimating each of the terms R2(τ, tn) and R3(τ, tn), to obtain a cancelation in
their sum thanks to the symmetry of the scheme, yielding the desired local error estimate.

Proposition 4.2. The error term R1(τ, tn) satisfies the following bound,

‖R1(τ, tn)‖ ≤

 CT

(
supt∈[0,T ] ‖u(t)‖X2γ+1

)
τ2+γ if γ > d

4

CT

(
supt∈[0,T ] ‖u(t)‖

Xγ+1+ d
4

)
τ2+γ if 0 ≤ γ < d

4

, (30)

for 0 ≤ tn ≤ T .

Proof of Proposition 4.2. We define the filtered function as

N (τ, s, ζ,∆, v) = −iei(τ−s)∆[(eis∆v)2(eis∆e−2iζ∆v̄)]

= ei(τ−s)∆f(eis∆v, ei(s−2ζ)∆v̄)
(31)

which plays a fundamental role in the derivation and analysis of our scheme on general domains. In the above
expression we duplicate the time variable into s and ζ, pulling out a factor eis∆ in front of the conjugate
term ei(s−2ζ)∆v̄. Taylor expanding in the variable s yields the right cancellation with the factor ei(τ−s)∆ to
recover, after integrating in the variable ζ, the explicit term ψ

τ/2
E (v) in the scheme (5), as is detailed below.

Similar filtering techniques are used in [40, 2, 3].
Let v = u(tn). By Taylor expanding the filtering function (31) around s = 0, we obtain that the first

term in (28) satisfies∫ τ/2

0

ei(τ−ζ)∆f(eiζ∆v, e−iζ∆v̄)dζ =

∫ τ/2

0

N (τ, ζ, ζ,∆, v)dζ (32)

=

∫ τ/2

0

N (τ, 0, ζ,∆, v)dζ +

∫ τ/2

0

∫ ζ

0

∂sN (τ, s, ζ,∆, v)dsdζ

= ψ
τ/2
E (v) +

∫ τ/2

0

∫ ζ

0

ei(τ−s)∆C[f, i∆](eis∆v, ei(s−2ζ)∆v̄)dsdζ,
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where to obtain the last line we used the definition of the ϕ1 function (see (4)) to obtain that∫ τ/2

0

e−2iζ∆dζ =
τ

2

e−iτ∆ − 1

−iτ∆
=
τ

2
ϕ1(−iτ∆)

and the definition of commutator term C[f, i∆](u, v) given in (21).
Similarly, using the filtering function (31), we can treat the second line in (28) by Taylor expanding

around s = τ . This yields

∫ τ

τ/2

ei(τ−ζ)∆f(eiζ∆v, e−iζ∆v̄)dζ =

∫ τ

τ/2

N (τ, ζ, ζ,∆, v)dζ

=

∫ τ

τ/2

N (τ, τ, ζ,∆, v)dζ −
∫ τ

τ/2

∫ τ

ζ

∂sN (τ, s, ζ,∆, v)dsdζ

= ψ
τ/2
I (eiτ∆v)−

∫ τ

τ/2

∫ τ

ζ

ei(τ−s)∆C[f, i∆](eis∆v, ei(s−2ζ)∆v̄)dsdζ,

(33)

where to go from the second line in the above to the third we used that∫ τ

τ/2

N (τ, τ, ζ,∆, v)dζ = −i(eiτ∆v)2

((∫ τ

τ/2

e−2iζ∆dζ

)
eiτ∆v̄

)

= −i(eiτ∆v)2

((∫ τ/2

0

e−2i(τ−ζ)∆dζ

)
eiτ∆v̄

)
= −i τ

2
(eiτ∆v)2ϕ1(iτ∆)(e−iτ∆v̄),

= ψ
τ/2
I (eiτ∆v).

By definition of R1(τ, tn) and by using (32) and (33) we have that

R1(τ, tn) =

∫ τ/2

0

∫ ζ

0

ei(τ−s)∆C[f, i∆](eis∆v, eis∆e−2iζ∆v̄)dsdζ

−
∫ τ

τ/2

∫ τ

ζ

ei(τ−s)∆C[f, i∆](eis∆v, eis∆e−2iζ∆v̄)dsdζ

=

∫ τ/2

0

∫ ζ

0

ei(τ−s)∆C[f, i∆](eis∆v, eis∆e−2iζ∆v̄)

− eis∆C[f, i∆](ei(τ−s)∆v, ei(τ−s)∆e−2i(τ−ζ)∆v̄)dsdζ.

(34)

Note that the local error structure lead by the commutator-type terms in the above expression requires
less regularity assumptions than what is required by classical methods, such as exponential integrators of
splitting methods (see [25, 32]). Indeed, from the explicit form (21) of the commutator term we see that this
error term requires only one additional derivative on the initial datum rather than two (see also [2, 3]).

We now show that thanks to the symmetry of the scheme, we obtain a cancelation in the second-order
error term (34) yielding (up to) a third-order remainder. For notational convenience we let w1(s) = eis∆v,

w2(s, ζ) = ei(s−2ζ)∆v̄, z1(s) = ei(τ−s)∆v, and z2(s, ζ) = ei(2ζ−τ−s)∆v̄ and we denote the integrand by

Rr(τ, s, ζ, v) = ei(τ−s)∆C[f, i∆](w1(s), w2(s, ζ))− eis∆C[f, i∆](z1(s), z2(s, ζ)). (35)

It follows from the above equations (34) and (35) that

‖R1(τ, tn)‖ ≤ τ2

4
sup

s,ζ∈[0,τ/2]

‖Rr(τ, s, ζ, v)‖.
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It remains to show that

sup
s,ζ∈[0,τ/2]

‖Rr(τ, s, ζ, v)‖ ≤

{
C(‖v‖2γ+1)τγ if γ > d/4

C(‖v‖γ+1+ d
4
)τγ if γ < d/4

. (36)

We first approximate the exponentials appearing in front of both commutator terms in (35) to obtain the
following first approximation result on Rr.

Lemma 4.3. We have

Rr(τ, s, ζ, v) = R1
r(τ, s, ζ, v) +R2

r(τ, s, ζ, v),

with
R1
r(τ, s, ζ, v) = (ei(τ−s)∆ − 1)C[f, i∆](w1(s), w2(s, ζ))− (eis∆ − 1)C[f, i∆](z1(s), z2(s, ζ))

and
R2
r(τ, s, ζ, v) = C[f, i∆](w1(s), w2(s, ζ))− C[f, i∆](z1(s), z2(s, ζ)),

which satisfy

sup
s,ζ∈[0,τ/2]

‖Rir(τ, s, ζ, τ, v)‖ ≤

{
C(‖v‖2γ+1)τγ if γ > d/4,

C(‖v‖γ+1+ d
4
)τγ if γ < d/4,

(37)

for i = 1, 2.

Proof of Lemma 4.3. We write the error term R1
r as

R1
r(s, ζ, τ, v, v̄) =(τ − s)γ

(
ei(τ−s)∆ − 1

(τ − s)γ(−∆)γ

)
(−∆)γC[f, i∆](w1(s), w2(s, ζ))

− sγ
(
eis∆ − 1

sγ(−∆)γ

)
(−∆)γC[f, i∆](z1(s), z2(s, ζ)).

(38)

Using the bound given in equation (19), and the boundedness of eit∆ on Sobolev spaces, it follows from
equation (38) that we are left to provide a bound on C[f, i∆](v, v̄) of the form

‖C[f, i∆](v, v̄)‖2γ ≤

{
C(‖v‖2γ+1) if γ > d/4

C(‖v‖γ+1+ d
4
) if γ < d/4

. (39)

From the definition of the commutator (21), and by using the equivalence of norms ‖ · ‖s and ‖ · ‖Hs on
Xs (see Section 2), it follows that for d/4 < γ ≤ 1

‖|∇v|2v̄‖2γ . ‖|∇v|2v̄‖H2γ

. ‖v‖H2γ‖∇v · ∇v‖H2γ

. ‖v‖H2γ‖v‖2H2γ+1

. C(‖v‖2γ+1),

where we used the estimate (13). Similarly, in the case 0 ≤ γ < d/4 we have

‖|∇v|2v̄‖2γ . ‖v‖Hd/2+ε‖∇v · ∇v‖H2γ

. ‖v‖Hd/2+ε‖v‖2
Hγ+1+ d

4

. C(‖v‖γ+1+ d
4
),
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where to obtain the first line we used estimate (16), to go from the first to the second line we used the
estimate (15) and concluded using the fact that d/2 + ε < γ + 1 + d

4 together with the equivalence of norms
on Xγ+1+ d

4 .
We can bound the second term in the commutator-type term (21) in the same manner to obtain the

desired bound (39). The estimate (37) on R1
r follows immediately.

We now deal with the approximation of the second error term R2
r by approximating each of the expo-

nentials appearing in the arguments of the commutator terms, namely on w1, w2, z1 and z2. Given the form
of the commutator (21) and of w1, w2, z1, z2, each term to approximate will either be of the form∥∥w∇((eiξ∆ − 1)u) · ∇z

∥∥ (40)

or ∥∥((eiξ∆ − 1)w
)
∇u · ∇z

∥∥ (41)

for ξ ∈ [0, τ ], and where we use the boundedness of eit∆ on Sobolev spaces (t ∈ R). We can approximate
(40) as follows, given any ε > 0,

∥∥w∇((eiξ∆ − 1)u) · ∇z
∥∥ . ξγ

‖w‖H2γ

∥∥∥∇(−∆)γ
(

(eiξ∆−1)
(−ξ∆)γ u

)∥∥∥ ‖∇z‖H2γ if γ > d/4

‖w‖
H
d
2

+ε

∥∥∥∇(−∆)γ
(

(eiξ∆−1)
(−ξ∆)γ u

)∥∥∥
H
d
4
−γ
‖∇z‖

H
d
4

+γ if γ < d/4

≤ ξγ
{
C(‖w‖2γ , ‖u‖2γ+1, ‖z‖2γ+1) if γ > d/4

C(‖w‖ d
2 +ε, ‖u‖γ+1+ d

4
, ‖z‖γ+1+ d

4
) if γ < d/4

,

where we used the Sobolev embedding Hσ ↪→ L∞, for σ > d
2 , and the estimate (14) to obtain the first

inequality. To obtain the second line in the above we used the equivalence of norms, thanks to the fact
that u, v, w belong to X2γ+1 or Xγ+1+d/4 respectively, as well as the estimate (19). Hence, given that
d
2 + ε < γ + 1 + d

4 , the term above satisfies the desired bound of the form (37).
Furthermore, for the expression (41) we have,

∥∥((eiξ∆ − 1)w
)
∇u · ∇z

∥∥ . ξγ


∥∥∥(−∆)γ (eiξ∆−1)

(−ξ∆)γ w
∥∥∥ ‖∇u · ∇z‖H2γ if γ > d/4

∥∥∥(−∆)γ (eiξ∆−1)
(−ξ∆)γ w

∥∥∥
H1+ d

4
−γ
‖∇u · ∇z‖H2γ if γ < d/4

. ξγ


∥∥∥(−∆)γ (eiξ∆−1)

(−ξ∆)γ w
∥∥∥ ‖∇u‖H2γ‖∇z‖H2γ if γ > d/4

∥∥∥(−∆)γ (eiξ∆−1)
(−ξ∆)γ w

∥∥∥
H1+ d

4
−γ
‖∇u‖

H
d
4

+γ‖∇z‖H d
4

+γ if γ < d/4

≤ ξγ
{
C(‖w‖2γ , ‖u‖2γ+1, ‖z‖2γ+1) if γ > d/4

C(‖w‖γ+1+ d
4
, ‖u‖γ+1+ d

4
, ‖z‖γ+1+ d

4
) if γ < d/4,

where to obtain the first line we used the Sobolev embedding Hσ ↪→ L∞, σ > d
2 , and the estimate ‖uz‖ .

‖u‖
H1+ d

4
−γ‖z‖H2γ , γ ∈ [0, 1], (see [27, Theorem 8.3.1]). In order to obtain the second line in the above we

again used the estimates (13) and (15), and to obtain the third line we used the equivalence of norms on the
spaces Xs together with the estimate (19).

By approximating each of the exponentials in the commutator terms defining R2
r and by collecting the

error terms which are either of the form (40) or (41) we recuperate the desired τγ bound in (37).
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We can conclude from Lemma 4.3 that we have the desired bound (36), and hence the bound (30) on
R1(τ, tn).

We now continue with the bound on the two remaining terms (R2 + R3)(τ, tn), which asks for less
regularity assumptions than the boundedness of R1(τ, tn), as shown below.

Proposition 4.4. For γ ∈ [0, 1], we have the following fractional bound,

‖(R2 +R3)(τ, tn)‖ ≤ C

(
sup
[0,T ]

‖u(t)‖2γ , sup
[0,T ]

‖u(t)‖σ

)
τ2+γ , (42)

given any σ > d
2 . In particular we have the bound,

‖(R2 +R3)(τ, tn)‖ ≤

CT,γ
(

supt∈[0,T ] ‖u(t)‖2γ+1

)
τ2+γ , if γ > d

4

CT,γ

(
supt∈[0,T ] ‖u(t)‖γ+1+ d

4

)
τ2+γ , if 0 ≤ γ < d

4

, (43)

for 0 ≤ tn ≤ T .

Proof of Proposition 4.4. First, we rewrite the error term R3(τ, tn) by making suitable Taylor expansions
on f . We start by expanding u(tn + ζ) locally up to second order :

u(tn + ζ) = eiζ∆u(tn) + ζfn + R̃(ζ, tn) (44)

where fn = f(u(tn), ū(tn)) and

R̃(ζ, tn) =

∫ ζ

0

ei(ζ−s)∆f(u(tn + s), ū(tn + s))ds− ζfn. (45)

Using the above expansion for u we rewrite the error term as

R3(τ, tn) =

∫ τ

0

ei(τ−ζ)∆

(
f
(
eiζ∆u(tn) + ζfn + R̃(ζ, tn), e−iζ∆ū(tn) + ζfn + R̃(ζ, tn)

)
(46)

− f
(
eiζ∆u(tn), e−iζ∆ū(tn)

))
dζ.

For notational convenience we let a1 := eiζ∆u(tn) + ζfn. By Taylor expanding f around (a1, ā1) and
(eiζ∆u(tn), e−iζ∆ū(tn)) respectively we obtain,

f
(
a1 + R̃(ζ, tn), ā1 + R̃(ζ, tn)

)
= f (a1, ā1) + E1(ζ) (47)

f (a1, ā1) = f
(
eiζ∆u(tn), e−iζ∆ū(tn)

)
+ E2(ζ)

where

E1(ζ) =

∫ 1

0

∂v1f
(
a1 + θR̃(ζ, tn), ā1 + θR̃(ζ, tn)

)
· R̃(ζ, tn) (48)

+ ∂v2
f
(
a1 + θR̃(ζ, tn), ā1 + θR̃(ζ, tn)

)
· R̃(ζ, tn)dθ

E2(ζ) = ζ

∫ 1

0

[∂v1f
(
eiζ∆u(tn) + θζfn, e−iζ∆ū(tn) + θζfn

)
· fn (49)

+ ∂v2
f
(
eiζ∆u(tn) + θζfn, e−iζ∆ū(tn) + θζfn

)
· fn]dθ,
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and ∂v1
f together with ∂v2

f are given in (20). Hence, plugging the above into equation (46) yields,

R3(τ, tn) =

∫ τ

0

ei(τ−ζ)∆E1(ζ)dζ +

∫ τ

0

ei(τ−ζ)∆E2(ζ)dζ (50)

=E1(τ, tn) + E2(τ, tn).

We first deal with the term in the decomposition above which is of highest order and hence is the simplest
to bound, namely the third order term E1(τ, tn). In view of obtaining the bound (42) on (R2 +R3)(τ, tn),
we first show that E1(τ, tn) satisfies this bound.

Lemma 4.5. We have the following fractional bound on E1(τ, tn),

‖E1(τ, tn)‖ ≤ C(sup
[0,T ]

‖u(t)‖σ, sup
[0,T ]

‖u(t)‖2γ)τ2+γ ,

for any γ ∈ [0, 1], and σ > d/2.

Proof. It follows from (48) that in order to obtain the above bound we need to show that

‖E1(ζ)‖ ≤ C(sup
[0,T ]

‖u(t)‖σ, sup
[0,T ]

‖u(t)‖2γ)ζ1+γ .

By equation (48) and by using the Sobolev embedding Hσ ↪→ L∞ we have that for all σ > d
2 ,

‖E1(ζ)‖ ≤ sup
θ∈]0,1[

(
‖∂v1f

(
a1 + θR̃(ζ, tn), ā1 + θR̃(ζ, tn)

)
‖σ

+ ‖∂v2
f
(
a1 + θR̃(ζ, tn), ā1 + θR̃(ζ, tn)

)
‖σ
)
‖R̃(ζ, tn)‖

≤ C
(

sup
t∈[0,T ]

‖u(t)‖σ, sup
(ζ,t)∈[0,τ ]×[0,T ]

‖R̃(ζ, t)‖σ
)
‖R̃(ζ, tn)‖,

(51)

where the last inequality follows by using the explicit form of the derivatives (20), the bilinear inequality
(13), the first estimate of equation (18), and the fact that eiζ∆ is an isometry on Sobolev spaces. Next, we
show that

sup
(ζ,t)∈[0,τ ]×[0,T ]

‖R̃(ζ, t)‖σ <∞, and ‖R̃(ζ, tn)‖ ≤ CT (sup
[0,T ]

‖u(t)‖σ, sup
[0,T ]

‖u(t)‖2γ)ζ1+γ . (52)

We obtain the first bound by using the first estimate of equation (18) on f with r = σ,

sup
(ζ,t)∈[0,τ ]×[0,T ]

‖R̃(ζ, t)‖σ ≤ τC( sup
t∈[0,T ]

‖u(t)‖σ) < +∞.

Next, we obtain the second fractional estimate of equation (52) by making the following decomposition,

R̃(ζ, tn) = R̃1(ζ, tn) + R̃2(ζ, tn), (53)

with

R̃1(ζ, tn) =

∫ ζ

0

(ζ − s)γ (ei(ζ−s)∆ − 1)

(−(ζ − s)∆)γ
(−∆)γf(u(tn + s), ū(tn + s))ds

and

R̃2(ζ, tn) =

∫ ζ

0

f(u(tn + s), u(tn + s))ds− ζfn.
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Using the fractional bound (19) and the nonlinear estimate (18) we have that R̃1(ζ, tn) is bounded by

‖R̃1(ζ, tn)‖ ≤ ζ1+γC( sup
t∈[0,T ]

‖u(t)‖σ, sup
t∈[0,T ]

‖u(t)‖2γ).

Next, by iterating Duhamel’s formula in the first term of R̃2(ζ, tn) we obtain the following expansion for
R̃2(ζ, tn),

R̃2(ζ, tn) = R̃2,1(ζ, tn) + R̃2,2(ζ, tn), (54)

where

R̃2,1(ζ, tn) =

∫ ζ

0

f(eis∆u(tn), e−is∆ū(tn))ds− ζfn,

R̃2,2(ζ, tn) =

∫ ζ

0

∫ 1

0

∂v1
f
(
eis∆u(tn) + θR̃r2,2(s), e−is∆ū(tn) + θR̃r2,2(ζ)

)
· R̃r2,2(s)

+ ∂v2f
(
eis∆u(tn) + θR̃r2,2(s), e−is∆ū(tn) + θR̃r2,2(s)

)
· R̃r2,2(s)dθds,

and R̃r2,2(s) =
∫ s

0
ei(s−s1)∆f(u(tn + s1), ū(tn + s1))ds1.

Using the nonlinear estimate (18), one easily obtains the bound

‖R̃2,2(ζ, tn)‖ ≤ C(sup
[0,T ]

‖u(t)‖σ)ζ2,

and hence in particular the ζ1+γ bound for γ ∈ [0, 1].
In order to deal with the first term in the decomposition (54), we Taylor expand the exponentials ap-

pearing in R̃2,1(ζ, tn) which yields,

R̃2,1(ζ, tn) =

∫ ζ

0

∫ 1

0

∂v1f
(
u(tn) + θ(eis∆ − 1)u(tn), ū(tn) + θ(e−is∆ − 1)ū(tn)

)
· R̃r2,1(s)

+ ∂v2
f
(
u(tn) + θ(eis∆ − 1)u(tn), ū(tn) + θ(e−is∆ − 1)ū(tn)

)
· R̃r2,1(s)dθds,

with R̃r2,1(s) = sγ (eis∆−1)
(−s∆)γ (−∆)γu(tn). Using the fractional estimate (19) we obtain the bound

‖R̃r2,1(s)‖ ≤ CT (sup
[0,T ]

‖u(t)‖2γ)sγ .

Therefore, by using the usual bilinear inequality (13) we achieve the desired bound on R̃2,1;

‖R̃2,1(ζ)‖ ≤ C(sup
[0,T ]

‖u(t)‖σ, sup
[0,T ]

‖u(t)‖2γ)ζ1+γ ,

which concludes the proof of Lemma 4.5.

Now that we have dealt with the third order term E1(tn, τ) in the decomposition (50) of R3(tn, τ), we
are left to consider the term E2(tn, τ), together with the term R2(tn, τ) defined at equation (29). First, we
rewrite E2(tn, τ) as a second order term with a third order remainder. The goal being that this second order
term cancels with the second order part of the term R2(tn, τ), thereby only leaving third order remainders.
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By using the definition of ∂v1
f and ∂v2

f given in (20) we have that

E2(ζ) = −iζ
∫ 1

0

[2(eiζ∆u(tn) + θζfn)(e−iζ∆ū(tn) + θζfn)fn + (eiζ∆u(tn) + θζfn)2fn]dθ.

We can separate the first order terms in the above with the higher order ones to obtain the following
decomposition for E2(ζ),

E2(ζ) = Ẽ2(ζ) + Er2(ζ),

with
Ẽ2(ζ) = −iζ

(
2(eiζ∆u(tn))(e−iζ∆ū(tn))fn + (eiζ∆u(tn))2fn

)
,

and where one can easily show using the nonlinear estimate (18) with r = σ that Er2(ζ) has the following
bound: ‖Er2(ζ)‖ ≤ CT (sup[0,T ] ‖u(t)‖σ)ζ2.

We let
Ẽ2(τ, tn) =

∫ τ

0

ei(τ−ζ)∆Ẽ2(ζ)dζ and Ẽr2 (τ, tn) =

∫ τ

0

ei(τ−ζ)∆Ẽr2(ζ)dζ,

where the error term produced has the bound ‖Ẽr2 (τ, tn)‖ ≤ C(sup[0,T ] ‖u(t)‖σ)τ3, which in particular satisfies
the τ2+γ bound for γ ∈ [0, 1].

It remains to show that the sum of the remaining terms to bound (R2 + Ẽ2)(τ, tn) also satisfy the
τ2+γ bound given in equation (42). In view of this, one last approximation step is made on the term
Ẽ2(τ, tn) before estimating its sum with the term R2(τ, tn). By Taylor expanding around ζ = τ the function
ζ 7→ ei(τ−ζ)∆(Ẽ2(ζ)/ζ) we obtain the following approximation of Ẽ2,

Ẽ2(τ, tn) = Ẽ2,1(τ, tn) + Ẽr2,1(τ, tn),

with
Ẽ2,1(τ, tn) = −i τ

2

2

(
2(eiτ∆u(tn))(e−iτ∆ū(tn))fn + (eiτ∆u(tn))2fn

)
, (55)

and where Ẽr2,1(τ) satisfies

‖Ẽr2,1(τ)‖ ≤ C(sup
[0,T ]

‖u(t)‖σ, sup
[0,T ]

‖u(t)‖2γ)τ2+γ .

The above estimate follows from the definition of Ẽ2, the estimate (19), and the expansion

eiτ∆v + (eiζ∆ − eiτ∆)v = eiτ∆v +

(
ζγ

(eiζ∆ − 1)

(−ζ∆)γ
+ τγ

(1− eiτ∆)

(−τ∆)γ

)
(−∆)γv.

The first estimate (42) of Proposition 4.4 then follows directly once the following lemma is established.

Lemma 4.6. The remaining error terms have the following bound,

‖R2(τ, tn) + Ẽ2,1(τ, tn)‖ ≤ C(sup
[0,T ]

‖u(t)‖σ, sup
[0,T ]

‖u(t)‖2γ)τ2+γ , (56)

for any σ > d/2.

Proof. We perform a very similar analysis as was done on the term R3(τ, tn) to the term R2(τ, tn) to show
that it can be decomposed as a second and third order term. We then conclude by showing that this second
order part coincides with the second order term −Ẽ2,1(τ, tn).
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First, we expand ϕτ (u(tn)) as follows,

ϕτ (u(tn)) = eiτ∆u(tn) + τfn +R1(τ, tn), (57)

where
R1(τ, tn) = Ψτ (u(tn), ϕτ (u(tn)))− τfn,

and Ψτ is the nonlinear part of the numerical scheme (5). We show the same bounds in Xσ and L2 given in
equation (52) on the error term R1(τ, tn). First, using the estimate (18) with r = σ we have that

sup
t∈[0,T ]

‖R1(τ, t)‖σ ≤ τC(sup
[0,T ]

‖u(t)‖σ, sup
[0,T ]

‖ϕτ (u(t))‖σ) ≤ C(sup
[0,T ]

‖u(t)‖σ) <∞,

where we use the bound
‖ϕτ (u(t))‖σ ≤ 2‖u(t)‖σ, (58)

which follows from equation (23). We note that in what follows we will always use the above a priori bound
(58) when bounding the term ϕτ (u(tn)), and hence will not show its explicit dependance. In order to obtain
the L2-bound on R1(τ, tn) we use the following expansion

R1(τ, tn) = −i τ
2
eiτ∆

(
(u(tn))2ϕ1(−iτ∆)u(tn)

)
− i τ

2

((
eiτ∆u(tn) + Ψτ (u(tn), ϕτ (u(tn)))

)2
ϕ1(iτ∆)

(
e−iτ∆u(tn) + Ψτ (u(tn), ϕτ (u(tn)))

))
− τfn (59)

where we used equation (5) and simply inserted into the term Ψτ (u(tn), ϕτ (u(tn))) the definition of the
scheme

ϕτ (u(tn)) = eiτ∆u(tn) + Ψτ (u(tn), ϕτ (u(tn))).

By expanding about eiτ∆u(tn) the second term in (59), and then by approximating the remaining exponen-
tials using the usual fractional estimate (19), we obtain that the first-order terms cancel leaving the following
bound on R1(τ, tn),

‖R1(τ, tn)‖ ≤τ1+γC(sup
[0,T ]

‖u(t)‖2γ , sup
[0,T ]

‖u(t)‖σ) + τC( sup
nτ≤T

‖Ψτ (u(tn), ϕτ (u(tn)))‖σ)

≤τ1+γC(sup
[0,T ]

‖u(t)‖2γ , sup
[0,T ]

‖u(t)‖σ),

where in order to obtain the second line we used the estimate

‖Ψτ (u(tn), ϕτ (u(tn)))‖ ≤ C(sup
[0,T ]

‖u(t)‖σ)τ.

We make note that in order to approximate the ϕ1 functions appearing in (59) we use the following expansion

τϕ1(iτ∆)v =

∫ τ

0

eis∆dsv = τv +

∫ τ

0

(eis∆ − 1)

(−s∆)γ
sγds(−∆)γv. (60)

We conclude from the above calculations that the error term R1(τ, tn) satisfies the Xσ and L2 bounds,

sup
t∈[0,T ]

‖R1(τ, t)‖σ <∞ and ‖R1(τ, tn)‖ ≤ C(sup
[0,T ]

‖u(t)‖σ, sup
[0,T ]

‖u(t)‖2γ)τ1+γ . (61)
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We now return to the definition (29) of R2(τ, tn) and to the expansion (57). By letting b1 = eiτ∆u(tn) +

τfn we have
ψ
τ/2
I

(
b1 +R1(τ, tn)

)
= ψ

τ/2
I (b1) + E3(τ, tn)

ψ
τ/2
I (b1) = ψ

τ/2
I (eiτ∆u(tn)) + E4(τ, tn),

(62)

where using the estimates in equation (61) and the definition of ψτ/2I it follows that

‖E3(τ, tn)‖ ≤ τ2+γC(sup
[0,T ]

‖u(t)‖σ, sup
[0,T ]

‖u(t)‖2γ).

Furthermore, it follows from equation (62) that by isolating the second order terms with the higher order
ones we have the following expansion for E4(τ, tn),

E4(τ, tn) = −i τ
2

2

(
2fn(eiτ∆u(tn))(ϕ1(iτ∆)(e−iτ∆u(tn))) (63)

+ (eiτ∆u(tn))2ϕ1(iτ∆)fn
)

+ Er4 (τ, tn),

where from a simple calculation one obtains that Er4 (τ, tn) satisfies

‖Er4 (τ, tn)‖ ≤ C(sup
[0,T ]

‖u(t)‖σ)τ3 ≤ CT τ2+γ .

By approximating the ϕ1 functions in (63) following the expansion given in equation (60), and by using
once again the fractional estimate (19) we conclude from the above equations together with definition (55)
of Ẽ2,1 that the bound (56) is met. This concludes the proof of Lemma 4.6.

The proof of the above lemma concludes the proof of the first estimate (42) on (R2 + R3)(τ, tn) of
Proposition 4.4.

The second estimate (43) of Proposition 4.4 follows directly from the first estimate (42) by noticing that
for some small ε > 0 and with σ = d/2 + ε, we have that 2γ and σ are smaller than 2γ + 1 for γ > d/4, and
are also smaller than γ + 1 + d/4 for d ≤ 3 (and γ ∈ [0, 1]).

Remark 4.7. Another way of writing the local error terms is as follows,

u(tn + τ)− ϕτ
(
u(tn)

)
= R(τ, tn) + R̃(τ, tn), (64)

with

R(τ, tn) =

∫ τ/2

0

ei(τ−s)∆
(
f
(
u(tn + s), ū(tn + s)

)
− f

(
eis∆u(tn), e−is∆ū(tn)

))
ds

+

∫ τ

τ/2

ei(τ−s)∆
(
f
(
u(tn + s), ū(tn + s))− f

(
ei(s−τ)∆u(tn+1), e−i(s−τ)∆ū(tn+1)

))
ds

and

R̃(τ, tn) =

(∫ τ/2

0

ei(τ−s)∆f
(
eis∆u(tn), e−is∆ū(tn)

)
ds− ψτ/2E

(
u(tn)

))

+

(∫ τ

τ/2

ei(τ−s)∆f
(
ei(s−τ)∆u(tn+1), e−i(s−τ)∆ū(tn+1)

)
ds− ψτ/2I

(
ϕτ
(
u(tn)

)))
.
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The above error decomposition uses the fact that on [0, τ2 ] we center the approximation at the left-end point
and on ( τ2 , τ ] at the right-end point. Hence, on each interval respectively we iterate the Duhamel expansions

u(tn + s) = eis∆u(tn) +

∫ s

0

ei(s−s1)∆f
(
u(tn + s1), ū(tn + s1)

)
ds1, s ∈ [0,

τ

2
],

u(tn + s) = ei(s−τ)∆u(tn+1)−
∫ τ

s

ei(s−s1)∆f
(
u(tn + s1), ū(tn + s1)

)
ds1, s ∈ (

τ

2
, τ ].

Using the tools in Section 4.1 one can bound the local error terms (64) in an analogous manner.

4.2 Stability

Theorem 4.8. Let R > 0, s ≥ 0. There exists τR > 0 and σ > d/2 such that for any τ ≤ τR and w, v ∈ Xσ,
such that ‖w‖σ ≤ R and ‖v‖σ ≤ R we have,

‖ϕτ (v)− ϕτ (w)‖s ≤ eτCR‖v − w‖s,

where CR denotes a generic constant depending on R (and on s).

Proof of Theorem 4.8. Using the second estimate in equation (18) we have

‖ϕτ (v)− ϕτ (w)‖s ≤ (1 + τCs(‖v‖σ, ‖w‖σ)) ‖v − w‖s + τCs(‖ϕτ (v)‖σ, ‖ϕτ (w)‖σ)‖ϕτ (v)− ϕτ (w)‖s,

with σ = d/2 + ε if s ≤ d/2 and σ = s if s > d/2. By Theorem 3.2 we have that there exists τR > 0 such
that for all τ ≤ τR we have the bounds: ‖ϕτ (v)‖σ ≤ 2R and ‖ϕτ (w)‖σ ≤ 2R. Hence, it follows from the
above that,

‖ϕτ (v)− ϕτ (w)‖s ≤
(1 + τCs(R,R))

(1− τCs(2R, 2R))
‖v − w‖s ≤ eτCR‖v − w‖s,

for some CR > 0.

It remains to combine the stability argument presented in Section 4.2 together with the local error bounds
of Section 4.1 to prove the global convergence result stated in Proposition 4.1.

Proof of Proposition 4.1. We let en = un − u(tn), with e0 = 0. First, thanks to Proposition 4.2 and 4.4
we have the local error bound in L2 required for the global convergence analysis, where the regularity
requirements on u have been optimized depending on the fractional order of convergence desired. In order
to apply the stability bound stated in Theorem 4.8 and to conclude with a Lady Windermere’s fan type
argument, one needs to show the following uniform bound on the numerical solution,

‖un‖σ ≤MT , ∀nτ ≤ T, (65)

for some σ > d/2 and MT > 0.
We let σ = d/2 + ε, for some small ε > 0. To obtain the bound (65) we show that there exists δ > 0, a

constant CRn = CT (‖un‖σ) depending on ‖un‖σ and on sup[0,T ] ‖u(t)‖σ, and some τRn > 0 also depending
on ‖un‖σ such that the following global error bound is met,

‖en+1‖σ ≤ ‖ϕτ (u(tn))− u(tn+1)‖σ + ‖ϕτ (un)− ϕτ (u(tn))‖σ ≤ CT,γτ1+δ + eτCRn ‖en‖σ (66)

for all τ ≤ τRn . One can obtain the second term in the above estimate for τ ≤ τRn , where τRn depends
on ‖un‖ and on sup[0,T ] ‖u(t)‖σ, by applying Theorem 4.8 with s = σ. Hence, it remains to obtain the
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first term in the above estimate, which corresponds to the local error bound in Xσ. Namely, by letting
R(τ, tn) = u(tn+1)− ϕτ (u(tn)) we show that there exists δ > 0 such that

‖R(τ, tn)‖σ ≤ CT,γτ1+δ, (67)

where CT,γ is a constant depending on T and on the regularity assumptions on u (which in turn depend on
γ, the fractional order of convergence required). We establish the above local error estimate (67) by using
the following interpolation bound,

||R(τ, tn)||σ ≤

 ‖R(τ, tn)‖θ‖R(τ, tn)‖1−θ2γ+1 if γ > d
4

‖R(τ, tn)‖θ̃‖R(τ, tn)‖1−θ̃
γ+1+ d

4

if 0 ≤ γ < d
4

, (68)

where (θ, θ̃) ∈ (0, 1)2 satisfies σ = (1 − θ)(2γ + 1) = (1 − θ̃)(γ + 1 + d/4). We have already established the
L2-bound on R(τ, tn) in Section 4.1, which is given by,

‖R(τ, tn)‖ ≤ τ2+γ

 CT,γ

(
supt∈[0,T ] ‖u(t)‖2γ+1

)
if γ > d

4

CT,γ

(
supt∈[0,T ] ‖u(t)‖γ+1+ d

4

)
if 0 ≤ γ < d

4

. (69)

To obtain the X2γ+1 and Xγ+1+ d
4 bound on R(τ, tn) we simply express the local error using Duhamel’s

formula and the scheme (5),

R(τ, tn) =

∫ τ

0

ei(τ−s)∆f(u(tn + s), u(tn + s))ds− i τ
2
eiτ∆

(
(u(tn))2ϕ1(−iτ∆)ū(tn)

)
− i τ

2

(
(ϕτ (u(tn)))2ϕ1(iτ∆)ϕτ (u(tn)

)
.

One can bound each of the above terms separately using the first estimate in equation (18) with r = 2γ + 1

and r = γ + 1 + d
4 together with equation (23) (with R = sup[0,T ] ‖u(t)‖σ) to obtain that there exists some

τ̃0 > 0 depending on u0 and T such that for all τ ≤ τ̃0

||R(τ, tn)||r ≤ C(sup
[0,T ]

||u(t)||σ, sup
[0,T ]

||u(t)||r)τ ≤ CT,rτ. (70)

We conclude that the bound (67) follows from equation (68) (with δ = (1 +γ)θ for γ > d/4 and δ = (1 +γ)θ̃

for γ < d/4), and where the constant CT,γ is given in equation (69) by the L2 local error bound. We then
proceed by induction on (66) to obtain that there exists a τ0 > 0 which depends on T and u0 for which the
uniform bound (65) is true for all τ ≤ τ0.

Finally, by taking s = 0, σ = d/2 + ε, and R = max{MT , sup[0,T ] ‖u(t)‖σ} in Theorem 4.8 yields the
existence of a τR which depends on T and u0 such that for all τ ≤ τR,

‖en+1‖ ≤ CT,γτ2+γ + eτCR‖en‖, nτ ≤ T,

where CT,γ is given in equation (69). The global error bound of Proposition 4.1 follows by iterating the
above estimate and taking τmin = min{τ0, τR}, which concludes the proof.
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