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Abstract 

 Multivariate data analysis and machine-learning classification become popular tools to 

extract features without physical models for complex environments recognition. For electronic 

noses, time sampling over multiple sensing elements must be a fair compromise between a period 

sufficiently long to output a meaningful information pattern, and sufficiently short to minimize 

training time for practical applications. Particularly when reactivity’s kinetic differs from 

thermodynamic in sensitive materials, finding the best compromise to get the most from data is not 

obvious. Here, we investigate on the influence of data acquisition to improve or alter data clustering 

for molecular recognition on a conducting polymer electronic nose. We found out that waiting for 

sensing elements to reach their steady state is not required for classification, and that reducing data 

acquisition down to the first dynamical information suffice to recognize molecular gases by principal 

component analysis with the same materials. Especially for online inference, this study shows that 

a good sensing array is no array of good sensors, and that new figure-of-merits shall be defined for 

sensing hardware aiming machine-learning pattern-recognition rather than metrology. 

Keywords: conducting polymer, electronic nose, feature extraction, principal component analysis, 

molecular recognition  
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Introduction 

Current advances in artificial intelligence and internet-of-things push identifying new input 

layers as data generators to feed machine-learning (ML) for information classification. Before this, 

electronic noses (eNoses) have nourished the fantasy for more than 60 years of emulating a biological 

sense to perform classification tasks that sensors can barely make with molecular patterns.[1-5] It is 

therefore very appropriate to wonder whether conventional approaches to select sensing hardware 

are adapted to information processing requirements, with pattern recognition having more standards 

nowadays. 

Chemistry is no trivial physics: it is no 1D-continuum nor spectrum, but volatile molecules 

compose a vast group of hundred billion countable objects.[6, 7] Therefore, measuring all of them 

simultaneously with restricted and well-chosen set of ultimately selective sensors is unrealistic. If such 

complexity suits better ML-supported recognition than quantification using metrological sensors, 

proposing clear sensing figure-of-merits (FoM) that guide technologists to identify the right sets of 

materials is still needed in such context.[8-11] The main difficulty in identifying those lies in the fact 

that smart sensing arrays do not involve physical models at the opposite of metrological sensors: ML 

is purely mathematically-driven, which does not help in identifying device physical features to generate 

qualitative data. Each output signal conditions individual components of an input data, but the quality 

of the output data itself relates to features that affects the performances of the classifier as a group of 

device properties. The relationship between the data transformation as a result and the physical 

properties of a chosen sensing hardware is not straightforward and largely depends on the association 

of a software classifier with a sensing hardware. For an eNose, conductometric sensing arrays are often 

used as a hardware,[12-15] in conjunction with principal component analysis (PCA)/k-means clustering 

(k-means) as a classifier [5, 16-18]. In such systems, time-dependent current signals are inputted by 

environmentally sensitive materials in an array. Each current signal composes the feature of one single 
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coordinate of a high-dimensional vector for classification. PCA is a linear classifier as it involves only 

one matrix transformation from a dataset of input vectors to a set of scores. The PCA projects data on 

a subspace defined by a basis of the covariance-matrix eigenvectors which have the highest 

eigenvalues. As a consequence, PCA aims in ignoring the contributions of “silent” sensing elements, or 

the ones which activities that are uncorrelated to one another. Conventional sensors’ FoM do not 

consider information correlation between sensing elements, as it relates strictly to physical properties 

of individual elements to be standalone: for instance selectivity, sensitivity or time response.[19] The 

latter is an important FoM that usually defines if a technology is suitable for online application. If 

information speed is essential for telecommunication, it is not necessarily the case for the velocity of 

information carriers themselves. The implementation of recurrent networks for sensing elements can 

illustrate such fact, where the group dynamic of different slow sensing elements enables recognizing 

frequency-modulated signals.[20] Homogenizing the physical properties of the population of sensing 

elements can even yield to degrade the classifier recognition performances, so when the dynamic of 

sensing devices carries information, long-enough acquisition is crucial for classification.[20] However, 

time is also a resource to enrich a database to train a system: the slower the hardware the longer the 

training, which ultimately conditions any classifier’s recognition performance. As a consequence, in 

case information lies in the dynamic of a hardware,[21] a fair compromise must be found for data 

acquisition time to optimize training with enough meaningful data but reasonable training duration 

for environmental pattern recognition. 

In the framework of recognizing volatile solvents with doped conducting polymers, we propose 

in this study to quantify how relevant is the acquisition time as metrological FoM for effective 

molecular recognition with a conductometric nose using PCA/k-means. By using both static and 

dynamic descriptors, we show that a steady sensing element response is unnecessary for optimal 

classification, and that training duration can greatly be shortened for practical inference.  
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Experimental Section 

Device Fabrication: The fabrication of sensing elements used in this study has been reported 

elsewhere.[22] Concentric spiral-shaped Au microelectrodes (channel length L = 400 nm, spiral 

electrodes length W such as W/L > 103 in a round cavity of 28 μm in diameter) were micro-fabricated 

by electron beam lithography in a cleanroom environment. Devices active area features a large W/L 

over a restricted area to maximize conductance sensitivity while minimizing total area of an array of 

them for system integration. Contact lines are passivated by a conformal CVD-processed Parylene C 

passivation layer (2 μm thickness), structured by an O2 dry-etching to expose pads and devices active 

area, so each device outputs an individual response for co-integration at small scale. The active 

materials were subsequently deposited on top of the sensing arrays by drop casting. Formulations of 

regio-regular P3HT and dopants solutions (composed of Fe(OTf)3, Bi(OTf)3, Cu(OTf)2, In(OTf)3, Al(OTf)3, 

Dy(OTf)3 and Ce(OTf)3) were done in two different steps to minimize the device electrical property 

distribution due to material heterogeneity if deposited with a single formulation. 

Electrical Characterization: As raw data, the study exploits current versus time measurements of eight 

populations of materials, composed of three different devices for each material. Each of the 24 current 

versus time trace sizes 6899 data points per current trace, sampled every second. The current 

measurements were done with an Agilent 4155 parameter analyzer in an air blow, passing through a 

5-mL vial that contains 1 mL of a volatile solvent.[22] The system was calibrated to blow at a rate of 

1 mL/s over a sensing array. The control of the vapor exposure was manually operated with pneumatic 

valves (asynchronous delays up to five seconds can be considered between the actual operation of the 

valves and the attributions of the labels on the current traces). Elementary sequences of gas exposures 

were set to three minutes for sensing elements to reach their steady-state. Each volatile solvent 

exposure is followed by a purging sequence, when the air flow passes through an empty vial, to let the 

response of the sensing arrays recover their response. 
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Data Analysis: Raw data currents were compiled and treated without filtering. Raw data curves have 

already been published,[22] and are available alongside on a public repository. Principal component 

analysis (PCA) was used as a linear classifier, by mean of the online open access tool Clustvis [23]. PCA 

data was scaled by unit variance and computed by singular value decomposition. All PCA data is 

available as supplementary information of this article. 95%-confidence ellipsoids were determined by 

k-means clustering with k=3, from random values for the initial centroids (in each case, k-means was 

run at least three times to ensure repeatability of the resulted clusters).  
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Results 

Data Collection and Feature Extraction. 

 
Figure 1. Classifier Structure for Solvent Vapor Recognition | a, Data classifier used in this study for 
unsupervised classification by using principal component analysis and k-means clustering on dynamical 
datasets generated by sensing elements composed of different materials. b-d, Pictures of the data 
acquisition hardware at different scales: photograph of seven arrays at the scale where each material 
were deposited (b), microscope picture of the active area of an array gathering 16 sensing elements 
(c), microscope picture of a single sensing element featuring a sub-micrometric conducting channel 
(d). e, Example of raw current signal output i(t) from one single sensing element coated with one 
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specific material, exposed to different sequences of solvent vapor exposures. f, Zoom-in on one time 
sequence when three different vapors affect the sensing elements conductance between purge 
sequences (zoom-in on fig.1e trace marked by a dashed square window). e-f, Blue, green and red 
sequences depict the sensing element current output when water, acetone, ethanol vapors 
respectively are blown on the sensing elements with compressed air. Grey sequences depict the 
sensing element current output when clean compressed air is blown on the sensing elements. g, 
Resistance value R(t) calculated from the raw current signal output i(t). Parameters R-R0 and dR/dt for 
calculating the information features α1(t) and α2(t) are depicted as the absolute resistance modulation 
and the slope of the resistance variation overtime, extrapolated from the values of ten resistance data 
points in each case. 
 

To interpret the physical significance of information features for the quality of a recognition, the 

machine-learning (ML) approach is preferred to the deep-learning (DL) one (see Fig.1 for the overall 

approach). DL algorithms differentiate from ML ones mostly by their complexity to allow the end-user 

not to have to identify information descriptors from raw data a priori. In our case, we chose specifically 

to compare two different features α1 and α2 that are extensively used in conductometric eNoses as 

information descriptors: the relative resistance modulation α1=R/R0-1 and the drift resistance α2=Ṙ/R, 

with R the Ohmic resistance of a conductometric sensing element measured at a given time during the 

exposure to an environment of a specific class, Ṙ its first derivative of time and R0 its value right before 

it starts to be exposed to an environment of a specific class at t0. As α1 compares two states before and 

after being exposed to a class, this information descriptor is qualified as a “thermodynamic feature” 

and relates to how much the signal’s transport is affected by the presence of a given environment 

compared to a reference, through a given material. Instead, α2 uses a first-order derivative of time to 

quantify how fast or slow the signal decays or amplifies through a given material by the presence of a 

given environment: this information descriptor is qualified as a “kinetic feature”. Each feature is 

calculated for different scenarios of crossed-coupled environments/devices parameters, with a 

population of 24 different sensitive devices (composed of eight populations of sensitive materials 

measured on three different devices), exposed at 18 occurrences to different environments (six 

alternate permutations of three different solvent vapor exposures). The experimental details are fully 

described in a first study,[22] where the PCA was used exclusively with the feature α1 calculated 

exclusively for the last ten seconds of each three-minute environment exposure. Although the steady-
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state response for these materials was relatively fast compared to other materials for comparable 

tests,[24-27] the dataset totalizes over 44 hours of time acquisition assisted by manual operations to 

expose the different materials on different devices with different environments repeatedly to train the 

system. Applying the same approach for exposing n! times the n different vapor classes for three 

minutes would yield to over a week, over a month and over seven months of total data acquisition, 

without interruption, to recognize respectively four, five and six different classes only. As reducing the 

number of materials, devices, or exposures would have consequences to degrade the recognition, it is 

straightforward to investigate on decreasing the elementary period for one single environment 

exposure to minimize the total acquisition duration. To assess on the classifier performances for a 

reduced acquisition time, a same dataset is considered, where data are pruned to ten seconds per 

acquisition sequences, after the exposure starts in order to make sure that the recognition 

performances do not depend on the acquisition itself, keeping the same number of datapoint to 

analyze in each case. Also, PCA/k-means was systematically used on all the different case scenario with 

the same normalization and initialization settings to not bias the clustering by user-dependent factors. 

The recognition after clustering uses the same rules and thresholds in each case, to assess a data 

sample as successfully, uncertainly or unsuccessfully recognized. All the individual PCA analysis are 

provided as supplementary information.  
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Steady-Resistance Modulation as a Thermodynamic Information Feature. 

 

Figure 2. Analysis of the Relative Resistance Modulation as Information Descriptor | a, Extraction of 
the R0 (as average for ten resistance values recorded between 11 and 20 seconds before vapor 
exposure, starting at t0) and R (as average for ten resistance values recorded between t and t + 
10 seconds every 10 seconds after t0), to evaluate the feature α1=(R-R0)/R0. b, PC variance for different 
PCA on α1, where R is measured at different time interval [t;t+10s] after t0 (the tricolor gradient shades 
linearly between the minimum and maximum value of the whole table). c-e, PCA scores on α1, where 
R is measured at different time interval [0s;9s] (c), [10s;19s] (d) and [170s;179s] (e) after t0 (confidence 
ellipsoids are set to 95% probability). f-g, Squared loadings of PC1 (f) and PC2 (g) for different PCA on 
α1, where R is measured at different time interval [t;t+10s] after t0 (the bicolor gradient shades linearly 
between the minimum and maximum value of the whole tables).  
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The first analysis was performed using α1 as information descriptor (see Fig.2), as in the former studies 

using the same dataset.[22, 28] The choice for this specific feature was oriented by the hypothesis that 

the presence of volatile molecules modulates the polymer electrical conductance by interacting with 

its dopant shift its thermodynamic charge-transfer equilibrium.[22] As a thermodynamic property, the 

acquisition was set to three minutes per exposure, to provide enough time for all devices to reach a 

quasi-steady state of conductance (steady output currents at a constant applied voltage). Here from 

the whole dataset, 18 different sub-datasets were generated by segmenting the data to concatenation 

of sequences of ten seconds after each exposure starts at t0 (ten datapoints per exposures, 180 

datapoints per sub-datasets – see Fig.2a). For each exposure, the feature α1 takes into account two 

values: the resistance measured between the considered time interval and a reference resistance value 

R0 measured while unexposed just before gas exposure. In each case, PCA was performed for the 

different sub-datasets, with the individual variance for each PC of each PCA for the different acquisition 

time compiled in Fig.2b. From these values, one can observe that most of the variance (>66%) is 

explained within the first two PC, except for data generated during the first ten seconds after t0. It is 

also noticed that the variance for all 24 PC does not change significantly for acquisitions occurring 30 

seconds after exposure (Fig.2b, the color shade encodes the variance values in linear scale), suggesting 

that the feature α1 is not enriched for the data separation in (PC1;PC2) if exposures last longer than 30 

seconds. As shows their scores in the (PC1;PC2) projection (Fig.2c), the PCA on α1 during the first ten 

seconds acquisition, noted PCAα1
0-9, embeds most variability from acetone exposures on PC1 compared 

to two other clusters of data for water and ethanol, which are almost entirely contained in the acetone 

confidence ellipsoid. Already for PCAα1
10-19 (Fig.2d), acetone is completely separable from the other 

two gases, and some minor overlap remains between water and ethanol confidence ellipsoids. The 

final sequence PCAα1
170-179 in Fig.2e shows an ideal clustering in the (PC1;PC2) projection, that was used 

in the former study for gas recognition.[22] The loadings of PC1 and PC2 do not significantly depend 

on the acquisition sequences, except for the first ten seconds (Fig.2f and 2g): Excluding the first ten 

seconds, deviations overtime are however noticed: for instance the contribution of Ce(OTf)3-doped 
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devices increase monotonically in the PC1α1, such as the contribution of pristine P3HT in the PC2α1. This 

suggests that materials that help better for the (PC1;PC2) data separation but expresses slower than 

others do not necessarily enhances the clustering. The former study concluded on the exclusive basis 

of the PCAα1
170-179 analysis, two and three materials were preferred for recognizing ethanol from 

acetone from water using α1 as information descriptor.[22] Fig.2f and 2g show that such conclusion is 

highly acquisition-dependent (even for the same dataset considered), and that experiments performed 

with shorter time exposures might have concluded otherwise for the material selection. As such 

dependency on the sample acquisition time greatly conditions the preferred material choice for 

classification, it appears legitimate to investigate on a dynamical feature such as α2 as better 

information descriptor for gas recognition with the same raw current data.  
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Resistance Drift as Kinetic Information Feature. 

 

Figure 3. Analysis of the Resistance Drift as Information Descriptor | a, Extraction of dR/dt (linear 
regression over nine resistance values centered on R) and R, to evaluate the feature α2=1/R*dR/dt. b, 
PC variance for different PCA on α2, where R is measured at different time interval [t;t+10s] after t0 
(the tricolor gradient shades linearly between the minimum and maximum value of the whole table). 
c-e, PCA scores on α2, where R is measured at different time interval [0s;9s] (c), [10s;19s] (d) and 
[170s;179s] (e) after t0 (confidence ellipsoids are set to 95% probability). f-g, Squared loadings of PC1 
(f) and PC2 (g) for different PCA on α2, where R is measured at different time interval [t;t+10s] after t0 
(the bicolor gradient shades linearly between the minimum and maximum value of the whole tables).  
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Drift resistance α2 in conductometric eNoses is less often used as information descriptor, although it 

is worth noticing that most conventional techniques in analytical chemistry use dynamical information 

features as information descriptors, such as chromatography (retention time of molecules on a 

substrate) or surface-plasmon resonance (absorption/desorption kinetic constants of molecules on a 

substrate). In a material, drifts can often be associated to a memory effect that alters reversibly or 

irreversibly a structural property,[29-33] rather than the transduction of an environmental information 

in a device. In case such drift is irreversible, such behavior appears as a material instability due to 

ageing and is often associated as a drawback for the lifetime. However since such reactivity on the 

material is environmentally induced per se, it is legitimate to wonder whether the information quality 

is preserved despite its effect on the information carrier itself. As an example, Kiselev et al. showed 

that such resistance drift (two-time median-resistance increase over four years) on conductometric 

nose is totally decorrelated from the ability of the classifier to recognize a class, as the strong 

correlation between all sensing elements’ resistance drift does not bias linear discriminant 

analysis.[34] Supposed that part of the useful information to recognize gases lies in the diffusion kinetic 

of the volatile molecules through the doped polymers, or the adsorption/desorption kinetic constants 

of the molecular gases on the doped materials under flow, the drift-resistance may be a relevant 

information descriptor as it takes into account the first derivative of time (Fig.3a). Replicating the same 

methodology as previously for relative resistance modulation, PCA on α2 as information descriptor has 

been performed for the 18 different sub-datasets. As for α1, the evolution of the variance for the 

individual PC depends on the acquisition time (Fig.3b), mainly at the beginning of the transient 

response (typically the first 20 seconds). A singular difference with α1 is the impoverishing in data 

variance on the first two PC with the increase of the acquisition time (from >66% for PCAα1
170-179 down 

to <28% for PCAα2
170-179). This was expected as the information becomes more sensitive to the signal’s 

noise at the reach of the steady-state, and therefore, with the increase of the acquisition time 

decreases the contribution of the molecularly-specific response compared in the overall information. 

We noticed also in Fig.3b that significantly less variance is contained in PC2α2 compared to PC2α1, and 
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more importantly that variance for PC2α2 is far less dependent on the acquisition time than PC2α1. This 

suggests that despite any quality for the recognition, α2 seems to separate data mostly because of one 

single parameter (if a linear model is considered), while α1 seems to depend from mostly two 

parameters of a linear model. On the quality of the data separation (Fig.3c-e), similar trends for the 

(PC1;PC2) diagrams are observed depending on the acquisition time: At the first ten seconds of time 

acquisition after t0, acetone data are better separated from the rest, followed by the ethanol data. 

Confidence ellipsoids seem to be always overlapping one another, however, we observed that even 

until three minutes after time t0 that the three volatile compounds are still recognizable, despite the 

residual dynamic of the sensing elements. It is also noticed that PCAα2
170-179 (Fig.3e) clusters are more 

homogeneous than the ones of PCAα1
170-179 (Fig.2e): smaller clusters within each ellipsoids can be 

distinguished in PCAα1
170-179, which are attributed to experimental biases of the six repeated exposures 

for each classes. The dependency of PCAα2 loadings with the acquisition time displays different trends 

than the one for PCAα1 loadings (Fig.3g-h). For the first 20 s, all sensing elements except the ones 

coated with pristine P3HT and Ce(OTf)3-doped P3HT seem to have a comparable contribution in the 

PC1α2 and the Ce(OTf)3-doped P3HT coated devices mostly constitute PC2α2 if t-t0 < 20 s. From 20 s 

after t0, Ce(OTf)3-doped P3HT coated devices become the most significant in the PC1α2, while PC2α2 

loadings seem highly random if t-t0 < 20 s. This closer look on the PC1α2 and PC2α2 loading highlights 

two different dynamics that successfully help in identifying the volatile compounds: before 20 seconds, 

a “fast” and a “slow” dynamics yields the array response to recognize all three classes from PC1α2 and 

PC2α2. After 20 seconds, the fast dynamic of all sensing elements have faded away, to leave a minor 

contribution on the Ce(OTf)3-doped P3HT devices exclusively.
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Steady vs Dynamical Resistance for Gas Recognition. 

 

Figure 4. Comparison of Both Descriptors | a-b, Scree plots for the PCA performed with different 
acquisition times, from the first ten seconds after t0 (“0-9” in blue) to the last ten seconds after t0 (“170-
179” in red), performed with either the relative resistance modulation - α1 (a) or the drift resistance - 
α2 (b) as information descriptor. c, Explained variance for PC1 and PC2 with PCA performed for 
different acquisition time with either α1 or α2. d-f, Overlap area of the three 95%-confidence ellipsoids 
in (PC1,PC2), for PCA performed for different acquisition time with either α1 or α2. The area were 
estimated by discretizing the different regions where the three ellipsoids are segmented in the smallest 
square of 500x500 pixels. In figure d is displayed the example for the PCA with α2 for the “0-9” time 
acquisition and the histograms of the ellipsoids relative area as a function of the acquisition time for 
α1 and for α2 are respectively displayed in figure e and figure f. g-i, Detection tests of the PCA scores, 
for PCA performed for different acquisition time with either α1 or α2. The test is considered positive, 
uncertain and negative, respectively when scores are exclusively inside, not-exclusively inside and 
outside the corresponding 95%-confidence ellipsoid. In figure g is displayed the example for the PCA 
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with α2 for the “0-9” time acquisition and the graphs of the detection rate as a function of the 
acquisition time for α1 and for α2 are respectively displayed in figure h and figure i. 
 
To qualitatively compare the total variance distributions over the different PC with either α1 or α2 as 

information descriptor, the Scree plots are displayed on two different graphs and shows the effect of 

the acquisition time after t0 for both descriptors (Fig.4a and Fig.4b). Both of them confirm the trend of 

the variance with the acquisition time, for all principal components (not PC1 and PC2 exclusively). As 

Fig.4a shows, the increase of the acquisition time after exposure at t0 tends to diminish the variance 

contained at the lowest PC in case of considering α1 as information descriptor, while it tends to increase 

the variance of the lower PC in case of considering α2 as information descriptor in Fig.4b. We observed 

that this diminishing rate is different for both descriptors as displayed in Fig.4a and Fig.4b, which might 

come from bias between the linear ad hoc model computed by the PCA and the actual physical model 

that governs the dependency of the information descriptors on the different sensing elements. The 

position of the elbows on both plots (indicated by arrows on the Scree plots in Fig.4a and Fig.4b) 

confirms that most of the useful variance for PCAα1 is contained within the first three PC, while only 

the first two for PCAα2. Particularly for the drift resistance α2, this elbow is highly acquisition 

dependent, and one may appreciate a richer model with more PC to account for shorter acquisition 

time. The variance analysis on PC1 and PC2 for both PCAα1 and PCAα2 shows an acquisition time optimal 

to contain most of the data variance in both PC1 and PC2 independently from the chosen information 

descriptor (Fig.4c). The histogram displayed in Fig.4c shows that if the acquisition time is set at the 

transient between 10 and 19 s after t0, both information features can gather at least 70% of the total 

variance in two different biparametric linear models. As both information features show opposed 

trends in the PC1+PC2 variance evolution with the acquisition time, it was expected to observe an 

acquisition-time optimum for both PCA, independently from the quality of the data clustering. To 

quantify the recognition performances of the sensing array with PCAα1 and PCAα2, the confidence 

ellipsoids determined by k-means clustering are used as a threshold to declare whether the given data 

belong to a given class of not, to define seven classes (as displayed in Fig.4d). The relative area of the 

overlap for the confidence ellipsoids has been evaluated for the different acquisition time and 
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displayed in two different histograms for each descriptor in Fig.4d-f. For α1 (Fig.4e), one can observe 

that ellipsoids do not overlap from t-t0 > 20 s, while in the case of α2 (Fig.4f), confidence ellipsoids 

always overlap one another at any time for the acquisition. However, it should be noticed that the 

overlap in each case is only moderate: with less than 20% of the total area of the ellipsoids. This 

suggests that recognition tests may be higher in case α1 is used as information descriptor, than for α2. 

To verify this, recognition tests have been performed on the same sub-datasets, using the 95%-

confidence ellipsoids as threshold for classification (Fig.4g-i). Detection is considered as “positive” if 

the actual class of the PCA score is exclusively contained within the corresponding confidence ellipsoid, 

“uncertain” if the actual class of the PCA score is not exclusively contained within the corresponding 

confidence ellipsoid, and “negative” if the actual class of the PCA score is excluded from the 

corresponding confidence ellipsoid. On the one hand for α1 (Fig.4h), one can observe that the positive 

detection rate 99.4±0.6% for acquisition time higher than 20 s after t0. On the one hand for α2 (Fig.4i), 

one can observe that the positive detection rate >80% for acquisition times higher between 20 s and 

149 s after t0. However, we noticed that using α2 as information descriptor enables substantially better 

recognition than α1 for short acquisition time below 10 s after t0: typically, 36% positive and 38% 

uncertain using α2, while 14% positive and 53% uncertain using α1. Overall, this statistical study support 

that the different materials used in the array allow recognizing volatile organic compounds because of 

the relative resistance modulation (α1), rather than the resistance drift (α2), and points out the 

thermodynamic of the current modulations rather than the kinetic involved in the process.  



Postprint (accepted for publication) 
 

18 
 

Discussion 

Although this study focuses specifically on doped conducting polymers, the approach is generic 

to any conductometric eNose and could have been addressed to different class of conducting materials 

used as transducers in an array. Despite the fact that α1 and α2 are frequently used as information 

descriptors for such application, our study proposes to investigate on which feature gather most of the 

useful information for an eNose. However, we want to highlight that for practical applications, such a 

choice may be conditioned rather by the application than the quality of the data per se. Specifically for 

the resistance modulation α1, the feature needs to routinely set a reference resistance R0, when the 

environment is considered “neutral” between each data sampling. This requires therefore to have a 

hand on the sample exposure to periodically regenerate the device from a stimuli: it is therefore 

practically more convenient to use α1 as information descriptor in cases where analytes can be exposed 

to a system in a supervised manner (to evaluate fragrance batch quality in an analytical laboratory for 

instances). Such thermodynamic feature seems practically inadequate to extract for environment 

recognition in case the system is permanently exposed without periodic regeneration. For the drift 

resistance α2, the feature does not depend on a buffered reference. However, a steady value of the 

sampling period must be set to measure the dynamic: it is therefore a more adequate feature for online 

inference for environment recognition, at the condition that the sampling period is set a posteriori 

given the dynamic of the pattern to recognize. It is therefore a more adequate feature to recognize 

stimuli that are governed by a rhythm (for instance, pollution cycles in urban environments for 

instance). Here in this study, the selection of these features α1 and α2 is not based on the practical 

convenience to compute them in a conductometric eNose application, but on the quality of the data 

they output for conducting polymers used in a recognition tests that conveniently enables computing 

both of them at will. 

In such framework, PCA confirmed that the useful information in the current response of 

conducting polymer materials, doped with different metal triflates and exposed to different volatile 
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organic compounds, lies specifically in the thermodynamic of the device resistance modulation and 

not its kinetic. The analysis of the relative resistance modulation α1 is more robust overtime when 

analyzed 20 seconds after each exposures at t0: the first two PC explains at least two third of the data 

variance and allows an optimal clustering without overlap and enables 99.4±0.6% recognition. 

Considering that all devices have the same geometry, mechanisms responsible for the modulation of 

the electrical resistivity are pointed out. As different doping effects were assessed by varying the 

nature of the dopant,[22] modulation of the doping yield, by the interaction of different volatile 

molecules as electron-donating ligands on an electrophilic Lewis acid,[35-37] is not invalidated by this 

analysis. The statistical approach does not allow discriminating between the effect on the charge 

carrier density or the charge carrier mobility for the different materials exposed to different gases. 

Despite the fact that materials’ conductivity is function of two independent physical properties (the 

charge carrier density and the charge carrier mobility), one cannot conclude that any of these 

properties are purely marking PC1α1 and PC2α1, since conductivity is the product of both and PCA scores 

are linear combinations of PC. Such investigation could be carried out using the logarithmic value of 

the resistance modulation α3=log(R/R0) as information descriptor for the PCA, in order to assess the 

individual contributions of the carrier mobility “μ” and carrier density “n” as principal components, 

since α3 = log(n0/n) + log(μ0/μ). Such validation would have to be confirmed by correlating the PCα3 

loadings with systematic study of carrier density and mobility assessment, in another study that 

couples this approach with further material characterizations.  
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Conclusion  

By statistical analysis, we evidenced that the relative resistance modulation of a doped 

conducting polymer array is a better information descriptor than the drift resistance, to recognize 

volatile organic compounds with different metal-triflate doped polythiophene sensing elements. This 

shows that the information carrier for the molecular recognition using these materials in an electronic 

nose is rather linked to the thermodynamic equilibrium that yields the doped conducting polymers’ 

conductivity with its environment, rather than kinetic limitations which would select molecular targets’ 

based on their drift diffusion through different doped polymers. Despite this result suggesting to wait 

for a complete steady state for each sensing element response, we evidenced that the thermodynamic 

properties to recognize molecular gases lies already in the transience of the material response. Despite 

materials reach a fast quasi-steady response within three minutes of environment exposures, principal 

component analysis and k-means clustering show that the recognition is already higher than 99% after 

only 20 seconds of gas exposures. This suggests that training time to recognize molecular environment 

can greatly be optimized for practical applications, even in the case conducting materials in an 

electronics nose show slow response. Applied for practical recognition with an eNose, this approach 

to find a preliminary optimum for data acquisition before test shall greatly increase information 

throughputs for using eNose for chemical quality assessments by reducing the training duration while 

preserving most of the data quality to train an eNose to recognize various volatile molecular patterns.  
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PCA scores (a), variance for the different PC (b) and their loadings (c) are organized in the different 

supporting figures by acquisition time for both information descriptors α1 and α2 such as: 
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a)  

 

c)  

  Loadings 

  PC1 PC2 

Fe(OTf)3 

#1 -0.32 0.08 

#2 -0.32 0.04 

#3 -0.23 0.15 

Cu(OTf)2 

#1 -0.05 -0.28 

#2 -0.12 -0.12 

#3 -0.22 -0.05 

Bi(OTf)3 

#1 -0.11 0.27 

#2 -0.27 -0.13 

#3 -0.28 0.24 

Al(OTf)3 

#1 -0.26 0.01 

#2 -0.30 0.06 

#3 -0.31 0.05 

In(OTf)3 

#1 -0.03 -0.02 

#2 -0.11 -0.03 

#3 -0.19 -0.08 

Dy(OTf)3 

#1 -0.20 -0.19 

#2 -0.30 -0.05 

#3 -0.14 0.28 

Ce(OTf)3 

#1 -0.12 -0.27 

#2 -0.10 -0.43 

#3 -0.10 -0.50 

no 

triflate 

#1 0.08 -0.21 

#2 0.15 0.02 

#3 -0.03 0.20 
 

b) 

 Variance 
Variance 
Variance 

PC1 32.9% 

PC2 12.0% 

PC3 7.6% 

PC4 6.1% 

PC5 5.2% 

PC6 4.7% 

PC7 4.3% 

PC8 3.9% 

PC9 3.6% 

PC10 3.3% 

PC11 2.8% 

PC12 2.4% 

PC13 1.9% 

PC14 1.8% 

PC15 1.5% 

PC16 1.3% 

PC17 1.1% 

PC18 0.9% 

PC19 0.7% 

PC20 0.6% 

PC21 0.5% 

PC22 0.4% 

PC23 0.3% 

PC24 0.2% 
 

Figure S1. PCA on α1, for R is measured at different time interval [0s;9s] | a, PCA scores with 95% 

confidence ellipsoids. b, Individual variance for the different PC. c, PCA loadings of the different sensing 

elements’ response for PC1 and PC2.  
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a)  

 

c)  

  Loadings 

  PC1 PC2 

Fe(OTf)3 

#1 -0.20 -0.16 

#2 -0.24 -0.16 

#3 -0.23 -0.14 

Cu(OTf)2 

#1 -0.19 0.19 

#2 -0.24 -0.05 

#3 -0.21 -0.11 

Bi(OTf)3 

#1 -0.18 -0.33 

#2 -0.21 0.17 

#3 -0.18 -0.27 

Al(OTf)3 

#1 -0.23 0.08 

#2 -0.25 0.09 

#3 -0.26 -0.05 

In(OTf)3 

#1 -0.22 0.11 

#2 -0.25 0.00 

#3 -0.21 -0.02 

Dy(OTf)3 

#1 -0.20 0.23 

#2 -0.24 0.15 

#3 -0.19 -0.14 

Ce(OTf)3 

#1 -0.13 0.39 

#2 -0.07 0.35 

#3 -0.17 0.35 

no 

triflate 

#1 0.13 0.31 

#2 0.23 0.16 

#3 -0.06 0.16 
 

b)  

 Variance 
Variance 
Variance 

PC1 57.0% 

PC2 15.0% 

PC3 6.1% 

PC4 4.4% 

PC5 2.9% 

PC6 2.6% 

PC7 2.0% 

PC8 1.8% 

PC9 1.6% 

PC10 1.1% 

PC11 0.9% 

PC12 0.8% 

PC13 0.7% 

PC14 0.6% 

PC15 0.5% 

PC16 0.4% 

PC17 0.4% 

PC18 0.3% 

PC19 0.2% 

PC20 0.2% 

PC21 0.2% 

PC22 0.1% 

PC23 0.1% 

PC24 0.0% 
 

Figure S2. PCA on α1, for R is measured at different time interval [10s;19s] | a, PCA scores with 95% 

confidence ellipsoids. b, Individual variance for the different PC. c, PCA loadings of the different sensing 

elements’ response for PC1 and PC2. 
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a)  

 

c)  

  Loadings 

  PC1 PC2 

Fe(OTf)3 

#1 -0.16 0.21 

#2 -0.22 0.24 

#3 -0.22 0.24 

Cu(OTf)2 

#1 -0.17 -0.22 

#2 -0.26 -0.07 

#3 -0.17 -0.19 

Bi(OTf)3 

#1 -0.14 0.32 

#2 -0.24 -0.05 

#3 -0.08 0.33 

Al(OTf)3 

#1 -0.25 -0.09 

#2 -0.27 -0.10 

#3 -0.28 0.05 

In(OTf)3 

#1 -0.23 -0.02 

#2 -0.27 0.02 

#3 -0.24 0.00 

Dy(OTf)3 

#1 -0.22 -0.23 

#2 -0.25 -0.14 

#3 -0.21 0.18 

Ce(OTf)3 

#1 -0.19 -0.30 

#2 -0.07 -0.29 

#3 -0.16 -0.29 

no 

triflate 

#1 0.11 -0.28 

#2 0.21 -0.26 

#3 0.04 -0.14 
 

b)  

 Variance 
Variance 

PC1 50.3% 

PC2 21.7% 

PC3 8.0% 

PC4 3.4% 

PC5 3.2% 

PC6 2.7% 

PC7 2.6% 

PC8 1.8% 

PC9 1.5% 

PC10 1.1% 

PC11 1.0% 

PC12 0.7% 

PC13 0.4% 

PC14 0.3% 

PC15 0.3% 

PC16 0.2% 

PC17 0.2% 

PC18 0.2% 

PC19 0.1% 

PC20 0.1% 

PC21 0.0% 

PC22 0.0% 

PC23 0.0% 

PC24 0.0% 
 

Figure S3. PCA on α1, for R is measured at different time interval [20s;29s] | a, PCA scores with 95% 

confidence ellipsoids. b, Individual variance for the different PC. c, PCA loadings of the different sensing 

elements’ response for PC1 and PC2. 
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a)  
 

 

c)  

  Loadings 

  PC1 PC2 

Fe(OTf)3 

#1 -0.12 0.25 

#2 -0.20 0.25 

#3 -0.15 0.29 

Cu(OTf)2 

#1 -0.16 -0.21 

#2 -0.26 -0.10 

#3 -0.13 -0.21 

Bi(OTf)3 

#1 -0.06 0.30 

#2 -0.26 -0.01 

#3 0.01 0.29 

Al(OTf)3 

#1 -0.27 -0.08 

#2 -0.28 -0.11 

#3 -0.29 0.04 

In(OTf)3 

#1 -0.21 -0.02 

#2 -0.28 0.06 

#3 -0.24 -0.02 

Dy(OTf)3 

#1 -0.24 -0.21 

#2 -0.26 -0.14 

#3 -0.21 0.19 

Ce(OTf)3 

#1 -0.22 -0.25 

#2 -0.03 -0.27 

#3 -0.11 -0.27 

no 

triflate 

#1 0.14 -0.28 

#2 0.20 -0.26 

#3 0.17 -0.21 
 

b)  

 Variance 
Variance 

PC1 44.1% 

PC2 28.4% 

PC3 7.5% 

PC4 4.3% 

PC5 3.3% 

PC6 2.6% 

PC7 2.2% 

PC8 1.9% 

PC9 1.7% 

PC10 0.9% 

PC11 0.8% 

PC12 0.5% 

PC13 0.5% 

PC14 0.4% 

PC15 0.3% 

PC16 0.2% 

PC17 0.1% 

PC18 0.1% 

PC19 0.1% 

PC20 0.1% 

PC21 0.1% 

PC22 0.0% 

PC23 0.0% 

PC24 0.0% 
 

Figure S4. PCA on α1, for R is measured at different time interval [30s;39s] | a, PCA scores with 95% 

confidence ellipsoids. b, Individual variance for the different PC. c, PCA loadings of the different sensing 

elements’ response for PC1 and PC2. 
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a)  

 

c)  

  Loadings 

  PC1 PC2 

Fe(OTf)3 

#1 -0.07 0.26 

#2 -0.15 0.28 

#3 -0.05 0.31 

Cu(OTf)2 

#1 -0.17 -0.21 

#2 -0.28 -0.07 

#3 -0.13 -0.21 

Bi(OTf)3 

#1 0.03 0.27 

#2 -0.26 0.08 

#3 0.10 0.25 

Al(OTf)3 

#1 -0.28 -0.04 

#2 -0.29 -0.09 

#3 -0.29 0.07 

In(OTf)3 

#1 -0.24 0.01 

#2 -0.28 0.11 

#3 -0.25 0.00 

Dy(OTf)3 

#1 -0.27 -0.16 

#2 -0.28 -0.09 

#3 -0.18 0.21 

Ce(OTf)3 

#1 -0.25 -0.19 

#2 -0.05 -0.27 

#3 -0.12 -0.25 

no 

triflate 

#1 0.12 -0.30 

#2 0.16 -0.29 

#3 0.16 -0.26 
 

b)  

 Variance 
Variance 

PC1 41.7% 

PC2 31.5% 

PC3 7.2% 

PC4 4.2% 

PC5 3.6% 

PC6 2.6% 

PC7 2.2% 

PC8 1.9% 

PC9 1.4% 

PC10 0.8% 

PC11 0.8% 

PC12 0.5% 

PC13 0.4% 

PC14 0.3% 

PC15 0.2% 

PC16 0.2% 

PC17 0.1% 

PC18 0.1% 

PC19 0.1% 

PC20 0.1% 

PC21 0.0% 

PC22 0.0% 

PC23 0.0% 

PC24 0.0% 
 

Figure S5. PCA on α1, for R is measured at different time interval [40s;49s] | a, PCA scores with 95% 

confidence ellipsoids. b, Individual variance for the different PC. c, PCA loadings of the different sensing 

elements’ response for PC1 and PC2. 
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a)  
 

 

c)  

  Loadings 

  PC1 PC2 

Fe(OTf)3 

#1 -0.03 0.26 

#2 -0.09 0.30 

#3 0.02 0.30 

Cu(OTf)2 

#1 -0.19 -0.18 

#2 -0.30 -0.01 

#3 -0.16 -0.22 

Bi(OTf)3 

#1 0.10 0.24 

#2 -0.25 0.14 

#3 0.17 0.20 

Al(OTf)3 

#1 -0.28 0.01 

#2 -0.29 -0.07 

#3 -0.28 0.10 

In(OTf)3 

#1 -0.20 0.05 

#2 -0.26 0.14 

#3 -0.25 0.03 

Dy(OTf)3 

#1 -0.29 -0.11 

#2 -0.29 -0.04 

#3 -0.15 0.24 

Ce(OTf)3 

#1 -0.27 -0.15 

#2 -0.08 -0.28 

#3 -0.14 -0.24 

no 

triflate 

#1 0.08 -0.32 

#2 0.11 -0.32 

#3 0.14 -0.29 
 

b)  

 Variance 
Variance 

PC1 41.4% 

PC2 31.9% 

PC3 6.4% 

PC4 4.5% 

PC5 3.3% 

PC6 2.5% 

PC7 2.4% 

PC8 2.1% 

PC9 1.4% 

PC10 1.0% 

PC11 0.9% 

PC12 0.6% 

PC13 0.4% 

PC14 0.4% 

PC15 0.2% 

PC16 0.2% 

PC17 0.1% 

PC18 0.1% 

PC19 0.1% 

PC20 0.0% 

PC21 0.0% 

PC22 0.0% 

PC23 0.0% 

PC24 0.0% 
 

Figure S6. PCA on α1, for R is measured at different time interval [50s;59s] | a, PCA scores with 95% 

confidence ellipsoids. b, Individual variance for the different PC. c, PCA loadings of the different sensing 

elements’ response for PC1 and PC2. 
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a)  
 

 

c)  

  Loadings 

  PC1 PC2 

Fe(OTf)3 

#1 -0.01 -0.26 

#2 0.07 -0.30 

#3 -0.05 -0.29 

Cu(OTf)2 

#1 0.20 0.15 

#2 0.29 -0.05 

#3 0.17 0.21 

Bi(OTf)3 

#1 -0.16 -0.19 

#2 0.22 -0.20 

#3 -0.21 -0.15 

Al(OTf)3 

#1 0.28 -0.04 

#2 0.29 0.07 

#3 0.28 -0.11 

In(OTf)3 

#1 0.18 -0.08 

#2 0.25 -0.17 

#3 0.25 -0.05 

Dy(OTf)3 

#1 0.30 0.06 

#2 0.29 0.01 

#3 0.13 -0.25 

Ce(OTf)3 

#1 0.28 0.13 

#2 0.10 0.27 

#3 0.16 0.24 

no 

triflate 

#1 -0.04 0.34 

#2 -0.08 0.33 

#3 -0.10 0.32 
 

b)  

 Variance 
Variance 

PC1 41.5% 

PC2 31.1% 

PC3 6.4% 

PC4 5.0% 

PC5 3.2% 

PC6 2.8% 

PC7 2.4% 

PC8 2.3% 

PC9 1.3% 

PC10 1.1% 

PC11 0.8% 

PC12 0.5% 

PC13 0.4% 

PC14 0.3% 

PC15 0.3% 

PC16 0.2% 

PC17 0.1% 

PC18 0.1% 

PC19 0.1% 

PC20 0.1% 

PC21 0.0% 

PC22 0.0% 

PC23 0.0% 

PC24 0.0% 
 

Figure S7. PCA on α1, for R is measured at different time interval [60s;69s] | a, PCA scores with 95% 

confidence ellipsoids. b, Individual variance for the different PC. c, PCA loadings of the different sensing 

elements’ response for PC1 and PC2. 
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a)  

 

c)  

  Loadings 

  PC1 PC2 

Fe(OTf)3 

#1 -0.04 -0.25 

#2 0.06 -0.30 

#3 -0.06 -0.27 

Cu(OTf)2 

#1 0.22 0.12 

#2 0.29 -0.06 

#3 0.19 0.20 

Bi(OTf)3 

#1 -0.20 -0.12 

#2 0.19 -0.23 

#3 -0.23 -0.11 

Al(OTf)3 

#1 0.28 -0.05 

#2 0.28 0.06 

#3 0.27 -0.10 

In(OTf)3 

#1 0.18 -0.06 

#2 0.23 -0.19 

#3 0.24 -0.07 

Dy(OTf)3 

#1 0.30 0.03 

#2 0.29 -0.02 

#3 0.11 -0.27 

Ce(OTf)3 

#1 0.28 0.11 

#2 0.12 0.27 

#3 0.18 0.25 

no 

triflate 

#1 -0.01 0.34 

#2 -0.04 0.34 

#3 -0.07 0.33 
 

b)  

 Variance 
Variance 

PC1 42.2% 

PC2 30.6% 

PC3 6.2% 

PC4 5.2% 

PC5 3.1% 

PC6 2.9% 

PC7 2.5% 

PC8 2.1% 

PC9 1.3% 

PC10 0.9% 

PC11 0.9% 

PC12 0.6% 

PC13 0.3% 

PC14 0.2% 

PC15 0.2% 

PC16 0.2% 

PC17 0.1% 

PC18 0.1% 

PC19 0.1% 

PC20 0.0% 

PC21 0.0% 

PC22 0.0% 

PC23 0.0% 

PC24 0.0% 
 

Figure S8. PCA on α1, for R is measured at different time interval [70s;79s] | a, PCA scores with 95% 

confidence ellipsoids. b, Individual variance for the different PC. c, PCA loadings of the different sensing 

elements’ response for PC1 and PC2. 
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a)  

 

c)  

  Loadings 

  PC1 PC2 

Fe(OTf)3 

#1 -0.07 0.24 

#2 0.04 0.31 

#3 -0.07 0.26 

Cu(OTf)2 

#1 0.23 -0.14 

#2 0.29 0.07 

#3 0.22 -0.14 

Bi(OTf)3 

#1 -0.22 0.04 

#2 0.16 0.27 

#3 -0.25 0.06 

Al(OTf)3 

#1 0.27 0.09 

#2 0.28 -0.03 

#3 0.27 0.09 

In(OTf)3 

#1 0.17 0.07 

#2 0.21 0.21 

#3 0.23 0.09 

Dy(OTf)3 

#1 0.30 0.01 

#2 0.29 0.05 

#3 0.06 0.28 

Ce(OTf)3 

#1 0.28 -0.10 

#2 0.14 -0.26 

#3 0.19 -0.25 

no 

triflate 

#1 0.03 -0.35 

#2 -0.01 -0.35 

#3 -0.04 -0.35 
 

b)  

 Variance 
Variance 

PC1 42.4% 

PC2 29.9% 

PC3 6.6% 

PC4 5.4% 

PC5 3.3% 

PC6 2.7% 

PC7 2.5% 

PC8 2.4% 

PC9 1.3% 

PC10 0.9% 

PC11 0.8% 

PC12 0.6% 

PC13 0.4% 

PC14 0.2% 

PC15 0.2% 

PC16 0.2% 

PC17 0.1% 

PC18 0.1% 

PC19 0.1% 

PC20 0.0% 

PC21 0.0% 

PC22 0.0% 

PC23 0.0% 

PC24 0.0% 
 

Figure S9. PCA on α1, for R is measured at different time interval [80s;89s] | a, PCA scores with 95% 

confidence ellipsoids. b, Individual variance for the different PC. c, PCA loadings of the different sensing 

elements’ response for PC1 and PC2. 
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a)  
 

 

c)  

  Loadings 

  PC1 PC2 

Fe(OTf)3 

#1 -0.11 0.22 

#2 0.02 0.30 

#3 -0.08 0.24 

Cu(OTf)2 

#1 0.23 -0.11 

#2 0.28 0.10 

#3 0.20 -0.16 

Bi(OTf)3 

#1 -0.22 -0.04 

#2 0.14 0.29 

#3 -0.26 0.01 

Al(OTf)3 

#1 0.26 0.11 

#2 0.28 -0.02 

#3 0.27 0.08 

In(OTf)3 

#1 0.15 0.06 

#2 0.18 0.24 

#3 0.22 0.11 

Dy(OTf)3 

#1 0.30 0.05 

#2 0.29 0.09 

#3 0.03 0.29 

Ce(OTf)3 

#1 0.29 -0.08 

#2 0.16 -0.24 

#3 0.22 -0.23 

no 

triflate 

#1 0.05 -0.35 

#2 0.04 -0.35 

#3 0.01 -0.35 
 

b)  

 Variance 
Variance 

PC1 40.7% 

PC2 30.0% 

PC3 6.9% 

PC4 5.9% 

PC5 3.7% 

PC6 3.0% 

PC7 2.8% 

PC8 2.3% 

PC9 1.1% 

PC10 0.9% 

PC11 0.7% 

PC12 0.5% 

PC13 0.4% 

PC14 0.3% 

PC15 0.2% 

PC16 0.2% 

PC17 0.1% 

PC18 0.1% 

PC19 0.1% 

PC20 0.0% 

PC21 0.0% 

PC22 0.0% 

PC23 0.0% 

PC24 0.0% 
 

Figure S10. PCA on α1, for R is measured at different time interval [90s;99s] | a, PCA scores with 95% 

confidence ellipsoids. b, Individual variance for the different PC. c, PCA loadings of the different sensing 

elements’ response for PC1 and PC2. 
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a)  

 
 

c)  

  Loadings 

  PC1 PC2 

Fe(OTf)3 

#1 -0.14 0.19 

#2 -0.01 0.29 

#3 -0.11 0.22 

Cu(OTf)2 

#1 0.24 -0.09 

#2 0.28 0.11 

#3 0.20 -0.14 

Bi(OTf)3 

#1 -0.21 -0.11 

#2 0.10 0.32 

#3 -0.26 -0.05 

Al(OTf)3 

#1 0.25 0.14 

#2 0.27 -0.02 

#3 0.27 0.09 

In(OTf)3 

#1 0.14 0.04 

#2 0.16 0.26 

#3 0.21 0.13 

Dy(OTf)3 

#1 0.30 0.09 

#2 0.27 0.14 

#3 -0.01 0.29 

Ce(OTf)3 

#1 0.30 -0.05 

#2 0.19 -0.22 

#3 0.24 -0.21 

no 

triflate 

#1 0.09 -0.34 

#2 0.09 -0.34 

#3 0.06 -0.35 
 

b)  

 Variance 
Variance 

PC1 40.0% 

PC2 29.5% 

PC3 7.8% 

PC4 6.0% 

PC5 4.1% 

PC6 3.1% 

PC7 2.7% 

PC8 2.3% 

PC9 1.1% 

PC10 0.9% 

PC11 0.7% 

PC12 0.5% 

PC13 0.4% 

PC14 0.3% 

PC15 0.2% 

PC16 0.1% 

PC17 0.1% 

PC18 0.1% 

PC19 0.1% 

PC20 0.0% 

PC21 0.0% 

PC22 0.0% 

PC23 0.0% 

PC24 0.0% 
 

Figure S11. PCA on α1, for R is measured at different time interval [100s;109s] | a, PCA scores with 

95% confidence ellipsoids. b, Individual variance for the different PC. c, PCA loadings of the different 

sensing elements’ response for PC1 and PC2. 
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a)  

 

c)  

  Loadings 

  PC1 PC2 

Fe(OTf)3 

#1 -0.15 0.16 

#2 -0.02 0.28 

#3 -0.12 0.19 

Cu(OTf)2 

#1 0.24 -0.07 

#2 0.27 0.12 

#3 0.23 -0.13 

Bi(OTf)3 

#1 -0.19 -0.16 

#2 0.07 0.33 

#3 -0.25 -0.10 

Al(OTf)3 

#1 0.24 0.15 

#2 0.27 -0.01 

#3 0.27 0.09 

In(OTf)3 

#1 0.16 -0.01 

#2 0.16 0.25 

#3 0.20 0.15 

Dy(OTf)3 

#1 0.29 0.12 

#2 0.26 0.17 

#3 -0.03 0.30 

Ce(OTf)3 

#1 0.30 -0.04 

#2 0.20 -0.21 

#3 0.25 -0.19 

no 

triflate 

#1 0.11 -0.33 

#2 0.11 -0.33 

#3 0.08 -0.35 
 

b)  

 Variance 
Variance 

PC1 40.5% 

PC2 29.0% 

PC3 8.2% 

PC4 6.0% 

PC5 3.8% 

PC6 3.0% 

PC7 2.6% 

PC8 2.1% 

PC9 1.2% 

PC10 1.0% 

PC11 0.7% 

PC12 0.5% 

PC13 0.4% 

PC14 0.3% 

PC15 0.2% 

PC16 0.1% 

PC17 0.1% 

PC18 0.1% 

PC19 0.1% 

PC20 0.0% 

PC21 0.0% 

PC22 0.0% 

PC23 0.0% 

PC24 0.0% 
 

Figure S12. PCA on α1, for R is measured at different time interval [110s;119s] | a, PCA scores with 

95% confidence ellipsoids. b, Individual variance for the different PC. c, PCA loadings of the different 

sensing elements’ response for PC1 and PC2. 
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a)  

 

c)  

  Loadings 

  PC1 PC2 

Fe(OTf)3 

#1 -0.14 0.14 

#2 -0.03 0.27 

#3 -0.13 0.16 

Cu(OTf)2 

#1 0.25 -0.06 

#2 0.25 0.14 

#3 0.24 -0.08 

Bi(OTf)3 

#1 -0.17 -0.20 

#2 0.05 0.34 

#3 -0.24 -0.14 

Al(OTf)3 

#1 0.24 0.16 

#2 0.26 -0.03 

#3 0.27 0.08 

In(OTf)3 

#1 0.15 -0.05 

#2 0.15 0.26 

#3 0.20 0.15 

Dy(OTf)3 

#1 0.29 0.14 

#2 0.25 0.20 

#3 -0.04 0.30 

Ce(OTf)3 

#1 0.31 -0.04 

#2 0.22 -0.20 

#3 0.26 -0.18 

no 

triflate 

#1 0.13 -0.33 

#2 0.13 -0.33 

#3 0.10 -0.35 
 

b)  

 Variance 
Variance 

PC1 39.7% 

PC2 28.3% 

PC3 8.6% 

PC4 6.2% 

PC5 4.3% 

PC6 3.0% 

PC7 2.8% 

PC8 1.9% 

PC9 1.4% 

PC10 1.3% 

PC11 0.7% 

PC12 0.5% 

PC13 0.4% 

PC14 0.2% 

PC15 0.2% 

PC16 0.1% 

PC17 0.1% 

PC18 0.1% 

PC19 0.1% 

PC20 0.0% 

PC21 0.0% 

PC22 0.0% 

PC23 0.0% 

PC24 0.0% 
 

Figure S13. PCA on α1, for R is measured at different time interval [120s;129s] | a, PCA scores with 

95% confidence ellipsoids. b, Individual variance for the different PC. c, PCA loadings of the different 

sensing elements’ response for PC1 and PC2. 



Postprint (accepted for publication) 
 

39 
 

a)  

 
 

c)  

  Loadings 

  PC1 PC2 

Fe(OTf)3 

#1 -0.14 0.14 

#2 -0.05 0.25 

#3 -0.14 0.15 

Cu(OTf)2 

#1 0.25 -0.03 

#2 0.25 0.13 

#3 0.25 -0.06 

Bi(OTf)3 

#1 -0.14 -0.23 

#2 0.03 0.35 

#3 -0.23 -0.17 

Al(OTf)3 

#1 0.24 0.18 

#2 0.26 -0.03 

#3 0.28 0.07 

In(OTf)3 

#1 0.16 -0.03 

#2 0.14 0.25 

#3 0.19 0.17 

Dy(OTf)3 

#1 0.28 0.16 

#2 0.24 0.22 

#3 -0.07 0.30 

Ce(OTf)3 

#1 0.30 -0.03 

#2 0.22 -0.18 

#3 0.27 -0.16 

no 

triflate 

#1 0.16 -0.31 

#2 0.16 -0.32 

#3 0.13 -0.34 
 

b)  

 Variance 
Variance 

PC1 40.5% 

PC2 27.8% 

PC3 8.9% 

PC4 6.5% 

PC5 3.9% 

PC6 3.0% 

PC7 2.6% 

PC8 1.7% 

PC9 1.5% 

PC10 1.1% 

PC11 0.7% 

PC12 0.5% 

PC13 0.3% 

PC14 0.2% 

PC15 0.2% 

PC16 0.1% 

PC17 0.1% 

PC18 0.1% 

PC19 0.1% 

PC20 0.0% 

PC21 0.0% 

PC22 0.0% 

PC23 0.0% 

PC24 0.0% 
 

Figure S14. PCA on α1, for R is measured at different time interval [130s;139s] | a, PCA scores with 

95% confidence ellipsoids. b, Individual variance for the different PC. c, PCA loadings of the different 

sensing elements’ response for PC1 and PC2. 
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a)  

 

c)  

  Loadings 

  PC1 PC2 

Fe(OTf)3 

#1 -0.15 0.11 

#2 -0.07 0.22 

#3 -0.16 0.11 

Cu(OTf)2 

#1 0.25 -0.01 

#2 0.23 0.16 

#3 0.25 -0.04 

Bi(OTf)3 

#1 -0.11 -0.26 

#2 -0.01 0.36 

#3 -0.20 -0.22 

Al(OTf)3 

#1 0.23 0.19 

#2 0.25 -0.01 

#3 0.27 0.08 

In(OTf)3 

#1 0.18 -0.07 

#2 0.12 0.26 

#3 0.18 0.18 

Dy(OTf)3 

#1 0.26 0.21 

#2 0.22 0.26 

#3 -0.11 0.28 

Ce(OTf)3 

#1 0.30 0.00 

#2 0.23 -0.15 

#3 0.28 -0.12 

no 

triflate 

#1 0.19 -0.29 

#2 0.19 -0.30 

#3 0.17 -0.32 
 

b)  

 Variance 
Variance 

PC1 40.2% 

PC2 27.1% 

PC3 8.9% 

PC4 6.6% 

PC5 4.1% 

PC6 3.3% 

PC7 2.6% 

PC8 2.1% 

PC9 1.7% 

PC10 1.1% 

PC11 0.7% 

PC12 0.4% 

PC13 0.4% 

PC14 0.3% 

PC15 0.2% 

PC16 0.1% 

PC17 0.1% 

PC18 0.1% 

PC19 0.1% 

PC20 0.0% 

PC21 0.0% 

PC22 0.0% 

PC23 0.0% 

PC24 0.0% 
 

Figure S15. PCA on α1, for R is measured at different time interval [140s;149s] | a, PCA scores with 

95% confidence ellipsoids. b, Individual variance for the different PC. c, PCA loadings of the different 

sensing elements’ response for PC1 and PC2. 
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a)  

 

c)  

  Loadings 

  PC1 PC2 

Fe(OTf)3 

#1 -0.14 0.10 

#2 -0.09 0.19 

#3 -0.16 0.09 

Cu(OTf)2 

#1 0.25 -0.01 

#2 0.24 0.15 

#3 0.24 -0.08 

Bi(OTf)3 

#1 -0.09 -0.28 

#2 -0.03 0.35 

#3 -0.18 -0.25 

Al(OTf)3 

#1 0.22 0.19 

#2 0.25 -0.02 

#3 0.28 0.08 

In(OTf)3 

#1 0.18 -0.04 

#2 0.11 0.28 

#3 0.18 0.20 

Dy(OTf)3 

#1 0.25 0.22 

#2 0.20 0.28 

#3 -0.10 0.27 

Ce(OTf)3 

#1 0.31 0.00 

#2 0.24 -0.14 

#3 0.29 -0.11 

no 

triflate 

#1 0.21 -0.28 

#2 0.20 -0.28 

#3 0.19 -0.31 
 

b)  

 Variance 
Variance 

PC1 39.9% 

PC2 27.0% 

PC3 8.8% 

PC4 6.4% 

PC5 4.4% 

PC6 3.4% 

PC7 2.9% 

PC8 2.1% 

PC9 1.8% 

PC10 1.2% 

PC11 0.7% 

PC12 0.4% 

PC13 0.4% 

PC14 0.3% 

PC15 0.2% 

PC16 0.1% 

PC17 0.1% 

PC18 0.1% 

PC19 0.0% 

PC20 0.0% 

PC21 0.0% 

PC22 0.0% 

PC23 0.0% 

PC24 0.0% 
 

Figure S16. PCA on α1, for R is measured at different time interval [150s;159s] | a, PCA scores with 

95% confidence ellipsoids. b, Individual variance for the different PC. c, PCA loadings of the different 

sensing elements’ response for PC1 and PC2. 
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a)  

 

c)  

  Loadings 

  PC1 PC2 

Fe(OTf)3 

#1 -0.14 0.07 

#2 -0.09 0.18 

#3 -0.17 0.07 

Cu(OTf)2 

#1 0.25 -0.01 

#2 0.23 0.17 

#3 0.24 -0.09 

Bi(OTf)3 

#1 -0.07 -0.29 

#2 -0.03 0.36 

#3 -0.17 -0.27 

Al(OTf)3 

#1 0.22 0.18 

#2 0.24 -0.02 

#3 0.28 0.10 

In(OTf)3 

#1 0.17 -0.03 

#2 0.12 0.27 

#3 0.18 0.20 

Dy(OTf)3 

#1 0.25 0.23 

#2 0.20 0.28 

#3 -0.12 0.26 

Ce(OTf)3 

#1 0.31 -0.01 

#2 0.24 -0.13 

#3 0.29 -0.11 

no 

triflate 

#1 0.21 -0.28 

#2 0.21 -0.28 

#3 0.19 -0.31 
 

b)  

 Variance 
Variance 

PC1 39.9% 

PC2 26.8% 

PC3 8.9% 

PC4 6.3% 

PC5 4.3% 

PC6 3.4% 

PC7 2.9% 

PC8 2.0% 

PC9 1.7% 

PC10 1.4% 

PC11 0.7% 

PC12 0.5% 

PC13 0.4% 

PC14 0.3% 

PC15 0.2% 

PC16 0.1% 

PC17 0.1% 

PC18 0.1% 

PC19 0.0% 

PC20 0.0% 

PC21 0.0% 

PC22 0.0% 

PC23 0.0% 

PC24 0.0% 
 

Figure S17. PCA on α1, for R is measured at different time interval [160s;169s] | a, PCA scores with 

95% confidence ellipsoids. b, Individual variance for the different PC. c, PCA loadings of the different 

sensing elements’ response for PC1 and PC2. 
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a)  

 

c)  

  Loadings 

  PC1 PC2 

Fe(OTf)3 

#1 -0.13 0.04 

#2 -0.09 0.16 

#3 -0.16 0.05 

Cu(OTf)2 

#1 0.25 0.00 

#2 0.22 0.21 

#3 0.24 -0.10 

Bi(OTf)3 

#1 -0.05 -0.30 

#2 -0.05 0.35 

#3 -0.15 -0.28 

Al(OTf)3 

#1 0.21 0.20 

#2 0.24 -0.03 

#3 0.28 0.10 

In(OTf)3 

#1 0.18 -0.06 

#2 0.11 0.26 

#3 0.18 0.21 

Dy(OTf)3 

#1 0.24 0.25 

#2 0.19 0.30 

#3 -0.11 0.26 

Ce(OTf)3 

#1 0.31 0.00 

#2 0.25 -0.12 

#3 0.29 -0.10 

no 

triflate 

#1 0.23 -0.25 

#2 0.23 -0.26 

#3 0.21 -0.29 
 

b)  

 Variance 
Variance 

PC1 39.7% 

PC2 26.7% 

PC3 9.2% 

PC4 6.5% 

PC5 4.5% 

PC6 3.2% 

PC7 2.9% 

PC8 1.9% 

PC9 1.7% 

PC10 1.3% 

PC11 0.7% 

PC12 0.4% 

PC13 0.3% 

PC14 0.2% 

PC15 0.1% 

PC16 0.1% 

PC17 0.1% 

PC18 0.1% 

PC19 0.0% 

PC20 0.0% 

PC21 0.0% 

PC22 0.0% 

PC23 0.0% 

PC24 0.0% 
 

Figure S18. PCA on α1, for R is measured at different time interval [170s;179s] | a, PCA scores with 

95% confidence ellipsoids. b, Individual variance for the different PC. c, PCA loadings of the different 

sensing elements’ response for PC1 and PC2. 
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a)  

 

c)  

  Loadings 

  PC1 PC2 

Fe(OTf)3 

#1 0.24 0.10 

#2 0.27 0.07 

#3 0.25 0.03 

Cu(OTf)2 

#1 0.19 -0.13 

#2 0.24 0.08 

#3 0.23 0.21 

Bi(OTf)3 

#1 0.18 0.36 

#2 0.25 -0.19 

#3 0.23 0.22 

Al(OTf)3 

#1 0.25 -0.08 

#2 0.18 -0.03 

#3 0.26 0.06 

In(OTf)3 

#1 0.21 -0.09 

#2 0.21 0.09 

#3 0.21 0.01 

Dy(OTf)3 

#1 0.18 -0.19 

#2 0.23 -0.13 

#3 0.18 0.14 

Ce(OTf)3 

#1 0.09 -0.44 

#2 0.07 -0.43 

#3 0.20 -0.35 

no 

triflate 

#1 -0.12 -0.27 

#2 -0.20 -0.01 

#3 0.07 -0.15 
 

b)  

 Variance 
Variance 

PC1 48.6% 

PC2 11.2% 

PC3 6.8% 

PC4 6.3% 

PC5 4.3% 

PC6 4.1% 

PC7 3.6% 

PC8 2.9% 

PC9 2.4% 

PC10 1.8% 

PC11 1.5% 

PC12 1.3% 

PC13 0.9% 

PC14 0.9% 

PC15 0.7% 

PC16 0.7% 

PC17 0.6% 

PC18 0.3% 

PC19 0.3% 

PC20 0.2% 

PC21 0.2% 

PC22 0.1% 

PC23 0.1% 

PC24 0.1% 
 

Figure S19. PCA on α2, for R is measured at different time interval [1s;9s] | a, PCA scores with 95% 

confidence ellipsoids. b, Individual variance for the different PC. c, PCA loadings of the different sensing 

elements’ response for PC1 and PC2. 
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a)  

 

c)  

  Loadings 

  PC1 PC2 

Fe(OTf)3 

#1 0.20 0.15 

#2 0.24 0.14 

#3 0.23 0.14 

Cu(OTf)2 

#1 0.20 -0.18 

#2 0.24 0.02 

#3 0.21 0.12 

Bi(OTf)3 

#1 0.18 0.35 

#2 0.21 -0.15 

#3 0.18 0.30 

Al(OTf)3 

#1 0.25 -0.06 

#2 0.24 -0.06 

#3 0.26 0.04 

In(OTf)3 

#1 0.21 -0.11 

#2 0.25 0.00 

#3 0.21 0.02 

Dy(OTf)3 

#1 0.20 -0.20 

#2 0.24 -0.12 

#3 0.17 0.15 

Ce(OTf)3 

#1 0.15 -0.38 

#2 0.09 -0.37 

#3 0.19 -0.33 

no 

triflate 

#1 -0.12 -0.33 

#2 -0.23 -0.18 

#3 0.06 -0.17 
 

b)  

 Variance 
Variance 

PC1 57.9% 

PC2 13.8% 

PC3 6.7% 

PC4 4.9% 

PC5 2.9% 

PC6 2.6% 

PC7 2.1% 

PC8 1.9% 

PC9 1.5% 

PC10 1.1% 

PC11 1.0% 

PC12 0.7% 

PC13 0.6% 

PC14 0.5% 

PC15 0.4% 

PC16 0.4% 

PC17 0.3% 

PC18 0.3% 

PC19 0.2% 

PC20 0.1% 

PC21 0.1% 

PC22 0.1% 

PC23 0.1% 

PC24 0.0% 
 

Figure S20. PCA on α2, for R is measured at different time interval [10s;19s] | a, PCA scores with 95% 

confidence ellipsoids. b, Individual variance for the different PC. c, PCA loadings of the different sensing 

elements’ response for PC1 and PC2. 
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a)  

 

c)  

  Loadings 

  PC1 PC2 

Fe(OTf)3 

#1 -0.11 0.33 

#2 -0.17 0.29 

#3 -0.21 0.25 

Cu(OTf)2 

#1 0.26 -0.01 

#2 0.24 0.09 

#3 0.14 0.06 

Bi(OTf)3 

#1 0.04 0.39 

#2 0.05 -0.06 

#3 -0.13 0.40 

Al(OTf)3 

#1 0.24 0.09 

#2 0.19 0.13 

#3 0.26 0.20 

In(OTf)3 

#1 0.07 0.18 

#2 0.07 0.34 

#3 0.13 -0.12 

Dy(OTf)3 

#1 0.35 0.05 

#2 0.33 -0.01 

#3 0.18 0.06 

Ce(OTf)3 

#1 0.24 -0.27 

#2 0.28 -0.05 

#3 0.24 -0.01 

no 

triflate 

#1 0.16 0.13 

#2 0.24 0.16 

#3 0.12 0.24 
 

b)  

 Variance 
Variance 

PC1 28.6% 

PC2 16.9% 

PC3 7.3% 

PC4 5.9% 

PC5 5.3% 

PC6 5.1% 

PC7 4.7% 

PC8 4.1% 

PC9 3.0% 

PC10 2.7% 

PC11 2.6% 

PC12 2.3% 

PC13 2.1% 

PC14 1.8% 

PC15 1.6% 

PC16 1.5% 

PC17 1.3% 

PC18 1.0% 

PC19 0.8% 

PC20 0.5% 

PC21 0.3% 

PC22 0.3% 

PC23 0.2% 

PC24 0.1% 
 

Figure S21. PCA on α2, for R is measured at different time interval [20s;29s] | a, PCA scores with 95% 

confidence ellipsoids. b, Individual variance for the different PC. c, PCA loadings of the different sensing 

elements’ response for PC1 and PC2. 
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a)  

 

c)  

  Loadings 

  PC1 PC2 

Fe(OTf)3 

#1 -0.10 0.34 

#2 -0.05 0.36 

#3 -0.08 0.39 

Cu(OTf)2 

#1 -0.23 -0.09 

#2 -0.17 0.03 

#3 -0.16 0.13 

Bi(OTf)3 

#1 -0.19 0.24 

#2 0.07 0.17 

#3 -0.09 0.39 

Al(OTf)3 

#1 -0.24 0.04 

#2 -0.28 0.13 

#3 -0.24 -0.08 

In(OTf)3 

#1 -0.06 0.16 

#2 -0.11 0.21 

#3 -0.23 -0.02 

Dy(OTf)3 

#1 -0.30 -0.18 

#2 -0.21 -0.23 

#3 -0.12 0.03 

Ce(OTf)3 

#1 -0.20 -0.31 

#2 -0.30 -0.20 

#3 -0.28 -0.08 

no 

triflate 

#1 -0.24 0.03 

#2 -0.25 -0.02 

#3 -0.28 0.11 
 

b)  

 Variance 
Variance 

PC1 27.1% 

PC2 18.6% 

PC3 6.9% 

PC4 6.0% 

PC5 5.7% 

PC6 4.8% 

PC7 4.0% 

PC8 3.6% 

PC9 3.4% 

PC10 2.9% 

PC11 2.8% 

PC12 2.5% 

PC13 2.1% 

PC14 1.9% 

PC15 1.6% 

PC16 1.4% 

PC17 1.1% 

PC18 0.8% 

PC19 0.7% 

PC20 0.6% 

PC21 0.5% 

PC22 0.4% 

PC23 0.3% 

PC24 0.2% 
 

Figure S22. PCA on α2, for R is measured at different time interval [30s;39s] | a, PCA scores with 95% 

confidence ellipsoids. b, Individual variance for the different PC. c, PCA loadings of the different sensing 

elements’ response for PC1 and PC2. 



Postprint (accepted for publication) 
 

48 
 

a)  

 

c)  

  Loadings 

  PC1 PC2 

Fe(OTf)3 

#1 -0.18 0.14 

#2 -0.24 -0.17 

#3 -0.20 -0.40 

Cu(OTf)2 

#1 -0.14 0.16 

#2 -0.09 0.34 

#3 -0.12 0.13 

Bi(OTf)3 

#1 -0.23 -0.31 

#2 0.17 -0.08 

#3 -0.13 -0.44 

Al(OTf)3 

#1 -0.16 -0.14 

#2 -0.26 0.01 

#3 -0.22 0.03 

In(OTf)3 

#1 -0.01 0.13 

#2 -0.18 -0.10 

#3 -0.12 -0.09 

Dy(OTf)3 

#1 -0.25 0.20 

#2 -0.14 0.30 

#3 -0.01 -0.05 

Ce(OTf)3 

#1 -0.24 0.25 

#2 -0.31 0.20 

#3 -0.28 0.17 

no 

triflate 

#1 -0.25 -0.05 

#2 -0.29 -0.12 

#3 -0.27 -0.10 
 

b)  

 Variance 
Variance 

PC1 29.5% 

PC2 12.5% 

PC3 8.7% 

PC4 6.0% 

PC5 5.9% 

PC6 5.2% 

PC7 4.9% 

PC8 3.6% 

PC9 3.2% 

PC10 3.1% 

PC11 2.5% 

PC12 2.1% 

PC13 1.8% 

PC14 1.7% 

PC15 1.6% 

PC16 1.4% 

PC17 1.3% 

PC18 1.0% 

PC19 0.9% 

PC20 0.8% 

PC21 0.7% 

PC22 0.6% 

PC23 0.4% 

PC24 0.3% 
 

Figure S23. PCA on α2, for R is measured at different time interval [40s;49s] | a, PCA scores with 95% 

confidence ellipsoids. b, Individual variance for the different PC. c, PCA loadings of the different sensing 

elements’ response for PC1 and PC2. 
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a)  

 

c)  

  Loadings 

  PC1 PC2 

Fe(OTf)3 

#1 -0.18 0.09 

#2 -0.32 -0.05 

#3 -0.19 -0.26 

Cu(OTf)2 

#1 -0.07 0.08 

#2 0.01 -0.04 

#3 -0.09 -0.03 

Bi(OTf)3 

#1 -0.21 0.44 

#2 0.21 0.11 

#3 -0.15 0.48 

Al(OTf)3 

#1 -0.21 -0.06 

#2 -0.19 0.19 

#3 -0.23 0.25 

In(OTf)3 

#1 -0.13 0.14 

#2 -0.17 -0.29 

#3 -0.17 -0.05 

Dy(OTf)3 

#1 -0.22 -0.24 

#2 -0.14 -0.04 

#3 -0.11 0.08 

Ce(OTf)3 

#1 -0.24 -0.22 

#2 -0.31 -0.21 

#3 -0.27 -0.24 

no 

triflate 

#1 -0.23 0.06 

#2 -0.27 0.15 

#3 -0.26 0.18 
 

b)  

 Variance 
Variance 

PC1 31.0% 

PC2 9.1% 

PC3 6.8% 

PC4 6.3% 

PC5 5.7% 

PC6 5.2% 

PC7 4.8% 

PC8 4.1% 

PC9 3.9% 

PC10 3.1% 

PC11 2.8% 

PC12 2.6% 

PC13 2.3% 

PC14 2.2% 

PC15 2.1% 

PC16 1.7% 

PC17 1.4% 

PC18 1.2% 

PC19 0.9% 

PC20 0.8% 

PC21 0.8% 

PC22 0.5% 

PC23 0.4% 

PC24 0.3% 
 

Figure S24. PCA on α2, for R is measured at different time interval [50s;59s] | a, PCA scores with 95% 

confidence ellipsoids. b, Individual variance for the different PC. c, PCA loadings of the different sensing 

elements’ response for PC1 and PC2. 
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a)  

 

c)  

  Loadings 

  PC1 PC2 

Fe(OTf)3 

#1 -0.24 0.01 

#2 -0.32 -0.13 

#3 -0.11 -0.40 

Cu(OTf)2 

#1 -0.06 -0.10 

#2 -0.12 0.13 

#3 -0.06 0.12 

Bi(OTf)3 

#1 -0.22 0.42 

#2 0.23 0.00 

#3 -0.14 0.45 

Al(OTf)3 

#1 -0.13 -0.21 

#2 -0.18 0.05 

#3 -0.21 0.05 

In(OTf)3 

#1 -0.04 0.07 

#2 -0.06 0.13 

#3 -0.19 0.24 

Dy(OTf)3 

#1 -0.21 -0.27 

#2 -0.18 -0.17 

#3 -0.05 -0.12 

Ce(OTf)3 

#1 -0.31 -0.15 

#2 -0.34 -0.16 

#3 -0.29 -0.17 

no 

triflate 

#1 -0.26 0.04 

#2 -0.27 0.24 

#3 -0.20 0.13 
 

b)  

 Variance 
Variance 

PC1 27.7% 

PC2 11.9% 

PC3 7.0% 

PC4 6.1% 

PC5 5.8% 

PC6 5.0% 

PC7 4.3% 

PC8 4.1% 

PC9 3.7% 

PC10 3.4% 

PC11 3.2% 

PC12 2.9% 

PC13 2.7% 

PC14 2.4% 

PC15 1.9% 

PC16 1.8% 

PC17 1.3% 

PC18 1.3% 

PC19 1.0% 

PC20 0.9% 

PC21 0.6% 

PC22 0.5% 

PC23 0.4% 

PC24 0.2% 
 

Figure S25. PCA on α2, for R is measured at different time interval [60s;69s] | a, PCA scores with 95% 

confidence ellipsoids. b, Individual variance for the different PC. c, PCA loadings of the different sensing 

elements’ response for PC1 and PC2. 
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a)  

 

c)  

  Loadings 

  PC1 PC2 

Fe(OTf)3 

#1 -0.28 0.09 

#2 -0.30 0.14 

#3 -0.13 0.38 

Cu(OTf)2 

#1 -0.08 0.14 

#2 -0.12 0.04 

#3 -0.01 0.25 

Bi(OTf)3 

#1 -0.24 -0.34 

#2 0.21 -0.16 

#3 -0.10 -0.44 

Al(OTf)3 

#1 -0.11 -0.10 

#2 -0.15 -0.30 

#3 -0.25 -0.08 

In(OTf)3 

#1 -0.15 0.07 

#2 -0.09 0.05 

#3 -0.15 -0.18 

Dy(OTf)3 

#1 -0.19 0.28 

#2 -0.04 -0.09 

#3 0.07 -0.19 

Ce(OTf)3 

#1 -0.32 0.05 

#2 -0.34 0.11 

#3 -0.30 0.16 

no 

triflate 

#1 -0.25 -0.05 

#2 -0.22 -0.26 

#3 -0.26 -0.18 
 

b)  

 Variance 
Variance 

PC1 27.5% 

PC2 10.5% 

PC3 7.6% 

PC4 6.3% 

PC5 5.2% 

PC6 4.9% 

PC7 4.4% 

PC8 4.1% 

PC9 3.7% 

PC10 3.4% 

PC11 3.2% 

PC12 2.7% 

PC13 2.5% 

PC14 2.3% 

PC15 1.9% 

PC16 1.8% 

PC17 1.6% 

PC18 1.4% 

PC19 1.2% 

PC20 1.1% 

PC21 1.0% 

PC22 0.8% 

PC23 0.6% 

PC24 0.2% 
 

Figure S26. PCA on α2, for R is measured at different time interval [70s;79s] | a, PCA scores with 95% 

confidence ellipsoids. b, Individual variance for the different PC. c, PCA loadings of the different sensing 

elements’ response for PC1 and PC2. 
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a)  

 

c)  

  Loadings 

  PC1 PC2 

Fe(OTf)3 

#1 -0.19 0.33 

#2 -0.25 -0.07 

#3 -0.01 -0.31 

Cu(OTf)2 

#1 -0.17 0.14 

#2 -0.14 0.04 

#3 -0.03 0.00 

Bi(OTf)3 

#1 -0.29 0.34 

#2 0.12 0.05 

#3 -0.19 0.28 

Al(OTf)3 

#1 -0.14 -0.21 

#2 -0.18 0.12 

#3 -0.29 0.09 

In(OTf)3 

#1 -0.02 0.26 

#2 -0.05 -0.07 

#3 -0.21 0.06 

Dy(OTf)3 

#1 -0.17 -0.36 

#2 -0.05 -0.36 

#3 -0.11 -0.06 

Ce(OTf)3 

#1 -0.34 -0.15 

#2 -0.33 -0.25 

#3 -0.29 -0.26 

no 

triflate 

#1 -0.30 0.06 

#2 -0.17 -0.01 

#3 -0.25 0.12 
 

b)  

 Variance 
Variance 

PC1 26.1% 

PC2 10.5% 

PC3 7.0% 

PC4 6.4% 

PC5 6.0% 

PC6 5.6% 

PC7 4.7% 

PC8 4.6% 

PC9 4.4% 

PC10 3.7% 

PC11 3.0% 

PC12 2.6% 

PC13 2.5% 

PC14 2.2% 

PC15 1.8% 

PC16 1.7% 

PC17 1.5% 

PC18 1.4% 

PC19 1.2% 

PC20 0.9% 

PC21 0.7% 

PC22 0.7% 

PC23 0.6% 

PC24 0.2% 
 

Figure S27. PCA on α2, for R is measured at different time interval [80s;89s] | a, PCA scores with 95% 

confidence ellipsoids. b, Individual variance for the different PC. c, PCA loadings of the different sensing 

elements’ response for PC1 and PC2. 
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a)  

 

c)  

  Loadings 

  PC1 PC2 

Fe(OTf)3 

#1 -0.21 -0.30 

#2 -0.25 0.01 

#3 -0.19 0.20 

Cu(OTf)2 

#1 -0.07 -0.11 

#2 -0.01 -0.06 

#3 -0.14 -0.34 

Bi(OTf)3 

#1 -0.29 -0.32 

#2 0.12 -0.22 

#3 -0.29 -0.31 

Al(OTf)3 

#1 -0.19 -0.13 

#2 -0.17 -0.21 

#3 -0.21 0.01 

In(OTf)3 

#1 -0.03 0.06 

#2 -0.02 -0.26 

#3 -0.14 -0.04 

Dy(OTf)3 

#1 -0.17 0.07 

#2 -0.09 -0.07 

#3 0.00 -0.20 

Ce(OTf)3 

#1 -0.36 0.15 

#2 -0.35 0.28 

#3 -0.31 0.27 

no 

triflate 

#1 -0.25 0.00 

#2 -0.25 0.11 

#3 -0.08 0.36 
 

b)  

 Variance 
Variance 

PC1 23.6% 

PC2 9.0% 

PC3 8.2% 

PC4 6.7% 

PC5 6.0% 

PC6 5.6% 

PC7 5.1% 

PC8 4.9% 

PC9 3.9% 

PC10 3.7% 

PC11 3.4% 

PC12 2.9% 

PC13 2.8% 

PC14 2.4% 

PC15 2.0% 

PC16 1.8% 

PC17 1.5% 

PC18 1.5% 

PC19 1.3% 

PC20 1.0% 

PC21 1.0% 

PC22 0.6% 

PC23 0.6% 

PC24 0.2% 
 

Figure S28. PCA on α2, for R is measured at different time interval [90s;99s] | a, PCA scores with 95% 

confidence ellipsoids. b, Individual variance for the different PC. c, PCA loadings of the different sensing 

elements’ response for PC1 and PC2. 
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a)  

 

c)  

  Loadings 

  PC1 PC2 

Fe(OTf)3 

#1 -0.29 0.13 

#2 -0.24 0.03 

#3 -0.20 -0.31 

Cu(OTf)2 

#1 -0.06 0.26 

#2 -0.18 0.10 

#3 0.10 -0.26 

Bi(OTf)3 

#1 -0.28 0.17 

#2 0.17 -0.31 

#3 -0.27 -0.03 

Al(OTf)3 

#1 -0.16 -0.24 

#2 -0.17 0.26 

#3 -0.10 0.19 

In(OTf)3 

#1 -0.08 0.12 

#2 0.01 -0.44 

#3 -0.19 0.15 

Dy(OTf)3 

#1 -0.21 0.00 

#2 -0.02 -0.16 

#3 0.04 -0.20 

Ce(OTf)3 

#1 -0.32 -0.16 

#2 -0.31 -0.21 

#3 -0.28 -0.26 

no 

triflate 

#1 -0.28 -0.10 

#2 -0.18 -0.06 

#3 -0.23 0.09 
 

b)  

 Variance 
Variance 

PC1 27.9% 

PC2 8.7% 

PC3 7.6% 

PC4 6.2% 

PC5 6.0% 

PC6 5.3% 

PC7 4.8% 

PC8 4.3% 

PC9 3.5% 

PC10 3.4% 

PC11 3.2% 

PC12 3.1% 

PC13 2.7% 

PC14 2.4% 

PC15 2.0% 

PC16 1.6% 

PC17 1.6% 

PC18 1.5% 

PC19 1.2% 

PC20 1.1% 

PC21 0.7% 

PC22 0.6% 

PC23 0.4% 

PC24 0.1% 
 

Figure S29. PCA on α2, for R is measured at different time interval [100s;109s] | a, PCA scores with 

95% confidence ellipsoids. b, Individual variance for the different PC. c, PCA loadings of the different 

sensing elements’ response for PC1 and PC2. 
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a)  

 

c)  

  Loadings 

  PC1 PC2 

Fe(OTf)3 

#1 -0.16 0.21 

#2 -0.20 -0.09 

#3 -0.05 0.16 

Cu(OTf)2 

#1 0.04 -0.03 

#2 -0.01 -0.22 

#3 -0.30 0.03 

Bi(OTf)3 

#1 0.22 -0.31 

#2 -0.24 0.37 

#3 -0.22 -0.36 

Al(OTf)3 

#1 -0.23 0.02 

#2 -0.18 -0.07 

#3 -0.13 0.01 

In(OTf)3 

#1 -0.16 -0.13 

#2 -0.07 -0.03 

#3 -0.01 0.10 

Dy(OTf)3 

#1 -0.03 0.46 

#2 -0.06 0.07 

#3 -0.37 0.05 

Ce(OTf)3 

#1 -0.34 0.11 

#2 -0.30 0.26 

#3 -0.27 0.25 

no 

triflate 

#1 -0.17 0.22 

#2 -0.20 -0.21 

#3 -0.19 -0.16 
 

b)  

 Variance 
Variance 

PC1 25.7% 

PC2 10.1% 

PC3 8.3% 

PC4 6.3% 

PC5 5.7% 

PC6 5.0% 

PC7 4.8% 

PC8 4.4% 

PC9 3.6% 

PC10 3.6% 

PC11 3.2% 

PC12 3.0% 

PC13 2.9% 

PC14 2.5% 

PC15 2.0% 

PC16 1.9% 

PC17 1.5% 

PC18 1.4% 

PC19 1.2% 

PC20 1.1% 

PC21 0.8% 

PC22 0.5% 

PC23 0.4% 

PC24 0.1% 
 

Figure S30. PCA on α2, for R is measured at different time interval [110s;119s] | a, PCA scores with 

95% confidence ellipsoids. b, Individual variance for the different PC. c, PCA loadings of the different 

sensing elements’ response for PC1 and PC2. 



Postprint (accepted for publication) 
 

56 
 

a)  

 

c)  

  Loadings 

  PC1 PC2 

Fe(OTf)3 

#1 -0.10 0.38 

#2 -0.15 0.01 

#3 -0.27 0.04 

Cu(OTf)2 

#1 -0.05 0.29 

#2 -0.10 -0.06 

#3 -0.02 0.12 

Bi(OTf)3 

#1 -0.32 -0.27 

#2 0.22 -0.02 

#3 -0.23 -0.45 

Al(OTf)3 

#1 -0.07 -0.27 

#2 -0.08 -0.06 

#3 -0.13 -0.25 

In(OTf)3 

#1 -0.10 0.18 

#2 -0.02 -0.06 

#3 -0.24 0.15 

Dy(OTf)3 

#1 -0.13 0.44 

#2 -0.08 0.18 

#3 0.03 -0.13 

Ce(OTf)3 

#1 -0.40 0.05 

#2 -0.38 0.10 

#3 -0.31 0.13 

no 

triflate 

#1 -0.20 -0.04 

#2 -0.30 -0.09 

#3 -0.15 -0.05 
 

b)  

 Variance 
Variance 

PC1 21.3% 

PC2 9.9% 

PC3 7.8% 

PC4 7.0% 

PC5 6.6% 

PC6 5.6% 

PC7 5.1% 

PC8 4.6% 

PC9 4.2% 

PC10 3.8% 

PC11 3.3% 

PC12 3.1% 

PC13 3.0% 

PC14 2.6% 

PC15 2.2% 

PC16 2.1% 

PC17 1.8% 

PC18 1.8% 

PC19 1.4% 

PC20 1.0% 

PC21 0.8% 

PC22 0.4% 

PC23 0.4% 

PC24 0.1% 
 

Figure S31. PCA on α2, for R is measured at different time interval [120s;129s] | a, PCA scores with 

95% confidence ellipsoids. b, Individual variance for the different PC. c, PCA loadings of the different 

sensing elements’ response for PC1 and PC2. 
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a)  

 

c)  

  Loadings 

  PC1 PC2 

Fe(OTf)3 

#1 -0.07 0.35 

#2 -0.22 -0.37 

#3 -0.10 -0.16 

Cu(OTf)2 

#1 -0.01 -0.21 

#2 -0.02 -0.01 

#3 -0.08 0.14 

Bi(OTf)3 

#1 -0.29 -0.37 

#2 0.02 0.30 

#3 -0.28 -0.30 

Al(OTf)3 

#1 -0.12 0.03 

#2 -0.16 -0.20 

#3 -0.14 -0.08 

In(OTf)3 

#1 -0.08 0.29 

#2 -0.12 0.02 

#3 -0.12 0.04 

Dy(OTf)3 

#1 -0.04 0.26 

#2 -0.11 -0.07 

#3 -0.03 0.04 

Ce(OTf)3 

#1 -0.42 0.09 

#2 -0.41 0.17 

#3 -0.40 0.12 

no 

triflate 

#1 -0.18 0.21 

#2 -0.29 0.14 

#3 -0.19 0.13 
 

b)  

 Variance 
Variance 

PC1 20.1% 

PC2 8.5% 

PC3 7.9% 

PC4 6.6% 

PC5 6.4% 

PC6 6.1% 

PC7 5.4% 

PC8 4.9% 

PC9 4.3% 

PC10 4.1% 

PC11 3.8% 

PC12 3.4% 

PC13 3.1% 

PC14 2.6% 

PC15 2.5% 

PC16 2.1% 

PC17 1.7% 

PC18 1.6% 

PC19 1.4% 

PC20 1.2% 

PC21 1.0% 

PC22 0.7% 

PC23 0.4% 

PC24 0.1% 
 

Figure S32. PCA on α2, for R is measured at different time interval [130s;139s] | a, PCA scores with 

95% confidence ellipsoids. b, Individual variance for the different PC. c, PCA loadings of the different 

sensing elements’ response for PC1 and PC2. 
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a)  

 

c)  

  Loadings 

  PC1 PC2 

Fe(OTf)3 

#1 -0.20 0.33 

#2 -0.11 0.01 

#3 -0.10 -0.35 

Cu(OTf)2 

#1 -0.17 -0.14 

#2 -0.12 -0.10 

#3 -0.09 0.26 

Bi(OTf)3 

#1 -0.31 -0.02 

#2 -0.03 -0.42 

#3 -0.29 0.00 

Al(OTf)3 

#1 -0.25 -0.09 

#2 -0.19 0.15 

#3 -0.19 0.22 

In(OTf)3 

#1 -0.07 -0.01 

#2 0.06 0.28 

#3 -0.13 -0.26 

Dy(OTf)3 

#1 -0.07 0.41 

#2 0.07 -0.04 

#3 -0.13 -0.27 

Ce(OTf)3 

#1 -0.35 0.04 

#2 -0.33 0.06 

#3 -0.35 0.07 

no 

triflate 

#1 -0.26 -0.11 

#2 -0.23 -0.06 

#3 -0.20 -0.06 
 

b)  

 Variance 
Variance 

PC1 25.5% 

PC2 9.1% 

PC3 8.0% 

PC4 7.3% 

PC5 5.8% 

PC6 5.4% 

PC7 4.6% 

PC8 4.1% 

PC9 3.8% 

PC10 3.5% 

PC11 3.2% 

PC12 2.8% 

PC13 2.7% 

PC14 2.5% 

PC15 2.4% 

PC16 1.9% 

PC17 1.6% 

PC18 1.5% 

PC19 1.4% 

PC20 1.2% 

PC21 0.7% 

PC22 0.4% 

PC23 0.4% 

PC24 0.1% 
 

Figure S33. PCA on α2, for R is measured at different time interval [140s;149s] | a, PCA scores with 

95% confidence ellipsoids. b, Individual variance for the different PC. c, PCA loadings of the different 

sensing elements’ response for PC1 and PC2. 
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a)  

 

c)  

  Loadings 

  PC1 PC2 

Fe(OTf)3 

#1 -0.29 0.06 

#2 -0.23 -0.26 

#3 -0.17 -0.36 

Cu(OTf)2 

#1 -0.16 -0.03 

#2 0.02 0.09 

#3 -0.10 -0.01 

Bi(OTf)3 

#1 -0.33 -0.28 

#2 -0.04 -0.12 

#3 -0.33 -0.24 

Al(OTf)3 

#1 -0.10 -0.08 

#2 -0.22 -0.14 

#3 0.05 0.16 

In(OTf)3 

#1 0.03 0.06 

#2 -0.09 -0.20 

#3 -0.03 -0.06 

Dy(OTf)3 

#1 -0.11 0.29 

#2 0.04 0.31 

#3 -0.08 -0.18 

Ce(OTf)3 

#1 -0.36 0.22 

#2 -0.33 0.36 

#3 -0.39 0.18 

no 

triflate 

#1 -0.22 0.18 

#2 -0.14 0.31 

#3 -0.19 -0.01 
 

b)  

 Variance 
Variance 

PC1 21.8% 

PC2 9.1% 

PC3 8.3% 

PC4 7.2% 

PC5 6.0% 

PC6 5.5% 

PC7 4.9% 

PC8 4.7% 

PC9 4.2% 

PC10 3.9% 

PC11 3.7% 

PC12 3.5% 

PC13 2.8% 

PC14 2.4% 

PC15 2.1% 

PC16 1.8% 

PC17 1.7% 

PC18 1.6% 

PC19 1.5% 

PC20 1.3% 

PC21 1.0% 

PC22 0.5% 

PC23 0.4% 

PC24 0.2% 
 

Figure S34. PCA on α2, for R is measured at different time interval [150s;159s] | a, PCA scores with 

95% confidence ellipsoids. b, Individual variance for the different PC. c, PCA loadings of the different 

sensing elements’ response for PC1 and PC2. 
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a)  

 

c)  

  Loadings 

  PC1 PC2 

Fe(OTf)3 

#1 0.18 -0.21 

#2 0.16 0.14 

#3 0.23 0.30 

Cu(OTf)2 

#1 0.08 0.34 

#2 -0.09 -0.30 

#3 0.13 -0.07 

Bi(OTf)3 

#1 0.34 0.01 

#2 0.09 0.12 

#3 0.30 -0.08 

Al(OTf)3 

#1 0.10 -0.32 

#2 0.17 -0.16 

#3 0.15 0.18 

In(OTf)3 

#1 0.08 -0.04 

#2 0.08 -0.40 

#3 0.13 -0.07 

Dy(OTf)3 

#1 0.07 -0.04 

#2 0.06 -0.20 

#3 -0.02 -0.20 

Ce(OTf)3 

#1 0.39 -0.06 

#2 0.38 -0.14 

#3 0.39 -0.10 

no 

triflate 

#1 0.17 0.01 

#2 0.20 0.37 

#3 0.18 0.19 
 

b)  

 Variance 

Variance PC1 20.6% 

PC2 8.4% 

PC3 8.2% 

PC4 7.0% 

PC5 6.0% 

PC6 5.4% 

PC7 5.2% 

PC8 5.0% 

PC9 4.3% 

PC10 3.8% 

PC11 3.5% 

PC12 3.1% 

PC13 3.0% 

PC14 2.6% 

PC15 2.3% 

PC16 2.2% 

PC17 2.1% 

PC18 1.8% 

PC19 1.6% 

PC20 1.4% 

PC21 1.2% 

PC22 0.6% 

PC23 0.4% 

PC24 0.3% 
 

Figure S35. PCA on α2, for R is measured at different time interval [160s;169s] | a, PCA scores with 

95% confidence ellipsoids. b, Individual variance for the different PC. c, PCA loadings of the different 

sensing elements’ response for PC1 and PC2. 
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a)  

 

c)  

  Loadings 

  PC1 PC2 

Fe(OTf)3 

#1 -0.20 -0.06 

#2 -0.10 0.40 

#3 -0.17 0.16 

Cu(OTf)2 

#1 -0.12 0.33 

#2 -0.07 -0.11 

#3 -0.11 0.02 

Bi(OTf)3 

#1 -0.33 -0.18 

#2 -0.18 -0.32 

#3 -0.35 -0.12 

Al(OTf)3 

#1 -0.03 -0.13 

#2 -0.06 -0.28 

#3 -0.11 -0.32 

In(OTf)3 

#1 0.03 0.27 

#2 -0.10 0.00 

#3 0.01 -0.33 

Dy(OTf)3 

#1 -0.14 0.09 

#2 -0.14 0.02 

#3 0.07 0.02 

Ce(OTf)3 

#1 -0.42 0.02 

#2 -0.42 0.11 

#3 -0.40 0.00 

no 

triflate 

#1 -0.04 -0.15 

#2 -0.06 0.08 

#3 -0.18 0.34 
 

b)  

 Variance 

Variance PC1 18.9% 

PC2 9.3% 

PC3 8.0% 

PC4 6.8% 

PC5 6.6% 

PC6 6.0% 

PC7 5.2% 

PC8 5.1% 

PC9 4.3% 

PC10 4.1% 

PC11 3.9% 

PC12 3.3% 

PC13 3.1% 

PC14 2.6% 

PC15 2.2% 

PC16 2.0% 

PC17 1.8% 

PC18 1.7% 

PC19 1.4% 

PC20 1.2% 

PC21 1.0% 

PC22 0.6% 

PC23 0.5% 

PC24 0.3% 
 

Figure S36. PCA on α2, for R is measured at different time interval [170s;179s] | a, PCA scores with 

95% confidence ellipsoids. b, Individual variance for the different PC. c, PCA loadings of the different 

sensing elements’ response for PC1 and PC2. 


