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CHERN–SIMONS THEORY AND COHOMOLOGICAL
INVARIANTS OF REPRESENTATION VARIETIES

NICOLAS THOLOZAN

To François Labourie, for his 60th + ε birthday.

Abstract. We prove a general local rigidity theorem for pull-backs
of homogeneous forms on reductive symmetric spaces under represen-
tations of discrete groups. One application of the theorem is that the
volume of a closed manifold locally modelled on a reductive homoge-
neous space G/H is constant under deformation of the G/H-structure.
The proof elaborates on an argument given by Labourie for closed anti-
de Sitter 3-manifolds.

The core of the work is a reinterpretation of old results of Cartan,
Chevalley and Borel, showing that the algebra of G-invariant forms on
G/H is generated by “Chern–Weil forms” and “Chern–Simons forms”.
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Introduction

Throughout the paper, we consider G a connected real semisimple Lie
group with finite center, σ an involutive automorphism of G and H the
subgroup of G fixed by σ. The right quotient G/H is called a reductive
symmetric space. The involution σ is called a Cartan involution when H is
compact. In that case, H is a maximal compact subgroup of G and G/H
is a Riemannian symmetric space of non-compact type sometimes called the
symmetric space of G. By a result of E. Cartan, every G-invariant differential
form on G/H is closed, hence the cohomology of the complex of G-invariant
forms on G/H with values in C is isomorphic to the algebra of G-invariant
forms, denoted Ω•inv(G/H,C).

We also fix a smooth connected manifold M , with universal cover M̃ and
fundamental group π1(M). Let ρ : π1(M) → G be a representation and
s̃ : M̃ → G/H a smooth ρ-equivariant map. This map factors to a smooth
section s of the flat G/H-bundle

M ×ρ (G/H)

and the pull-back by s̃ of any ω ∈ Ω•inv(G/H,C) factors to a closed form s∗ω
on M (see Section 1.3). An application of Stokes’ formula shows that the de
Rahm cohomology class [s∗ω] of s∗ω only depends on the homotopy class of
s. In particular, since the Riemannian symmetric space of G is contractible,
all the sections of the bundle M ×ρ (G/H) are homotopic. Thus, in that
case, [s∗ω] only depends on the representation ρ, and we denote it by ρ∗ω.

0.1. Main results. The purpose of this paper is to prove that the coho-
mology classes [s∗ω] do not vary when the representation ρ moves in the
representation variety Hom(π1(M), G). To be more precise, let (ρt)t∈[0,1] be
a smooth path in Hom(π1(M), G). Any smooth section s0 of the flat bundle
M ×ρ0 (G/H) extends to a smooth family of sections st of M ×ρt (G/H),
unique up to homotopy (see Section 3.1).

Theorem 1.
Let ω be a G-invariant form on G/H. For any smooth family (ρt)t∈[0,1] of
representations of π1(M) into G and any smooth family (st)t∈[0,1] of sections
of M ×ρt (G/H), we have

[s∗tω] = [s∗0ω]

for all t ∈ [0, 1].

The general formulation of this theorem is meant to encompass two situ-
ations: the one where K is a maximal compact subgroup (in which case the
choice of s is irrelevant) and the one where s is a local diffeomorphism and
ω a G-invariant volume form. We now detail the consequences of Theorem 1
in these two contexts.

0.1.1. Pull-back of group cohomology. In this section, we take H = K to be
a maximal compact subgroup of G. The Van Est isomorphism VE identi-
fies the algebra of G-invariant forms on G/K to the continuous cohomology
H•c(G,C) (see Section 3.3).
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Approaching the classifying space of any finitely presented group Γ by
closed manifolds, we get from Theorem 1 the following corollary:

Corollary 2.
Let Γ be a finitely presented group. Then, for every ω ∈ H•c(G,C), the map

Hom(Γ, G) → H•(Γ,C)

ρ 7→ ρ∗ω

is locally constant on Hom(Γ, G).

The cohomology classes ρ∗ω define topological invariants that are constant
on connected components of Hom(Γ, G) and can sometimes help distinguish
these components. A famous example of this phenomenon is when Γ is
the fundamental group of a closed oriented surface S of genus g ≥ 2 and
G = PSL(2,R). For a suitably chosen generator ω of H•c(PSL(2,R),C) ' C,
Milnor [21] proved that the number∫

S
ρ∗ω

is an integer contained in the interval [2−2g, 2g−2], called the Euler class of
the representation ρ. Moreover, Goldman [15] and Hitchin [16] proved that
the Euler class classifies the connected components of Hom(Γ,PSL(2,R)).

0.1.2. Volume of locally homogeneous manifolds. In this section, G is a semisim-
ple Lie group and H any reductive subgroup. Let M be an orientable mani-
fold of the same dimension as G/H. A G/H-structure on M can be defined
as the data of a pair (dev, ρ) where ρ : π1(M) → G is a homomorphism
called the holonomy of the G/H-structure and dev : M̃ → G/H is a local
diffeomorphism called the developing map.

The hypotheses on G and H imply the existence of a G-invariant volume
forme volG/H on the homogeneous space G/H, whose pull-back by the de-
velopping factors to a volume form dev∗volG/H on M . The volume of the
G/H-structure is by definition the integral of this volume form over M

Vol(M, dev) =

∫
M

dev∗volG/H .

The Ehresmann–Thurston principle (see [4]) roughly states that every
deformation of the holonomy representation corresponds (in an essentially
unique way) to a deformation of the G/H-structure ofM . Theorem 1 implies
that the volume is constant along such deformations.

Corollary 3.
Let G be a semisimple Lie group with finite center and finitely many compo-
nents and H a reductive subgroup of G. Let M be a closed manifold of the
same dimension as G/H and (devt, ρt)t∈[0,1] a continuous family of G/H-
structures on M . Then

Vol(M,dev) = Vol(M,dev0)

for all t ∈ [0, 1].
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0.2. Earlier results. Theorem 1 contains as a particular case many topo-
logical invariants that have been extensively studied before, such as Toledo
invariants of surface group representations (or more generally Kähler groups)
into Lie groups of Hermitian type [9, 28], volume of representations of hyper-
bolic lattices [8, 12, 18, 5], complex volume of representations of 3-manifold
groups [13, 3], or volume of compact quotients of reductive homogeneous
spaces. To our knowledge, in all these examples, Theorem 1 is already known,
and our intention here is merely to give a (almost) unified presentation of
these different results. Let us discuss some of these applications.

0.2.1. Toledo invariant of surface group representations. Let S be a closed
surface. The Toledo invariant generalizes the Euler class to representations
of π1(S) into a simple Lie group G of Hermitian type. In that case, the
cohomology group H2

c(G,C) is generated by a class ω (corresponding to a
G-invariant Kähler form on the symmetric space). Given a representation
ρ : π1(S)→ G, the Toledo invariant of ρ is defined by

τ(ρ) =

∫
S
ρ∗ω .

It is rational, satisfies a Milnor–Wood inequality, and representations with
maximal Toledo invariant have strong geometric properties [28, 9]. Unlike in
the case of PSL(2,R) however, the Toledo invariant does not always distin-
guish connected components of Hom(Γ, G) (see [7]). The local rigidity of the
Toledo invariant (and, in fact, its rationality) is a well-known consequences
of Chern–Weil theory: one shows that the Toledo invariant is the degree of
the pull-back of a complex automorphic line bundle on G/K.

0.2.2. Volume of representations into Isom+(Hd). Another well-studied gen-
eralization of the Euler class is when M is a closed d-manifold and G =
SO◦(d, 1) is the group of orientation preserving isometries of the hyperbolic
d-space Hd. The continuous cohomology of SO◦(d, 1) is generated in degree
d by a class ω corresponding to the volume form of the hyperbolic d-space.
Given ρ : π1(M) → SO◦(d, 1), the number

∫
M ρ∗ω is called the volume of

the representation ρ.
For even d, the volume of ρ is (up to a universal constant) the Euler class of

the pull-back of the tangent bundle THd and is thus an integer. In contrast,
for odd d, the volume cannot be directly related to a characteristic class,
and its values remain mysterious. Besson–Courtois–Gallot proved in [5] that
the volume is locally constant on Hom(π1(M),SO◦(d, 1)), using Schläfli’s
formula for the variation of the volume of a simplex. This proof seems quite
specific to hyperbolic geometry.

An alternative proof in dimension 3 follows from the identification of the
volume of ρ with the imaginary part of its Cheeger–Chern–Simons invariant.
While this proof was probably known to experts before Besson–Courtois–
Gallot’s work, it seems it was only written later in [13].

Theorem 1 gives in particular an alternative proof of Besson–Courtois–
Gallot’s theorem which, in odd dimension, is based on Chern–Simons theory
and is strongly related to [13].
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0.2.3. Complex volumes of representations of 3-manifold groups. In [13], Garo-
ufalidis, Thurston and Zickert generalize the Cheeger–Chern–Simons invari-
ant to representations of the fundamental group of a closed 3-manifold M
into SL(d,C) (and, in fact, any simply connected simple complex Lie group).

In that case, the groupG itself carries a holomorphic bi-invariant 3-form ω,
given on the Lie algebra g by

ω(u, v, w) = Tr(u[v, w]) .

Let ρ be a representation of π1(M) into SL(d,C). Since SL(d,C) is connected
and simply connected andM has dimension 3, the flat bundleM×ρSL(d,C)
always admits a section s. Moreover, given two such sections s1 and s2, the
difference

∫
M s∗1ω−

∫
M s∗2ω is an integral multiple of 4π2. The complex volume

of ρ is then defined by

VolC(ρ) = −i
∫
M
s∗ω ∈ C/4π2iZ .

When n = 3, the real part of VolC(ρ) is the volume of ρ defined above.
This complex volume can be interpreted as a Chern–Simons class. More

precisely, it is the Cheeger–Chern–Simons invariant of the flat connection
of monodromy ρ on the trivial complex vector bundle of rank n. General
arguments of Chern–Simons theory then imply that it is locally constant on
Hom(π1(M), SL(n,C)). The present work can be viewed as a generalisation
of this fact.

Remark 0.1. Both the Toledo invariant, the volume of representions in Isom+(Hd)
and the complex volume of representations of 3-manifold groups have also
been defined and investigated of manifolds M with boundary (see [9, 8, 18,
12, 13, 3]).

While some local rigidity theorems have been proven in higher dimen-
sion, when M has dimension 2 or 3 the Toledo invariant or complex volume
are typically not locally constant on character varieties. It leads to a very
different story that we do not consider further here.

0.2.4. Volume anti-de Sitter 3-manifolds. Despite its proximity with the lo-
cal rigidity results mentioned above, Corollary 3 on the volume of G/H-
manifolds did not seem to be known before. In the first interesting case
where G/H is the anti-de Sitter space of dimension 3, the question whether
the volume is invariant under continuous deformations was asked in the in-
fluential survey [2, Question 2.3].

Recall that the anti-de Sitter 3-space AdS3 can be seen as the Lie group
PSL(2,R) equipped with its Killing metric. Its isometry group is (up to
finite index) the group PSL(2,R)× PSL(2,R) acting by left and right mul-
tiplication. Anti-de Sitter structures on 3-manifolds have been extensively
studied [19, 14, 23, 17, 24] and are now well-understood. In particular, Kas-
sel (partly relying on previous works) proved in [17] that, up to finite covers,
closed anti-de Sitter 3-manifolds have the form

(j, ρ)(π1(S))\PSL(2,R)
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where S is a closed hyperbolic surface, j : π1(S) → PSL(2,R) is the holo-
nomy of the hyperbolic metric on S, and ρ : π1(S) → PSL(2,R) is another
representation such that there exists a (j, ρ)-equivariant contracting map
from H2 to H2. Since this is an open condition on the pair (j, ρ), closed anti-
de Sitter 3-manifolds have a rich deformation theory, which is completely
described in my thesis [25, Chapter 4] (see also [24]).

Using Kassel’s description of closed anti-de Sitter 3-manifolds and with
an explicit differential geometric computation, I proved in [26] the following
formula for their volume:

(1) Vol ((j, ρ)(π1(S))\PSL(2,R)) =
π2

2
(eu(j) + eu(ρ)) ,

where eu denotes the Euler class of a representation. In particular, the vol-
ume is constant along continuous deformations of the anti-de Sitter structure.

Upon hearing about this result, Labourie got the intuition that it could be
derived from Chern–Simons theory, which lead him to present an alternative
proof at an MSRI seminar [20]. Labourie’s proof was never published, but
he explained it to me in details, which it sparked the present work.

Let us also mention that another proof of (1) was given by Alessandrini
and Li [1] using Higgs bundles. Finally, I show in [26] that the local rigidity
of the volume is not true anymore when one considers finite volume non-
compact quotients of AdS3.

0.2.5. Volume of compact quotients. Generalizing my work on the volume of
anti-de Sitter 3-manifolds, I inverstigated more systematically in [27] the vol-
ume of compact quotients of reductive symmetric spaces G/H, i.e. quotients
of G/H by a discrete subgroup Γ of G acting freely, properly discontinuously
and cocompactly. There, I proved the following formula:

(2) Vol(Γ\G/H) =

∫
[Γ]
ι∗ωG,H ,

where ι : Γ→ G is the inclusion, ωG/H is a class in H•c(G,C) depending only
on H, and [Γ] is a certain fundamental class in H•(Γ,Z).

In many cases, the class ωG,H happens to be a characteristic class, and
one deduces the rationality of Vol(Γ\G/H) (and, in particular, its local
rigidity). Equation 2 also allows to readily apply Corollary 2 to prove the
volume rigidity of compact quotients of G/H.

Corollary 3 is more general in that it deals with any closed manifold locally
modelled on G/H, which might not a priori be complete (i.e. a quotient of
the model). While it is conjectured that every closed manifold locally mod-
elled on a reductive homogeneous space is complete (a variation on Markus’
conjecture), this conjecture is far from being solved, and it is not even known
in general whether completeness is stable under small deformations. It is thus
more satisfying to have a volume rigidity result without any completeness
assumption.

0.3. Cohomology of symmetric spaces. As we just saw, there are many
situations where Theorem 1 was known to follow either from classical argu-
ments in Chern–Weil or Chern–Simons theory. The core of this work will
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thus be to prove that these arguments in fact account for all the G-invariant
forms on G/H, i.e. that Ω•inv(G/H) is generated by Chern–Weil forms and
Chern–Simons forms (which will be properly defined in Section 2). This will
be done by reinterpreting old results of Cartan, Chevalley and Borel on the
cohomology of compact symmetric spaces in light of Chern–Simons theory.

Recall that the algebra of G-invariant forms on G/H is canonically isomor-
phic to the cohomology algebra of the dual compact symmetric space GU/HU

(see Section 2.2). We first establish the following version of Cartan–Borel’s
structure theorem for this cohomology:

Theorem 4.
Let G/H be a compact symmetric space. We have

H•(G/H,C) = H•even(G/H,C)⊗H•odd(G/H,C) ,

where
• the subalgebra H•even(G/H,C) is the algebra of characteristic classes
of the tautological principal H-bundle G→ G/H;
• the subalgebra H•odd(G/H,C) is the pull-back of H•(G,C) under the
map

(3) ιG,H : G/H → G
gH 7→ gσ(g)−1 .

The map ιG,H defined in (3) will play a crucial role throughout the paper.

Remark 0.2. While the above theorem is essentially due Cartan and Borel,
we do not know if the interpretation of H•odd(G/H,C) as a pull-back under
the map ιG,H was explicitly stated before.

To understand the odd part of the cohomology of G/H it is thus enough
to understand the cohomology of a compact semisimple Lie group G. The
cohomology of G does not consist of Chern–Weil characteristic classes, but
(perhaps unsurprisingly to experts), we will prove that it is generated by
Chern–Simons classes. More precisely, consider the space XG = G equipped
with the action of G×G by left and right multiplication, and let PG be the
principal G-bundle

G×G→ XG .

The bundle PG carries two invariant flat connections ΘL and ΘR, corre-
sponding respectively to left and right parallelism on G. We will prove the
following:

Lemma 5.
The algebra H•(G,C) is generated by the Chern–Simons classes associated to
the pair of connections (ΘL,ΘR) on the principal G-bundle PG.

0.4. Assumptions on G. It is easy to find counterexamples to Theorem 1
if one removes the assumption that G is semisimple. For instance, let E2 def

=
O(2) nR2/O(2) be the Euclidean plane and ω its translation invariant area
form. Let M be the 2-torus R2/Z2. Consider the family of E2-structures on
M given by

devt : M̃ = R2 → E2 = R2

(x, y) 7→ (tx, ty)
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and
ρt : π1(M) = Z2 → R2 ⊂ Isom(E2)

(u, v) 7→ (tu, tv)
.

Then one easily sees that ∫
M

dev∗tω = t2 ,

which is thus not constant in t.
This example can of course be broadly generalized. Let G/H be a ho-

mogeneous space such that G admits a non trivial normalizer N(G) in
Diff(G/H). Then N(G) acts on Ω•inv(G/H,C). Let ω be a G-invariant
form on G/H which is not fixed by N(G). Then conjugating a representa-
tion ρ : π1(M)→ G by N(G) will typically change the class ρ∗ω.

0.5. Structure of the paper. Though many of the results contained here
will perhaps be unsurprising to experts, I could not find references that
embrace precisely what I need of Chern–Simons theory and cohomology of
symmetric spaces. The paper with thus try to be as self-contained as possi-
ble.

In Section 1, after recalling some background, we introduce Chern–Weil
and Chern–Simons forms associated to connections on a principal bundle,
and their relations with characteristic classes. Section 2 is devoted to the
description of the algebra Ω•inv(G/H). Relying on the work of Cartan and
Borel, we prove Theorems 4 and Lemma 5, and deduce that Ω•inv(G/H,C) is
generated by Chern–Weil and Chern–Simons forms. Finally in Section 3, we
recall the classical rigidity results for Chern–Weil and Chern–Simons classes,
leading to the proof of Theorem 1, and its corollaries.

Acknoledgements. This paper is very much indebted to François Labourie,
who explained to me the nuts and bolts of Chern–Simons theory and how it
could be used to prove volume rigidity of locally homogeneous manifolds. I
thank him more generally for the inspiration that his work has been for my
research.

1. Chern–Weil and Chern–Simons classes

Recall that G is a real connected semisimple Lie group. Let g denote the
Lie algebra of G.

1.1. Principal bundles. A principal G-bundle over a manifold M is a
smooth fiber bundle

p : P →M

equiped with a smooth right action of G preserving the fibers and acting
simply transitively on each fiber.

If V is a manifold equipped with a smooth left action of G (for instance, a
linear representation of G or a G-homogeneous manifold), one can associate
to any principal bundle P a fiber bundle

P ×G V = P × V/〈(p, v) ∼ (pg, g−1v), g ∈ G〉
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called the associated V -bundle. In particular, the adjoint bundle of a princi-
pal bundle P is the vector bundle

Ad(P ) = P ×G g

associated to the adjoint representation of G.
Let P be a principal G-bundle over a manifold M and H a Lie subgroup

of G. The right quotient P/H is canonically isomorphic to the associated
bundle P ×G (G/H). A reduction of structure group to H of P is a principal
H-bundle P ′ equipped with a bundle map ϕ : P ′ → P that commutes
with the right H-action. The image of ϕ contains a unique right H-orbit in
each fiber of P and thus factors to a section of the associated bundle P/H.
Conversely, the preimage in P of a section of P/H is a reduction of structure
group of P to H.

A gauge transformation of a principal bundle π : P → M is a bundle
automorphism (i.e. a diffeomorphism h : P → P such that π ◦ h = π) that
commutes with the right action of G. The group of gauge transformations
is canonically identified with the group of smooth sections of the associated
bundle

Aut(P )
def
= P ×G G ,

where G acts on itself by conjugation.

1.2. Connections, curvature. Every u ∈ g defines a vector field on P by
taking the derivative of the G-action, that we denote by Xu. The vector
fields Xu are tangent to the fibers of the bundle, and the map u 7→ Xu

defines a trivialization of the subbundle TF of TP tangent to the fibers.

Definition 1.1. A (principal) connection on P is a 1-form Θ with values in
g, satisfying the following properties:

• Θ(Xu) = u for all u ∈ g
• g∗Θ = Adg ◦Θ for all g ∈ G.

The difference between two principal connections Θ and Θ′ is a 1-form
with values in g satisfying the following properties:

• (Θ−Θ′)(Xu) = 0 for all u ∈ h,
• g∗(Θ−Θ′) = Adg ◦ (Θ−Θ′) for all g ∈ G.

It thus factors to a 1-form on M with values in Ad(P ). Hence the space
Conn(P ) of principal connections on P is an affine space over the space
Ω1(M,Ad(P )).

The kernel of a principal connection is a distribution transverse to TF
and defines an Ehresmann connection with holonomy in G. The 2-form

RΘ = dΘ +
1

2
[Θ,Θ]

with values in g has the following properties:
• RΘ(Xu, ·) = 0 for all u ∈ g,
• g∗RΘ = Adg ◦RΘ for all g ∈ G.

It follows that this form factors to a 2-form on M with values in Ad(P )
called the curvature form of Θ, and that we still denote RΘ.
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Recall that, given a smooth map f from a manifold N to M , one can
pull-back a principal bundle P →M by setting

f∗P = {(x, p) ∈ N × P | π(p) = f(x)} .

If P is equipped with a principal connection Θ, then f∗Θ is a principal
connection on f∗P with curvature form f∗RΘ.

1.3. Flat bundles. The curvature form RΘ vanishes if and only if the dis-
tribution ker(Θ) is integrable, in which case the connection is called flat.
The connection Θ is flat if and only if P locally admits parallel sections, i.e.
section s such that s∗Θ ≡ 0.

Given ρ a representation of π1(M) into G, define

Pρ = M̃ ×G/〈(x, g) ∼ (γ · x, ρ(γ)g), γ ∈ π1(M)〉 .

Then Pρ is a principal G-bundle and the “trivial” flat connection on M̃ ×G
factors to a flat connection Θρ on Pρ.

Conversely if P is a principal bundle equipped with a flat connection Θ,
local parallel sections globalize over the universal cover, and one deduces that
(P,Θ) is isomorphic to (Pρ,Θρ) for a representation ρ called the holonomy of
the flat connection. Actually, the holonomy is only defined up to conjugation
in G (corresponding to the choice of a trivialisation over the universal cover).

Given a left action of G on a manifold V , we have a canonical isomorphism

Pρ ×G V 'M ×ρ V
def
= M̃ × V/〈(x, v) ∼ (γ · x, ρ(γ)g), γ ∈ π1(M)〉 .

If s is a section of the fiber bundle M ×ρ V → M , the lift s̃ of s to M̃ is a
map from M̃ to V which is ρ-equivariant, i.e. satisfies

s̃(γ · x) = ρ(γ) · s̃(x)

for all γ ∈ π1(M). Conversely, any ρ-equivariant map s̃ : M̃ → V factors to
a section s of M ×ρ V . If ω is a G-invariant form on V , then the form s̃∗ω

on M̃ is π1(M)-invariant and thus factors to a form on M denoted s∗ω.

1.4. Characteristic classes and the Chern–Weil homomorphism. Let
EG be a contractible CW complex equipped with a free and proper right ac-
tion of the topological group G. The quotient space BG is called a classifying
space for the (topological) group G and EG a universal principal G-bundle.

It is universal in the sense that, given any principal G-bundle P → M ,
there exists a continuous map fP : M → BG, such that P is isomorphic
to the pull-back of the bundle EG by fP . Moreover, fP is unique up to
homotopy. In particular, any two classifying spaces are homotopy equivalent.

Definition 1.2. Let P → M be a principal G-bundle. The algebra of
characteristic classes of P is the image of the homomorphism

f∗P : H•(BG,C)→ H•(M,C) .

Here, the cohomology can a priori be taken with coefficients in an arbitrary
domain.

Let Sym•inv(g
∨) denote the graded algebra of C-valued polynomials on g

invariant under the adjoint action, with grading given by twice the degree.
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We will always identify homogeneosu polynomials of degree k with symmetric
k-linear forms.

Let P → M be a principal G-bundle and Θ a connection on P . For any
homogeneous polynomial f in Symk

inv(g
∨), the form

CWf (Θ)
def
= f(RΘ)

is a well-defined 2k-form onM with coefficients in C, which we call a Chern–
Weil form.

Note that Chern–Weil forms are natural with respect to pull-backs: if
P →M is a principal bundle equipped with a connection Θ and ϕ : N →M
is a smooth map, then

CWf (ϕ∗Θ) = ϕ∗CWf (Θ) .

One can show that CWf (Θ) is closed, and that its de Rham cohomology
class cwf (P ) does not depend on the connection. We thus get a homomor-
phism of graded algebras

(4) ΦP : Sym•inv(g
∨) → H•(M,C)
f 7→ cwf (P )

.

Theorem 1.3 (Chern–Weil). There exists a homomorphism of graded alge-
bras

ΦEG : Sym•inv(g
∨)→ H•(BG,C)

such that, for any principal bundle P →M , the following diagram commutes:

Sym•inv(g
∨)

ΦEG //

ΦP ''

H•(BG,C)

f∗P
��

H•(M,C) .

Moreover, when G is compact, ΦEG is an isomorphism.

Remark 1.4. The notation ΦEG is meaningful here: ΦEG is formally the
homomorphism of (4) of the universal principal bundle, and it is indeed
constructed as an inductive limit of ΦPn for principal bundles Pn “approach-
ing” EG.

Remark 1.5. IfG is not compact, letK be a maximal compact subgroup ofG.
Then BK = EG/K is a classifying space for K and the fibration BK → BG
is a homotopy equivalence since its fibers G/K are contractible. We thus
get that H•(BG,C) ' H•(BK,C). Over a manifold M , this translates into
the fact that every principal G-bundle P admits a reduction of structure
group P ′ to K, unique up to homotopy, and the characteristic classes of P
are those of P ′.

The integral structure on the cohomology of BG can be transported to
Sym•inv(g

∨):

Definition 1.6. A polynomial Sym•inv(g
∨) will be called integral (resp. ra-

tional) if ΦEG(f) belongs to the image of H•(BG,Z) (resp. H•(BG,Q)) in
H•(BG,C).
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If f is integral, then for every principal bundle P → M the Chern–Weil
class cf (P ) belongs to H•(M,Z). More generally, let c1, . . . , cn be a basis of
H•(BG,Z). Then, for any f ∈
Sym•inv(g

∨), we can write

ΦEG(f) =
n∑
i=1

αici , αi ∈ C ,

and get that, for any principal bundle P →M , the Chern–Weil class cwf (P )
belongs to the cohomology with coefficients in the submodule VectZ(α1, . . . , αn) ⊂
C. This gives strong rational properties to Chern–Weil classes, which live a
priori in the de Rham cohomology.

1.5. Chern–Simons forms. We recall without proofs the general setting
of Chern–Simons theory and refer to the initial paper of Chern–Simons [11]
for details.

Fix a principal G-bundle P over a manifold M and a polynomial f ∈
Symk

inv(g
∨). Given two connections Θ0,Θ1 on P , the difference between the

Chern–Weil forms
CWf (P,Θ1)− CWf (P,Θ0)

is exact. Chern–Simons theory provides a way to construct a primitive to
this form, which is well defined up to an exact term.

Recall that the space Conn(P ) of principal connections on P is an affine
space over Ω1(M,Ad(P )). Given Θ ∈ Conn(P ) and Ψ ∈ TΘ Conn(P ) =
Ω1(M,Ad(P )), we set

Af (Ψ) = kf(Ψ, RΘ, . . . , RΘ) .

We see the map Af as a 1-form on Conn(P ) with values in Ω2k−1(M,C).
We will denote by D the exterior derivative on Conn(P ), to avoid confusion
with the exterior derivative onM . In particular, DAf is a 2-form on Conn(P )

with values in Ω2k−1(M,C), while

dAf : Ψ 7→ d(Af (Ψ))

is a 1-form on Conn(P ) with values in Ω2k(M,C).
With a bit of familiarity with differential calculus on a vector bundle with

connection, one can prove the following formulae:

(5) dAf (Ψ) = kf(dΨ + [Θ,Ψ], RΘ, . . . , RΘ) =
d

dt |t=0
CWf (Θ + tΨ) .

(6) DAf (Ψ1,Ψ2) = −k(k − 1)df(Ψ1,Ψ2,ΩΘ, . . . ,ΩΘ) .

The identity (5) can be re-written as

(7) dAf = D CWf ,

where CWf is seen as a function on Conn(P ) with values in Ω2k(M,C).
The identity (6) implies that DAf has coefficients in the space of exact

forms on M .
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Definition 1.7. Given a homogeneous G-invariant polynomial f on g, we
define the Chern–Simons form of a piecewise smooth path (Θt)t∈[0,1] in
Conn(P ) by

CSf ((Θt)t∈[0,1]) =

∫ 1

t=0
Af (Θ̇t)dt .

In particular we define the Chern–Simons form of a pair of connections
(Θ0,Θ1) ∈ Conn(P )2 as the Chern–Simons form of the straight path between
them:

CSf (Θ0,Θ1) = CSf (((1− t)Θ0 + tΘ1)t∈[0,1]) .

Like Chern–Weil forms, Chern–Simons forms are natural with respect to
pull-backs: if P →M is a principal bundle equiped with a pair of connections
Θ0,Θ1 and ϕ : N →M is a smooth map, then

CSf (ϕ∗Θ0, ϕ
∗Θ1) = ϕ∗CSf (Θ0,Θ1) .

From (7), we get that the Chern–Simons form is a primitive of the differ-
ence between the Chern–Weil forms:

Proposition 1.8. For any piecewise smooth path (Θt)t∈[0,1] in Conn(P ), we
have

d CSf ((Θt)t∈[0,1]) = CWf (Θ1)− CWf (Θ0) .

This already shows that the difference between the Chern–Simons forms
of two paths with the same endpoints is a closed form. In fact, since DAf
takes values into the space of exact forms by (6), the Stokes formula (in the
infinite dimensional space Conn(P )) shows that this difference is exact.

Proposition 1.9. For any piecewise smooth path (Θt)t∈[0,1] in Conn(P ), the
form

CSf ((Θt)t∈[0,1])− CSf (Θ0,Θ1)

is exact.
In particular, for any (Θ0,Θ1,Θ2) ∈ Conn(P )3, the form

CSf (Θ0,Θ1) + CSf (Θ1,Θ2)− CSf (Θ0,Θ2)

is exact.

If, for various reasons, the form CSf (Θ0,Θ1) is closed, then it defines a
de Rham cohomology class on M that we denote csf (Θ0,Θ1). By Proposi-
tion 1.9, the Chern–Simons form of any smooth path from Θ0 to Θ1 gives a
representative of this class.

Let us mention three situations where Chern–Simons forms lead to coho-
mological invariants.

1.5.1. Gauge transformations. Assume that Θ1 = h∗Θ0 for some gauge
transformation h of P . Then RΘ1 = Ad−1

h ◦RΘ0 and, since f is G-invariant,
we get that CWf (Θ1) = CWf (Θ0). Hence CSf (Θ0, h

∗Θ0) is closed.
If there exists a smooth path (ht)t∈[0,1] in the gauge group of P such that

h0 = IdP and h1 = h, then one can verify that

csf (Θ0, h
∗Θ0) = [CSf (h∗tΘ0)t∈[0,1]] = 0 .
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thus Chern–Simons classes can help distinguish connected components in the
gauge group.

In fact, one can interpretate the Chern–Simons class csf (Θ0, h
∗Θ0) as a

Chern–Weil class on M × S1. Indeed, define a principal bundle Ph over
M × S1 by

Ph = P × [0, 1]/(p, 0) ' (h(p), 1) .

Let p1 : M × S1 → M denote the projection on the first factor and let [dt]
denote the pull-back to H1(M × S1) of the generator of H1(S1,Z).

Proposition 1.10. For every f ∈ Sym•inv(g
∨) and every connection Θ on P ,

we have
p∗1 csf (Θ, h∗Θ) ∧ [dt] = cwf (Ph) .

Corollary 1.11. If f is integral, then csf (Θ, h∗Θ) belongs to the image of
H•(M,Z) in H•(M,C).

1.5.2. Flat connections. When Θ0 and Θ1 are flat, CWf (Θ0) = CWf (Θ1) =
0, hence CSf (Θ0,Θ1) is closed. The following immediate proposition is key
in proving local rigidity of Chern–Simons invariants:

Proposition 1.12. Let (Θt)t∈[0,1] be a smooth path of flat connections on
P . Then

csf (Θ0,Θ1) = 0 .

Proof. By Proposition 1.9, we have

csf (Θ0,Θ1) = [CSf ((Θt)t∈[0,1])] .

From the definition, we see that CSf ((Θt)t∈[0,1]) = 0 since RΘt = 0 for
all t. �

Assume f is integral. Let ρ0 and ρ1 be two representations of π1(M) intoG
such that the associated principal bundles Pρ0 and Pρ1 are isomorphic. Then
there exist two flat connections Θ0 and Θ1 on the same principal bundle with
respective holonomies ρ1 and ρ2. Moreover, Θ0 and Θ1 are uniquely defined
up to a gauge transformation. By Corollary 1.11 and Proposition 1.9, we
thus get a well-defined cohomology class

csf (ρ0, ρ1)
def
= csf (Θ0,Θ1) mod Z .

Thus, while Chern–Weil classes can distinguish connected components in
Hom(π1(M), G) by distinguishing the homeomorphism type of the associated
principal bundles, Chern–Simons classes can distinguish between connected
components of representations whose associated principal bundles are iso-
morphic.

1.5.3. Chern–Simons theory on 3-manifolds. Though this paragraph is not
useful to the rest of the paper, we thought that including it would clarify
how our presentation of Chern–Simons theory relates to its extensive devel-
opments in three-dimensional topology.

Any simple Lie algebra admits an invariant bilinear symmetric form

κ : (u, v) 7→ Tr(aduadv)
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called the Killing form. Moreover there is a constant a 6= 0 such that aκ is
integral in the sense of Definition 1.6.

Assume moreover that G is connected and simply connected. Because
π2(G) = {0}, every principal G-bundle over a 3-manifold is trivial and thus
carries a flat connection with trivial holonomy, that we denote by D.

Now let P be a principal G-bundle over a closed 3-manifold M with a
connection Θ. The form

CSaκ(D,Θ)

is trivially closed since it is a 3-form. Moreover, its value modulo Z does not
depend on the choice of the trivialization D since aκ is integral. Integrating
over M , one can thus associate a Chern–Simons invariant

cs(Θ)
def
=

∫
M

CSaκ(D,Θ) ∈ C/Z

to any principal G-bundle with a connection Θ. One can apply this for
instance to the Levi–Civita connection of a Riemannian metric to define the
Chern–Simons invariant of a closed Riemannian 3-manifold.

2. The algebra of invariant forms on symmetric spaces

Recall that we have fixed a connected semisimple Lie group G and an
involutive isomorphism σ of G, and denoted by H the neutral component
of the subgroup fixed by σ. Up to quotienting G, we can assume without
loss of generality that H does not contain a non-trivial normal subgroup of
G, so that G acts faithfully on the symmetric space G/H. The involution σ
induces an involution of G/H which fixes the base point o def

= 1GH and acts
as −Id on ToG/H.

In this section, we describe the algebra Ω•inv(G/H,C) of G-invariant forms
on G/H, relying mostly on the work of Cartan [10] and Borel [6]. Our goal
is to prove that this algebra is generated by Chern–Weil forms and Chern–
Simons forms associated to G-invariant connections on automorphic bundles
over G/H.

2.1. Invariant forms on symmetric spaces. The study of invariant dif-
ferential forms on symmetric spaces started with Élie Cartan and was carried
on by his son Henri. A first elementary but useful result is the following:

Proposition 2.1 (E. Cartan). Every G-invariant form on G/H is closed.

In other words, the complex of G-invariant forms Ω•inv(G/H,C) has triv-
ial differential and is thus isomorphic to its cohomology. A series of iso-
morphisms identifies it canonically with the cohomology of the dual compact
symmetric space.

Define first the complexification gC, hC , GC and HC of g, h, G and H
respectively in the following way:

• gC is the complex Lie algebra g⊗R C,
• hC is the complex Lie subalgebra h⊗R C,
• GC is the neutral component of Aut(gC),
• HC is the neutral component of the subgroup preserving hC.
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Note that, because gC is a semisimple Lie algebra, it is the Lie algebra of
the complex group GC. Since hC is the subalgebra fixed by an involution, it
is the Lie algebra of its stabilizer.1

Recall that a Cartan involution of an algebraic group GC is an involutive
isomorphism whose set of fixed points is compact. By a result of E. Car-
tan (see also [22]), we can always choose a Cartan involution θ of GC that
commutes with σ. Moreover, it is unique up to conjugation by HC. Define
GU to be subgroup of GC fixed by θ, HU = GU ∩HC , and gU and hU their
respective Lie algebras. The groups GU and HU are compact real forms of
GC and HC. In particular, they are connected (since the complex groups are
connected and retract to their maximal compact subgroup). We call GU/HU

the dual compact symmetric space.
given a linear representation V of a group G over a field k and l an

extension of k, denote by Λ•l (V
∨)G the subalgebra of G-invariant forms in

the algebra of alternate k-multilinear forms.

Proposition 2.2. There are canonical isomorphisms

Ω•inv(G/H,C) ' Λ•C((g/h)∨)H ' Λ•C((gC/hC)∨)HC

' Λ•C((gU/hU )∨)HU ' Ω•inv(GU/HU ,C)
' H•(GU/HU ,C) .

Proof. The first isomorphism is well-known: every G-invariant form on G/H
restricts to an alternate form on g/h ' ToG/H which is invariant under the
adjoint action of H, and conversely, every such alternate form extends in a
unique way to a G-invariant form on G/H.

For the second isomorphism, note first that everyH-invariant R-multilinear
form α on g/h extends uniquely to an H-invariant C-multilinear form αC

on gC/hC = g/h ⊗R C. Since αC is H-invariant, it satisfies u · αC
def
=

d
dt |t=0

exp(−tadu)∗αC = 0 for every u ∈ h. But since gC is a complex Lie
algebra and αC is C-multilinear, the map

u 7→ u · αC

is C-linear. Hence the relation u · αC is satisfied for all u ∈ hC. Finally,
integrating this relation gives

h∗αC = αC

for all h ∈ HC since HC is connected by definition. Hence α 7→ αC gives the
second isomorphism.

The third and fourth isomorphisms are respectively the second and first
one applied to the compact symmetric space GU/HU , which has the same
complexification. Finally, on GU/HU , every closed form is cohomologous to
a unique invariant one obtained by averaging under the action of GU . Hence
the natural map

Ω•inv(GU/HU ,C)→ H•(GU/HU ,C)

1While the complexification is perfectly well-defined at the level of Lie algebras, there
is something arbitrary in our definition of the complexification of Lie group. For instance,
the complexification of SL(k,R) is the adjoint group PSL(k,C). We did not settle with a
more algebraic definition because we want to consider connected simple Lie groups such
as SO◦(p, 1), which are not necessarily algebraic.
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is an isomorphism. �

The space G equipped with the right action of H is a principal bundle over
G/H which we call the tautological H-bundle. The involution σ preserves
the Killing form of G, and since h is the eigenspace of the involution for the
eigenvalue 1, the Killing form is non-degenerate in restriction to h.

Definition 2.3. The standard principal connection on the bundle G→ G/H
is the left G-invariant form ΘG/H on G with values in h whose value at 1G
is the orthogonal projection to h (for the Killing form). We denote by RG/H
its curvature form.

For any f ∈ Sym•inv(h
∨), the Chern–Weil form

CWf (ΘG/H)

thus defines a G-invariant form on G/H. We set

Ω•even(G/H,C) = {CWf (ΘG/H), f ∈ Sym•inv(h
∨)} .

Looking at the restriction of the Chern–Weil forms to g/h and their be-
haviour under complexification, one proves the following:

Proposition 2.4. The sequence of isomorphisms given in Proposition 2.2
restrict to an isomorphism

Ω•even(G/H,C) ' H•even(GU/HU ,C) ,

where H•even(GU/HU ,C) is the algebra of characteristic classes of the tauto-
logical principal bundle of GU/HU .

Cartan and Borel gave the following description of the cohomology of
compact symmetric spaces:

Theorem 2.5 (Cartan, Borel, [6]). Let GU/HU be a compact symmetric
space, with GU and HU connected. Then there exists a subalgebra

H•odd(GU/HU ,C) ⊂ H•(GU/HU ,C) ,

generated by forms of odd degree, such that

H•(GU/HU ,C) = H•even(GU/U,C)⊗H•odd(U/U,C) .

Moreover, the pull-back map

p∗ : H•odd(U/U,C)→ H•(U,C)

induced by the projection p : U → GU/HU vanishes on H>0
even(GU/HU ,C)

and is injective on H•odd(GU/HU ,C).

While the subalgebra H•odd (GU/HU ,C) is not uniquely determined, The-
orem 2.13 below will give us a canonical way to construct it and to define a
corresponding subalgebra Ω•odd(G/H,C) ⊂ Ω•inv(G/H,C).
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2.2. Bi-invariant forms on Lie groups. A particular class of symmetric
spaces will be of interest to us: the semisimple Lie group G itself equipped
with the action of G×G given by

(g, h) · x = gxh−1 .

The corresponding involution σ of G × G is given by σ(g, h) = (h, g), the
stabilizer of the base point 1G is the diagonal subgroup ∆(G), and the cen-
tral symmetry at 1G is the map g 7→ g−1. Since it will be convenient to
distinguish between G seen as a group and G seen as a symmetric space, we
will denote the latter by XG.

The dual compact symmetric space of XG is simply the symmetric space
XGU

= GU × GU/∆(GU ). In particular, Proposition 2.2 gives an isomor-
phism

Ω•inv(XG,C) ' H•(GU ,C) .

The projection map GU ×GU → XGU
induces in cohomology a coproduct

δ : H•(GU ,C)→ H•(GU ,C)⊗H•(GU ,C) ,

giving H•(GU ,C) the structure of a Hopf algebra. Following Borel, we define:

Definition 2.6. A class x ∈ Hk(GU ,C) is primitive if

δ(x) = x⊗ 1 + (−1)k1⊗ x .

We denote by Prim(GU ) the vector space spanned by primitive classes in
H•(GU ,C), and by Prim(XG) the corresponding subspace of Ω•inv(XG). The
general structure theorem of Hopf gives the following:

Theorem 2.7 (Hopf). The inclusion Prim(GU ) ↪→ H•(GU ,C) induces an
isomorphism

Λ• Prim(GU ) ' H•(GU ,C) ,

where Λ• denotes the exterior algebra.

Consequently, we also get that

Ω•inv(XG,C) = Λ• Prim(XG) .

The space of primitive forms is further described by the work of Chevalley.
Let µ ∈ Ω1(G, g) denote Maurer–Cartan form of G, i.e. the left-invariant
1-form which is the identity at 1G. Let J ⊂ Ω•inv(XG,C) denote the square
of the ideal of forms of positive degree, i.e. the ideal generated by forms that
can be factored as a product of two forms of lower degree. The following
theorem is attributed by Borel to Cartan, Chevalley and Weil.

Theorem 2.8 (Cartan–Chevalley–Weil). Let τ : Sym>0
inv(g

∨) → Ω•inv(G,C)
be the linear map sending a symmetric k-linear form f to

f(α, [α, α], . . . , [α, α]) .

Then the kernel of τ is the ideal J and the image of τ is the set of primitive
forms Prim(XG).

Remark 2.9. Chevalley also proved that Sym•inv(g
∨) is a polynomial algebra

generated by rankC(G) elements. One deduces that

dim Sym>0
inv(g

∨)/J = dim Prim(XG) = rankC(G) .
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The formal similarity between the Cartan–Chevalley–Weil description of
primitive forms and the definition of the Chern–Simons invariants is more
than a coincidence. Let p1 and p2 denote the projections of G × G to the
first and second factor and define

ΘL = p∗2µ , ΘR = p∗1µ ,

where µ is the Maurer–Cartan form. Then ΘR and ΘL are two flat invari-
ant connections on the tautological bundle G × G → XG. The associated
adjoint bundle is canonically identified to the tangent bundle to G, and the
associated connections ∇L and ∇R respectively make the left-invariant and
right-invariant vector fields parallel.2

Theorem 2.10. For every f ∈ Symk
inv(g

∨), we have

CSf (ΘL,ΘR) =
(−1)kk!((k − 1)!

2k−1(2k − 1)!
τ(f) .

Since the image of τ generates Ω•inv(XG,C), we deduce:

Corollary 2.11. The algebra of invariant forms on XG is generated by the
Chern–Simons forms associated to the pair of connections (ΘL,ΘR) on the
tautological principal bundle.

Proof of Theorem 2.10. Set Θt = (1 − t)ΘL + tΘR and denote by Rt =
dΘt + 1

2 [Θt,Θt] its curvature, seen as a 2-form on G × G with values in g.
Since ΘL and ΘR are flat, one computes that

Rt =
−t(1− t)

2
([ΘR,ΘR] + [ΘL,ΘL]) + t(1− t)[ΘL,ΘR] .

Define ĈSf ∈ Ω2(G×G, g) by

(8) ĈSf = k

∫ 1

t=0
f(Θ̇t, Rt, . . . , Rt) .

By construction, ĈSf is the pull-back to G × G of the Chern–Weil form
CSf (ΘL,ΘR), henceCSf (ΘL,ΘR) is the pull-back of ĈSf by any section of
the bundle. Consider the section s : g 7→ (1G, g). Then s∗ΘR = 0 and
s∗ΘL = µ, hence

s∗Θ̇t = −µ
and

s∗Rt =
−t(1− t)

2
[µ, µ] .

We can thus compute:

CSf (ΘL,ΘR) = k

∫ 1

t=0
f(s∗Θ̇t, s

∗Rt, . . . , Rt)dt

= (−1)kk

(∫ 1

t=0

(
t(1− t)

2

)k−1

dt

)
f(α, [α, α], . . . , [α, α])

=
(−1)kk!((k − 1)!

2k−1(2k − 1)!
τ(f) .

2Note that both connections are indeed bi-invariant, because the right-translate of a
left-invariant vector field is another left-invariant vector field.
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�

2.3. The inclusion ισ. Let us recall the definition of the map ιG,H given
in the introduction:

Definition 2.12. The map ιG,H : G/H → XG is defined by

ιG,H(gH) = gσ(g)−1

for every class gH in G/H. This does not depend on the representative g
since hσ(h)−1 = 1G for all h ∈ H.

The map ιG,H is an inclusion of symmetric spaces. It is equivariant with
respect to the representation (Id, σ) : G→ G×G. In particular, every invari-
ant form on XG can be pulled-back by ιG,H to a G-invariant form on G/H.
Moreover, this operation commutes with the comparison isomorphisms, i.e.
we have the following diagram:

Ω•inv(XG,C)
ι∗G,H //

'
��

Ω•inv(G/H,C)

'
��

H•(GU ,C)
ι∗GU,HU// H•(GU/HU ,C) .

We can now state our refined version of Cartan–Borel’s theorem for G-
invariant forms on a (not necessarily compact) symmetric space:

Theorem 2.13. The space Ω•inv(G/H,C) is isomorphic to

Ω•even(G/H,C)⊗ Ω•odd(G/H,C) ,

where Ω•even(G/H,C) is the algebra of Chern–Weil forms of the standard
connection on the tautological principal H-bundle and

Ω•odd(G/H,C) = ι∗G,HΩ•inv(G,C) .

Note that this is just a reformulation of Theorem 4 from the introduction
in the general case where G/H is not assumed compact. The two theorems
are equivalent thanks to the comparison isomorphisms.

To prove the theorem, we will use the following cute and elementary lemma
of linear algebra:

Lemma 2.14. Let E be a Euclidean vector space, F1 and F2 any two sub-
spaces, and π1 and π2 the respective orthogonal projections to F1 and F2.
Then

F1 = imπ1|F2
⊕ kerπ2|F1

.

Proof. Let us first compute dimensions: we have

dim imπ1|F2
= dimF2 − dim kerF2 ∩ F⊥1
= dimF2 − (dimE − dim(F⊥2 + F1)) + dimF1 ∩ F⊥2
= dimF2 − dimE + dimF⊥2 + dimF1 − dimF1 ∩ F⊥2
= dimF2 − dim kerπ2|F1

.

It is thus enough to prove that imπ1|F2
∩ kerπ2|F1

= {0}.



COHOMOLOGICAL INVARIANTS OF REPRESENTATION VARIETIES 21

Let v be a vector in imπ1|F2
∩ kerπ2|F1

, and write v = π1(w), w ∈ F2.
Then

〈v, v〉 = 〈π1(w), w〉 since w − π1(w) ∈ F⊥1
= 〈π2 ◦ π1(w), w〉 since w ∈ F2

= 〈π2(v), w〉 = 0 .

Hence v = 0 since E is euclidean. �

Proof of Theorem 2.13. Thanks to the comparison isomorphisms, it is enough
to prove the theorem for compact groups, for which invariant forms are in
bijection with cohomology classes. The fact that the cohomology of G/H
is the tensor product of an even part and an odd part is already given by
Cartan and Borel, and the only thing we need to prove is that one can choose

H•odd(G/H,C) = ι∗G,HH•(G,C)

in their theorem.
Let I denote the ideal in H•(G/H,C) generated by H>0

even(G/H,C). Since
Theorem 2.5 already tells us that H•(G/H,C) is a tensor product, what we
need to prove is mainly that ι∗G,HH•(G,C) is a complement to I.

Fix an integer k, and let E be the space of H-invariant alternate k-forms
on g, which we equip with an H-invariant scalar product. Consider the
following subspaces of E:

• the subspace F1 of forms that are pulled back from an H-invariant
form on g/h,
• the subspace F2 of G-invariant forms.

Recall that F1 identifies naturally with Hk(G/H,C), while F2 identifies
naturally with Hk(G,C). Through this identification, we see the pull-back
maps π∗ : Hk(G/H,C) → Hk(G,C) and ι∗G,H : Hk(G,C) → Hk(G/H,C) as
maps between F1 and F2.

Let π1 and π2 denote respectively the orthogonal projections to F1 and F2.
We claim that we have the following identifications :

(9) π∗ = π2|F1
,

(10) ι∗G,H = 2kπ1|F2

• Proof of (9): Let ω be a G-invariant k-form on G/H and ω′ its
pull-back to G, which is a closed left-invariant k-form on G. It is
cohomologous to a unique bi-invariant form ω′ on G, obtained by
averaging ω′ under the right action of G (with respect to the Haar
probability measure on G).

Since ω′ is already left invariant, the restriction of ω′ to T1GG = g
is given by

ω′1G =

∫
G

Ad∗gω
′
1G

dg .

Since averaging under the adjoint G-action is the orthogonal projec-
tion to F2, we conclude that

π∗[ω] = π2([ω])
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after the appropriate identifications.

• Proof of (10): Denote by p the projection g→ g/h and j : g/h→ g be
the section of p with image h⊥. Since the derivative of the involution
σ is the identity on h and minus the identity on h⊥, we get that

doιG,H = 2j ,

where o denotes the basepoint 1GH.
Note that j ◦ p : g → g is the orthogonal projection to h⊥, from

which one easily deduces that p∗j∗ : E → F1 is the orthogonal pro-
jection π1 on F1.

Let now ω be a biinvariant form on G and ω′ its pull-back to G/H.
Then we have

p∗(ω′o) = 2kp∗j∗ω1G = 2kπ1(ω1G) .

which rewrites
ι∗G,H [ω] = 2kπ1([ω])

after the apropriate identifications.
Conclusion of the proof: Applying Lemma 2.14, we get that

H•(G/H,C) = kerπ∗ ⊕ ι∗G,HH•(G,C) .

By Theorem 2.5, the kernel of π∗ is the ideal I generated by H>0
even(G/H,C).

Hence H•(G/H,C) is generated by H•even(G/H,C) and ι∗G,H(G,C).
The rest is a completely general argument: let H•odd(G/H,C) be a subal-

gebra such that

H•(G/H,C) = H•even(G/H,C)⊗H•odd(G/H,C) .

quotienting by the ideal I we get that H•odd(G/H,C) ' ι∗G,HH•(G,C). The
inclusions of H•even(G/H,C) and ι∗G,HH•(G,C) induce a morphism

H•even(G/H,C)⊗ι∗G,HH•(G,C)→ H•(G/H,C) ' H•even(G/H,C)⊗H•odd(G/H,C)

which is surjective. Since both algebras have the same dimension over C, it
is an isomorphism. �

3. Local rigidity of cohomological invariants

This section will conclude the proof of Theorem 1 and its corollaries.

3.1. Smooth families of principal bundles. Let us first introduce prop-
erly the notion of smooth family of bundles and smooth family of sections
used informally in the introduction. Here, the term “bundle” is meant to
include principal bundles as well as their associated bundles.

We call (Et)t∈[0,1] a smooth family of bundles on a manifold M if there is
a smooth bundle E over M × [0, 1] such that Et is the pull-back of E under
the map x 7→ (x, t). If (Et)t∈[0,1] is a smooth family of principal G-bundles
on M , we call (st)t∈[0,1] a smooth family of sections of Et is each st is the
pull-back under x 7→ (x, t) of a smooth section s on E.

The following classical lemma can be attributed to Ehresmann:
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Lemma 3.1. Let M be a smooth manifold and E a bundle over M × [0, 1].
Then E is isomorphic to p∗1E0, where p1 : M × [0, 1]→ M is the projection
to the first factor.

More informally, any smooth family of vector bundles is trivial. As a
consequence we have the following:

Corollary 3.2. Let (Et)t∈[0,1] be a smooth family of bundles over M and s a
smooth section of E0. Then there exists a smooth family of sections (st)t∈[0,1]

of (Et)t∈[0,1] such that s0 = s. Moreover, if (s′t)t∈[0,1] is another such family,
then s′t is isotopic to st for all t.

The main example we will be interested in is smooth families of flat bun-
dles. Recall that, fixing a finite generating set S of π1(M), one can see
Hom(π1(M), G) as an analytic subset of the analytic manifold GS . We call
a path (ρt)t∈[0,1] in Hom(π1(M), G) smooth if it t 7→ ρt is a smooth map
from [0, 1] to GS (equivalently, if t 7→ ρt(γ) is smooth in G for all t). The
space Hom(π1(M), G) is locally connected by smooth arcs, in the sense that
any two representations ρ0 and ρ1 in the same connected component are the
endpoints of a smooth path in Hom(π1(M), G).

Let V be a manifold equipped with a G-action. If (ρt)t∈[0,1] is a smooth
family of representations then the family

(M ×ρt V )t∈[0,1]

is a smooth family of bundles. In particular, (Pρt)t∈[0,1] is a smooth family
of principal bundles. By Lemma 3.1, this family is trivial, and we deduce:

Corollary 3.3. Let (ρt)t∈[0,1] be a smooth family of representations of π1(M)
into G. Then there exists a principal G-bundle P and a smooth family of
flat connections (Θt)t∈[0,1] on P such that Θt has holonomy ρt.

Moreover, if P ′ is another principal G-bundle and (Θ′t)t∈[0,1] another fam-
ily of flat connections with monodromies (ρt)t∈[0,1], then there exists a smooth
family (ϕt)t∈[0,1] of bundle isomorphisms from P to P ′ such that Θ′t = ϕ∗tΘt.

In particular, the topology of the bundle Pρ is constant when ρ varies in
a connected component of Hom(π1(M), G).

3.2. Proof of Theorem 1. We now have a sufficient understanding of in-
variant forms on symmetric spaces to prove Theorem 1. Clearly, it is enough
to prove it for ω in a subset of Ω•inv(G/H,C) generating the whole algebra.
We will thus prove it separately for ω ∈ Ω•even(G/H,C) (using Chern–Weil
theory) and for ω ∈ ι∗G,H Prim(XG) (using Chern–Simons theory). While
both arguments are probably well-known it is worth including them here for
completeness.

3.2.1. The even case. Let us first reinterpret the definition of Ω•even(G/H,C)
after pull-back by a section of a flat G/H bundle. Fix ω ∈ Ω•even(G/H,C)
and let f ∈ Sym•inv(h

∨) be such that

ω = f(RG/H) ,

where RG/H is the curvature of the standard connection on the tautological
principal H-bundle G→ G/H.
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Proposition 3.4. For any manifold M , any representation ρ : π1(M)→ G
and any smooth section s of the flat bundle M ×ρ (G/H), we have

[s∗ω] = cwf (Pρ(s)) ,

where Pρ(s) is the reduction to H of the flat G-bundle Pρ given by s.

Proof. Denote by PG/H the tautological principal H-bundle over G/H and
let s̃ be the lift of s to M̃ . Then π1(M) acts on s̃∗PG/H via ρ, and, by
construction, the quotient π1(M)\s̃∗PG/H is the principal H-bundle Pρ(s).

Now, the standard connection ΘG/H on PG/H pulls back to a π1(M)-
invariant connection on s̃∗PG/H which factors to a connection s∗ΘG/H on
Pρ(s), with curvature s∗RG/H . By naturality of the pull-back, we have

cwf (Pρ(s)) = [CWf (s∗ΘG/H)]

= [f(s∗RG/H)]

= [s∗ω] .

�

Corollary 3.5. For any manifoldM , any smooth path (ρt)t∈[0,1] in Hom(π1(M), G)
and any smooth family of sections st of Pρt , we have

[s∗tω] = [s∗0ω]

for all t.

Proof. The principalH-bundles Pρt(st) form a smooth family of bundles over
M . By Lemma 3.1, they are all isomorphic and, in particular, they have the
same characteristic classes. Hence

[s∗tω] = cwf (Pρt(st)) = cwf (Pρ0(s0)) = [s∗0ω]

for all t ∈ [0, 1]. �

3.2.2. The odd case. Now, let ρ1, ρ2 be two representations of π1(M) into G
and s a section of the flat bundleM×(ρ1,ρ2)XG. Denote by (Pρi ,Θρi) the flat
principal bundles associated to ρi, i = 1, 2. Then s induces an isomorphism
of principal bundles

ϕs : Pρ2 → Pρ1
(x, g) 7→ (x, s̃(x)g)

.

Choose ω ∈ Prim(XG) and let f ∈ Symk
inv(g

∨) be such that ω = (−1)kk!((k−1)!
2k−1(2k−1)!

τ(f).

Proposition 3.6. For any manifoldM , any pair of representations (ρ1, ρ2) ∈
Hom(π1(M), G)2 and any smooth section s of the flat XG-bundle associated
to (ρ1, ρ2), we have

[s∗ω] = csf (Θρ1 , ϕ
∗
sΘρ2) .

In particular, for any representation ρ ∈ Hom(π1(M), G) and any smooth
section s of the corresponding flat G/H-bundle, we have

[s∗(ι∗G,Hω)] = csf (Θρ, ϕ
∗
ιG,H◦sΘσ◦ρ) .
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Proof. Denote by PXG
the tautological principal G-bundle over XG and ΘL

and ΘR the two invariant connections on PXG
given respectively by left and

right parallelism.
Let s̃ be the lift of s to M̃ . Then π1(M) acts on s̃∗PXG

via (ρ1, ρ2) and,
by construction, the quotient π1(M)\s̃∗PXG

equipped with the pulled-back
connections s∗ΘL and s∗ΘR is isomorphic to the principal G-bundle Pρ1
equipped with the flat connections Θρ1 and ϕ∗sΘρ2 .

Now, by Theorem 2.10, we have

ω = CSf (ΘL,ΘR) ,

and by naturality under pull-back, we deduce that

[s∗ω] = [s∗CSf (ΘL,ΘR)]

= [CSf (s∗ΘL, s
∗ΘR)]

= csf (Θρ1 , ϕ
∗
sΘρ2) .

The second part of the theorem is an immediate consequence of the first
part, since ιG,H ◦ s̃ is (ρ, σ ◦ ρ)-equivariant. �

Corollary 3.7. For any manifold M , any smooth path (ρ1,t, ρ2,t)t∈[0,1] in
Hom(π1(M), G×G) and any smooth family of sections st ofM×(ρ1,t,ρ2,t)XG,
we have

[s∗tω] = [s∗0ω]

for all t.
In particular, for any smooth path (ρt)t∈[0,1] and any smooth family of

sections st of M ×ρt (G/H), we have

[s∗t (ι
∗
G,Hω)] = [s∗0(ι∗G,Hω)]

for all t.

Proof. By Lemma 3.1, there exists a principal G-bundle P over M with two
smooth families of connections (Θ1,t)t∈[0,1] and (Θ2,t)t∈[0,1] such that

(P,Θ1,t,Θ2,t) ' (Pρ1,t ,Θρ1,t , ϕ
∗
stΘρ2,t)

for all t.
By Proposition 3.6, we have

[s∗tω]− [s∗0ω] = csf (Θ1,t,Θ2,t)− csf (Θ1,0,Θ2,0)

= csf (Θ2,t,Θ2,0)− csf (Θ1,t,Θ1,0) .

Since Θ2,0 and Θ2,t (resp. Θ1,0 and Θ1,t) are joined by a smooth path of
flat connections, we conclude that

[s∗tω] = [s∗0ω]

by Proposition 1.12. �

3.2.3. Conclusion of the proof. We have proven Theorem 1 for ω ∈ Ω•even(G/H,C)
(Corollary 3.5) and for ω ∈ ι∗G,H Prim(XG) (Corollary 3.7). By Theo-
rem 2.7, Prim(XG) generates Ω•inv(XG); hence ι∗G,H Prim(XG) generates
Ω•odd(G/H,C). Since Ω•inv(G/H,C) = Ω•even(G/H,C) ⊗ Ω•odd(G/H,C) by
Theorem 2.13, we conclude that Theorem 1 holds for any G-invariant form.
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3.3. Continuous group cohomology. The continuous cohomology H•c(G,C)
(with constant coefficients) of a Lie groupG is the cohomology of the complex
C•c (G,C)G, where Ckc (G,C)G is the space of G-invariant continuous functions
on Gk+1, equipped with the usual differential:

df(g0, . . . , gk+1) =

k+1∑
j=0

(−1)jf(g0, . . . , ĝj , . . . , gk+1) .

When G is connected, The Van Est isomorphism identifies H•c(G,C) with
the algebra of G-invariant forms on the symmetric space G/K. To be more
precise, recall that ifM is a manifold, there is a map π fromM to a classifying
space of π1(M), unique up to homotopy, which induces the identity on the
fundamental groups.

Theorem 3.8 (Van Est). There is an isomorphism of graded algebras

VE : H•c(G,C)→ Ω•inv(G/K,C)

such that, for any smooth manifold M and any representation ρ : π1(M)→
G, the following diagram commutes:

H•c(G,C)
VE //

ρ∗

��

Ω•inv(G/K,C)

ρ∗

��
H•(Γ,C)

π∗
// H•(M,C) .

Here the map ρ∗ : H•c(G,C) → H•(Γ,C) is the pull-back map on group
cohomology while ρ∗ : Ω•inv(G/K,C) → H•(M,C) maps ω to [s∗ω] for any
smooth section of M ×ρ (G/K).

Proof of Corollary 2. Let Γ be a finitely presented group. Assume first that
Γ is the fundamental group of an aspherical manifold M . Then the map
π∗ : H•(Γ,C) → H•(M,C) is an isomoprhism. Let (ρt)t∈[0,1] be a smooth
family of representations of Γ into G and let α be a continuous cohomology
class in H•c(G,C). Then we have

π∗ρ∗tα = ρ∗t VE(α) by Theorem 3.8
= ρ∗0 VE(α) by Theorem 1
= π∗ρ∗0α ,

and we conclude that ρ∗tα = ρ∗0α for all t since π∗ is injective.
In general, while Γ need not be the fundamental group of an aspherical

manifold, one can always find for any n ∈ N a manifoldM such that π1(M) =
Γ and πk(M) = {0} for all 2 ≤ k ≤ n. Then π∗ : Hk(Γ,C) → Hk(M,C)
is an isomorphism for all 1 ≤ k ≤ n. Applying the above arguments thus
gives that ρ∗tα is constant in t for all α ∈ H≤n(Γ,C). Since n is arbitrary,
the conclusion follows. �

3.4. Volume of locally homogeneous spaces. In this section we prove
Corollary 3, namely the volume rigidity of manifolds locally modelled on a
reductive homogeneous space G/H.
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The Killing form of g restricted to h⊥ ' g/h extends to a G-invariant
metric on G/H. Moreover, G/H can be oriented since H is assumed to be
connected. Hence the metric induces a G-invariant volume form volG/H .

Let (devt, ρt)t∈[0,1] be a smooth family of G/H-structures on a closed
manifold M . By definition, the volume of the G/H-structure (devt, ρt) is
the number ∫

M
dev∗t volG/H .

When G/H is symmetric, Corollary 3 is thus a direct application of Theorem
1, taking s̃t = devt and ω = volG/H .

We prove the general case where G is semisimple and H ⊂ G is reductive
by lifting the G/H-structure to a XG-structure on an H/Λ-bundle over M .

Proof of Corollary 3. Fix a uniform lattice Λ inH (it exists by Borel–Harish-
Chandra’s theorem).

Let M be a closed manifold and (devt, ρt) a smooth family of G/H-
structures on M . Let P̃ → M̃ denote the pull-back of the tautological
principal H-bundle over G/H by devt and and P → M its quotient under
π1(M) (the bundle P does not depend on t by Lemma 3.1).

By construction, the map devt lifts to a local diffeomorphism d̂evt : P̃ →
XG = G, which satisfies

d̂evt(γ · p) = ρt(γ)d̂evt(p)

for γ ∈ π1(M) and

d̂evt(p · λ) = d̂evt(p)λ

for all λ ∈ Λ.
Setting

ρ̂t : π1(M)× Λ → G×G
(γ, λ) 7→ (ρt(γ), λ) ,

we thus get that (d̂evt, ρ̂t) defines a XG-structure on the closed manifold
P/Λ. Applying Theorem 1 to the symmetric space XG, we deduce that∫

P/Λ
d̂ev
∗
t volXG

=

∫
P/Λ

d̂ev
∗
0volXG

for all t.
On the other hand, after normalizing the volume forms of XG, H and

G/H compatibly, we have∫
P/Λ

d̂ev
∗
t volXG

= Vol(H/Λ)

∫
M

dev∗t volG/H .

We thus conclude that∫
M

dev∗t volG/H =

∫
M

dev∗0volG/H

for all t. �
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