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ABSTRACT
Several real-time applications rely on dynamic graphs to model
and store data arriving from multiple streams. In addition to the
high ingestion rate, the storage and query execution challenges are
amplified in contexts where consistency should be considered when
storing and querying the data. Our work addresses the challenges
associated with multi-stream dynamic graph analytics. We propose
a database design that can provide scalable storage and indexing,
to support consistent read-only analytical queries (present and
historical), in the presence of real-time dynamic graph updates that
arrive continuously from multiple streams.

KEYWORDS
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stream graph processing

1 INTRODUCTION
Dynamic graphs are omnipresent in the context of real-time appli-
cations that generate massive amounts of events. These events can
be seen as high-velocity data streams, whose timely analysis is crit-
ical for applications such as monitoring of cyber attacks in system
security applications [16], fraud detection in financial institutions
[16], anomaly detection in computer networks [8] and many more.

Our work considers the above-mentioned real-time use cases.
We consider a database modeled as a labeled property graph (LPG),
that is continuously updated. Updates may arrive from multiple
streams, creating a need for appropriate transaction support, in
order to avoid inconsistencies; on such a graph, we must be able to
answer analytical queries about the current graph state, as well as
historical queries.

In this paper, we present the challenges (Section 2), outline the
approach we investigate (Section 3), describe a new data structure
we propose for storing dynamic graph data, named HAL (Section 4),
together with its associated algorithms (Section 5 to Section 7).
We present an experimental evaluation showing that our system’s
specific optimizations allow it to cut a good compromise between
memory and speed, and outperform comparable systems, in Sec-
tion 9, before discussing more related work and concluding.

2 CHALLENGES
In our problem setting, we focus on systems that can continuously
ingest temporal labeled property graph (LPG) updates from multiple
streams while at the same time supporting a diverse set of graph
analytic queries with snapshot isolation consistency guarantees. Fur-
ther, we assume that the clocks at the sites where streams originate
are synchronized; this can be achieved by various techniques well-
known in the distributed systems area, e.g., [9].
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Figure 1: Example scenario for out-of-order update
Systems providing snapshot isolation guarantees typically order

transactions based on their timestamps. Ideally, these timestamps
would reflect the generation time of each ingested event, especially
given that the clocks on the sources are synchronized. However,
updates from a given stream may arrive later with respect to other
streams due to any kind of transmission delay, leading to out-of-
order [6] updates. Therefore, for every pair of events, the order of
their ingestion time does not necessarily correspond to the order
of creation time, and hence, any causal order between events may
not be reflected by the database at all times.

Figure 1 exemplifies a sequence of updates labeled A to E, con-
sidering the update generation time (the time when the update is
generated by a given stream) 𝑉𝑇 . Note that update B arrives out
of order (after D, which was emmitted later than B). After the first
three received updates have been ingested, that is, reflected in the
database state, query 𝑄 arrives and requires two iterations on the
updates ingested up to that time. In the first iteration, the query
𝑄𝑖 computes on the updates (A, C, and D), and before starting the
second iteration 𝑄 (𝑖+1) , the delayed update B arrives. At this point,
if B became visible to the query, then the database state would be
consistent with respect to the data sources, but it would also break
snapshot the isolation guarantees, which is not acceptable.

Existing systems, e.g., [8, 11, 13, 16], support temporal queries
in a multi-stream setting, such as the one that the paper studies, by
storing the event generation time as a property and then considering
it during querying. However, in such a case, each query would need
to access the whole database in order to filter out the events that
do not match the time frame that the query considers. Therefore,
the event generation time needs to be treated as a first-class citizen
in dynamic graph databases.

A straight-forward approach to the above problem is to use an
index on the event generation time. Nevertheless, graph queries
already require indices to efficiently navigate through the graph
with varying access patterns per query/graph traversal type. Ac-
cordingly, there is a need for a system design that addresses the
challenges that are present both in traditional and in temporal
graph queries.

In summary, this paper identifies the following challenges in
building a scalable temporal graph database management system:

• C1: Provide scalable and consistent storage for multi-stream
graph data ingestion.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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• C2: Enable scalable time-based graph analytics for point
queries.

• C3: Design storage organization and layout for dynamic
property graphs.

Prior work addressing some of the challenges described above
will be discussed in more detail in Section 10.

3 APPROACH
We aim at a scalable system that can answer analytical queries
(present, historical) over dynamic graphs, updated multiple streams,
whose updates may arrive out-of-order. To address the challenges
listed in Section 2:

• We maintain a data store that follows the multi-version
concurrency control (MVCC, in short) [15] storage model.
In this store, the temporal graph updates from multiple
streams are considered write-only transactions, while analyt-
ical queries (present and historical) are executed as read-only
transactions. This ensures consistent graph analytics even in
the presence of out-of-order updates, addressing challenges
C1. Furthermore, to ensure correct edge semantics and con-
sistency, we assume that each sender (stream) is coherent,
which means that:
– No sender ever sends a redundant edge insertion; an in-
sertion is redundant if the stream previously sent such
an insertion with no deletion of the same data item in
between;

– Similarly, there are no redundant edge deletions; a delete
is redundant if the stream has already sent such a deletion,
and the stream has not sent an insertion of an identical
same data in between;

– No sender will send a deletion of an entry for which it has
not sent an insertion previously.

• To efficiently process point queries based on source time,
we ensure that the per-source neighbors lists are sorted by
source time (the time when an event originates on its source
machine) in descending order, i.e., from the latest to the oldest.
We use an Adaptive Radix Tree (ART) [10] index to preserve
this order in the presence of an out-of-order update; this
addresses the challenge C2. Details of the use of the ART
appear in Section 4.

• To address challenge C3, we design the system in such a way
that the graph topology and graph properties are stored sepa-
rately, thus updates to the topology are processed separately
from graph property updates. This allows us to optimize
data access paths separately for these two largely orthogo-
nal components of the property graph.

CoreDesignDecisionsWe consider an in-memory dynamic graph
database management system. The graph is stored in an adjacency
list, which provides a good trade-off between data access locality,
required in queries, and high ingestion throughput, required in
insertions. In the following, the data structures and algorithms that
we propose achieve low computational complexity while main-
taining high data access locality to optimize the use of modern
hardware in scale-up servers.

4 DATA STORE: HISTORY ADJACENCY LIST
(HAL)

In this section, we describe themain data structurewe use to address
challenges C1 and C2.

We introduce the append-only History Adjacency List (HAL,
in short) data store, which ensures scalable data ingestion in the
multi-stream scenarios as well as graph analytics in the presence
of present and historical read-only queries.

As a general rule, each update is an edge addition or deletion,
and we organize such updates primarily according to the source
vertex of the added/deleted edge (not to be confused with an update
source, one stream or site from which updates originate).

Within the HAL, we use a Vertex Array (VA, in short), and
Source Time sorted Adjacency List (STAL, in short) as shown
in Figure 2. Both the VA and the STAL have an entry for each graph
vertex, denoted, respectively, VA[𝑠] and STAL[𝑠].

Each VA[𝑠] entry stores five fields:

(1) A reference to the STAL entry corresponding to this vertex;
(2) The Latest Source Time (LST, in short), i.e., the latest

source time of an in-order update received so far for this
vertex;

(3) A Hash table (HT[𝑠], in short) keyed by the destination
vertices 𝑑 connected to 𝑠 by some an edge 𝑠 → 𝑑 . The HT
value associated to a given 𝑑 is the Update Position and
Indicator (UPI, in short) of 𝑠 → 𝑑 , denoted UPI[𝑠, 𝑑]. It
compactly encodes the position of the latest (in-order or
out-of-order) 𝑠 → 𝑑 entry in the STAL, together with a few
more fields. Details of the HT and UP will be provided in
Section 7;

(4) Degree: the number of edge entries in the STAL;
(5) A lock, used to prevent conflicts between transactions up-

dating 𝑠 .

For each source vertex 𝑠 , its Source-Time ordered Adjacency
List (STAL, in short), denoted STAL[𝑠], contains:

• References to STAL blocks (STALBs, see below);
• STAL metadata, specifically:
– curPos, which points to the STALBmost recently inserted
in STAL[𝑠];

– size, the length of STAL[𝑠] vector;
– isDeletion, stating whether updates in STAL[𝑠] comprise
one or more deletions;

– emptySpace, the number of slots that have been freed by
successive deletions in STAL[𝑠].

STAL[𝑠] is ordered by source update time, in the following sense:
if the address of a block 𝑆0 appears in STAL[𝑠] before the address
of another 𝑆1, all the source update times appearing in 𝑆1 are after
those appearing in 𝑆0 (as illustrated in Figure 2).

Each STALB stores information about a (fixed) number of edges
going from 𝑠 to various destination nodes. Specifically, the STALB
comprises:

(1) Metadata in the first 8 bytes (items (5) to (9) below);
(2) DestEntries stores edge entries whose source is 𝑠 and having

various destination ids. These are sorted in the descending
order of the source time of the update 𝑠 → 𝑑 ;
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State-of-the-art Present query Historical queries Out-of-order update

LiveGraph YES YES NO
Teseo YES NO NO
Sortledton YES NO NO
Our system (Hal) YES YES YES

Table 1: Comparison of state-of-the-art systems in the context of our dynamic graph challenges.

Figure 2: History Adjacency List (HAL)

(3) IEMEntries, storing addresses of In-order Edge Entry
Metadata (IEM), in short (see below) entries for each of the
above edge updates.

(4) PropertyRef, a reference to a vector with the same number
of entries storing, for each of the above edge updates, the
properties that the edge may have, e.g., edge weight, etc.
PropertyRef is stored in the last 8 bytes of STALB;

(5) Blocksize, the size of the STALB;
(6) CurIndex, the position of the most recently inserted entry

in the STALB.
(7) Two boolean flags (IsDelete and OOO) indicating whether

there are deletions, or out-of-order updates in the STALB;
(8) DeletedEntries stores the number of deleted entries in the

STALB.
(9) The PerEdgeLock field is used to lock the STALB if needed.

DestEntries and IEMEntries each occupy half of the STALB space
not taken by the metadata or by PropertyRef. For instance, Figure 2
illustrates the STALB labeled S0, over 64 bytes: 8 bytes for metadata

(at the left), 8 bytes for edge properties (at the right), 24 bytes (3
entries) for DestEntries and 24 bytes (3 entries) for IEMEntries.

Each IEM (In-order Edge entry Metadata) block consists of:
(1) The write time-stamp (WTS) is the transaction time of the

edge, that is, the time when it is received at the database site;
(2) The SrcTime is the time when an edge is emitted from the

source machine;
(3) The Invalidation Time Metadata (ITM) stores informa-

tion about edge deletion (if applicable):
• The source time of the deletion request, SrcTime;
• The transaction time of the deletion request, WTS.

(4) The out-of-order update (OOO) field stores the root of an
ART [10] in which out-of-order edge entry metadata (OEM,
in short) will be inserted. The order among entries in the
ART is that of the update source time (recall that we con-
sider the stream sources “reasonably” synchronized among
themselves, thus a single timeline can be constructed from
their source times).

Overall, the STAL structure ensures the update entries for a given
source vertex 𝑠 are stored in the descending order of their source time.
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This is achieved on one hand through the ARTs, and on the other
hand by keeping other data structures time-sorted during insertions,
updates, and when querying, while also ensuring low complexity
(in𝑂 (1)) for the operations we expect to be most common: in-order
insertions and deletions. We discuss these algorithms next.

5 INSERTION
We detail the steps necessary in our platform for recording the
arrival of a new edge, denoted 𝑠 → 𝑑 . As a recall, we need to ensure
scalable and consistent storage (challenge C1) whether updates
arrive in order (the database site receives them in the order of
their emission at the source sites), or out of order. Our algorithms
leverage our proposed storage organization and layout for dynamic
graphs (challenge C3). Further, meeting this challenges will enable
to also provide efficient querying of the dynamic graphs (challenge
C2), as we will show in Section 8. A new edge (insertion) entry
𝑠 → 𝑑 received at the database site is procesed as follows:

(1) Locate in the VA the position corresponding to 𝑠 , e.g., if
the new edge is 0 → 1 arriving at 10:00 am (𝑉𝑇 ), this is
the VA[0]. Lock this position to prevent conflicts between
several write-transactions having the source vertex 𝑠 .

(2) Compare the new edge entry update source time (𝑆𝑇 ) to the
LST value in VA[𝑠].

(a) If LST < 𝑆𝑇 , then 𝑠 → 𝑑 is an in-order update; follow the
steps in Section 5.1 below.

(b) Otherwise, it is an out-of-order update; follow the steps in
Section 5.2 below.

(3) Unlock STAL[𝑠].
We next show how each of these insertions is handled.

5.1 In-order insertion
We handle these as follows.

(1) Create an IEM block with: the edge’s source time in SrcTime,
NULL in the ITM, NULL in the OOO, WTS as the edge’s
transaction time.

(2) Locate the STALB, say 𝑆𝑖𝑜 , which is currently receiving up-
dates. If 𝑆𝑖𝑜 is full (that is, it contains L2Size entries), proceed
to (3) below, otherwise, to (4).

(3) If the L2Size of 𝑆𝑖𝑜 is still smaller than an upper bound
MaxBlockSize, then double the size of 𝑆𝑖𝑜 , update the meta-
data accordingly, and follow step (4). The aggressive resizing
(by doubling up), on top of a small initial size, is adopted
since it has been shown [5] to yield good performance in
the (frequent) case when the number of edges adjacent to a
node follows a power-law distribution. Otherwise (𝑆𝑖𝑜 had
already been extended up to size MaxBlockSize), create a
new STALB, call it 𝑆𝑛𝑒𝑤 , of size 1, with the appropriate meta-
data, and insert 𝑆𝑛𝑒𝑤 in STAL[𝑠]. The role of 𝑆𝑖𝑜 below (4)
will be played by 𝑆𝑛𝑒𝑤 .

(4) In 𝑆𝑖𝑜 , at position 𝑆𝑖𝑜 .CurIndex-1, store 𝑑 in the DestEntries,
the IEM block in the IEMEntries, the 𝑠 → 𝑑 edge properties
in the Property vector. Then, update 𝑆𝑖𝑜 .CurIndex, decre-
menting it by 1.

(5) Create a new UPI, denoted UPI𝑒 , storing the position (in
the STAL) of the newly inserted edge entry. We say UPI𝑒
is an in-order UPI, since it is due to an in-order insertion.

Concretely, UPI𝑒 is an 8-bytes bit vector, structured in six
fields. Figure 3 details their relative positions and lengths in
the UPI, starting with the 0-th bit at the right:

𝑖𝑢 𝑑𝑠 𝑏𝑠 𝑏𝑖 𝑠𝑠 𝑠𝑖

63 (52, 62) (48, 51) (37, 47) (32, 36) (0, 31)

Figure 3: In-order Update position indicator (UPI) Bit Vector

• 𝑠𝑖 , starting at position 0, stores on 32 bits 𝑆𝑖𝑜 .CurrPos, the
current position where 𝑠 → 𝑑 was inserted;

• 𝑠𝑠 stores on 5 bits as required to store the currrent size of
STAL[𝑠]. Recall that STAL[𝑠] is created with an initial size
of 1 and then its size is always a power of 2; for example,
in Figure 2, the size of the 𝑆𝑇𝐴𝐿[𝑠] is 1, we store 𝑙𝑜𝑔2 (1)
= 0. With 5 bits we can store values up to 32, leading to
MaxBlockSize=232.

• 𝑏𝑖 stores on 11 bits 𝑆𝑖𝑜 .CurIndex.
• 𝑏𝑠 stores the size of S𝑖𝑜 , the STALB where the edge entry
is inserted.

• 𝑑𝑠 stores the 11-bit suffix of 𝑑’s node ID;
• The 𝑖𝑢 flag (bit at position 63) is set to 1.
Then, UPI𝑒 is added to the hash table HT[𝑠]. More details on
the UPI and the hash table will be provided in Section 7.

For instance, assume we receive the following successive inser-
tions: 0 → 1 and 0 → 2 at timestamps 10:00 am, and 10:05 am
respectively. The resulting entries in our data structures are shown
in black in Figure 2, while the newly created UPI (at the bottom left
in Figure 2) has the values 1 1 3 2 0 0 in its six fields.
Note that we store in𝑑𝑠 only an 11-bit suffix of𝑑’s identifier (not the
full ID). While we rely on suffices for compactness, extra measures
are taken when reading the data, to avoid confusing nodes whose
IDs have the same suffix. We detail how this is achieved in Section 7.
As shown above, the computational complexity of handling an
in-order insertion is 𝑂 (1), since each step (including doubling
up a STALB) takes constant time.

5.2 Out-of-order insertion
To handle the out-of-order insertion 𝑠 → 𝑑 :

(1) Create an out-of-order edge entry metadata (OEM) block. In
this block, DNode stores 𝑑 , WTS refers to the transaction
time, SrcTime is the source time of the out-of-order update,
and the ITM block is set to null.

(2) Through binary search on STAL[𝑠], using the update source
timestamp, find the STALB, say 𝑆𝑜𝑜 , where the out-of-order
update should be placed.

(3) Through binary search on 𝑆𝑜𝑜 .IEMEntries, using the update
source timestamp, locate the IEM block where the out-of-
order update should be placed.

(a) If the OOO field of that IEM block is null, create an ART
tree ordered by update source time, and holding the newly
created OEM block as its first leaf. Otherwise (the ART
exists), insert the OEM block to the ART.

(b) Set the OOO field of 𝑆𝑜𝑜 field to true.
(4) Create a new UPI denoted UPI𝑒 , to record the position of the

newly inserted edge entry. UPI𝑒 is itself called out-of-order
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UPI, with a structure simpler than that of in-order UPIs (see
Figure 4). It is also a 8-byte array, where:
• the 𝑖𝑢 bit (position 63) is 0;
• 𝑑𝑜 stores the 15-bits suffix of the destination node ID 𝑑 ;
• the entry source time is stored in SrcTimestamp.
Then, UPI𝑒 is added in the hash table HT[𝑠].

𝑖𝑢 𝑑𝑜 𝑡𝑠

63 (48, 62) (0, 47)

Figure 4: Out-of-order UPI for sample insertion.

For instance, assume that after the insertion illustrated in black
text Figure 2, we receive the out-of-order insertion 0 → 9 with
timestamp 10:02 am. The resulting entries are shown in red font in
Figure 2, while the new UPI𝑒 is 0 9 10:02 in Figure 2. Unlike
in-order insertions, out-of-order ones accumulate in ART trees, and
only the ART roots are stored in the in-order IEM blocks. Thus,
out-of-order updates never lead to STAL blocks becoming full (or
splitting); only in-order updates do that. Out-of-order insertions
require binary search (in STAL[𝑠] based on SrcTimestamp, then
in the STALB to find the IEM block where the ART root is/should
be stored), and also incurs the cost of searching the ART, lead-
ing to a worst-case complexity of 𝑂 (𝑙𝑜𝑔( |𝐸 |)). While this is not
constant-time, we can reasonably expect out-of-order updates to
be less frequent than in-order ones; ours is the first dynamic graph
management system capable of correctly handling a mix of in-order
and out-of-order updates.

6 DELETION
We now consider the deletion of an edge 𝑒 of the form 𝑠 → 𝑑 .
Recall that we assume that an edge deletion only occurs after the
respective edge has been inserted. We proceed as follows:

(1) Locate the position of the source vertex 𝑠 in the VA.
(2) Lock it to prevent conflicts with other write transactions

(insertions or deletions) where 𝑠 is the source node, and get
its hash table, say HT[𝑠].

(3) Look up 𝑑 in HT[𝑠], to get the UPI (Section 4) associated to
the insertion entry for 𝑒 , let’s call this UPI𝑒 . UPI𝑒 encodes
whether the deletion request is related to in-order update,
respectively, an out-of-order update. We handle them as
discussed below.

(4) After handling the deletion, unlock HT[𝑠].

6.1 In-order deletion
(1) From UPI𝑒 (recall Figure 3), access 𝑠𝑖 to get the position, in

STAL[𝑠], of the STAL block, call it 𝑆𝑖 , where the insertion
𝑠 → 𝑑 had been stored, at the time of that insertion. Note that
this position may no longer be correct, in case the STAL[𝑠]
has been resized at some point in time after 𝑒 was inserted!
We discuss how to handle such situations shortly below.

(2) To account for the possible resize that may have changed the
position of 𝑆𝑖 , from the STAL metadata, we get the current
size of STAL[𝑠] (Size in Figure 2). We then compute the
current position of 𝑆𝑖 in STAL[𝑠], of as

STAL[𝑒].Size − (UPI𝑒 .𝑠𝑠 − UPI𝑒 .𝑠𝑖 )

In the above, UPI𝑒 .𝑠𝑠 − UPI𝑒 .𝑠𝑖 computes how far the 𝑆𝑖 posi-
tion is, from the last index of STAL[𝑒] when the edge entry
was inserted. Call this difference Δ𝑠𝑖 . Then, we substract Δ𝑠𝑖
from STAL[𝑒].Size to obtain the current entry position in
the STAL[𝑒].
For instance, in Figure 2, UPI𝑒 .𝑠𝑖 is 0, UPI𝑒 .𝑠𝑠 is 1, and the
current STAL[𝑒].Size is 1, thus (1 − (1 − 0) is 0, indicating
the current position of 𝑆𝑖 .

(3) Locate 𝑆𝑖 in STAL[𝑠] as the block at the position computed
as above.

(4) UPI𝑒 .𝑏𝑖 is the position of the 𝑒 insertion entry in 𝑆𝑖 .IEMEntries,
when 𝑒 was inserted.

(5) UPI𝑒 .𝑏𝑠 is the size of 𝑆𝑖 when 𝑒 was inserted say.
(6) Compute the exact position of the insertion in 𝑆𝑖 .IEMEntries

as:
𝑆𝑖 .BlockSize − (UPI𝑒 .𝑠𝑠 − UPI𝑒 .𝑠𝑖 )

The reasoning behind the calculation is the same as above
(leveraging the same Δ𝑠𝑖 ).
Then, we take the following steps:

(a) Access the IEM block in 𝑆𝑖 .IEMEntries, call it IEM𝑖 , corre-
sponding to the insertion of 𝑒 in 𝑆𝑖 .

(b) Create an ITM block, call it ITM𝑑 , with SrcTime as the
timestamp when the deletion request originated from the
source machine. Store ITM𝑑 in the ITM field of 𝐼𝐸𝑀𝑒 .

(c) Set the 𝑆𝑖 IsDelete flag to true.
(d) Commit the deletion request by storing the current (trans-

action) time in the WTS of ITM𝑑 .
For instance, assume that we receive the in-order deletion 0 → 1
with timestamp 10:08 am. The resulting ITM entry is shown in
green font in Figure 2: 10:08 10:09 .

As shown above, the complexity of handling in-order dele-
tions is 𝑂 (1).

6.2 Out-of-order deletion
This process is slightly different, given that for OOO updates we
need to store the source timestamp in UPI𝑒 (see Figure 4). To keep
the data structures compact, UPI𝑒 does not store the STAL position
of the insertion entry. Instead, we have to retrieve it by binary
search on the ordered data structures, as follows.

(1) Get the source timestamp of the insertion of 𝑒 , from UPI𝑒 .
(2) Based on this, in STAL[𝑠], find the STALB, say 𝑆𝑖 , where the

out-of-order insertion of 𝑒 was placed.
(3) Locate the IEM block, say IEM𝑖 , corresponding to the inser-

tion of 𝑒 , by binary search on 𝑆𝑖 .IEMEntries.
(4) IEM𝑖 .OOO field is the root of an ART, in which we look up

the OEM block, call it OEM𝑖 , corresponding to the insertion.
(5) Create an ITM block, ITM𝑑 , with the deletion request source

time as SrcTime.
(6) Store ITM𝑑 in the ITM field of OEM𝑖 .
(7) Set the IsDelete flag of 𝑆𝑖 to true.
(8) Commit the deletion request by storing the current (transac-

tion) time in the WTS of ITM𝑑 .
For instance, assume that we receive the out-of-order deletion 0 →
9 with timestamp 10:10 am. The resulting ITM entry is shown in
blue font in Figure 2: 10:10 10:11 .
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Similarly to out-of-order insertions, the complexity of han-
dling out-of-order deletions is 𝑂 (𝑙𝑜𝑔( |𝐸 |)).

7 PER-SOURCE VERTEX TABLE (HT)
Recall that we store for each destination node 𝑑 present in the
STAL[𝑠], the most recent position of the each destination node’s
entry, called Update Position Indicator of 𝑠 and 𝑑 (or UPI[𝑠, 𝑑],
in short). Each edge insertion leads to creating an UPI; each edge
look-up needs to read the UPI, and similarly, each edge deletion
must locate, then delete an UPI. In this section, we describe these
operations: UPI creation on one hand, UPI look-up or deletion (their
processing is quite similar) on the other hand. We store UPIs in
a dedicated optimized hash table, based on the open-addressing
technique [12]; we call this structure Per-Source Vertex Hash
Table (HT[𝑠, 𝑑], in short).

Below, Sections 7.1, 7.2, respectively, describe how we insert,
look up, and delete content from the HT.

7.1 UPI Insertion
For inserting the UPI of a newly inserted edge entry 𝑠 → 𝑑 , call this
edge 𝑒 , in the HT. Insertions of in-order UPIs are described under
(1) below, while out-of-order UPI insertions follow (2).

(1) In-order UPI
• Create an in-order UPI, call it𝑈𝑃𝐼𝑖 , then store the 𝑒 posi-
tion of STAL[𝑠] as described in Section 5.1.

• Compute the position, say 𝑖 , in the HT where𝑈𝑃𝐼𝑖 should
be stored, as (𝑑 modulo HT size), and store 𝑈𝑃𝐼𝑖 there
HT[𝑖] is empty; otherwise, increase 𝑖 until we find a free
position HT[𝑖] and store𝑈𝑃𝐼𝑖 there.

(2) Out-of-order UPI
• Create an out-of-order UPI, call it𝑈𝑃𝐼𝑜 , then store the 𝑒
source timestamp in𝑈𝑃𝐼𝑜 .𝑡𝑠 as described in Section 5.2.

• Compute the position, say 𝑖 , in the HT where𝑈𝑃𝐼𝑜 should
be stored, as (𝑑 modulo HT size) and store 𝑈𝑃𝐼𝑜 there if
HT[𝑖] is free; otherwise, increase 𝑖 until we find a free
position and store𝑈𝑃𝐼𝑜 there.

As shown above, collision handling is potentially expensive. To
keep its cost under control in practice, the HT size is twice as large
as its number of entries, making it likely to find an empty space
very fast.

More generally, collisions could be further avoided by using the
double hashing techniques proposed in Robin Hood hashing [3]
and GraphTango [1] (not published yet). An important observation
is that the former causes cache misses in case of collision; the more
recent GraphTango [1] presents a cache-friendly double hashing
technique; we could also experiment with it in the future.

7.2 UPI Deletion or Lookup
Now assume we need to find, in the HT, the UPI of an edge entry 𝑒
corresponding to 𝑠 → 𝑑 , in order to delete the UPI. We do that as
follows:

(1) Compute the position, say 𝑙 , where the UPI related to 𝑒 may
exist in the HT, as (𝑑 modulo HT size). Call that𝑈𝑃𝐼𝑒 .

(2) Check the field 𝑈𝑃𝐼𝑒 .𝑖𝑢 field to see whether 𝑈𝑃𝐼𝑒 is an in-
order or out-of-order UPI. In the former case, follow with
step (2a) below; in the latter, follow with (2b).

(a) In-order UPI
(i) Access the field 𝑈𝑃𝐼𝑒 .𝑑𝑠 (suffix of the destination node

for which 𝑈𝑃𝐼𝑒 was created). Compare the 11-bit suffix
of 𝑑 , the destination node in 𝑒 , with 𝑈𝑃𝐼𝑒 .𝑑𝑠 : if they
match, then follow step (2(a)ii); otherwise, read the UPI
at the the next HT position 𝑙 + 1 into𝑈𝑃𝐼𝑒 , and return
to step (2). This search stops when we find the precise
UPI created when 𝑒 was inserted, or we find an empty
position in the HT.

(ii) Go to the𝑈𝑃𝐼𝑒 indicated position in the STAL, read the
destination id, and compare it with the ID of destination
node 𝑑 .
• If they are equal, we have found the 𝑈𝑃𝐼 related to 𝑒 .
If we are handling a deletion, delete the UPI at HT[𝑙].

• Otherwise, read the UPI at the next HT position 𝑙 + 1
into𝑈𝑃𝐼𝑒 , and return to (2).

Search stops when we find the UPI created when in-
serting 𝑒 , or we find an empty position in the STAL,
signifying that the desired UPI does not exist.

(b) Out-of-order UPI
(i) Access the field𝑈𝑃𝐼𝑒 .𝑑𝑠 and compare it with the 15-bit

suffix of the destination node ID 𝑑 . If they match, then
follow with step (2(b)ii); otherwise, increment the HT
index by 1 to get the next 𝑈𝑃𝐼𝑒 and return to step (2).
Search stops when we find a UPI related to 𝑒𝑖 or we find
an empty space in the HT which means 𝑒𝑖 does not exist
in the STAL.

(ii) Access the source timestamp field 𝑈𝑃𝐼𝑒 .𝑡𝑠 , and follow
these steps:
• Apply a binary search on STAL[𝑠] using𝑈𝑃𝐼𝑒 .𝑡𝑠 to get
the STALB to which 𝑡𝑠 belongs, again apply a binary
search on that STALB to get the IEM block where
the out-of-order update is placed, further access the
OOO field of that IEM block to get the ART root, and
search the ART with 𝑡𝑠 as a key, to get the OEM block
of𝑈𝑃𝐼𝑒 .

• Access the DNode field of the OEM block, and com-
pare it with the destination node id 𝑑 .
– If they match, 𝑈𝑃𝐼𝑒 indeed corresponds to the in-
sertion of 𝑒 . If we are handling a deletion, delete
𝑈𝑃𝐼𝑒 from HT[𝑙].

– Otherwise, increment the HT index to 𝑙 + 1, read
into𝑈𝑃𝐼𝑒 the entry at that index, and repeat from
(2).

The search stops when we find a UPI related to 𝑒 or
an empty space in the HT.

8 QUERIES
Dynamic graph systems, including ours, can be used for a large
variety of computations. Popular benchmarks compare them on
algorithms including such as Breadth-First Search, PageRank, Com-
munity Detection, etc. The computation steps necessary for imple-
menting any of these algorithms are well-known, and remain the
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same regardless of the graph data management system. Thus, exist-
ing evaluation frameworks implement a set of graph algorithms, on
top of a uniform graph data access API, whereas dynamic graph sys-
tems implement simple getEdge(s, d, time) and getVertex(id,
time)-style operations. Since the graph algorithm costs are the
same, the remaining performance differences can directly be attrib-
uted to the efficiency of the data store.

The main operations dynamic graph systems have to support are
simple edge requests, of several forms. Present queries require the
last committed state of the edge at the database site, i.e., the edge’s
current state. Historical queries explicitly specify time information.
They can be either point (or snapshot) queries request an edge
such as it was at a certain point in the past, or interval queries
focused on a specific past time interval. Interval querries can be
implemented as a sequence of point queries, one for each timestamp
in the interval. Thus, below, we discuss the processing of present
and point edge queries. Without loss of generality, below, we show
how to evaluate a query requesting all the edges whose source node
is 𝑠 (the query node). The modifications needed to handle variants
of this elementary query, e.g., asking for the edges’ properties,
or filtering based on them, etc., are quite straightforward. Each
query also specifies either the present time, or a specific requested
timestamp.

8.1 Present queries
We denote the present query by 𝑝𝑞 , and the time when the query is
asked, by 𝜏 . For each STALB in STAL[𝑠], starting from the currently
inserted STALB towards the oldest STALB:

(1) Check the IsDelete and OOO fields of each STALB. Four
cases can occur:

(a) If both are true, the STALB contains both deletion entries
and out-of-order updates. In this case, when traversing
the metadata entries associated with this STALB, we will
check each IEM entry’s ITM and OOO fields to ensure
that we do not read a deleted IEM entry, and do not miss
out-of-order updates.

(b) If IsDelete is true and OOO is false, the STALB contains
deleted entries but no out-of-order one. We will check the
ITM field only.

(c) If OOO is true and IsDelete is false, there are out-of-order
updates in the STALB, but no deletion. We will check the
OOO field only.

(d) Both are false: we will not check ITM nor OOO fields in the
IEM entries, thus speeding up the STALB traversal. This
case analysis is done once per STALB; it may avoid access-
ing and testing fields in all the IEM entries for this STALB.
Avoiding to access and read these boolean fields makes
our system more cache-friendly. As our experiments show
(Section 9), competitor systems such as LiveGraph, which
makes some checks for each traversed edge, suffer, among
others, from their poor usage of the cache.

(2) Traverse IEMEntries and in parrallel DestEntries, from the
position IEMEntries.CurIndex. For each IEM entry 𝑚, at
position 𝑝𝑚 in IEMEntries:

(a) Check whether𝑚.WTS < 𝜏 : recall that WTS is the trans-
action time of𝑚. If this holds, and the current STALB is

in case (1d), return DestEntries[𝑝𝑚], the destination node
corresponding to the position of𝑚 (recall from Section 4
that IEMEntries and DestEntries are parallel, same-size
arrays). Otherwise, ignore𝑚 it and move to the next IEM
entry. The check helps ensuring snapshot isolation: we
only read the (non-deleted) edge entries that existed in
the STALB before 𝜏 .

(b) Check 𝑚’s OOO and/or ITM fields, or both, when the
STALB is in case (1a), (1b) or (1c) above. If𝑚 has out-of-
order updates, its OOO field points to an ART. For each
OEM entry in that ART, call it 𝑜 , proceed as follows:
(i) Check that 𝑜 .WTS < 𝜏 ; WTS is the transaction time of

the out-of-order entry 𝑜 . If this holds, and the current
STALB meets only case (1c), return 𝑜.𝐷𝑁𝑜𝑑𝑒 ; otherwise
move to the next ART entry.

(ii) If the current STALB includes deletions (IsDelete flag),
also check the ITM field of 𝑜 , to see whether 𝑜 is deleted
or not. If it is not deleted, return 𝑜.𝐷𝑁𝑜𝑑𝑒; otherwise,
the OEM entry is ignored.

If 𝑚 has ITM, then ignore the entry; otherwise, return
𝐷𝑒𝑠𝑡𝐸𝑛𝑡𝑟𝑖𝑒𝑠 [pm].

For present queries, the worst-case complexity is 𝑂 ( |𝑅 |), where
𝑅 ⊆ 𝑄 is the set of edges that belong to the query result.

8.2 Point queries
Let ℎ𝑞 be a point query, issued at the query transaction time 𝜏ℎ , and
containing a user-specified source timestamp 𝜏 . This query asks for
all the nodes 𝑑 such that an edge 𝑠 → 𝑑 had been inserted in the
graph, and had not been deleted, by 𝜏ℎ . We proceed as follows:

(1) Through binary search on STAL[𝑠], with 𝜏 as the search key,
find the STALB from where we start reading, call it 𝑆𝑝 . We
will read up to the oldest STALB.

(2) Through binary search on 𝑆𝑝 with 𝜏 as search key, get the
entry location to start reading, say, 𝑒𝑖 .

(3) Access the IEMEntries, and DestEntries fields of each STALB.
For 𝑆𝑝 , scanning starts from the IEMEntries[𝑒𝑖 ]; for older
STALBs, it starts from the IEMEntries[CurIndex]. For each
IEM entry in the STALB, call it𝑚, we check the below con-
ditions:

(a) 𝑚.WTS< 𝜏ℎ , whereWTS is the transaction time of the IEM
entry. If it is true and the current STALB is in the case (1d)
introduced in the Section 8.1, return DestEntries[current
index]; otherwise, ignore it and move to the next. This
ensures that ℎ𝑞 only reads edge entries that existed before
the 𝜏ℎ timestamp, contributing to consistency (snapshot
isolation).

(b) Check the𝑚’s OOO and/or ITM fields, or both, when the
current STALB is in one among the cases (1a), (1c), or
(1b, introduced in Section 8.1. If𝑚.ITM exists, proceed as
follows:
(i) Check if𝑚.SrcTime > 𝜏 . If yes,𝑚 belongs to the result,

because at timestamp 𝜏 ,𝑚 was valid (not yet deleted).
Hence, return DestEntries[DestEntries.CurIndex].

If𝑚.OOO exists, access the root of the ART, and for each
OEM entry in that ART, call it 𝑜 , do the following:
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(i) Check if 𝑜 .WTS < 𝜏ℎ ; WTS refers to the transaction
time of out-of-order entry. If this holds, and if the cur-
rent STALB is in the case (1c) introduced in Section 8.1,
return 𝑜.DNode; otherwise move to the next ART entry.

(ii) If the STALB currently read contains some deletions,
check 𝑜 .ITM to see whether the 𝑜 is deleted or not. If
it is not deleted, return 𝑜 .DNode. If 𝑜 is deleted, follow
the below steps:

(A) Access the 𝑜 .ITM block, say 𝐼𝑇𝑀𝑜 .
(B) Check if 𝐼𝑇𝑀𝑜 .SrcTime < 𝜏 . If yes, then 𝑜 should

contribute to the result, because at the 𝜏 timestamp,
𝑜 was valid; hence, return the 𝑜 .DNode.

The worst-case computational complexity is 𝑂 (𝑙𝑜𝑔( |𝐸 |) + |𝑅 |)
where the edge set 𝑅 is the query result.

9 EVALUATION
We implemented the data structures and algorithms previously de-
scribed, and describe experiments which confirm its performance
advantages with respect to the state of the art. Below, we de-
scribe our hardware and software experimental setup (Section 9.1);
the benchmark dataset and the algorithm used for analytics (Sec-
tion 9.2); the qualitative analysis of related systems (Section 9.3).
We conclude by performance studies on insertions (Section 9.4),
updates (Section 9.5), and analytic querying (Section 9.6).

9.1 Hardware and software settings
We run our experiments on a dual-socket machine with intel Xeon
E5-2640 v4, which has 40 hardware threads and 256 GB of RAM.
All system source code is written in C++ and compiled on GCC
v10.2, with the optimization flag -O3. In our system, the maximum
number of entries allowed per block is 2047; for the competitor
Sortledton [5], it is set to 512 entries per block. All reported times
are medians over five runs.

9.2 Workloads
We use the synthetic graph datasets graph-500 [7] with scale fac-
tors (SF) 22, 24, and 26; the node fan-out in these graphs follows a
power-law degree distribution. We also use one real-world graph,
namely dota-league from [7]. These datasets, used in previous com-
parable works, are undirected, and do not contain multiple edges
between two vertices. Translating them in our framework designed
for directed graphs, like in prior work, we replace each undirected
edge (𝑠, 𝑑) by two directed edges, 𝑠 → 𝑑 and 𝑑 → 𝑠 . Each edge
has just one property, namely weight, that is double precision real
number; we generate these weights at random between 0 and 1
with a uniform distribution The main dataset metrics appear in
Figure 5.

We compare our system with existing competitors using the
LDBC graph analytics benchmark [7], fromwhich we use five graph
algorithms: Breadth-First Search (BFS), PageRank (PR), Single-Source
Shortest Path (SSSP), Community Detection Via Label Propagation
(CDLP), and the Weakly Connected Components (WCC). For fair
comparison, the implementation of the graph algorithms is taken
from the Graph Algorithm Platform Benchmark Suite (GAP BS) [2],
and runs on the driver implemented by Teseo [11].

Dataset Vertices |𝑉 | Edges |𝐸 | Average degree |D|
Graph500-22 2,396,657 64,155,735 26
Graph500-24 8,870,942 260,379,520 29
Graph500-26 32,804,978 1,051,922,853 33
dota-league 61,170 50,870,313 836

Figure 5: Dataset description

9.3 Competitors and complexity comparison
We compared our system with three other cache-friendly hybrid
analytical/transactional processing (HTAP) systems for graphs,
namely: LiveGraph [16], Teseo [11], and Sortledton [5]. LiveGraph
stores graph edges in adjacency list, one for each source node; it
supports random vertex access, and sequential neighborhood ac-
cess. The edges in each adjacency list are stored contiguously, thus
reading them does not cause random accesses. To handle graph
updates, LiveGraph manages versions of edge entries in the vector.
This is costly in terms of memory, as we need to store, for each
edge update, the transaction timestamp and the possible invalida-
tion timestamp. Its advantage is to efficiently support historical
queries, by appending new edges to their respective adjacency lists
as they arrive. Thus, edges are naturally sorted by transaction time,
allowing historical queries to run in 𝑂 (𝑙𝑜𝑔( |𝐸 |)).

In contrast, Sortledton and Teseo follow a set-based neighborhood
design, where the blocks of edges are sorted by destination id. The
maintenance of edge entry versions is done by the Hyper Multi-
Version Concurrency Control [14] protocol: both systems store the
latest version of the edges in a sequential block, and older versions
are stored in a linked list. In Sortledton, blocks of edges are sorted
and connected through a skiplist. Teseo follows a Compressed
Sparse Row (CSR) design, where the vertices and edges are stored in
a B+ tree with 2MB-size leaves, called a FAT tree, which is a packed
memory array supporting sequential vertex access and sequential
neighborhood access. However, the set-based neighborhood design
(sorted by destination ids) does not maintain the arrival order of the
edges; hence, for historical queries, its complexity is worse, 𝑂 ( |𝐸 |),
than the one of LiveGraph, 𝑂 (𝑙𝑜𝑔( |𝐸 |)).

System Edge insertion Edge deletion Find edge
Sortledton 𝑂 ( |𝑙𝑜𝑔(𝐸) |) 𝑂 ( |𝑙𝑜𝑔(𝐸) |) 𝑂 (𝑙𝑜𝑔( |𝐸 |))
Teseo 𝑂 ( |𝑙𝑜𝑔(𝐸) |) 𝑂 ( |𝑙𝑜𝑔(𝐸) |) 𝑂 (𝑙𝑜𝑔( |𝐸 |))
LiveGraph 𝑂 (1) 𝑂 ( |𝐸 |) 𝑂 (1)
HAL in-order 𝑂 (1) 𝑂 (1) 𝑂 (1)
HAL out-of-order 𝑂 ( |𝑙𝑜𝑔(𝐸) |) 𝑂 ( |𝑙𝑜𝑔(𝐸) |) 𝑂 (𝑙𝑜𝑔( |𝐸 |))

Figure 6: Complexity comparison for elementary graph op-
erations

Figure 6 shows the time complexity of for the main operations
(edge insertion, edge deletion, and edge look-up) on related systems.
In practice, edge insertion requires two steps: (𝑖) check if the edge
exists already, (𝑖𝑖) insert it if not already there. Sortledton and Teseo
perform (𝑖 ,𝑖𝑖) in 𝑂 (𝑙𝑜𝑔( |𝐸 |)). LiveGraph does not sort but simply
appends the edges in the neighborhood list; it uses Bloom filters
to check the edge’s existence, which takes 𝑂 (1). However, if false
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Figure 7: Graph500-24 scalability analysis.

Figure 8: Insertion throughput on all systems and datasets.

positives occur, the verification raises the cost to 𝑂 ( |𝐸 |). For in-
order insertion, our system HAL does not need (𝑖), as we treat each
insertion (from a distinct site) as a separate update; we perform (𝑖𝑖)
in 𝑂 (1) as we simply append edges to the neighborhood list. At
the same time, we are able to check for the existence of an edge in
𝑂 (1) thanks to our HT. Out-of-order insertions, supported only in
HAL, take 𝑂 (𝑙𝑜𝑔 |𝐸 |) for step (𝑖𝑖). HAL’s complexity is better than
competitors’ for in-order insertion. For out-of-order insertion, the
complexity is similar to those of Sortledton and Teseo, but worse
than LiveGraph’s best-case scenario (no false positive in the Bloom
filter).

To find and delete edges, Sortledton and Teseo take 𝑂 (𝑙𝑜𝑔( |𝐸 |))
because of the set-based neighborhood design, while HAL needs
𝑂 (1) for in-order updates and𝑂 (𝑙𝑜𝑔( |𝐸 |)) for out-of-order updates.
LiveGraph takes 𝑂 (1) (without false positive) for deletions, and up
to 𝑂 ( |𝐸 |) (with false positives) to find an edge. For both deletions
and edge search, for in-order updates, HAL has better complexity
than the existing systems; for out-of-order updates, its complex-
ity is the same as that of Sortledton and Teseo, and better than
LiveGraph’s.

9.4 Edge insertions
To measure insertion performance, we insert successively all the
edges of the graph500-24 dataset, in a random order. Since the

competitor systems do not support out-of-order insertions, we do
not have them in our workload.

Figure 7 reports the insertion throughput, measured in Million
(of inserted) Edges Per Second (MEPS, in short), as we increase
the number of threads (on the 𝑥 axis) from 1 to 2, 4, 6, . . . until 40.
HAL scales up very well, better than the other systems, as we
increase the number of threads.While Sortledton and Teseo also
gain from parallelism, they do so much less than HAL; LiveGraph
does not benefit at all from it. This is due to contention between
multiple writer threads, simultaneously trying to (𝑖) search linearly
in the adjacency list for many edge existence checks, and (𝑖𝑖) resize
requests. At maximum parallelism, HAL outperforms Sortledton
and Teseo by 3×, and LiveGraph by 30×. From now on, we report
on experiments with 40 threads.

Figure 8 shows insertion throughput, again in MEPS, on different
systems for our four datasets. HAL performs better in all cases.
Its running time shows some variability when increasing the size
of the datasets; this reflects the cost we pay for maintaining the HT
and resizing the STAL vector. HAL performs better since we simply
append the edges in adjacency lists, without sorting by destination
id (insertions mostly in 𝑂 (1)).

Sortledton and Teseo perform very similarly on all the datasets,
because of their similar set-based neighborhood design; for edge
existence check, this requires takes 𝑂 (𝑙𝑜𝑔2 |𝐸 |)). Even though Live-
Graph append newly arrived edges (without sorting by destination
ids) in the adjacency list, it still performs significantly slower than
the other systems. This is because LiveGraph provides completely
sequential access to the adjacency list, which in turn leads to more
resize requests as the edge vector, initially of size 1, is resized. The
cost to check for the existence of the new edge also plays a role
(see the discussion of false positives in Bloom filters above).

As previously explained, in our setting, edge existence checks are
not needed upon insertions. But just to check whether HAL could
efficiently also perform these checks, we ran an extra experiment,
inserting the graph500-24 dataset with 40 threads and existence
checks. The throughput decreased modestly, from 9.3 MEPS to
9.1 MEPS (2%), which is not significant, still leaves HAL the best-
performing system.
Lesson learned: In systems that follow the set-based neighbor-
hood design, with edge blocks that are connected through B+ tree
(Teseo) or skip lists (Sortledton), the necessary sorting steps limit
the throughput due to contention between writer threads; their
advantage is that they do not need an extra index when checking
for edge existence. In contrast, HAL simply appends edges in the
adjacency list without sorting by destination ids, hence, its through-
put is significantly better, because of lower contention between
writer threads. However, it needs extra space for maintaining the
secondary index (our hash table HT).

9.5 Updates (insertions and deletions)
Next, we evaluate our system on a mixed workload made of inser-
tions and deletions, introduced in Teseo [11]. Unlike the previous
insertion experiments, 10% of the operations in the update workload
load the graph, after which, 90% of the operations are insertions
and deletions keeping the (already large) graph of more or less the
same size. The size of the update workload is 10 × |𝐸 |.
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Figure 9: Graph500-24 update workload result

Figure 9 shows different systems’ throughput except for LiveG-
raph, which ran out of memory, on the graph500-24 datasets. The
𝑦 axis counts Millions of Updates Per Second (MUPS). HAL per-
forms more than 3× faster than Sortledton and Teseo, due to: (𝑖) the
append-only operations needed to record edge updates, whereas
competitors need to use sorted list and/or linked lists (Hyper proto-
col), which incur on one hand sorting costs, and on the other hand
more random memory accesses, thus lower cache usage; (𝑖𝑖) dele-
tions in constant time compared to competitors that need binary
search, and incur random accesses to the blocks accessed via skip
lists in Sortledton and B+ trees in Teseo.
Lesson learned: Set-based systems have a lower update through-
put as compared to HAL due to the reasons described above. How-
ever, these competitors need less space to manage different versions
of the edges, compared to HAL which needs to store with each edge
a transaction time (WTS), and invalidation time (deletion time of
an edge), as well as the HT. Thus, HAL’s performance is obtained
trading some space for more throughput.

9.6 Analytics
We run the LDBC graph analytics benchmark [7] on top of Teseo,
Sortledton, LiveGraph and HAL, for our four datasets. We choose
Sortledton (the latest system in the literature) as baseline, and
measure the slowdown of other systems with respect to it.

Figure 10 shows the benchmark analytics algorithm results on
these datasets and systems: the algorithms on the 𝑥 axis, and the
slowdowns on the 𝑦 axis, the lower, the better. BFS and SSSP re-
quire random vertex access and sequential neighborhood access,
where HAL performs three times better than the baseline system.
In contrast, PageRank, WCC, and CDLP require sequential vertex
access and sequential neighborhood access, in which HAL performs
significantly better than LiveGraph and Teseo, and slightly better
than Sortledton.

LiveGraph is slower than HAL due to storing edge entry meta-
data (transaction timestamp, invalidation timestamp, property size)
with destination ids, which causes more cache misses during the ac-
cess. For instance, a single edge entry takes 32 bytes, which means
a cache miss occurs every two edge entries. On the other hand,
in HAL, destination ids (DestEntries in STALBs) are stored sepa-
rately from the edge entry metadata (IEMs), hence, cache misses
occur more rarely, after eight edge entries. Additionally, LiveGraph
checks each entry’s invalidation time to see whether the edge entry
is deleted or safe to read. In contrast, in HAL system, the IsDelete

flag in each STALB helps to read the edge entry directly, if there is
no deletion in the STALB.

Teseo performs significantly worse than HAL mainly because:
(𝑖) Teseo needs a per-edge entry mapping from sparse to dense
vertex ids in the analytics part of the graph algorithm using a hash
table, which is costly. (𝑖𝑖) In Teseo, sorted neighborhood block con-
tains up to 512 edges as compared to HAL, where the maximum
number of edges in a STALB is 2047, resulting in fewer random
accesses. Sortledton’s performance is slightly slower than HAL’s
because of the number of edges allowed in the block (512 for Sor-
tledton, there are 512 edges per block, 2047 for HAL), leading to
more random accesses for Sortledton.
Lessons learned Set-based systems (Sortledton and Teseo) incur
fewer cache misses than LiveGraph, since the former read the latest
version of the destination ids, while LiveGraph must traverse all
versions of the destination ids in the adjacency list, together with
per-edge information. LiveGraph is also hampered by the need to
check invalidation timestamps, to see if an edge entry is still valid.
Thus, set-based systems outperform LiveGraph. However, set-based
systems do not preserve edge entry order, slowing down historical
queries.

To provide scalable support for both present and historical queries,
HAL adopts an approach in-between the two above. Specifically,
HAL stores the destination ids separately from the edge entry meta-
data in the STALB, given that destination IDs are accessed more of-
ten. HAL spares per-edge deletion checks by checking each STALB’s
isDelete flag, which may signal that a block contains no deletion,
thus no check is needed on its edges.

Finally, converting sparse vertex identifiers into dense ones dur-
ing analytics computation (like Teseo does) is costly. In contrast,
HAL (like Sortledton) makes this conversion at edge insertion time.

10 RELATEDWORK
Existing systems supporting multi-stream dynamic graph analytics
can be classified into two main categories: those which provide
transactional guarantees, such as LiveGraph [16], Teseo [11], and
Sortledton [5], and those that do not, such as Llama [13], GraphOne
[8], and STINGER [4].

Our work belongs to the former group, and Table 1 summarizes
the challenges associated with these systems. Further, there are
two main different data storage designs in transactional systems:
(𝑖) set-based neighborhood blocks, where the edges are sorted by
destination ids and edge entry version maintenance is done by the
Hyper protocol [14]; sample systems are Sortledton [5] and Teseo
[11], and (𝑖𝑖) edges stored in the adjacency blocks without sorting
by destination ids, with per-entry version management within the
adjacency block, represented by LiveGraph [16]. We discussed these
systems’ details in Section 9.3.

The advantage of the set-based design is that we do not need any
extra index on the adjacency list to delete or lookup any specific
destination entry. Also, it takes less space, as we do not manage
the version in the adjacency list. However, it does not preserve
the historical arrival order; hence, historical queries run on top of
set-based systems are not efficient. On the other hand, in LiveGraph
[16], the order of edge arrival is maintained.
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Figure 10: Performance evaluation on graph analytics.

All the systems mentioned in Table 1, as well as the one we aim
for, support queries based on the current state of the dynamic graph.
Except for LiveGraph [16] and this paper, no other system supports
historical state queries. In our work, we follow the LiveGraph [16]
MVCC protocol with the optimization described in Section 4 to
improve update throughput and performance on analytics. Live-
Graph [16] supports historical queries based on transaction time;
on the other hand, we are supporting historical queries based on
source time (time when the update was emitted from the source
machine). Existing systems do not provide consistency guarantees
in the presence of out-of-order updates, while our system attains
this goal, as explained in Section 4 to 7 and validated through our
experiments (Section 9).

11 CONCLUSION AND PERSPECTIVES
This paper aims to provide a scalable storage and indexing solution
that can ingest real-time graph updates from multiple streams and,
on top of that, provide consistent graph analytics (read-only present
and historical queries) even in the presence of out-of-order updates.
Our system performs approximately 9 million updates per second,
which is three times faster than the Sortledton. We are still doing
further experimentation to proof our system. In the future, we will
provide mixed-workload (updates and analytics in parallel) and
historical query results.
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