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Abstract

This paper explores the application of machine
learning techniques to predict where hedging
occurs in peer-tutoring interactions. The study
uses a naturalistic face-to-face dataset anno-
tated for natural language turns, conversational
strategies, tutoring strategies, and nonverbal
behaviors. These elements are processed into
a vector representation of the previous turns,
which serves as input to several machine learn-
ing models, including MLP and LSTM. The re-
sults show that embedding layers, capturing the
semantic information of the previous turns, sig-
nificantly improves the model’s performance.
Additionally, the study provides insights into
the importance of various features, such as in-
terpersonal rapport and nonverbal behaviors,
in predicting hedges by using Shapley values
(Hart, 1989) for feature explanation. We dis-
cover that the eye gaze of both the tutor and
the tutee has a significant impact on hedge pre-
diction. We further validate this observation
through a follow-up ablation study.

1 Introduction

Effective communication involves various conver-
sational strategies that help speakers convey their
intended meaning and manage social interactions at
the same time. These strategies can include the use
of self-disclosure, praise, reference to shared expe-
rience, etc. (Zhao et al., 2014). Hedges are one of
those strategies that is commonly used in dialogue.
Hedges are words or phrases that convey a degree
of uncertainty or vagueness, allowing speakers to
soften the impact of their statements and convey
humility or modesty, or avoid face threat. Although
hedges can be effective in certain situations, under-
standing when and how to use hedges is essential
and challenging.

The use of hedges is especially significant in
tutoring interactions where they may facilitate cor-
recting a wrong answer without embarrassing the
recipient. However, the use of hedges in this con-

text is not limited to expert educators. They are
also found to be abundant in peer-tutoring settings.
In fact, Madaio et al. (2017a) found that confident
tutors tend to use more hedges when their rapport
with the tutee is low, and that this pattern leads to
tutees attempting more problems and solving more
problems correctly. Hence, the detection and cor-
rect deployment of hedges, at the right time, is not
just pleasant, but crucial for the development of
effective intelligent peer tutoring systems.

While the use of hedges in conversation is an
important aspect of effective communication, au-
tomatically generating hedges in real-time at the
right time, can be a challenging task. In recent
years, there have been several studies of automatic
hedge detection (Raphalen et al., 2022; Goel et al.,
2019), particularly in the context of dialogue sys-
tems. However, despite significant advances in
detection, generating hedges in a timely and appro-
priate manner remained unsolved. For example,
the RLHF-based training method enables the devel-
opment of robust language models that align with
human preferences (Ouyang et al., 2022). However,
this approach does not explicitly instruct large lan-
guage models (e.g., ChatGPT) in pragmatic and
social skills, such as the appropriate use of hedges
during communication. This lack of specific train-
ing can result in a gap in the model’s ability to
effectively integrate these conversational nuances
into its responses in at the correct time. This limi-
tation can affect the quality of communication and
highlights the need for further research on effec-
tive hedge strategie generation; that is, to generate
hedges at the right time.

Despite the widespread use of hedges in com-
munication, there is still much to learn about their
timing and the effectiveness of their use, partic-
ularly in dialogue rather than running text, and
specifically in the current article, in peer-tutoring
environments.

To address this gap in the literature, our research



focuses on two key questions:
RQ1: First, can we predict when hedges should

be generated in peer-tutoring environments?
To address this question we investigate whether

it is possible to identify the points at which hedges
should be introduced during a peer tutoring dia-
logue.

RQ2: Second, what features contribute to accu-
rate predictions? of where to place hedges?

To address this question we focus on the ex-
plainability of classification models using Shapley
values (Sundararajan and Najmi, 2020) .

2 Related Work

2.1 Hedges

Hedges are a common rhetorical device used to di-
minish the impact of an utterance, often to avoid un-
necessary embarrassment on the part of the listener
or to avoid the speaker being interpreted as rude. In
linguistic terms, hedges diminish the full semantic
value of an expression (Fraser, 2010). Proposi-
tional hedges, also called Approximators, refers to
the use of uncertainty (Vincze, 2014), vagueness
(Williamson, 2002), or fuzzy language (Lakoff,
1975), such as “sort of” or “approximately”. On the
other hand, Relational hedges are used to convey
the subjective or opinionated nature of a statement,
such as “I guess it will be raining tomorrow”. Apol-
ogizer (Raphalen et al., 2022; Goel et al., 2019;
Fraser, 2010) is an expression used to mitigate the
strength of an utterance by using apologies, is an-
other type of hedges. such as “I am sorry, but you
shouldn’t do that.” Although the different types of
hedges function differently, they all share a com-
mon role of mitigation in conversation. Therefore,
in this paper, we focus on simply predicting hedges
vs non-hedges.

As described above, in tutoring, including peer
tutoring, hedges are frequently used and have a pos-
itive impact on performance (Madaio et al., 2017a).
Powerful language models such as GPT-4 (OpenAI,
2023) and ChatGPT (OpenAI, 2022) are now capa-
ble of generating hedges with appropriate prompts,
but these language models do not actively generate
hedges (Abulimiti et al., 2023), fIn other words,
the question of how to use thedges correctly in the
next conversational action remains unsolved.

2.2 Conversational Strategy Prediction

The development of approaches for predicting con-
versational strategies – or particular ways of say-

ing things – has progressed significantly over the
past few years in the field of dialogue systems.
Early studies, such as the COBBER, a domain-
independent framework, used a Conversational
Case-Based Reasoning (CCBR) framework based
on reusable ontologies (Gómez-Gauchía et al.,
2006). The aim was to help people use a com-
puter more effectively by keeping them in the right
mood or frame of mind. Methods such as reinforce-
ment learning have also been introduced in non-
task-oriented dialog systems, including a technique
known as policy learning (Yu et al., 2016). Rein-
forcement learning has been explored, as well,for
training socially interactive agents that maximize
user engagement (Galland et al., 2022).

The Sentiment Look-ahead method is used to
predict users’ future emotional states and to re-
ward generative models that enhance user senti-
ment (Shin et al., 2020). The rewards include re-
sponse relevance, fluency, and emotion matching.
These rewards are built using a reinforcement learn-
ing framework, where the model learns to predict
the user’s future emotional state. Romero et al.
(2017) designed a social reasoner that can manage
the rapport between user and system by reasoning
and applying different conversational strategies.

More recently, deep learning-based approaches
have emerged. For example, the Estimation-Action-
Reflection (EAR) framework combines conversa-
tional and recommender approaches by learning
a dialogue policy based on user preferences and
conversation history (Lei et al., 2020).

Perhaps the most recent advances in the field
have focused on how to create an empathetic di-
alogue system. MIME (Majumder et al., 2020)
used the emotion mimicry strategy to match the
user’s emotion based on the text context. EmpDG
(Li et al., 2020) generated empathetic responses
using an interactive adversarial learning method
to identify whether the responses evoke emotional
perceptivity (the ability to perceive, understand,
and be sensitive to the emotions of others.) in
dialogue. The Mixture of Empathetic Listeners
(MoEL) model (Lin et al., 2019) generates em-
pathetic responses by recognizing the user’s emo-
tional state, using emotion-specific multi-agent lis-
teners to respond, and then combining these re-
sponses based on the emotion distribution. This
process effectively merges the output states of the
listeners to create an appropriate empathetic re-
sponse. The model then crafts an empathetic re-



sponse grounded in the user’s emotions, which are
monitored by the emotion tracker. Despite the no-
table success of MIME and MoEL in predicting
emotions or conversational strategies, they do not
incorporate the social context (e.g., the relation-
ship between speakers), or the emotional tenor of
the conversation up until that point, nor do they in-
clude important nonverbal behaviors into reasoning
and decision-making processes. However, such ele-
ments are fundamental for the correct use of social
language, and their absence potentially limits the
effectiveness and naturalness of these models.

Predicting the appropriate emotion or conversa-
tional strategies in a conversation is a challenging
task, mainly because determining what is “appro-
priate” in a conversation is rather subjective and is
certainly context-dependent. For example, EmpDG
(Li et al., 2020) model achieved an accuracy of ap-
proximately 0.34 across the 32 evenly distributed
labels in the Empathetic Dialogue dataset (Rashkin
et al., 2019). indicating the complexity of the prob-
lem at hand. Similarly, MoEL (Lin et al., 2019)
model achieved varying degrees of accuracy in the
same dataset - 38% for the top 1, 63% for the top 3,
and 74% for the top 5 for emotion detection, further
emphasizing the difficulty of the task.

The current paper aims to fill the lacunae in prior
work by integrating social context and nonverbal
behaviors as predictive features to construct predic-
tive models for hedges.

3 Methodology

3.1 Task Description

Suppose we have a set of dialogues
D = {d1, d2, d3, ...dn}. Each dialogue
d = {u1, u2, u3...um} consists of m turns,
with ui representing a specific turn. Both tutor and
tutee turns in these dialogues can be categorized
as either hedges or non-hedges. However, for
the purposes of our analysis, we will primarily
focus on the tutor’s turns. The label of a particular
turn ui is denoted as li. Furthermore, every turn
can be depicted as a feature vector X , composed
of elements (x1, x2, ..., xN ). Here, N signifies
the total number of features used to characterize
a turn. Each turn in the dialogue is assigned a
fixed window size (ω) of the dialogue history,
represented as: hi = {umax(1,i−ω), ui−ω+1, ...ui}.
The primary objective of this research is to develop
a model, denoted M , capable of predicting the
type of hedge l′i+1 that a tutor will use next, based

on the dialogue history hi. The effectiveness of the
model is measured using standard classification
metrics, such as precision, recall, and F1 score.

Predicting hedges in a peer-tutoring conversation
can be simplified to a binary classification problem.
The features used as inputs are extracted from the
turns in the interaction (further details in Section
3.3), while the output is a binary value showing
whether or not hedges are present in each turn.

3.2 Corpus

The dataset used in the current work is the same
as that employed in our previous work on hedges
(Madaio et al., 2018). It is a subset of a larger in-
vestigation into the role of social, rapport-building
conversational strategies in task-oriented dialogue.
The corpus consists of face-to-face interaction from
20 same-gender dyads of American teenagers, with
an average age of 14.3 years (and a range of ages
from 13 to 16 years), gender-balanced 1 , and
recorded twice over two weeks. However, due
to technical issues, data from only 14 dyads’ data
were usable. The participants were asked to to take
turns tutoring one another in different aspects of
linear algebra. Each hour-long session was divided
into 4 phases: an initial social period, followed
by a first peer tutoring period, then a second short
social period, and finally, the teens switched roles,
with the tutee becoming tutor for the second task
period. For the 14 dyads we used for our model, 28-
hour-long face-to-face interactions were recorded
over the period of two weeks. The recorded video
and audio data were transcribed, resulting in ap-
proximately 9479 turns for the 14 dyads. These
included 8399 non-hedges and 1080 hedges. 4214
non-hedges and 507 hedges in the tutors’ turns
since, as described above, we looked only at tutor
hedges for this analysis (although note that both
tutor and tutee hedges in prior turns were used as
input). A “hedge turn” is any turn that includes
hedging language. We also retained non-speech
segments such as laughter and fillers.

Peer tutoring is a popular teaching method used
in many schools and educational settings. As de-
scribed above, and in Madaio et al. (2017b), even

1The corpus used here comes from earlier work by the
last author and her colleagues, as cited above, and was used
in accordance with the original experimenters’ Institutional
Review Board (IRB) approval. That approval required that
the children’s data not be released, which means that we can-
not share the corpus. However, a pixelated example of the
video data is available at github.com/neuromaancer/
hedge_prediction.

github.com/neuromaancer/hedge_prediction
github.com/neuromaancer/hedge_prediction


though these teenagers may be inexperienced, in
contexts of low rapport, when they use hedges dur-
ing tutoring, their tutees are encouraged to attempt
more problems and succeed in solving more of
them. This positive outcome justifies the use of this
dataset for studying hedges in tutoring interactions.
While we recognize the importance of exploring
the use of hedge with expert tutors in the future,
our current focus on untrained peer tutors provides
a unique perspective on how hedges can impact
learning, even when the tutors themselves are not
highly experienced. The methods and results from
our study can be used as a foundation for future
research, which could include the investigation of
expert tutors and the potential differences in their
use of hedges.

3.3 Features

In this section, we outline the features used as input
vectors (i.e., ui vector) for our prediction model,
which seeks to properly predict the hedging strat-
egy for the tutor’s upcoming turn. In total, we have
a vector with a length of 438 to represent a turn.

3.3.1 Turn embedding
Turn embedding is a common technique in natu-
ral language processing that involves representing
a turn as a vector. In this study, we apply a sen-
tence transformer (Reimers and Gurevych, 2019)
to generate turn embeddings from the tutor-tutee
conversation. This feature enables us to capture the
semantic meaning of the turn in the context of the
conversation, which can be helpful for predicting
hedges.

3.3.2 Conversational Strategies (CS) of the
previous turns

Conversational strategies refer to the different ways
of speaking used by both speakers to manage social
interaction. Strategies considered in this study are
self-disclosure, praise, violation of social norms,
and hedges. Self-disclosure (Derlega et al., 1993)
refers to situations in which the tutor or tutee shares
personal information, which is often used to build
rapport. Praise (Brophy, 1981) is a form of posi-
tive feedback that acknowledges and reinforces the
other person’s behaviors or attributes. Violation
of social norms (Zhao et al., 2014), which in this
population often consists of friendly teasing, is a
conversational move in speaker demonstrates the
special nature of the relationship with the listener
by engaging in slightly transgressive behavior. The

conversational strategy annotation was carried out
by Madaio et al. (2018), and inter-rater reliability
achieved a minimum Krippendorff’s alpha of over
.7 for all strategies.

In terms of hedges, we note that we only use the
speakers’ previous hedge strategies to predict the
tutor’s next hedge strategy. This avoids any issues
with predicting label leakage.

3.3.3 Tutoring Strategies (TS) in the previous
turns

Tutoring strategies (Madaio et al., 2016) refer to
the different techniques employed by the tutor or
tutee to facilitate learning. Strategies considered
in this study include deep/shallow questions, meta-
communication, knowledge building, and knowl-
edge telling. The deep question encourages critical
thinking and higher-order cognition. The shallow
question is used to confirm or clarify understand-
ing. Meta-communication is a strategy whereby
the tutor or tutee refers to the tutoring process or
the tutor/tutee’s self-evaluation of their own knowl-
edge, which can help to clarify misunderstandings
and promote effective communication. Knowl-
edge building involves introducing new concepts
or ideas, discussing the reasoning-mathematical
solving steps, and providing examples. Knowledge
telling refers to providing information (i.e., simply
stating numbers, variables). The tutoring strategies
annotation was also carried out by Madaio et al.
(2018), with annotators achieving a minimum Krip-
pendorff’s alpha of .7 for all tutoring strategies.

3.3.4 Dialogue Act (DialAct) of the previous
turns

Dialogue acts are types of speech acts (Searle,
1965) used by tutors and tutees during their in-
teractions. In our study, we use the widely-used
DAMSL (Dialogue Act Markup in Several Layers)
(Jurafsky, 1997) coding schema to annotate dia-
logue turns by using a state-of-the-art dialogue act
classifier with context-aware self-attention (Raheja
and Tetreault, 2019). In our dataset, only 6 dialogue
acts were found, they are Abandoned or Turn-Exit
(%) , Acknowledge (Backchannel) (b), Backchan-
nel in question form (bh), Yes-No-Question (qy),
Statement-non-opinion (sv) and Statement-opinion
(sd).

3.3.5 Rapport in the previous turns
As our previous work demonstrates, the level of
rapport between tutor and tutee plays a role in the



use of hedges. We therefore include it as a feature
in our study. Rapport is “The relative harmony of
relations felt by both participants” (Spencer-Oatey,
2005). The rapport annotation was carried out by
Amazon Mechanical Turk (AMT) annotators as de-
scribed in Madaio et al. (2018). Rapport level was
operationalized as a 7 point Likert scale, where
a higher score indicates a stronger level of rap-
port. For the annotation of rapport, the annotators
employed the “thin slice” method (Ambady and
Rosenthal, 1993), whereby the experimenter seg-
mented each video into 30-second clips and ran-
domized the order. To ensure the quality of rapport
annotations, three annators evaluated each clip, and
the experimenter applied the inverse-bias correc-
tion method (Parde and Nielsen, 2017) for selecting
a single score for each clip. In the current study,
when the dialogue history is contained within a
single slice, we directly use the annotated rapport
level of that particular slice as the historical rapport
level. However, if the dialogue history extends over
two slices, we select the rapport level of the slice
containing the majority of the dialogue history.

3.3.6 Nonverbal Behaviors (NB)

Nonverbal behaviors, such as head nod, smile, and
gaze, are an essential aspect of interpersonal com-
munication that can also contribute to the devel-
opment of rapport (Tickle-Degnen and Rosenthal,
1990). The gaze and smile annotation was carried
out by Madaio et al. (2018), we annotated the head
nods with 2 annotators. All the annotations were
carried out after annotators reached an inter-rater
reliability of 0.7 or above on Krippendorff’s alpha.
We collected all nonverbal behaviors that occurred
during one turn and encoded them using one-hot
encoding. For head nods and smiles, we used a
binary labeling approach, marking 1 for their oc-
currence and 0 for non-occurrence. As gaze serves
as a potent indicator of attention, we categorized
it into 4 distinct types: no gaze appeared in the
video, gaze at partner, gaze at worksheet, and gaze
elsewhere.

Mutual gaze between interlocutors, mutual
smiles, and mutual head nods serve as great indi-
cators of alignment and rapport in communication.
These are not encoded separately, as our encoding
process for nonverbal behaviors captures the behav-
iors of both participants within a turn, not only the
current turn holder. Our current approach success-
fully captures these important mutual signals.

3.3.7 Contextual Information (ConInfo) in the
previous turns

Our model also incorporates contextual informa-
tion that characterizes the discourse environment
between the two interlocutors. Specifically, we
include features such as the session and period
numbers, which help to encapsulate the temporal
dynamics of the tutoring interactions. We also con-
sider the math problem ID and the correctness of
the current problem response, which act as markers
of the present learning context. These features can
illuminate the complexity of the ongoing problem
and the students’ performance, potentially influ-
encing their use of hedges. The tutee’s and tutor’s
pre-experiment test scores are also included, serv-
ing as initial measures of their knowledge before
the tutoring session. This data can help to iden-
tify the starting knowledge disparity between the
tutor and the tutee. It is plausible that these pre-test
scores might also be linked with the students’ level
of confidence, which could subsequently impact
their use of hedges (Madaio et al., 2017a).

Norman et al. (2022) suggested a link between
verbal alignment signals, such as backchannels
(e.g., “um”, “hhm”, “oh..”), and learning gains in a
cooperative learning environment. Given the role
of hedging as a social language skill that improves
learning performance, we hypothesize its connec-
tion to dynamic learning gains. Consequently, we
incorporated the frequency of these verbal align-
ment signals from the previous four conversational
turns into our model input.

3.4 Vector Representation

Before presenting the specific models, we first de-
scribe how we convert each sequence of turns into
a vector representation. Our vector representation
consists of three basic parts: turns as a sequence
of tokens, annotations based on the turn (e.g., con-
versational strategies), and the nonverbal behaviors.
Figure 1 shows that we divide a vector of turns into
6 parts: turn embedding, conversational strategies
(CS), tutoring strategies (TS), nonverbal behaviors
(NB), contextual information (ConInfo) and dia-
logue acts (DialAct). After encoding each turn in
this fashion, we use the four previous turns as a
history tensor of a turn. This history ten tensor
will be the input to the prediction models, and the
model’s output will be this turn’s hedge label.
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Figure 1: Vector Representation

3.5 Prediction as Classification

We mentioned in the previous section that we trans-
form the prediction problem into a classification
problem. This means that the corresponding hedge
strategy is obtained by classifying different previ-
ous interactions (i.e., dialogue history) and histori-
cal characteristics (e.g., rapport, etc.). The classifi-
cation models used are presented here.

The selection of learning models in this study
is strategic and based on our research objectives.
Our primary aim is not to engineer a perfect system
for hedging. Instead, we seek to comprehend the
variables that influence hedging in dialogue. As
such, our approach leans towards the use of mod-
els that are effective in contextual understanding.
For example, Long Short-Term Memory networks
(LSTMs) were chosen over Multi-Layer Percep-
trons (MLPs) due to their superior ability to man-
age and interpret context, an essential factor in our
exploration of hedging phenomena.

3.5.1 LightGBM
In this work, we used LightGBM (Ke et al., 2017),
a gradient boosting framework known for its effi-
ciency. We use it to predict hedges in dialogues,
relying only on dialogue features such as conver-
sational strategies, tutoring strategies, nonverbal
behaviors, and contextual information, while turn
embeddings are not included.

3.5.2 XGBoost
We also used the Extreme Gradient Boosting (XG-
Boost) algorithm (Chen and Guestrin, 2016), which
is a decision tree-based ensemble machine learning

algorithm that uses a gradient boosting framework.
Similar to LightGBM, the turn embedding is not
used.

3.5.3 Multi-layer perceptron (MLP)
We constructed a multi-layer perceptron using two
sets of features. These included a pre-trained
contextual representation of the turn, specifically
from the SentBERT model (Reimers and Gurevych,
2019) which is the most prevalent sentence embed-
ding tool, and the concatenation of all the features
mentioned in Section 3.3.

3.5.4 Long Short-Term Memory (LSTM)
We use the same features and apply them to
LSTM (Hochreiter and Schmidhuber, 1997) and
also LSTM with attention (Bahdanau et al., 2015).
LSTM has a good ability to capture temporal cor-
relations, and we expect this ability to enhance
prediction performance.

3.6 Implementation Details

In order to address the imbalance in our dataset,
where the ratio of hedge to non-hedge instances is
approximately 1:10, we used the Synthetic Minor-
ity Over-sampling Technique (SMOTE) (Chawla
et al., 2002) for each model to augment our learn-
ing process. SMOTE is a popular method that
generates synthetic examples in a dataset to coun-
teract its imbalance. Given the variable nature
of model performance, we implemented a 5-fold
cross-validation strategy to evaluate the models. In
order to account for the imbalanced nature of the
dataset, we opted to use a lower number of folds in



Models F1-score Precision Recall

LightGBM (w/o emb) 0.24 (±0.07) 0.17 (±0.03) 0.45 (±0.07)
XGBoost (w/o emb) 0.24 (±0.07) 0.16 (±0.03) 0.45 (±0.07)

MLP 0.25 (±0.06) 0.16 (±0.03) 0.52 (±0.07)
MLP (only emb) 0.26 (±0.05) 0.16 (±0.02) 0.74 (±0.06)
MLP (w/o emb) 0.26 (±0.06) 0.17 (±0.06) 0.56 (±0.07)

LSTM 0.25 (±0.06) 0.16 (±0.03) 0.50 (±0.07)
LSTM (only emb) 0.28 (±0.07) 0.19 (±0.08) 0.52 (±0.07)
LSTM (w/o emb) 0.25 (±0.05) 0.15 (±0.02) 0.75 (±0.06)
AttnLSTM 0.24 (±0.06) 0.15 (±0.03) 0.57 (±0.07)
AttnLSTM (only emb) 0.25 (±0.07) 0.17 (±0.03) 0.45 (±0.07)
AttnLSTM (w/o emb) 0.23 (±0.06) 0.15 (±0.07) 0.57 (±0.07)

Dummy 0.11 (±0.08) 0.14 (±0.06) 0.10 (±0.04)

Table 1: Comparison of MLP and LSTM models for predicting hedges

the cross-validation process. By choosing 5 folds
instead of a higher number, we aimed to ensure
that each fold would contain a sufficient represen-
tation of samples from each class. The model that
delivered the best performance during this cross-
validation process was then chosen to make pre-
dictions on the test set. For the neural models, we
adjusted the loss function to account for class im-
balance, thereby compelling the models to accom-
modate less frequent classes more effectively. The
code is available in https://github.com/
neuromaancer/hedge_prediction

4 Results

4.1 Classification Results

To answer the research question 1, we conducted
classification experiments on different models. Ta-
ble 1 offers an in-depth comparison of multiple
machine learning models for predicting hedges in
a peer-tutoring dataset. We also incorporated a
dummy classifier for comparison, which generates
predictions in accordance with the class distribu-
tion observed in the training set. The performance
metrics are F1 score, precision and recall, all of
which include confidence intervals (α = 0.05).
The dataset is composed of several types of input
features described in Section 3.3. The models used
different combinations of these inputs. (w/o emb)
indicates that the model uses only the features with-
out turn embeddings. If not specified, the model
uses all features plus turn embeddings.

From Table 1, the LightGBM and XGBoost mod-
els without embeddings achieved relatively low

scores for F1 scores, precision and recall, indicat-
ing limited performance in terms of balanced pre-
cision and recall. The MLP models, particularly
those using only embeddings, showed a remark-
able recall of 74%, but at the cost of reduced pre-
cision. The LSTM model using only turn embed-
dings demonstrated balanced performance across
all metrics, achieving the highest precision of 19%
and a competitive F1 score of 0.28. However, the
attention-based LSTM (AttnLSTM) model did not
significantly outperform the standard LSTM model
in any metric.

The inclusion of turn embeddings significantly
impacts model performance. Models with only em-
beddings perform better in terms of F1 score and
recall, suggesting that the semantic information
captured in these embeddings, which represented
the semantic information of turns, is crucial for
hedge prediction. Second, models without embed-
dings also performed reasonably well in F1 score,
implying that other features such as rapport, con-
versational strategies, tutoring strategies, nonverbal
behaviors, and contextual information are also im-
portant. These features should not be overlooked.

The LightGBM and XGBoost models, which
only use features without turn embeddings, also
display competitive performance compared to the
MLP, LSTM, and AttnLSTM models using all fea-
tures. This suggests that although turn embeddings
provide valuable information for hedge prediction,
models can still achieve satisfactory results even
without them. The AttnLSTM models, which incor-

https://github.com/neuromaancer/hedge_prediction
https://github.com/neuromaancer/hedge_prediction


Model

Feature
N/A Rapport CS TS NB ConInfo DialAct

XGBoost 0.24 (±0.07) 0.15 (±0.08) 0.10 (±0.08) 0.15 (±0.09) 0.08 (±0.07) 0.10 (±0.08) 0.12 (±0.08)
LightGBM 0.24 (±0.07) 0.16 (±0.08) 0.09 (±0.08) 0.10 (±0.07) 0.10 (±0.10) 0.12 (±0.09) 0.13 (±0.08)

LSTM 0.25 (±0.05) 0.24 (±0.05) 0.26 (±0.06) 0.24 (±0.06) 0.22 (±0.06) 0.25 (±0.07) 0.21 (±0.06)
AttnLSTM 0.23 (±0.06) 0.20 (±0.06) 0.22 (±0.05) 0.25 (±0.05) 0.24 (±0.05) 0.23 (±0.07) 0.22 (±0.06)
MLP 0.26 (±0.06) 0.25 (±0.06) 0.25 (±0.06) 0.26 (±0.06) 0.25 (±0.06) 0.27 (±0.06) 0.21 (±0.07)

Table 2: F1 scores after the feature ablation, CS: Conversational Strategies; TS: Tutoring Strategies; NB: Nonverbal
Behaviors; ConInfo: Contextual Information; DialAct: Dialogue Act.

porate attention mechanisms, do not show signifi-
cant improvements over the regular LSTM models.
This could be due to the limited amount of data
available, which cannot unleash the potential of the
attention mechanism.

Since good performance can also be achieved
using the extracted features, in order to answer our
research question 2, in the next subsections we will
mainly investigate the importance of features in
predicting hedges.

4.2 Features Explanation with Shapley values

Shapley values (Hart, 1989), originating from co-
operative game theory, have emerged as a powerful
model-agnostic tool to explain the predictions of
machine learning models. This approach provides
a way to fairly distribute the contribution of each
feature to the overall prediction for a specific in-
stance. By calculating the Shapley value for each
feature, we gain insight into the importance of in-
dividual features within the context of a specific
prediction. This interpretability technique has been
adopted across various machine learning models.
In this study, we use Shapley values to interpret
the contributions of extracted features in our clas-
sification models using the SHAP python package
(Lundberg and Lee, 2017).

Figure 2 in the Appendix illustrates the impor-
tance of each feature for prediction when only fea-
tures are used as input to different prediction mod-
els. The importance of features within the models
can differ depending on their architectures. For
simplicity, we identify the features that frequently
appear in these 4 figures as significant indicators.
Therefore, we have selected some of the most rep-
resentative features in predicting hedges in Table
3.

Based on Table 3, certain features have a sig-
nificant impact on the likelihood of using hedges
in tutoring conversations. Rapport has a negative
valence, suggesting that higher rapport between the
participants results in a lower likelihood of hedges

Features Valence

correctness +
no gaze from tutor -
problem id -
rapport -
tutee’s deep question -
tutee’s gaze at tutor -
tutee’s pre-test -
tutor’s gaze at elsewhere -
tutor’s praise -

Table 3: Features and their Valences

being used. This confirms the finding cited above,
that hedges are more frequent in low rapport in-
teraction (Madaio et al., 2017c). Interestingly, the
“problem ID” feature also has a negative valence,
indicating that as the complexity or difficulty of the
problem increases, the likelihood of using hedges
decreases. This could be because tutors tend to be
more assertive or confident when addressing more
challenging problems.

Moreover, certain conversational features such
as “tutee’s deep question” and “tutor’s praise” have
a negative valence, implying that these actions tend
to decrease the likelihood of hedges. This could be
because deeper questions or praise might indicate
a more open and confident dialogue, thus reducing
the need for hedges.

The table also reveals a negative correlation be-
tween various non-verbal cues such as “no gaze
from tutor”, “tutee’s gaze at tutor”, and “tutor’s
gaze at elsewhere”, and the occurrence of hedges.
When the tutor is not gazing at the tutee, the like-
lihood of hedges decreases. The tutee’s gaze at
the tutor and the tutor’s gaze at elsewhere are nega-
tively associated with the use of hedges. This could
indicate that when tutors’ attention is focused else-
where, they are attending less to how best to convey
instruction or correction. To our knowledge, this is
the first demonstration that specific nonverbal cues
substantially influence the likelihood of a hedge



being used in the succeeding turn of peer-tutoring
interactions.

4.3 Ablation Study

We next examine the aforementioned models with
different features ablated from input. This ap-
proach allows us to identify which features, when
absent, lead to the best or worst performance
in each model, implying that these features may
not have contributed positively (or negatively) to
the model’s performance. Our study considered
6 groups of features: Conversational Strategies
(CS), Tutoring Strategies (TS), Nonverbal Behav-
iors (NB), Contextual Information (ConInfo), Dia-
logue Act (DialAct), and Rapport.

Table 2 shows the different F1 scores as a con-
sequence of removing the different features. For
XGBoost and LightGBM, the worst performance
is observed when NB and CS were removed, re-
spectively, which implies that these features may
provide important information for these models.
The LSTM and MLP models showed a significant
drop in performance when the DialAct feature was
removed, suggesting a substantial dependency of
these models on the DialAct feature for their pre-
diction capabilities. Interestingly, the best perfor-
mance of AttnLSTM was achieved when the rap-
port feature was removed, suggesting that the at-
tention mechanism could compensate for loss of
rapport.

5 Conclusion and Future Work

This study presents an effective approach to predict
where hedges occur in peer-tutoring interactions
using classic ML models. Our results show the
importance of considering various types of input
features, such as turn embeddings, rapport, conver-
sational strategies, tutoring strategies, nonverbal
behaviors, and contextual information. Moreover,
Shapley values applied to the predictions of the
different models show, for the first time, that the
gaze of both tutor and tutee may play a critical
role in predicting hedges. This observation is sub-
stantiated by subsequent ablation studies, where
classic classification models, like XGBoost and
LightGBM, experienced a significant decline in F1
score when removing nonverbal behavior features.

For future work, several directions can be pur-
sued. First, the investigation of hedge generation in
the context of expert tutors could provide valuable
insights into how experienced tutors use hedges

differently and how these differences might affect
learning outcomes. Second, incorporating rein-
forcement learning techniques to enhance specific
aspects of the interaction, such as learning perfor-
mance, could improve the practical applications of
our findings.
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Appendix: SHAP Value Graphs
The vertical axis indicates the mean contribution of the feature over the model decision. The horizontal

axis indicates how the distribution of features influences the model decision.



(a) Feature Importance for AttnLSTM (without emb) (b) Feature Importance for MLP (without emb)

(c) Feature Importance for XGBoost (d) Feature Importance for LightGBM

Figure 2: Feature Importance for Different Models, The vertical axis indicates the mean contribution of the feature
over the model decision. The horizontal axis indicates how the distribution of features influences the model decision.


