Lihui Zhu 
  
Rongpin Wang 
email: wangrongpin@126.com
  
Wang 
  
Junjie He 
  
Yunsong Peng 
  
Yuemin Zhu 
  
Lihui Wang 
  
msQSM: Morphology-based Self-supervised Deep Learning for Quantitative Susceptibility Mapping

Keywords: Morphology-based self-supervised deep learning for quantitative susceptibility mapping susceptibility quantitative mapping, self-supervised learning, morphological loss, arbitrary resolution

   

Introduction

Quantitative susceptibility mapping (QSM) is a magnetic resonance imaging (MRI) technique that measures spacial magnetic susceptibility distribution from MRI phase measurements [START_REF] Haacke | Quantitative susceptibility mapping: current status and future directions[END_REF]. QSM is sensitive to iron deposition [START_REF] Du | Increased iron deposition on brain quantitative susceptibility mapping correlates with decreased cognitive function in alzheimer's disease[END_REF] and applied to diagnose various neurological disorders such as Parkinson's disease [START_REF] Guan | Quantitative susceptibility mapping as a biomarker for evaluating white matter alterations in parkinson's disease[END_REF]Li et al., 2019), Alzheimer's disease [START_REF] Acosta-Cabronero | In vivo quantitative susceptibility mapping (qsm) in alzheimer's disease[END_REF][START_REF] Du | Increased iron deposition on brain quantitative susceptibility mapping correlates with decreased cognitive function in alzheimer's disease[END_REF], Huntington's disease (HD) [START_REF] Van Bergen | Quantitative susceptibility mapping suggests altered brain iron in premanifest huntington disease[END_REF][START_REF] Chen | Altered brain iron content and deposition rate in huntington's disease as indicated by quantitative susceptibility mri[END_REF], glioblastoma [START_REF] Deistung | Quantitative susceptibility mapping differentiates between blood depositions and calcifications in patients with glioblastoma[END_REF] and multiple sclerosis [START_REF] Langkammer | Quantitative susceptibility mapping in multiple sclerosis[END_REF][START_REF] Chen | Quantitative susceptibility mapping of multiple sclerosis lesions at various ages[END_REF]. In the QSM reconstruction process, dipole inversion is needed to calculate QSM from a field map by dividing the field with the dipole kernel in the Fourier domain mathematically. However, there are zeros in the dipole kernel along the conical surface, which makes the dipole inversion an ill-conditioned division problem.

To address the problem, a method called calculation of susceptibility through multiple orientation sampling (COSMOS) (Liu et al., 2009a) was proposed, which is considered as the gold standard method for the dipole inversion with high accuracy results. Unfortunately, COSMOS is hard to put into practice because it is time-consuming and patient-unfriendly to acquire multiple head orientations. Whereafter, truncated k-space division (TKD) [START_REF] Shmueli | Magnetic susceptibility mapping of brain tissue in vivo using mri phase data[END_REF] was proposed to measure QSM using only unidirectional sampling, but it is challenging to find a proper truncated value regarding the susceptibility values and artifacts reduction. Instead of in kspace, the problem can be solved in the spatial domain with priori information and numerical solutions, such as MEDI [START_REF] Liu | Morphology enabled dipole inversion (medi) from a single-angle acquisition: Comparison with cosmos in human brain imaging[END_REF], iLSAR [START_REF] Li | A method for estimating and removing streaking artifacts in quantitative susceptibility mapping[END_REF] and STAR-QSM [START_REF] Wei | Streaking artifact reduction for quantitative susceptibility mapping of sources with large dynamic range[END_REF]. These methods, however, are computationally expensive and difficult in tuning hyperparameters.

Recently, with the success of deep learning in medical image reconstruction, a mass of deep learning-based methods for QSM reconstruction [START_REF] Yoon | Quantitative susceptibility mapping using deep neural network: Qsmnet[END_REF][START_REF] Feng | Modl-qsm: Model-based deep learning for quantitative susceptibility mapping[END_REF][START_REF] Gao | xqsm: quantitative susceptibility mapping with octave convolutional and noise-regularized neural networks[END_REF]He et al., 2022b;[START_REF] Gao | Instant tis-sue field and magnetic susceptibility mapping from mri raw phase us-ing laplacian enhanced deep neural networks[END_REF] have been proposed, which have shown the ability to address the challenging inversion problem with impressive results and less time consumption. Whereas, these methods are supervised requiring QSM labels for network training, and QSM has the inherent non-existent "ground-truth" unfortunately [START_REF] Liu | Improved model-based deep learning for quantitative susceptibility mapping[END_REF]. To overcome such limitation, uQSM [START_REF] Liu | Model-based learning for quantitative susceptibility mapping[END_REF] and its successor uQSM+ [START_REF] Liu | Improved model-based deep learning for quantitative susceptibility mapping[END_REF] were proposed to train a network in a self-supervised manner but dealt with only one-resolution data. Moreover, a network results in increased errors for data with different resolutions, if trained with only one-resolution data [START_REF] Jung | Overview of quantitative susceptibility mapping using deep learning: Current status, challenges and opportunities[END_REF]). An unsupervised resolution-agnostic method (uraQSM) [START_REF] Oh | Unsupervised resolution-agnostic quantitative susceptibility mapping using adaptive instance normalization[END_REF] was proposed to measure QSM with different resolutions, but uraQSM needs various resolutions data to train the network.

In this study, we propose a morphology-based self-supervised QSM reconstruction method, namely msQSM, which is appropriate for arbitrary resolution data and only needs one-resolution data for training. Through extensive experiments on different resolution and species datasets from multiple centers, we verified that the proposed method achieves the state-ofthe-art results among the unsupervised learning methods for QSM and the comparable performance with respect to the best available conventional method. The main novelties of this study over the related unsupervisedlearning schemes are: (1) the proposed morphological loss is effective in reducing streaking artifacts with less training time compared to the cycle gradient loss used in the previous unsupervised methods, (2) The proposed morphological QSM builder can efficiently use prior information to complete the resolution decoupling, and (3) The msQSM can be applied to arbitrary resolution data with one resolution data for training.

Material and methods

Theory of dipole inversion

When brought into an external main magnetic field, the biological tissues become magnetized, inducing the magnetic perturbation along the field. As shown from the media effects Lorentz correction and the Maxwell magnetostatic equations [START_REF] Marques | Application of a fourier-based method for rapid calculation of field inhomogeneity due to spatial variation of magnetic susceptibility[END_REF], the perturbation conforms to:

where δB(⃗ r) = [B(⃗ r)-B 0 ]/B 0 represents the perturbation, with B indicating the local magnetic field component along the main field. ⃗ r, α, and ⊗ denotes the spatial coordinate, and the angle between the main field and ⃗ r and the 3D convolution operator, respectively.

The above equation can be simplified as a point-wise multiplication in the Fourier domain with a dipole kernel [START_REF] Salomir | A fast calculation method for magnetic field inhomogeneity due to an arbitrary distribution of bulk susceptibility[END_REF]:

where ∆B and X are the Fourier transforms of δB and χ, respectively. And k is the magnitude of ⃗ k, which is the k-space coordinate of ⃗ r. D( ⃗ k) is the resolution-dependent dipole kernel and kp is the projection of ⃗ k onto the direction of the applied field.

The dipole inversion is a process to calculate susceptibility X from the acquired ∆B, which, however, is an ill-conditioned problem since D( ⃗ k) contains zeros in its diagonal, resulting in severe noise magnification (Liu et al., 2009b). The overall procedure of the proposed method is illustrated in Fig. 1. The method consists of two components, the QSM builder and the QSM tuner. The builder receives a local field map to calculate a raw susceptibility mapping (QSM 0 ). The tuner is a deep convolutional neural network trained to fine-tune the QSM 0 for improving the quality further.

Unsupervised deep learning architecture

The proposed method needs no labels but the input for optimizing the learnable parameters, which is totally self-supervised. The QSM 0 is calculated by the QSM builder directly and then sent to the QSM tuner, whose output, the fine-tuned QSM, is sent back to make the QSM tuner consistent in the susceptibility under the loss function defined as:

The absolute value of QSM 0 plays a role as weight matrix, constraining the regions of high susceptibility regardless of the low susceptibility regions where more streaking artifacts exist as observed.

To deal with the artifacts efficiently, the morphological similarity between ∆B and χ is considered instead of the previous studies between ∆B and F -1 DFχ, since it is time-consuming to calculate the Fourier transform (F) and the inverse (F -1 ). Besides, the proposed morphological loss is effective to eliminate the artifact reference to the field map directly:

where 𝒢( * ) = abs((𝒮 * -mean(𝒮 * ))/std(𝒮 * )) contains morphological information with 𝒮 indicating the Sobel operator for the 3D volume. The standardization can remove the differences in numerical distribution between the field map and QSM so that they are comparable using l1-norm loss. Besides, the absolute value is used to eliminate the discrepancy of the image gradient orientations between the field map and QSM, and only takes the variation level into consideration. That is crucial to reduce the streaking artifact in susceptibility mapping.

Therefore, the final loss function is formulated as:

lT = lC + λlM (5)
where λ denotes the weighting for lM , and was determined as λ=0.01 experimentally.

Morphological QSM builder

A novel method, QSM builder, is proposed to reconstruct a raw QSM, based on TKD as Eq.(A.1) described and morphology. It is formulated as: where is the normalization of B  . TKDthr is a QSM measurement using the TKD method with truncated value of thr . Obviously, provides an estimate of edge information between adjacent tissues, and (1 )  measures a considerable level of field variation inside a tissue. Both and (1 )  contain the morphological features of the magnitude images that are nearly the same as the susceptibility distribution [START_REF] Liu | Morphology enabled dipole inversion (medi) from a single-angle acquisition: Comparison with cosmos in human brain imaging[END_REF]. As claimed in the previous study [START_REF] Shmueli | Magnetic susceptibility mapping of brain tissue in vivo using mri phase data[END_REF], thr=0.2 was recommended as it gave a reasonable streaking artifact level, and the selected thr=0.1 provided more accurate susceptibility values than thr=0.2 but with more streaking artifact. Thus, the proposed QSM builder can reconstruct susceptibility values with low level of streaking artifact and high accuracy especially in the rapidly changing susceptibility regions. Be-sides, the builder can calculate arbitrary resolution QSM inheriting from the TKD method. Even so, the result of the proposed QSM builder still contains streaking artifacts inherited from TKD 0.1 . And thus, we proposed a QSM tuner to fine-tune the raw susceptibility mapping. Note that, all the convolutional layers are with bias and parameterized with kernel size = 3, stride = 1 and padding = 1. In the ResBlocks, the introduction of the residual skip connection can avoid the vanishing gradient issue [START_REF] He | Deep residual learning for image recognition[END_REF] and the Dropout layer can prevent overfitting and enhance the generalization ability [START_REF] Srivastava | Dropout: A simple way to prevent neural networks from overfitting[END_REF]; here, we set drop rate = 0.2.

QSM tuner

The QSM tuner parameters were optimized using the Adam optimizer with β 1 = 0.9, β 2 = 0.999, and the learning rate of 10 -4 which dropped to 90% every five epochs. The training data were cropped patches of size 64 3 with an overlap 50% between adjacent patches, while there is no need to crop the testing data. The QSM tuner network was trained for 50 epochs on a NVIDIA Tesla A100 GPU, and implemented in Python 3.7 and PyTorch 1.8.1. The source codes have been published at xxxxx.

MR data acquisition and processing

The proposed msQSM was trained on in-house dataset acquired from 39 healthy volunteers (training set) using a 3T GE scanner with 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 1 × 1 × 1𝑚𝑚 3 , 𝐹𝑂𝑉 = 256 × 256 × 136𝑚𝑚 3 , TR = 41.816ms , 𝑇𝐸 1 /𝛥𝑇𝐸 = 3.276/2.352𝑚𝑠 and 16 echoes. Informed consents were signed and obtained from all the participants.

To evaluate the performance of msQSM, the data provided for the 2016 QSM challenge [START_REF] Langkammer | Quantitative susceptibility mapping: Report from the 2016 reconstruction challenge[END_REF] was selected, since this data can be reconstructed into the golden standard-COSMOS, which is an essential reference standard for measuring performance, especially the precision. This data was acquired from a healthy volunteer by a 3T Siemens Scanner with 12 sampling orientations, and the acquisition parameters are: 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 1.06 × 1.06 × 1.06𝑚𝑚 3 , 𝐹𝑂𝑉 = 160 × 160 × 160𝑚𝑚 3 and 𝑇𝑅/𝑇𝐸 = 25/35𝑚𝑠.

For verifying the ability to reconstruct arbitrary resolution, multiple resolution and different species data were utilized. The human data was provided for the QSM challenge 2.0 [START_REF] Marques | Qsm reconstruction challenge 2.0: A realistic in silico head phantom for mri data simulation and evaluation of susceptibility mapping procedures[END_REF], obtained through forward simulation on a 7T Philips scanner of 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 0.64 × 0.64 × 0.64𝑚𝑚 3 , 𝐹𝑂𝑉 = 164 × 205 × 205𝑚𝑚 3 , 𝑇𝑅 = 50𝑚𝑠 , 𝑇𝐸 1 /𝛥𝑇𝐸 = 4/8𝑚𝑠 and 4 𝑒𝑐ℎ𝑜𝑒𝑠 . The mouse data was provided with STI Suite toolbox [START_REF] Li | Sti suite: A software package for quantitative susceptibility imaging[END_REF] from UC Berkeley, obtained by a 9.4T scanner with 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 1 × 1 × 2𝑚𝑚 3 , 𝐹𝑂𝑉 = 128 × 256 × 128𝑚𝑚 3 and 𝑇𝐸 = 28𝑚𝑠.

To evaluate the effects of the proposed morphological loss, training set was utilized to train two models with the cycle gradient loss (msQSMcgrd) and the morphological loss (msQSM). And another subject with the same scan parameters was used to test the performance of the proposed morphological loss visually.

To further assess the proposed method in clinical applications, we tested msQSM on a patient with cerebral infarction from Guizhou Provincial People's Hospital, who was scanned using a 3T GE scanner of 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 1 × 1 × 1𝑚𝑚 3 , 𝐹𝑂𝑉 = 256 × 256 × 124𝑚𝑚 3 , 𝑇𝑅 = 41.864𝑚𝑠, 𝑇𝐸 1 /𝛥𝑇𝐸 = 3.26/2.352𝑚𝑠 and 16 𝑒𝑐ℎ𝑜𝑒𝑠. We also utilized 16 heroin addicts and 16 age-and sex-matched healthy controls with the same acquisition parameters as the training set.

Multiple steps were required to preprocess the acquired phase data, including PRELUDE for phase unwrapping [START_REF] Jenkinson | Fast, automated, n-dimensional phase-unwrapping algorithm[END_REF], FSL BET for brain extraction [START_REF] Smith | Fast robust automated brain extraction[END_REF], and V-SHARP for background field removal (O ¨ zbay et al., 2017). For region of interest (ROI) analysis, registration was applied to all subjects according to an unbiased QSM atlas in MNI space (He et al., 2022a). And the parcellation maps were eroded with one voxel to eliminate the influence of boundary values.

Experiments and Results

Evaluation of msQSM's performance

To evaluate the performance of msQSM, we utilized the in vivo brain data provided for the 2016 QSM challenge. The COSMOS result was calculated using four orientation samplings with the angular difference from 15.5 • to 23.5 • . And the reconstructed QSM results were the average of the corresponding four orientation samplings. MoDL-QSM presented here was tested using the pre-trained model provided by the author. The uraQSM and msQSM were trained using the same in-house data as msQSM without data augmentation. Four quality metrics were computed on different methods referenced to COSMOS, including structural similarity index (SSIM) [START_REF] Wang | Image quality assessment: From error visibility to structural similarity[END_REF], peak signal-to-noise ratio (PSNR) [START_REF] Poobathy | Edge detection operators: Peak signal to noise ratio based comparison[END_REF], normalized root mean square error (NRMSE) [START_REF] Willmott | On the use of dimensioned measures of error to evaluate the performance of spatial interpolators[END_REF]) and high-frequency error norm (HFEN) [START_REF] Ravishankar | Mr image reconstruction from highly undersampled k-space data by dictionary learning[END_REF].

Qualitative evaluation

Fig. 3 displays the reconstruction results in three orthogonal planes with residual error maps using different methods illustrated. The results form TKD present non-negligible noise and artifacts (blue arrows). Besides, the results from uraQSM and COSMOS also involve some artifacts (blue arrows) in coronal and sagittal views, respectively. STAR-QSM and MoDL-QSM underestimate the susceptibility values in lenticular nucleus (red arrows), inferior sagittal sinus and internal cerebral vein (yellow arrows). msQSM and iLSQR share similar results that are the closest to COSMOS, while some artifacts are present (marked by blue arrows) in the sagittal view of iLSQR. MoDL-QSM is the most anti-noise with smooth results, but fails to reveal some details such as small vessels. STAR-QSM and msQSM show fewer noise spots and almost no artifacts compared to COSMOS. Briefly, the proposed msQSM exhibits the least residual errors with respect to COSMOS and presents the ability to resist noise and suppress artifacts. 1 gives the quantitative results of the proposed msQSM and other methods in terms of quantitative metrics of SSIM, PSNR, NRMSE and HFEN. For all criteria, msQSM achieves the highest PSNR (42.57dB) and lowest NRMSE (0.3480). STAR-QSM is scored the highest SSIM (0.9857) and iLSQR attains the lowest HFEN (32.49). MoDL-QSM and uraQSM show relatively low quantitative metric values due to the over-smooth result or artifacts in the reconstructed QSM. Compared to the best previous unsupervised method-uraQSM, msQSM achieves a 0.65% higher SSIM, 3.68% higher PSNR, 16.25% lower NRMSE and 22.10% lower HFEN. Besides, msQSM is only 0.11% lower SSIM and 3.63% higher HFEN than the best one, although msQSM only ranks the second not the first for these two criteria.

From the quantitative evaluation, we corroborate that our method outperforms the other deep learning methods with better generalization performance tested on the dataset not used in training and shows competitive stability compared to the conventional methods.

Statistical evaluation

Linear regression and statistical analysis are conducted on the susceptibility values from six representative gray matter regions including globus pallidus (GP), caudate nucleus (CN), putamen (Put), red nucleus (RN), dentate nucleus (DN) and substantia nigra (SN) shown in Fig. 4(a). Scatter plots for the COSMOS and reconstructed QSM pairs are illustrated in Fig. 4(b) with the red dot-dashed line as the linear regression result and the gray dashed line as the line of equality. The regression equation, coefficient of determination (R 2 ) and fitting error (mean standard) are provided in the upper left of each graph. TKD shows the highest slope (0.88), a relatively high R 2 (0.88) and low mean error (0.015), but the standard error (0.011) is the highest indicating that its reconstruction results are the least stable. The results form iLSQR are similar to TKD but with a lower slope (0.081) and standard error (0.0065). STAR-QSM reconstructs the worst results with the lowest slope (0.7), R 2 (0.59) and standard error (0.0055), and the highest mean error (0.029), which means the result from STAR-QSM is the most stable, but differs the most from the COSMOS. Although uraQSM is an unsupervised method, it achieves comparable results to the supervised MoDL-QSM, and shows more stability of susceptibility reconstruction than MoDL-QSM. The proposed msQSM shows the best performance in terms of linear regression and coefficient of determination with the lowest mean error (0.012) and the highest R 2 (0.92).

Visually, the reconstruction results of the six methods in the six representative regions all follow a similar distribution. The results of TKD, MoDL-QSM and uraQSM are not as clustered as those of iLSQR, STAR-QSM and msQSM, in which iLSQR and msQSM show high consistency with COSMOS in susceptibility values.

Runtime and parameters number

Table 2 provides the runtime of QSM reconstruction methods and the parameters number of deep learning methods. The runtime of conventional methods iLSQR and STAR-QSM is tested on Core(TM) i7-12700, and a Tesla A100 is used to test TKD and the deep learning methods. The data for evaluation is in-house data with matrix size of 256×256×138. TKD shows the fastest runtime among conventional methods on CPU (2.23s) and deep learning methods on GPU (0.12s). However, other conventional methods, especially iLSQR, need a very long time to reconstruct QSM. For the deep learning methods, MoDL-QSM shows the fastest reconstruction time (0.53s), and msQSM takes 0.72s to measure a QSM, 93.2% shorter than uraQSM (10.64s). Besides, the learnable parameters of msQSM are 81.1% less than uraQSM. Notably, although iLSQR shows a comparable performance to msQSM, but the runtime of msQSM is ultra-faster than iLSQR.

Evaluation on arbitrary resolution datasets

Reconstruction results are compared using different resolution and species data. The msQSM and uraQSM are both trained using data of 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 1 × 1 × 1𝑚𝑚 3 , and evaluated using human data of 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 0.64 × 0.64 × 0.64𝑚𝑚 3 and mouse data of 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 1 × 1 × 2𝑚𝑚 3 . Fig. 5 shows that the results from TKD and uraQSM contain obvious streaking artifacts and noise for both human and mouse data, and some dispersive underestimated susceptibility regions (black shadow artifacts) as marked by the red arrows. The results from iLSQR and msQSM are similar with very little noise and artifact-free. The green arrows indicate the clear details of dentate nucleus and the blood vessel in temporal gyrus. In the regions of occipital lobe, iLSQR and msQSM reconstruct more folds in rich detail than those of TKD and uraQSM marked by green boxes. For the mouse data, iLSQR and msQSM are able to measure the boundaries of brain regions like those between caudoputamen, olfactory structure and nucleus accumbens marked by the blue arrows, while the uraQSM fails to reveal these boundaries marked by the hollow yellow arrows. Besides, msQSM can reconstruct the dentate gyrus marked by cyan arrows as well as iLSQR. Briefly, the proposed msQSM is able to reconstruct results with high quality on arbitrary resolution data, although the model is trained using only one resolution. In contrast, the results from uraQSM exhibit some noise and artifacts, especially for the mouse data.

Effects of morphological loss

The experiment for evaluating the proposed morphological loss is conducted referenced to the cycle gradient loss used in the previous unsupervised learning [START_REF] Liu | Model-based learning for quantitative susceptibility mapping[END_REF][START_REF] Oh | Unsupervised resolution-agnostic quantitative susceptibility mapping using adaptive instance normalization[END_REF] defined as:

lcgrd = ∥∇F -1 DFχ -∇b∥ 1 ( 7 
)
where ∇ is the gradient operator. Fig. 6 demonstrates that the proposed morphological loss is effective in removing artifacts. The results of QSM 0 show a large number of streaking artifacts (marked by blue arrows). The proposed msQSM method using cycle gradient loss can remove the artifacts, but still remains some (blue arrows) compared to msQSM using the morphological loss. The zoomed-in details outlined by cyan boxes reveal more clearly the existence of streaking artifacts in the results of QSM 0 and msQSM cgrd , while these artifacts are effectively removed in msQSM.

Besides, the training time between msQSMcgrd and msQSM is also evaluated with the same batch size on a Tesla A100 GPU, resulting in msQSM (2.83s/it) saves 22.1% training time compared to msQSMcgrd (3.62s/it).

Practical Application of msQSM

To further verify the effect of clinical application, we test the proposed msQSM, iLSQR and uraQSM using some patient data, including cerebral infarction and heroin addiction. It can be seen from Fig. 7 that the lesion in the lenticular nucleus showed low T1 FLAIR signal, high T2 signal, and low T2 FLAIR signal, knowing that the clinical diagnosis was old cerebral infarction. iLSQR, uraQSM and msQSM depicted this lesion with similar results as the yellow arrows indicated. Furthermore, the QSM results allow us to detect lesions (green arrows), considering calcification, which are not easy to capture in T1 or T2. Fig. 7 suggests the potential of msQSM in detecting both obvious and small lesions in clinical applications, as well as other QSM methods.

Figure 8: Susceptibility analysis of six specific regions using iLSQR, uraQSM and msQSM on heroin addiction data (Heroin Group) and the health control data (Control Group). ⋆⋆ denoting extremely significant (p≤ 0.01) and ⋆ sufficiently significant (0.01<p≤ 0.05) difference between control and heroin group.

Next, the proposed msQSM was tested on heroin addicts data, with t-test for significance testing in six representative regions of deep gray matter. As illustrated in Fig. 8, the results of msQSM showed significant differences between heroin group and control group in four regions, with 19.1% increase (p = 0.03) in caudate nucleus (CN), 15.3% increase (p = 0.05) in putamen, 12.9% increase (p = 0.006) in globus pallidus (GP) and 24.3% increase (p = 0.01) in substantia nigra (SN). This phenomenon means that significant iron deposition occurs in these brain regions of heroin group. Although the susceptibility values have increased by 14.5% in red nucleus (RN) and 16.0% in dentate nucleus (DN), the changes are not significant with p = 0.09 and p = 0.23, respectively.

For transversal comparison, different methods show disparities of sensitivity to the differences in brain regions caused by heroin use. For example, the results of iLSQR are extremely significant (p≤0.01) between heroin group and control group in CN, while those of uraQSM and msQSM are only sufficiently (0.01<p≤0.05). Besides, uraQSM is also less sensitive than iLSQR and msQSM for changes in GP, and even in putamen; its results show no significant difference. It follows that the proposed msQSM shows more potential than the previous state-of-the-art unsupervised method-uraQSM for assisting in the diagnosis of the therapy effect of heroin addicts.

For longitudinal comparison, the proposed msQSM measures the changes in brain regions caused by heroin use, which are consistent with previous study [START_REF] Wei | Quantitative susceptibility mapping for drug-addicted human brain[END_REF], but there are some differences from the changes caused by cocaine use [START_REF] Ersche | Disrupted iron regulation in the brain and periphery in cocaine addiction[END_REF], which will be discussed in the next section.

Discussion

This study proposed a self-supervised deep learning method, msQSM, to process QSM dipole inversion. Compared to existing methods, msQSM achieved the best results in terms of comprehensive performance on the data not used in training and showed strong generalization ability. The great performance benefits from the proposed morphological QSM builder and morphological loss for network training.

Comparison with other methods

The result from TKD also exhibits a small error compared to the result from COSMOS shown in Fig. 3, because a small truncated value of 0.1 and the similar sampling orientations (15.5 • to 23.5 • ) will make TKD close to COSMOS as evidenced in Appendix A. The result from MoDL-QSM is too smooth to keep some details, so its SSIM is low. Also, due to the use of supervised learning, feature expression ability of MoDL-QSM is weaker than unsupervised learning for non-training data, from which the performance suffers degradation. The result from uraQSM has a lower error on the test data with the same resolution as the training set, but it also presents a few artifacts, so that the results in quality metrics are worse than msQSM.

For the results of COSMOS, there are still a little bit artifacts left, since the test data are sampled in similar orientations while the optimal × × orientations are suggested as 0 • , 60 • , and 120 • (Liu et al., 2009a). On the contrary, msQSM removed the artifacts present in COSMOS, which is also a performance improvement, but due to this inconsistency, msQSM was not ranked first in terms of SSIM and HFEN (Table 1).

As observed in Table 2, the proposed msQSM is 93.2% faster than uraQSM when reconstructing a QSM. One reason is that the model size of msQSM is much smaller than that of uraQSM. The other more important reason is that the test data needs to be cropped into patches of size 64 64 64 with 50% overlap for uraQSM inference, while msQSM takes the full size of test data to reconstruct without any cropping, which vastly reduces the calculation time.

Arbitrary resolution

The proposed msQSM can measure arbitrary resolution QSM although trained using only one resolution data. As shown in Fig. 5, msQSM shows stronger ability than uraQSM to reconstruct multiple resolution data with almost no artifacts as well as iLSQR. Mathematically, in the whole dipole inversion process, the resolution information is only used when calculating the dipole kernel to transfer a field map to a QSM (Eq.( 2)). The proposed QSM builder can utilize the priori physical and morphological information to calculate a resolution-independent QSM 0 . Thus, the builder plays a role to decouple the dependency of QSM on the sampling resolution, and makes the QSM tuner concentrate on removing artifacts with no need to learn the resolution feature. For uraQSM, the author proposed a AdaIN code generator to encode the resolution feature, which needs to be trained with various resolution data. For this reason, uraQSM can be used for any resolution [START_REF] Oh | Unsupervised resolution-agnostic quantitative susceptibility mapping using adaptive instance normalization[END_REF]. Consequently, uraQSM exhibits inferior performance when the resolution of the test data is not used in training [START_REF] Oh | Unsupervised resolution-agnostic quantitative susceptibility mapping using adaptive instance normalization[END_REF].

Morphological loss

Additionally, the proposed morphological loss reduced streaking artifacts effectively and saved the training time efficiently. As displayed in Fig. 6, the morphological loss demonstrates higher artifact removal ability than the cycle gradient loss in unsupervised learning tasks. Tha t is bec a use t he gradient difference loss allows us to preserve edge information in the reconstructed QSM [START_REF] Yoon | Quantitative susceptibility mapping using deep neural network: Qsmnet[END_REF], whereas the morphology-based edge offers more details not only between structures such as pallidum, putamen, lingual, and occipital (marked by cyan arrows) but also inside a structure such as putamen (yellow arrow), as observed in Fig. 9. In this way, the morphological difference loss can provide the structural information of the field map more precisely than the gradient, so that the streaking artifacts can be removed more effectively. Besides, due to the direct comparison of the morphological differences between the field map and QSM, the morphological loss costs less training time than the gradient loss which needs to transfer the QSM to field map with additional Fourier transform and the inverse described as Eq.( 7). In addition, the gradient loss usually cooperates with the total variation (TV) loss like the previous works [START_REF] Liu | Model-based learning for quantitative susceptibility mapping[END_REF][START_REF] Oh | Unsupervised resolution-agnostic quantitative susceptibility mapping using adaptive instance normalization[END_REF] to preserve image details, resulting in more training time. Theoretically, the proposed morphological loss is more suitable for data cropping in the training, because there is no need for the QSM physical model operator with a dipole kernel that cannot be cropped physically. If one utilizes the cycle gradient loss, to preserve the high-frequency information, the patches need to be padded to the original size to match the size of dipole kernel for performing physical model operator and then cropped back to the patch size [START_REF] Feng | Modl-qsm: Model-based deep learning for quantitative susceptibility mapping[END_REF].

Clinical application

Furthermore, msQSM shows high potential for clinical application of both detecting the lesions (Fig. 7) and analyzing the susceptibility changes in brain regions (Fig. 8). However, the latest unsupervised method-uraQSM failed to detect the changes in putamen, because the results of uraQSM exhibited larger error and lower correlation (Fig. 4), which makes uraQSM less sensitive to areas having low susceptibility values, such as putamen. In caudate nucleus, the results of uraQSM are more accurate, so the results show significance.

Besides, the proposed msQSM shows the same significant increase of susceptibility in caudate nucleus, putamen and pallidum for heroin addicts as [START_REF] Wei | Quantitative susceptibility mapping for drug-addicted human brain[END_REF] suggested. However, the susceptibility changes we observed in red nuclues and substantia nigra are different from the previous study on cocaine users [START_REF] Ersche | Disrupted iron regulation in the brain and periphery in cocaine addiction[END_REF]. We found a significant increase on susceptibility in substantia nigra and insignificant change in red nucleus for heroin users, while it advised the significant decrease in red nuclues and no meaningful changes in substantia nigra for cocaine users. We speculate that the difference is due to the distinct addiction mechanisms of heroin and cocaine to the human body. Cocaine serves as a stimulant by inhibiting dopamine reuptake leading to increased dopamine signaling [START_REF] Harraz | Cocaine-induced locomotor stimulation involves autophagic degradation of the dopamine transporter[END_REF], while heroin exerts an analgesic effect by binding to opioid receptors, which pro-duces a great sense of euphoria. Since it was further confirmed that drug use enhances dopamine neurotransmission, producing a hyperdopaminergic reaction to drugs [START_REF] Samaha | Dopamine 'ups and downs' in addiction revisited[END_REF], drug addiction links to functional changes in dopamine-producing substantia nigra. Thus, we conclude that our results are consistent with changes in the substantia nigra. Especially when iron deposition in substantia nigra increases, dopaminergic neurons are damaged and dopamine synthesis is limited, and addicted patients are eager to use drugs to promote dopamine neurotransmission to relieve pain and achieve euphoria.

Limitations and following works

Although our method is able to reconstruct arbitrary resolution QSM even trained on one resolution data, it leaves room for improvement because the process of dealing with dipole inversion involves two steps. The proposed morphological loss concentrates on removing artifacts and achieves excellent results, but our method does not take noise into account, so the anti-noise ability needs to be improved.

In our experiments, since our training data cannot reconstruct the gold standard COSMOS, we used another center's data from a different source than the training set for performance analysis. However, this also shows that our method has good generalization ability on multi-center data. In the next step, we will collect multi-orientation data and divide them into training set and test set for model training and evaluation to analyze the model performance more comprehensively.

Conclusions

We proposed a self-supervised deep learning method based on morphology to perform the ill-conditioned dipole inversion in quantitative susceptibility mapping reconstruction. The morphology-based loss is firstly proposed to simultaneously reduce reconstruction artifacts and improve training efficiency. Our method can be applied to arbitrary resolution QSM, even though trained on only one resolution data. The results showed that our method achieves the state-of-the-art performance among unsupervised learning methods for QSM and presents high interests for clinical applications and gives QSM the potential to be applied for auxiliary diagnosis and treatment of drug addiction.

Figure 1 :

 1 Figure 1: The overall scheme of the proposed method. QSM 0 is a raw QSM from the QSM builder. The QSM tuner then fine-tunes QSM 0 to improve the quality. The training and inference pipeline are marked by red and blue arrows, respectively.

1Figure 2 :

 2 Figure 2: The QSM tuner network architecture. The input is QSM 0 and the output is a fine-tuned QSM. The network consists of six ResBlocks, and two convolutional layers as the input encoder and output decoder. Feature numbers are marked on the layers.

Fig. 2

 2 Fig. 2 illustrates the network architecture of The QSM tuner, whose input is QSM 0 from the QSM builder and output is a fine-tuned QSM. The input is encoded by two ConvBlocks (3D convolutional + Batch Norm + GELU) into 48 features, which are then sent to six series-wound ResBlocks, anyone of which is composed of a ConvBlock, a Dropout layer, a ConvBlock without GELU, a residual connection and a GELU activation function. The result of the last ResBlock is decoded into the QSM image by two ConvBlocks.Note that, all the convolutional layers are with bias and parameterized with kernel size = 3, stride = 1 and padding = 1. In the ResBlocks, the introduction of the residual skip connection can avoid the vanishing gradient issue[START_REF] He | Deep residual learning for image recognition[END_REF] and the Dropout layer can prevent overfitting and enhance the generalization ability[START_REF] Srivastava | Dropout: A simple way to prevent neural networks from overfitting[END_REF]; here, we set drop rate = 0.2.The QSM tuner parameters were optimized using the Adam optimizer with β 1 = 0.9, β 2 = 0.999, and the learning rate of 10 -4 which dropped to 90% every five epochs. The training data were cropped patches of size 64 3 with an overlap 50% between adjacent patches, while there is no need to crop the testing data. The QSM tuner network was trained for 50 epochs on a NVIDIA Tesla A100 GPU, and implemented in Python 3.7 and PyTorch 1.8.1. The source codes have been published at xxxxx.

Figure 3 :

 3 Figure 3: Three orthogonal views of QSM reconstruction results with residual error. The red and yellow arrows indicate the underestimation of susceptibility. The blue arrows point out the artifacts.

Figure 4 :

 4 Figure 4: (a) Representative gray matter structures. Scatter plots and statistical analysis are based on the susceptibility values in the colored regions. (b) Voxel-based liner regression. The red dot-dashed line is the trend line of the regression, and the gray dashed line is the line of equality.

Figure 5 :

 5 Figure 5: Three orthogonal views of QSM reconstruction results on different resolution data with arrows indicating the details. (a) Human data. (b) Mouse data.

Figure 6 :

 6 Figure 6: Coronal views of QSM by the QSM builder (QSM 0 ), msQSM using the cycle gradient loss (msQSMcgrd) and the proposed msQSM. Cyan boxes mark the zoomed-in details and blue arrows indicate the artifacts.

Figure 7 :

 7 Figure 7: Representative axial views of T1 FLAIR, T2 and T2 FLAIR, and the corresponding QSM images on a patient with cerebral infarction. The zoomed-in details (cyan boxes) of the lesion area (yellow arrows) are attached.

Figure 9 :

 9 Figure 9: Comparison of the morphological edge (MEdge) and gradient edge (GEdge) of the field map

Table 1 :

 1 Comparison of quantitative performance metrics on results from different QSM reconstruction methods referenced to COSMOS on data from the QSM Challenge 2016.

	Methods	SSIM PSNR(dB) NRMSE HFEN
	TKD	0.9686	40.13	0.4354	46.25
	iLSQR	0.9836	42.51	0.3840	32.49
	STAR-QSM 0.9857	42.14	0.4561	36.25
	MoDL-QSM 0.9116	41.76	0.4762	44.28
	uraQSM	0.9782	41.06	0.4155	43.22
	msQSM	0.9846	42.57	0.3480 33.67
	Table				

Table 2 :

 2 Runtime and the number of learnable parameters (#) of various QSM reconstruction methods.

		Methods	Runtime(sec)	#
	Conventional	TKD	2.23cpu/0.16gpu	-
	methods	iLSQR	90.77	-
		STAR-QSM	7.02	-
	Deep learning MoDL-QSM	0.53	447,235
	methods	uraQSM	10.64 4,297,281
		msQSM	0.72	811,825
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Appendix A. TKD and COSMOS on multi-orientation data

Given the different sampling orientation number n≥3, let ∆B i and Di standard for the i-th field and dipole kernel in k-space, respectively. The TKD is calculated as follow:

where max ̂(𝐷, 𝑡ℎ𝑟) = max(|𝐷|, 𝑡ℎ𝑟) ⋅ sign(𝐷) standards for the truncated dipole kernel with symbolic properties. And COSMOS is calculated as follow:

When calculated using multi-orientation data, TKD can be expressed as:

The difference between TKD and COSMOS on multi-orientation data:

where Σ thr represents the degree of difference in each sampling orientation. The smaller the difference, the more zeros in Σ thr , the closer COSMOS and TKD are. Besides, the difference is also affected by the truncated value of thr, which can be formulated as: