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Stochastic dynamic programming for energy
management of an overplanted offshore wind farm

with dynamic thermal rating and storage
Alexandre Faye-Bédrin1,2, Anne Blavette1, Pierre Haessig2, Salvy Bourguet3, Ildar Daminov3

Abstract—We study the optimal energy management of an
offshore wind farm which combines “overplanting” (more pro-
duction than transmission capacity), “dynamic thermal rating”
(DTR, transiently exporting more than the steady-state trans-
mission capacity thanks to the large thermal inertia of the
soil surrounding the export cable) and an energy storage (to
mitigate both curtailements and forecast errors). This forward-
looking setting, which aims at further reducing the Levelized
Cost of Energy of offshore wind power, creates an optimization
problem with both temporal couplings and uncertain inputs. The
difficulty of this energy management problem comes from having
time constants separated by several orders of magnitude due
the thermal inertia of the cable surroundings. We propose an
approximate solution based on large GPU implementation of
Stochastic Dynamic Programming (SDP). In our performance
comparisons, SDP outperforms simpler rule-based energy man-
agement schemes while we also explore the benefit of DTR in
the context of overplanting.

Index Terms—overplanting, dynamic thermal rating, energy
storage, optimal energy management, stochastic dynamic pro-
gramming

I. INTRODUCTION

The installed power capacity of offshore wind energy is
growing, reaching almost 60 GW worldwide at the end of
2021, and with a rhythm of capacity increase expected to
accelerate in the coming years [1]. However, although already
competitive in some markets before the 2022 energy crisis,
the levelized cost of energy (LCOE) of this energy source is
still greater than the LCOE of other energy sources in most
markets [2]. Hence, cost reductions are necessary to render
this energy source competitive worldwide.

Several options are envisaged in this perspective, including
overplanting, combined or not with dynamic thermal rating
(DTR) [3]. Overplanting consists in sizing a wind farm at a
greater rated power than the steady-state rated power of its
export cable. This allows a better exploitation of low and
mildly energetic periods while requiring curtailment during
more energetic ones. Overall, this approach enables to increase
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the annual energy production of a wind farm. Under these
conditions, DTR may be allowed, which consists in consid-
ering the temperature constraints of the cable (temperature
being the actual limiting factor for power export), rather than
considering more conservative, steady-state electrical current
constraints which are less relevant in the case of a fluctuating
power output.

The goal of these approaches is to maximize the use of the
wind farm electrical infrastructure, that is to say operate it
closer to its technical limits.

However, managing optimally a wind farm with overplant-
ing (combined or not with DTR) is more complex as additional
constraints on the power export must be considered. These
constraints consists of a current constraint, and/or of a thermal
constraint if DTR is considered. The farm optimal energy
management therefore consists for the wind farm manager
in finding the farm power profile which will maximize the
revenue that can be extracted from the power production. The
associated control variables consist of the curtailed power,
as well as the stored power when an energy storage unit
is present. In this paper, we consider the latter (and more
complex) case where offshore storage is included in the farm.

As it will be detailed in the state-of-the-art in Section II,
the addition of power and/or thermal constraints in the optimal
energy management problem requires the development of a
new methodology for their integration in existing solving
techniques. This new methodology is presented in this paper,
as well as a case study where the performance of the proposed
method is compared with heuristics.

It is also important to mention that the optimal energy
management of a wind farm has become more and more
complex, and that this trend is expected to continue in the
future, independently of their situation regarding overplanting.
More and more requirements are indeed applied to wind
farms, regarding for instance their short-term expected power
production, their ability to provide ancillary grid services, etc.

In this context, new requirements have emerged in small
electrical networks presenting a high penetration level of
renewables. In some French non-interconnected islands for
instance, renewable farm managers may be penalised if their
actual power profile presents a significant mismatch compared
to their day-ahead declaration [4]. Also, the European balance
responsible party scheme implies that deviations from day-



ahead/intra-day forecast production/consumption profiles may
be either penalized or rewarded [5]. Hence, in the context of
the optimal energy management of a wind farm, it is important
to consider also the potential penalties/revenues associated
with the deviations from the day-ahead power production
forecast. This is performed in this paper where we consider the
most stringent conditions, i.e. deviations are always penalized,
as it will be detailed in Section III.

This paper presents a state-of-the-art in Section II, the mod-
eling and proposed metholodoly in Section III, a description
of the case study in Section IV, and finally the results in
Section V, with a conclusion in Section VI.

II. STATE OF THE ART

A. Optimal energy management under uncertainty

Deciding the energy flows in an offshore wind farm is an
energy management problem which is itself a dynamic opti-
mization problem (also called optimal control). It is dynamic
in the sense that operational decisions at each instants are
coupled through time due to the presence of inertia (or “state”
or “memory”) in the system which makes each decision affect
future decisions. In the present context, temporal couplings
from 1) the presence of an energy storage and 2) the thermal
inertia of the cable considered for DTR. In this paper, we do
not study the optimization of the day-ahead commitment, but
otherwise it would be a third source of temporal coupling.
What’s more, since we model the fact that, at each decision
instant, the future wind power production is uncertain, the
problem falls in the class of stochastic dynamic optimization.
This class of problem gets naturally analyzed, at least theoret-
ically, in the framework of Stochastic Dynamic Programming
(SDP) [6]. Due to numerical complexity (see III-A), it is
often the case that approximate solutions are used instead,
with the two most popular being perhaps Model Predictive
Control (MPC: uncertain inputs replaced by point forecast) and
Reinforcement Learning (RL: use of interpolation with basis
functions). A specialized variant, SDDP, is also powerful but
requires convexity of the problem which is too restrictive here
[7]. In this work, we use a direct numerical implementation of
SDP, although being at the edge of applicability in terms of
state space dimension, to benefit from its effective handling of
both uncertainty and dynamics, without the need to tune basis
functions like in RL.

B. Optimal energy management of wind farms with overplant-
ing

The vast majority of works on the inclusion of dynamic
thermal rating in power systems covers onshore networks
composed in majority of transformers and overhead lines [8].

Considering underground cable systems is more challeng-
ing as, unlike transformers or overhead lines, the thermal
behaviour of cables is usually modeled with more complex,
non-linear models, which may be incompatible with the op-
timization methods developed for transformers and overhead
lines [9]. In addition, the larger inertia presented by under-
ground cable systems leads to a more complex multi-scale,

time-coupled problem. The decision resulting from an energy
management optimisation study must indeed be made at a
fine temporal resolution (e.g. 1 hour) over a relatively short
horizon (typically the 24 hours of the next day) while the cable
temperature may take months before reaching its steady-state
temperature when the cable is applied its rated power.

Among the works considering underground cable systems,
in the case of either an onshore or an offshore wind farm,
most works focus on improving their sizing. In some of them,
a degree of freedom for the control of the wind farm is
considered in the form of curtailment. This requires solving
the associated energy management problem in order to define
a (sub-)optimal curtailment strategy. Most of these works
consider a deterministic energy management strategy [10]-
[11].

However, to the best of the authors’ knowledge, only a
minority of research works consider optimizing the energy
management of the wind farm under uncertainty while taking
into account the cable temperature constraints. Among these
research works, Hernandez Colin et al. [12] proposed prob-
abilistic algorithms based on Markov models to determine
the hours- to day-ahead power production planning of an
offshore wind farm. This methdology introduces a learning-
based probabilistic estimation of the risk linked to a violation
of the maximum allowed temperature constraint, and estimates
the curtailment strategy to be performed. Liu et al. have
also developed a probabilistic framework to determine the
hours-ahead power production planning of a wind farm based
on on ARMA model of the wind power forecast, still in
order to define the curtailment strategy [13]. Kazmi et al.
[14] formulated the optimal sizing of a wind farm as a
two-stage MILP problem, where the inner stage covers the
optimal energy management of the farm. The cable thermal
behaviour is modeled through a linearized model. In addition
to the uncertainty in wind power production, the authors
also considered the uncertainty on the availability of power
components (i.e. related to their probability of failure).

In all these works, no offshore energy storage is consid-
ered, despite a growing interest in this type of applications
[15]. Contrary to the cases where no storage is considered,
optimizing the energy management strategy of a wind farm
including storage is therefore based on two degrees of freedom
(i.e. curtailment and storage), as opposed to a single degree of
freedom in the form of curtailment only. This renders the as-
sociated problem more complex and requires the development
of new methodologies. Presenting such a methodology is the
first goal of the proposed paper.

In addition to the consideration of storage, the proposed
paper also considers the cost/revenue which may be generated
from power imbalances. In other words, the revenue of a wind
farm manager is not considered in this paper as composed
only of the revenue generated from its power production, but
also on the cost/revenue associated with the mismatch between
the electricity production declared in advance and the actual
production.

The forecast of the imbalances, which are financially man-



aged by the BRP and assumed to be reflected on the revenue
of energy providers, attracts more and more attention as
they may be exploited to increase their revenues, despite
the fact that this may be worrying for grid operators. As
renewables are becoming the main cause of imbalances in
many power systems, such imbalances may indeed become
more and more predictable at different lead times. Research
works on imbalance volume and price forecasts is therefore
emerging [16], [17], [18].

C. Summary

The optimal energy management of an overplanted wind
farm, including energy storage and allowing DTR is a relevant
problem which has not been tackled yet in the existing
literature, to the best of the authors’ knowledge. In order
to solve this problem, we have identified SDP as a relevant
method. This method has indeed proven to be efficient for
solving the problem of the optimal energy management under
uncertainty of wind farms including storage, although the in-
clusion of cable temperature constraints had not be considered
yet. The inclusion of such constraints renders the considered
problem more complex and required the development of a
new methodology which is described in this paper. It implies
modeling the cable thermal behaviour with a small number of
state variables in order to be usable with SDP.

III. MODELING AND METHODOLOGY

A. Introduction to SDP

Stochastic Dynamic Programming is a method for comput-
ing the optimal control for a system that can be described with
a dynamic and an instant cost [6], as precised next.

At any given moment k, the system state xk evolves in
response to a control uk and a perturbation wk:

xk+1 = fk(xk, uk, wk) (1)

In our case, x includes the storage state and some infor-
mation in the thermal model, while u can be a combination
of power curtailment and storage input. System dynamic f is
where storage (Eq. III-B1) and thermal models operate.

The goal of SDP is to minimize the value of a stochastic
cost function, in the form:

J = E
w

[
K−1∑
k

ck(xk, uk, wk) + g(xK)

]
(2)

There is no special assumption on the instant cost function
ck, which allows SDP to be used in complex cases, including
ones with non-convex cost functions.

The cost function can be decomposed in Bellman functions,
recursively defined for k diminishing from K − 1 to 0 with

J∗
k (xk) = min

uk

E
w

[
ck(xk, uk, wk)

+J∗
k+1(fk(xk, uk, wk))

]
(3)

and initialized, in our case, with J∗
K(xK) = gK(xK) = 0.

The optimal control law µ (such that uk = µk(xk)) is then
computed for each time step in the same order.

Usually, the control law computation is performed off-line
(ahead of time), as it can be computationally expensive, and
so it can be used almost instantly on-line1.

Because the control law µ has to be calculated for every
possible state of the system x (in the case x is composed of
continuous variables, we can use a mesh discretization of the
state space –with a regular grid in our case), the number of
state variables should remain low (no more than 4-5) in order
to be computable: this is the curse of dimensionality.

B. Problem formulation

1) System dynamics: The controlled system includes wind
turbines, a storage device, and an export cable. The problem
is formalized within a discrete time framework.

At every moment k, wind turbines can produce an elec-
trical power Pprod,k. Some of this power can be curtailed
(curtailment is called Pcur,k ≥ 0) or stored (Psto,k beeing the
power supplied to the storage). Stored energy Esto,k evolves
the following way:

Esto,k+1 =

{
Estok +∆t× ηPsto,k when Psto,k > 0

Estok +∆t× 1
ηPsto,k when Psto,k ≤ 0

(4)

with ∆t the duration of one time step and η the efficiency.
Stored energy has to stay within fixed limits: Esto,min ≤

Esto,k ≤ Esto,max

As a result of production, curtailment, and storage manage-
ment, power Pgrid,k = Pprod,k−Psto,k−Pcur,k is transmitted
to the export cable.

Based on weather predictions, a production commitment
P ∗
grid,k has been decided one day ahead. The error between

realized and predicted available power Pmis,k = Pprod,k −
P ∗
grid,k is a stochastic variable that exhibits persistence (a

positive auto-correlation). This behaviour can be captured by
a first order auto-regressive model[19]:

Pmis,k+1 = ϕPmis,k + wmis,k (5)

where wgrid,k is a white noise and 0 < ϕ < 1.
2) Objective function: The instant cost ck is the financial

cost induced by the difference between commitment and
transmitted power. We chose this cost to be quadratic, although
it could be replaced with any other function:

ck = (Pgrid,k − P ∗
grid,k)

2 = P 2
dev,k (6)

3) Cable constraints: Cables are rated for their nominal
capacity Pmax, that is the sustained power a cable is able
to carry without overheating. The strategy that ensures that
the transmitted power never exceeds the nominal capacity
(Pgrid,k ≤ Pmax∀k) is called static rating (SR).

SR is actually the simplest way to achieve a cable tempera-
ture that does not cause deterioration of the insulating material.
It is however not the most permissive nor cost-efficient method
in the case of overplanting: by design, it will cause power

1In our case, we perform the computation day-ahead, which is not exactly
off-line nor on-line. This tightens the compute time requirements.



curtailment to stay below the nominal capacity of the cable,
but does not consider the temperature in any other way.

In the hope of a better result, we can replace the power
constraint by a thermal constraint, which is the principle
of DTR: θk ≤ θmax. Temperature being a consequence of
carried power (through Joule losses), one way to implement
such a constraint is actually to set what we call a dynamic
power constraint, that is to say a dynamically computed upper
bound for the transmitted power: Pgrid,k ≤ Pmax,k. If the
temperature can be calculated by an invertible model Fk (such
that θk+1 = Fk(Pgrid,k), with k implicitly denoting the state
of the cable), it is possible to use the inverse model to find the
maximum power the cable is capable of carrying during one
time step without damaging itself: Pmax,k = F−1

k (θmax).
The next step is to find a thermal model suited to this

purpose, which also fits the requirements of SDP.

C. Thermal modeling

1) Existing thermal models: The reference model, that we
used for validation, was developed for another paper [20]
based on IEC standards 60287 and 6853-2. It is based on
a two-cell RC equivalent circuit modeling the cable itself,
coupled to the solution to the heat equation in the ground
surrounding the cable.

Other models have been explored. Some are based on the
physical equations, such as FEM or RC-lattice based models
[21]. Some others are built on data analysis [22]: based on past
behavior, they estimate the temperature evolution in a more or
less close future. This last class of models includes time-series
based models, machine learning, and process models.

2) Proposed thermal model: The idea behind SDP is to
take decisions while trying to predict, with the help of a model,
what the consequences will be in the near and far future. While
we did not formally know what should be the properties of
said model, we can infer that it should at least be good (that
is to say precise) at predicting in the short term, and that it
should give a plausible tendency for the long term.

One model that has given interesting results is a modifica-
tion of the reference model : we replaced the heat equation
with a third RC cell that aims to approximate its behavior, in
order to mimic the IEC reference model in the short term and
on a steady state. The result is a relatively simple 3-RC ladder
model (see Fig. 1), that obeys a linear differential equation:

dθ̄

dt
= Aθ̄ +B ×W, θ̄ ∈ R3 (7)

Then, assuming Joule losses W = R
3 ×

(
Pgrid

U

)2

are
constant during each time step, the temperature prediction can
be computed:

θ̄k+1 = Fk(Pgrid,k) = f(θ̄k,Wk) (8)

This model is invertible, which allows to compute the
maximum power allowed during one time step Pmax,k as
explained in III-B3.

Fig. 1. Schematics of the 3-RC ladder model.

Assuming we only have access to a measure of the cable
core temperature, we need to reconstruct the values of the
other cells in order to be able to apply the optimal control law
µk. For this purpose, we used a state observer, an asymptotic
Kalman filter, which also allows us to correct prediction errors
caused by the reduced order model.

D. Description of the compared strategies

In order to estimate the value of both SDP and dynamic
thermal rating for our purpose, we defined six strategies.

The first three strategies are heuristics that minimize the
instant cost function, without considering the future. In other
words, they are greedy algorithms. The difference between
these three heuristics lies in the set of constraints they con-
sider regarding the power transmission capability: Heuristic
H Nolim does not consider any constraint (it would be inap-
plicable and only serves as a point of reference), Heuristic
H Plim considers static power constraints (i.e. Pgrid,k ≤
Pmax) while Heuristic H Tlim considers a temperature con-
straint (i.e. θk ≤ θmax via a dynamic power constraint).

These heuristics are compared to their SDP-based counter-
part (SDP Nolim, SDP Plim and SDP Tlim), which consider
the same set of constraint but aim to optimize the objective
function over a certain time span.

IV. CASE STUDY

1) Cable and soil characteristics: We had access to the
geometry and materials characteristics of an anonymized 3-
core submarine cable, whose cross-section is equal to 1000
mm2 and whose rated voltage U to 225 kV. We assumed a
power factor equal to unity, which is a first-stage hypothesis,
as submarine cables generally generate reactive power. The
maximum allowed temperature is equal to 90°C for this type
of cable insulated with XLPE. The power for which this
maximum temperature is reached under steady-state conditions
is equal to 336 MVA.

2) Wind power production and forecast data: Measured
power profiles of real offshore wind farms connected to the
network of Belgian TSO Elia were used in this study [23].
Day-ahead forecasts were also provided by this operator and
used in this study as well. They are provided in the form of
quantiles (namely P90, P50 and P10), where PX represents
the power level that has X% chance of not being exceeded.

The measured and forecast power data corresponding to one
year (from 13 January 2016 to 13 January 2017) was used. The
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Fig. 2. Step response of 3-RC model compared to the step response of
the reference IEC model. The horizontal scale is polynomial (instead of
logarithmic) in order to be able to represent t = 0.

aggregated power capacity of the wind farms stayed constant,
and equal to 800 MW. In order to simulate overplanting for an
offshore wind farm, both the measured and the forecast data
were scaled up proportionally from 336 MVA (overplanting
rate α = 1) to 537 MW (α = 1.6). Fig. 3 shows the power
profile considered in this work, with α = 1.3. It must be
emphasized that proportionality method is approximate, as it
does not consider any change in the power profile shape as
the overplanting rate increases.

3) Energy storage unit characteristics: Energy storage is
realised thanks to an ideal storage device of rated capacity
linearly scaled up with overplanting (starting with 400 MWh
for α = 1): it has no constraint on charge/discharge power,
and its energy conversion ratio is equal to unity.

4) SDP implementation: The strategy that needed the
widest state space was SDP Tlim with a dimension of 5.
We chose a corresponding state-space discretization with a
total of 495,495 state points per time step. For each SDP-
based strategy, and each overplanting ratio α, we ran the
SDP algorithm once on a 30 days horizon (which represents
2,880 time steps and corresponds to the first 30 days of our
dataset), and applied the computed control law for the same
time span. This implies a total of 1,427,025,600 state points to
consider for SDP Tlim and each α, and as many optimizations
to perform. To speed up the computations, SDP has been
implemented on an NVIDIA RTX 3080 GPU with OpenCL.

V. RESULTS AND DISCUSSION

A. Thermal model

1) Step response: In order to evaluate the performance of
our thermal model, we compared its step response to the one
of the IEC reference model (see Fig. 2).

The proposed 3-RC model achieves its goals: the short-
term prediction (up to about an hour) is relatively close to the
reference model, and the steady state temperature –attained
after no less than 3 years– is perfectly matched. However,
as expected from its highly reduced order, the error is very
noticeable for time scales in between and goes up to 16°C
around 3 days, which shows that it is not meant for temperature
prediction on this time scale.

Still, thanks to the short-term accuracy, the model can
reliably be used to enforce the temperature limit during the
optimization process, as we show next.

2) Use for control: Fig. 3 shows transmitted power and
cable temperature with α = 1.3 for two management meth-
ods based on SDP: SDP Plim (static rating) and SDP Tlim
(dynamic thermal rating). Commitment and available power
(Pprod) are also shown, as well as the power and thermal
limits. The thermal constraint is always satisfied, thanks to
the properties of the thermal model.

B. Comparative analysis of the strategies

Fig. 3 highlights the difference between SR and DTR, in
terms of transmitted power and attained temperature; while
showing how SDP handles a difference between commitment
and available wind power. We can see that DTR fills its
purpose allowing more power to be transported. We can
also see how SDP anticipates the near future: it attempts to
smoothen the difference between commitment and transmitted
power, as it is the behavior that minimises the value of our
cost function.

Fig. 4 shows the minimized objective function for the six
studied strategies (i.e. the three heuristics and the three SDP-
based ones, each considering no power export limitation, and
power export limitations in the form of a power constraint or
of a temperature constraint).

The most important parameter at play is the set of con-
straints: the lower cost is associated with no cable constraint
(dotted lines on the figure), while the higher cost is due to
SR which dramatically restrains the transmitted power (dashed
lines). Because the temperature constraint must be satisfied,
the lower achievable cost is attained with DTR (plain lines).

The cost advantage of using SDP (blue lines) versus a
greedy heuristic (orange lines) is less important. However for
an overplanting ratio of 1.2 and with dynamic thermal rating,
the heuristic still induces a 20% increase in cost.

Finally and for reference, with our machine, the total
computation time was close to 2 hours and produced 13.8GB
of data (essentially the control laws).

VI. CONCLUSION

This paper presented a strategy for energy management of
an overplanted wind farm with storage and dynamic thermal
rating, and compared it with simpler strategies, some of them
implying static rating. Focus was on on-line management,
when commitment has already been decided, and with simple
hypotheses regarding the cable (notably, reactive power was
omitted). A simplified thermal model of the cable has been
introduced, in order to comply with the requirement of the
used optimisation method (Stochastic Dynamic Programming).
Between the six considered strategies, two were not applicable
to an overplanted farm. The ones implying dynamic thermal
rating performed better than the ones based on static rating.
With DTR, the best result was obtained using SDP. Future
work could compare these strategies to an MPC based one, or
aim to improve the thermal model used for the optimisation.
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