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Many parasites can interfere with their host’s defences to
maximize their fitness. Here, we investigated if there is
heritable variation in the spider mite Tetranychus evansi for
traits associated with how they interact with their host plant.
We also determined if this variation correlates with mite
fecundity. Tetranychus evansi can interfere with jasmonate (JA)
defences which are the main determinant of anti-herbivore
immunity in plants. We investigated (i) variation in fecundity
in the presence and absence of JA defences, making use of
a wild-type tomato cultivar and a JA-deficient mutant
(defenseless-1), and (ii) variation in the induction of JA
defences, in four T. evansi field populations and 59 inbred
lines created from an outbred population originating from
controlled crosses of the four field populations. We observed a
strong positive genetic correlation between fecundity in the
presence (on wild-type) and the absence of JA defences (on
defenseless-1). However, fecundity did not correlate with the
magnitude of induced JA defences in wild-type plants. Our
results suggest that the performance of the specialist T. evansi
is not related to their ability to manipulate plant defences,
either because all lines can adequately reduce levels of
defences, or because they are resistant to them.
1. Introduction
Antagonistic interactions between organisms, such as between
parasites and their hosts, are abundant in nature. Hosts have
evolved numerous traits relating to resistance or avoidance
to minimize the negative effects on fitness caused by parasites
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[1–4]. This, in turn, selects for parasites that can overcome, resist or interfere with host resistance [5–7],
which can lead to the maintenance of genetic variation in host and parasite populations [8].

Interference of host defences is a strategy that has evolved in diverse plant parasites, including
viruses [9], nematodes [10], lepidopteran larvae [11], mites [12–14] and aphids [15]; and animal
parasites, such as parasitoid wasps [16], Plasmodium [17] and HIV [18]. Immune interference is often
associated with the production of molecules by the parasite that alter host–cell structure and function
(in plants [19]; in animals [20]) referred to as ‘effectors’. Many effectors have been identified and some
of these have been characterized in detail (reviewed in [21]), but for many the mode of action, genetic
variation and their costs are unclear. Theory predicts that their production may incur direct
physiological costs for the parasite [22]. There may also be ecological costs due to parasite-mediated
changes in host immune traits, as a disarmed host may be more suitable for competing parasites (e.g.
helminths [23]; reviewed for spider mites [24]; reviewed in [25]; theoretically shown in [26]). These
physiological and ecological costs may be responsible for the maintenance of genetic diversity for
immune interference of host defences [27], although evidence for this is still scarce [9,16,28].

Plant immunity largely depends on the upstream action of plant hormones, with salicylic acid (SA)
and jasmonic acid (JA) being the central players in mediating defences such as the production of toxic
secondary metabolites and proteins that interfere with herbivore digestion and development [29–31].
The SA pathway is mainly involved in the response against biotrophic pathogens and phloem-feeding
herbivores, while the JA pathway is involved in the defence against necrotrophic pathogens and
chewing or cell-content-feeding herbivores [31]. Several herbivores have been shown to interfere with
these defence pathways and this has been linked to increases in arthropod fitness (e.g. weight,
fecundity or survival; lepidopteran larvae [11]; white flies [32]; aphids [33,34]; spider mites [12,13,35]).
In some cases, interference occurred after the initial onset of induced defences [13,36].

There is evidence that plant defence interference (e.g. spider mites [37]; aphids [38]) and effector
production by herbivores (spider mites [39,40]; Lepidoptera [41]) are plastic traits that can be influenced
by environmental cues such as competition [37], light–dark cycles [42] or temperature [41]. This
plasticity may serve to limit physiological or ecological costs associated with immune interference. For
instance, the arrival of competitors has been shown to modulate immune interference in spider mites,
by stronger suppression of local defences in plant leaves [37]. In addition, mites were also shown to
shield their feeding site from competitors via physical barriers (through webbing [43], or by using leaf
hairs as a refuge [44]), and to mitigate competitive population growth via reproductive interference [45].
This may act to buffer competitor-driven selection against immune interference [24].

Several studies have reported immune interference (often referred to as defence suppression) in
tetranychid spider mites [12,13,39,40,43]. Knegt et al. [46] observed levels of immune interference to
differ among T. evansi populations collected on different continents. In this study, we measure
intraspecific variation in immune interference at the population and genotype level, and how it relates
to fitness differences. We used four field populations collected in Portugal and 59 inbred lines
generated from an outbred population, created from controlled crosses of all four field populations
[44], thus capturing the genetic variation present in them. First, we compared the fecundity of the
four field populations and inbred lines on a common tomato variety (referred to as wild-type, WT)
and on a mutant tomato unable to activate the JA pathway (defenseless-1, def-1) [47–49] to assess how
they cope with JA defences. We then assessed the magnitude of induced defences in the WT for 19
lines using marker genes involved in the mite-induced JA and SA pathways. We observed that
fecundity across the four field populations differed marginally, with no difference in the expression of
the tomato defence genes. Yet we did find variation in fecundity and their effect on the expression of
defence genes across the lines, with some lines inducing immune responses. This variation in
fecundity has a genetic basis but did not correlate with their effect on induced tomato defences.
2. Methods
2.1. The study system
Tetranychus evansi is an arrhenotokous mite species, feeding mostly on Solanaceae plants [50]. In the
laboratory, this species has a life cycle of approximately 13 days (egg to adult) at 25°C [51], with all
life-stages residing on the host plant. We performed the experiments on tomato plants (Solanum
lycopersicum L.) cv. Castlemart (WT) and the mutant defenseless-1 in the Castlemart genetic
background (def-1) [48]. def-1 is unable to mount JA-related defences. All plants were grown in a
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climatic chamber (photoperiod of 16 : 8 h, 25:18°C, day:night, 50–60% relative humidity). Infestations
with T. evansi occurred when plants were 28 days old, with four fully expanded leaves. All mite
strains, prior to and for the experiments, were maintained in a temperature-controlled room
(photoperiod of 16 : 8 h, 23.5 ± 2°C, 70% RH).
ietypublishing.org/journal/rsos
R.Soc.Open

S

2.2. Tetranychus evansi field and outbred populations
The collection of the four field populations and the generation of the outbred mite population are
described in detail in [44]. In summary, at four locations in Portugal in 2017 T. evansi mites were
collected from field-grown tomato plants. We refer to these four mite populations as VIT, 6M1, QG
and PBS. All four populations had the same ITS haplotype [44]. To remove Wolbachia, these
populations were heat shocked at 33°C for 42 days and then used to create an outbred laboratory
population, with a maximal level of genetic diversity, by performing controlled crosses while avoiding
over-representation of genotypes from a given population [44]. Field and outbred populations were
maintained on detached tomato leaves (28 days old, cv. Moneymaker) with the petioles submerged in
water. All the females used in the experiment were obtained from cohorts of 100 mated females
maintained on tomato cv. Moneymaker leaves.
ci.10:230525
2.3. Tetranychus evansi inbred lines
The generation of the 59 inbred mite lines, each originating from the outbred population, is described in
detail in [44]. Brother–sister mating was imposed for each line for 15 generations resulting in 59 lines
giving an expected level of 93.6% homozygosity [44]. All lines were maintained on detached tomato
leaves (28 days old, cv. Moneymaker) placed on water-saturated cotton wool in 10 cm diameter Petri
dishes. All the females used in the experiment were obtained from cohorts of 60 mated females
maintained on tomato cv. Moneymaker leaves.
2.4. Benchmark mite strains
For all our experiments, T. urticae Santpoort-2 (‘KMB’ in [35]) and T. evansi Baker & Pritchard Viçosa-1
[43] were used as benchmark controls for the induction and suppression of plant defences,
respectively. These lines are referred to as the ‘inducer’ and ‘suppressor’ benchmarks as they have
been shown in previous experiments to induce and suppress JA defences in tomato, respectively (e.g.
[12,13,43]). The T. urticae strain was maintained on detached bean leaves (10 days old, cv. Speedy),
and the T. evansi Viçosa-1 population on detached tomato leaves (28 days old, cv. Castlemart). Note
that it was not possible to use a strain of T. evansi as a control for immune induction as this trait has
not been found in this species.
2.5. The populations

2.5.1. Fecundity of Tetranychus evansi field and outbred populations on WT and def-1 tomato plants

First, we assessed fecundity in the four field populations and the outbred population in the presence
(WT) or absence of functional JA-mediated defences (def-1). To this end, 25 mated females (15 ± 1 days
old) from each of the T. evansi populations were placed on one non-terminal leaflet of one fully
expanded leaf of WT or def-1 tomato plants (day 0). Mite dispersal was prevented by isolating the
adaxial surface of this leaflet with a 1 : 1 mix of entomological glue (Tanglefoot, The Scotts Company
LLC, OH, USA), and lanolin (Sigma-Aldrich, St Louis, MO, USA), distributed around the adaxial
edge of the leaflet. For each population and replicate, individual plants were used. The number of
surviving females and their eggs were assessed four days after infestation. With these two measures,
we calculated fecundity per female assuming linear mortality [52] by using [total eggs]/[(alive
females + total females)/2] and using these numbers as the average per female. This equation accounts
for differential female mortality, which is measured at the end of the assay and thus enables a more
accurate representation of per capita fecundity. For each mite population, we included 8–11 replicates
(i.e. one leaflet per plant). Assays for WT and def-1 plants were performed separately, and done in
three or four temporal experimental blocks, respectively.
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2.5.2. Expression of salivary effectors and tomato defences after infestation with the field and outbred
populations

We measured the expression of salivary effector 84 (Te84 and Tu84 in [14]) in the different spider mite
populations and of genes implicated in JA defences (Proteinase Inhibitor IIc (WIPI-IIc) and Proteinase
Inhibitor IIf (WIPI-IIf ) [13]) in WT plants infested with mites. The mite Ribosomal protein 49 (RP49) and
the tomato Actin were used as housekeeping reference genes for spider mites and tomato plants,
respectively (see electronic supplementary material, table S1, for primer sequences). For this, we used
the leaflets from WT plants from the performance assay described above. In parallel, we also infested
plants with the T. urticae inducer benchmark strain and the T. evansi immune suppressor benchmark
strain in the same way as described above to have a quantitative reference for induction and
suppression [13]. The part of the leaflet with glue and lanolin was discarded and the rest of the leaflet
(plant and mite material) was collected, flash-frozen in liquid nitrogen and stored at −80°C for RNA
extraction. For each mite population (field and outbred), we included 5–11 replicates. Uninfested
plants (i.e. without mites) were used as a control.

Total RNA from the sampled WT leaves was isolated using a protocol adapted from Verwoerd et al.
[53]. Our protocol differs from it in that: (i) we used phenol at room temperature and (ii) the 5 min sample
incubation step was completed at room temperature. Next, 2 µg of RNA was DNAse-treated with
Ambion Turbo DNA-free kit (Thermo Fisher Scientific, Waltham, MA, USA) and cDNA was
synthesized with RevertAid H Minus Reverse Transcriptase (Thermo Fisher Scientific). Next, 1 µl of
10× diluted cDNA was used as a template for a 20 µl quantitative reserve-transcriptase polymerase
chain reaction (RT-qPCR) using the SsoFast EvaGreenSupermix (Bio-Rad, Hercules, CA, USA) and the
CFX96 Real-Time system (Bio-Rad). Gene expression was normalized using the ΔCt method [13] and,
for graphical representation, scaled to the value with the lowest normalized average expression per gene.

2.5.3. Impact of infestation with the field and outbred populations on Tetranychus urticae Santpoort-2 and host
immune responses

Immune interference can be investigated by comparing the fecundity of a mite strain negatively affected
by JA defences (T. urticae inducer Santpoort-2) on plants previously exposed to spider mites that suppress
defences, with their fecundity on clean plants (i.e. not having had their defences suppressed) [35]. We
used this method to assess the immune interference of the four field populations and the outbred
population.

We first infested WT plants with females from the field or outbred population for four days and then
removed adults and eggs. Next, cleaned leaflets were re-infested with three T. urticae inducer mated
females (15 ± 1 days old). Female survival and the number of eggs of the T. urticae inducer strain were
recorded 48 h later (6 days after primary infestation) and mean fecundity per surviving female
calculated as described above. We also assessed whether immune interference of the field and outbred
populations persists following secondary infestation by measuring gene expression on day 6 using the
same assay as described above. There were six replicates (n = 6) for each pre-infestation treatment
divided across seven experimental blocks. Plants pre-infested with the T. urticae inducer and T. evansi
suppressor strains were used as benchmarks for induction and suppression. Uninfested plants were
used as a control for the basal level of plant defences. Note that although this was set up in parallel
to the experiment measuring gene expression 4 dpi (days post infestation) described above, two
additional replicates were performed.

2.6. The inbred lines

2.6.1. Genetic variation in Tetranychus evansi inbred lines for fecundity on WT and def-1 tomato plants

We assessed variation in fecundity between lines on the different plant types: in the presence (WT) and
absence (def-1) of functioning JA immune defences following a similar experimental set-up described for
the populations, with some modifications. These were: (i) 12 mated females (13 ± 1 days old) were placed
on each leaflet, (ii) leaves were detached from plants with the petiole in water, and (iii) infestations were
only for 2 days. Mean fecundity per surviving female was calculated as described above.

Owing to a large number of inbred lines, we randomly tested subsets of inbred lines (incomplete
block design). In total, we assessed mite performance across thirty-five temporal blocks over a year.
Each block included twelve inbred lines placed on both WT and immunocompromised plants (WT:
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n = 4–7; def-1: n = 4–7). In each block, there were also two to three replicates of each benchmark control
population, i.e. T. urticae inducer (WT: n = 75; def-1: n = 72) and T. evansi suppressor (WT: n = 76; def-1:
n = 67) populations also on both plant types, in addition to clean plants (WT: n = 27; def-1: n = 25).
 lsocietypublishing.org/journal/rso
2.6.2. Expression of tomato defences in response to infestation by Tetranychus evansi inbred lines

The expression of marker genes implicated in JA defences (WIPI-IIc, WIPI-IIf ) was measured to assess
variation in the defensive response of WT plants for 19 of the inbred lines (n = 5–7). The 19 inbred
lines that were chosen present the range of fecundity levels observed across the WT and def-1 plants
(electronic supplementary material, figure S1). Induction of defences was also measured for a subset
of the benchmark control populations (i.e. inducer and suppressor populations, n = 4) and uninfested
plants (n = 4).
 s

R.Soc.Open
Sci.10:230525
2.7. Statistical analysis
All statistical analyses were performed with the software R (version 4.2.2) [54]. All models for gene
expression were repeated including or excluding the benchmark controls for immune induction
(T. urticae inducer), immune suppression (T. evansi suppressor) and uninfested plants. This was mostly
to ensure that induction of immune defences occurred as in previous experiments [13,46], but also
enabled us to test for differences among T. evansi populations or inbred lines, i.e. in models excluding
benchmark controls.

We fitted two independent generalized linear mixed models (GLMMs) (i.e. one for each host plant
type) with a normal error structure (lmer, lme4 package [55]) to investigate whether fecundity (4 dpi)
varied among the field and outbred populations on WT and def-1. The models included population
(T. evansi Outbred, VIT, 6M1, QG and PBS) as a fixed explanatory variable.

To analyse the transcript accumulation of effector 84, we fitted a GLMM with a gamma distribution
and a log link function (glmmTMB package [56]). The model included population (T. urticae inducer,
T. evansi suppressor, Outbred, VIT, 6M1, QG and PBS) as a fixed explanatory variable. To investigate
whether transcript accumulation changed in tomato plants infested with field or outbred populations
(4 dpi) and if the levels changed when subsequently infested with the T. urticae inducer population
(2 days after re-infestation), GLMMs with a gamma distribution and a log link function (glmmTMB
package [56]) were fitted for each gene separately (WIPI-IIc, WIPI-IIf ). These models included
population, time of gene expression (4 dpi or 2 days after re-infestation) and their interaction as fixed
explanatory variables. glmmTMB models were used instead of glmer to improve model convergence.

To evaluate if the fecundity of T. urticae inducer changed following previous infestation with the
T. evansi field and outbred populations, we fitted a GLMM assuming a Gamma distribution and a
log-link function (lme4 package [55]) since normality was not met (Shapiro–Wilk test: p = 0.008), and
variances were not homogeneous. In these models, the pre-infestation population (T. evansi Outbred,
VIT, 6M1, QG, PBS, and the inducer and manipulator benchmark populations) was included as a
fixed explanatory variable.

A GLMM assuming a Gamma distribution and a log-link function (lme4 package [55]) was used to
investigate whether there was variation in fecundity of the inbred lines on the different host plant types
since normality was not met, but here variances were homogeneous. Inbred line, host plant (i.e. WT or def-
1) and their interaction were included in the model as fixed explanatory variables. A similar model was
repeated for the 19 inbred lines selected to investigate variation in the induction of plant defences.

We calculated broad-sense heritability (H2) [57] for the fecundity of the inbred lines on WT and def-1
by performing separate generalized mixed linear models for each host type with a Gamma distribution
and a log link function (lme4 package [55]) with inbred line included in the model as a random
explanatory variable. From the summary of the models, we extracted the variance for inbred line,
block and residual variance of the model and calculated H2 as follows: varðinbred lineÞ=
ðvarðinbred lineÞ þ varðblockÞ þ varðresidualsÞÞ. To determine the significance of H2, we compared models,
using ANOVA, including and excluding the inbred line random factor.

To analyse if there is variation in the induction of plant defences after infestation with the inbred
lines, GLMMs with a gamma distribution and a log link function (glmmTMB package [56]) were
fitted for each gene separately (WIPI-IIc or WIPI-IIf ). Inbred line was included in the model as a fixed
explanatory variable. glmmTMB models were used instead of glmer to improve the convergence of
the models.
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To test how JA defences influence T. evansi fecundity, a genetic correlation between fecundity on WT
and def-1 plants was performed using a generalized mixed linear model assuming a Gamma distribution
and a log link function (lme4 package [55]) with host plant as a fixed variable and inbred line nested within
plant (0 + host plant | inbred line). From the summary of the model, we extracted the correlation obtained
in the random effects section. To determine the significance of the genetic correlation, we compared
models with and without the correlation using an ANOVA.

We investigated whether the fecundity of the inbred lines on WT plants and on def-1 plants correlated
with normalized gene expression for the defence genes WIPI-IIc and WIPI-IIf using Pearson correlations
[58]. Normalized gene expression was log-transformed to improve the normality of data.

For all analyses, block was included in models as a random variable. For each model, when
significant differences were found, multiple comparisons were performed using estimated marginal
means (emmeans, emmeans package [59]) and the p-values corrected using the false discovery rate
method (α = 0.05) [60].
R.Soc.Open
Sci.10:230525
3. Results
3.1. Fecundity, expression of salivary effector 84 and plant defences after infestation with

Tetranychus evansi field and outbred populations
There was variation in levels of fecundity among field and outbred populations on WT ( population:
x24 ¼ 12:204, p = 0.016; figure 1a) and on def-1 ( population: x24 ¼ 15:928, p = 0.003; figure 1b) plants. On
WT, PBS had the highest fecundity, while 6M1 had the lowest. On def-1, VIT had the highest fecundity
and differed significantly from PBS and QG. Fecundity of the outbred population did not differ from
any of the field populations on either plant type.

There was a significant effect of population on the expression of salivary effector 84 (x26 ¼ 116:290,
p < 0.001; figure 1c). This was mainly explained by low levels of expression of this effector for the
T. urticae inducer benchmark control, with all T. evansi populations having similar levels of expression.
There was no difference in transcript accumulation levels among T. evansi populations.

We observed differences between populations for WIPI-IIc (x27 ¼ 64:097, p < 0.001; figure 1d ) and
WIPI-IIf (x27 ¼ 53:344, p < 0.001; figure 1e), in analyses including the benchmarks, with both JA marker
genes being induced by T. urticae inducer. Expression levels of JA marker genes in plants infested
with field or outbred populations were similar to defence levels found in plants infested with the
T. evansi suppressor control, and sometimes to levels observed for uninfested plants (i.e. all
populations for WIPI-IIc and VIT and 6M1 for WIPI-IIf ).

3.2. Impact of infestation with the field and outbred populations on a JA-susceptible
Tetranychus urticae population

Fecundity (2 days after re-infestation) of the JA-susceptible T. urticae inducer population was not affected
by pre-infestation with any of the field, outbred populations, or benchmark controls ( population:
x27 ¼ 7:7907, p = 0.3514; figure 2a). However, the expression of JA marker genes changed following
secondary infestation depending on the pre-infestation treatment ( population × time of gene expression
analysis; WIPI-IIc: x27 ¼ 24:516, p = 0.001; WIPI-IIf: x27 ¼ 56:020, p < 0.001; figure 2b,c). The expression of
these genes only increased in previously uninfested plants and plants pre-infested with the inducer
benchmark control population. By contrast, plants pre-infested with each of the T. evansi populations
had no increase in expression, with levels remaining the same or being lower than at 4 dpi.

3.3. Genetic variation in Tetranychus evansi inbred lines for fecundity and expression of plant
defences

There were significant differences among inbred lines for fecundity (inbred line: x258 ¼ 156:611, p < 0.001;
electronic supplementary material, figure S1a) with overall higher fecundity on the
immunocompromised plants than on WT (host plants: x21 ¼ 5:371, p = 0.021; electronic supplementary
material, figure S1a). The interaction between inbred line and host plant was not significant (inbred
line × host plants: x258 ¼ 42:549, p = 0.936). The genetic component for this observed phenotypic
variation in fecundity was similar on both WT (H2= 0.094, x21 ¼ 75:435, p < 0.001) and def-1
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(H2= 0.1217, x21 ¼ 136:490, p < 0.001) plants. There was a strong positive genetic correlation for fecundity
in the presence and absence of JA defences across inbred lines (rg= 0.72, p < 0.001; figure 3a).

On the subset of 19 inbred lines selected to study the expression of JA plant defences (highlighted in
black in electronic supplementary material, figure S1a), fecundity varied among inbred lines but did not
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differ on WT or def-1 plants (inbred line: x218 ¼ 45:952, p < 0.001; host plants: x21 ¼ 3:232, p = 0.072; inbred
line × host plants: x218 ¼ 18:235, p = 0.440).

There were differences in levels of expression for WIPI-IIc (x222 ¼ 78:470, p < 0.001; figure 3b) and
WIPI-IIf (WIPI-IIf: x222 ¼ 98:584, p < 0.001; figure 3c), with the T. urticae inducer inducing the highest
and the T. evansi suppressor showing lower levels of induced defences. Post hoc comparisons
(electronic supplementary material, table S2) revealed that most of the T. evansi inbred lines (17/19)
had similar levels of WIPI-IIc expression to the suppressor control, with 7/19 lines also not differing
from uninfested plants. For WIPI-IIf, levels of induction for most inbred lines did not differ from
either of the benchmark controls (15/19), with 18/19 T. evansi inbred lines not differing from the
T. urticae inducer benchmark. However, only three inbred lines (lines 1, 8 and 42) had higher levels of
expression than the T. evansi suppressor benchmark. In analyses excluding the benchmark controls,
there were also differences among lines for the expression of each gene (WIPI-IIc: x218 ¼ 32:119,
p = 0.021; WIPI-IIf: x218 ¼ 54:515, p < 0.001).
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3.4. Influence of JA defences on Tetranychus evansi fecundity
There was no phenotypic correlation between the fecundity of the 19 inbred lines on WT plants and the
normalized gene expression for either of the genes implicated in JA defences after mite infestation (WIPI-
IIc: r=−0.079, t107=−0.821, p= 0.414; WIPI-IIf: r = 0.077, t107 = 0.811, p= 0.419; electronic supplementary
material, figure S2a,b). The same was observed for the correlation between the fecundity of the 19 inbred
lines on def-1 and the normalized gene expression for either of the genes (WIPI-IIc: r=−0.052, t17 =−0.214,
p= 0.833; WIPI-IIf: r=−0.093, t17 =−0.386, p= 0.704; electronic supplementary material, figure S3a,b).
.org/journal/rsos
R.Soc.Open

Sci.10:230525
4. Discussion
We investigated intraspecific variation, in different field populations and inbred lines derived from these
populations, for the ability to interfere with host immune responses and how this relates to fecundity. We
found no differences among four field populations in the gene expression of effector 84 and the immune
interference of JA defences, despite differences in fecundity among populations on WT and def-1 plants.
We did though find genetic variation among the inbred lines for oviposition on WT plants and variation
in induction of gene expression for both marker genes implicated in the JA pathway (WIPI-IIc and WIPI-
IIf ). We also found that overall, the different lines had higher fecundity on immunocompromised host
plants, indicating that the active JA pathway in WT plants negatively affects T. evansi mites. However,
higher levels of fecundity in the inbred lines did not correlate with lower levels of immune defences
(i.e. higher levels of immune interference).

4.1. The fecundity of Tetranychus evansi does not correlate with levels of immune interference
JA defences reduced the fecundity of the inbred lines of T. evansi as, overall, fecundity was higher on def-1
than on WT plants. Indeed, plants with a functioning immune response are a more hostile environment
for several herbivores, as has been shown for mites and caterpillars [13,48,49,61]. Similarly, plants pre-
infested by T. evansi have generally been found to increase the fecundity of both T. evansi and T.
urticae [12,13,36,39] although this effect can depend on the timing of the co-infestation [62]. Taken
together with our results, it seems that immunocompromised plants, either artificially or via herbivore
immune interference mechanisms, confer obvious benefits to arthropod herbivores feeding on them,
including T. evansi (as shown here with lines laying, on average, 1.07-fold more eggs per female on
immunocompromised plants). However, despite genetic variation for the propensity of the T. evansi
inbred lines to induce immune responses, we did not find a correlation between the degree of
immune interference and fecundity.

Fecundity is often used as a proxy for performance, is heritable, and can be influenced by the
environment [63–65]. In a sister species, T. urticae, fecundity has been observed to have variable levels
of narrow-sense heritability (h2 = 0.72 [63]; h2 = 0.11 [64]; h2 = 0.05 [65]). Although these studies
revealed genetic and environmental correlations among fecundity and other life-history traits (e.g.
development time and juvenile mortality), fecundity was found to be independent of longevity [66]
and web production [63]. Similarly, our results suggest that fecundity is independent of the
magnitude of JA defences, as heritability was similar on WT and immunocompromised plants and
fecundity on WT and def-1 across lines was positively correlated. It is possible that absolute expression
of two marker genes at an arbitrary time point does not adequately reflect the complexity and
dynamics of the relevant downstream induced-defence response of tomato plants. Another recent
study found that T. urticae mites that suppress defensive bubble formation in honeysuckle did not
have higher fecundity than inducer mites [67]. In addition, defence induction may affect other traits
that were not measured here. It may be that variation in the ability of T. evansi to interfere with
immune defences is correlated with other life-history traits (longevity, lifetime reproductive
performance, juvenile survival, etc.). As such, how other life-history traits covary with immune
induction, in longer-term experiments, should be considered in future.

It is generally found that T. evansi can suppress tomato immune responses, with corresponding
beneficial effects on fecundity, juvenile survival and development rate when compared to T. urticae
[12,13,36,44,68]. However, previous studies that identified a link between defence induction and
herbivore performance included comparisons among either T. urticae lines [35] or Tetranychus species [13].

It is possible that some of the inbred lines with higher fecundity may be more resistant to tomato
defences than other lines. Plant defence resistance has been demonstrated in T. urticae whereby some
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lines induce host immune genes but maintain high levels of fecundity [35,69]. If this is the case, resistance
to plant defences may be via detoxification mechanisms (e.g. metabolite modification, degradations and/or
secretion) [66,69–71]. One study found T. urticae to have increased expression of genes involved in
detoxification following only five generations on tomato (a novel stressful environment after bean host
plants), with correlated beneficial effects in other toxic environments such as the presence of pesticides [69].

4.2. Genetic variation for immune interference among lines, but not among populations
There were differences in immune interference among the different inbred lines, but the four field
populations did not differ in the extent to which they upregulated tomato defences. It is most
probable that this is because the different populations contain similar levels of genetic variation that
was captured across the different lines. This is supported by the observation that the variation in
defence gene induction by the outbred population overlaps with variation across inbred lines. Thus,
in our lines, we probably fixed the genetic variation present within the field populations.

4.3. Immune interference in Tetranychus evansi populations and consequences for
heterospecifics

Not only the magnitude of defence activation but also the expression levels of effector 84 were similar
across the T. evansi field populations. This was despite variation in levels of fecundity among the field
populations on both WT and def-1 plants. effector 84 is a salivary effector protein that is involved in
the suppression of the JA and SA pathways in plants [14,37]. To date, no study has addressed
variability in the expression of this effector within the Tetranychus genus, as most studies addressing
effector genes mainly focus on the mechanism and mode of action of such molecules (reviewed in
[21]). The absence of significant variation in the expression of this effector may be explained by the
fact that all these populations belong to the same haplotype (ITS lineage I [44]). It is possible that
another haplotype (ITS lineage II) may suppress plant defences more strongly [46]. However, Knegt
et al. [46] also observed little variability in traits related to immune interference across populations.
Nevertheless, it would be interesting to assay these populations for variation in the expression of
effector 84 and see how it relates to the expression of plant defence genes and T. evansi life-history
traits. More studies investigating the dynamics in effector gene expression and linking this to the
expression of immune genes in host plants could improve our understanding of the mechanisms of
coevolution between plants and their parasites.

We did find that infestation with the T. evansi field and outbred populations prevented plants from
mounting an effective immune response against the JA defence susceptible T. urticae [13]. In plants pre-
infested with mites from these T. evansi populations, levels of induction for all defence genes were
maintained at the same or lower levels after subsequent infestation with the T. urticae inducer
population. This lasting effect of defence interference could result from a latency period required for
the host plant to re-establish its normal defensive status in response to a secondary infection.
Moreover, in several co-infection studies when infections are sequential, host-mediated facilitation by a
suppressor parasite has been shown to increase fitness-related traits in a second parasite
[6,12,13,36,39]. This facilitation may in turn promote competition with herbivores co-habiting the same
host (e.g. spider mites [12,43,72]; beetles [73]). Investigating how the lasting effect of defence
interference persists through time and its benefits for con- and heterospecific individuals would
increase our understanding of how species may evolve in communities. In the experiments presented
here, however, despite defences being maintained at low levels, we did not observe facilitation of the
JA-susceptible T. urticae population in terms of fecundity. Previous studies showed that the
oviposition of this heterospecific competitor of T. evansi is higher on suppressed and uninfested
plants, compared to plants with induced defences [12,13,35,39]. As previously reported, the outcome
of facilitation experiments may be variable and strongly depend on the timing of the infestation and
the number of mites used [24,36,37,74].

4.4. Plasticity of immune interference
We found no evidence for metabolic costs of immune interference as lines showing higher levels of
immune interference did not have lower levels of fecundity on def-1 plants (electronic supplementary
material, figure S3). This type of trade-off has been investigated in other parasites, with varying
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results. Immune interference by a parasitoid was lost following selection on a diversity of hosts, possibly
due to being ineffective, and/or costly to maintain on some host species [27]. Another study found
metabolic detoxification to trade-off with increased population growth rate in the Sitobion avanae
aphid [75]. By contrast, no trade-off was found between the growth rate of Depressaria pastinacella or
Heliothis zea caterpillars and the production of detoxification enzymes [76,77]. Also, there was no
apparent cost for Schistocephalus solidus manipulating the behaviour of its intermediate host (to
increase predation by its definitive host [78]). Another study, with T. evansi, showed the maintenance
of suppression after evolution on immunosuppressed (def-1) plants for 60 generations suggesting
marginal costs associated with this trait in this species [79]. Low costs for the maintenance of immune
interference may be explained through trait plasticity. Indeed, responses to induced plant defences are
phenotypically plastic for some herbivores, only being expressed on plants when needed [49,70,80].
For T. evansi this seems to be the case, as the effector 84 was found to be highly plastic in certain
conditions (e.g. the presence of heterospecific competitors [37]; light–dark cycles [42]; developmental
stages [81]).

Spider mites also show plasticity in other traits related to immune interference [37]. An ecological cost
for parasites may be the presence of competitors in the within-host environment that benefit from, but do
not contribute to, immune interference [24,26,82]. In the presence of competitors, T. evansi mites can
increase web density [43], local levels of immune interference and their oviposition [37], showing
plasticity in traits facilitating their monopolization of the immunosuppressed environment. This
indicates that trait plasticity may help mitigate ecological costs associated with immune interference.

4.5. Immune interference as a public good
Immune interference could be seen as a public good, if it benefits other parasites sharing the same host
[6,12,13,36,39]. This could lead to the emergence of cheaters/exploiters of the same or different species,
which do not suppress defences but have higher fitness when it occurs, since they pay no energetic costs
associated with immune interference. A theoretical study revealed that it is possible for two strains with
extreme immune interference strategies (i.e. zero and maximum) to coexist in a population [26]. This
could produce antagonistic coevolutionary dynamics between parasite strains that can interfere with
their host immune system, that strive to monopolize the suppressed environment, and cheaters that
aim to reap the benefits [83]. Cheaters that benefit from, but do not contribute to, immune
interference have been identified in Pseudomonas aeruginosa and Yersinia pestis [84]. The emergence of
cheaters exploiting public goods has also been identified in vitro in the bacterium Pseudomonas
flourescens [85,86]. Selection for suppression and cheating would be possible in T. evansi considering
the potential for genetic variation of this trait. However, support for this hypothesis in this system
would require identifying the (benefits) and costs of immune interference either energetically (i.e. via
the production of interfering molecules, such as salivary effectors), or the presence of competitors
exploiting and benefitting from the resource more than suppressor lines. It would be interesting to
establish the relationship or co-occurrence between the fecundity of putative cheaters and their
proximity to suppressors in natural populations.

The fact that suppression enables overcoming host immune responses and can be beneficial for
competitor parasites of the same or different species, means this trait may coevolve in response to
both the host and other parasites [7,25]. These may be important factors responsible for the
maintenance of genetic variation in this trait. For instance, selection for immune interference may
depend on the host environment, and the frequency at which parasites encounter hosts upon which
immune interference is effective, or in co-infections with other parasites that exploit the manipulated
host environment.
5. Conclusion and perspectives
Our results show genetic variation for fecundity within a T. evansi population, but this does not correlate
with variation in levels of induction of immune defences. This might be because intraspecific variation
for immune interference might be linked to other T. evansi life-history traits that, for example, are
more targeted by host immune defences. We advocate that more studies should be conducted to
investigate the presence and causes of intraspecific variation for immune interference and
consequences for parasite life-history traits, in both the absence and presence of competitors. This
should contribute to a better understanding of how and when variation in traits related to immune
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interference may be maintained in parasite populations, its role as a driver for coevolution with hosts and
competitors and how it relates to outbreaks of parasites or pest species.
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