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Succinct non-interactive zero-knowledge arguments of knowledge (zk-SNARKs) are a type of non-interactive proof system enabling efficient privacy-preserving proofs of membership for NP languages. A great deal of works has studied candidate constructions that are secure against quantum attackers, which are based on either lattice assumptions, or post-quantum collision-resistant hash functions. In this paper, we propose a code-based zk-SNARK scheme, whose security is based on the rank support learning (RSL) problem, a variant of the random linear code decoding problem in the rank metric. Our construction follows the general framework of Gennaro et al. (CCS'18), which is based on square span programs (SSPs). Due to the fundamental differences between the hardness assumptions, our proof of security cannot apply the techniques from the lattice-based constructions, and indeed, it distinguishes itself by the use of techniques from coding theory. We also provide the scheme with a set of concrete parameters.

Introduction

Zero-knowledge proof systems [GMR85], since its first appearance in 1985, have been become the cornerstone of cryptography. They are an essential component of many privacy-preserving cryptographic systems, including credentials and digital currencies [BG90, CL01, BCC + 09, CKL + 16, FHS19] as well as group signatures [Cv91, BBS04, DP06, BCC + 16] and verifiable computation [GGP10, GGPR13, BCG + 18]. In a zero-knowledge proof of knowledge system for an NP relation R, a prover can convince a verifier that a statement is true without revealing anything more about the statement to the verifier. For practical applications, succinct non-interactive zero-knowledge arguments of knowledge (zk-SNARKs) [Kil92,Mic94] are more desirable: we additionally require that (i ) the proof should consist of a single message from the prover to the verifier (non-interactivity); (ii ) the length of the proof and the verification complexity is sublinear (ideally, polylogarithmic) in the size of the circuit computing R (succinctness); and (iii ) the proof also guarantees that the prover knows the witness (argument of knowledge).

Constructions of succinct non-interactive zero-knowledge can be based on numerous different assumptions, of which one may name collision-resistant hash functions [BBHR19, CMS19], the discrete logarithm assumption [BBB + 18], various pairing-based assumptions [Gro16], and lattice-based assumptions [GMNO18,ISW21]. On the other hand, the advancing threat of quantum computers has given tremendous stimulant to the cryptographic community to put more effort into cryptographic constructions that would plausibly withstand the power of quantum attacks. However, present post-quantum zk-SNARKs are only known from hash functions and lattice-based assumptions.

Our result. In this work, following the method of [GMNO18], we introduce the first (designated-verifier) zk-SNARK scheme in the rank metric context. Prior to this work, there has been no construction in the code-based cryptography realm, so the construction herein could be viewed as the first. Furthermore, being based on code-based assumptions with rank metrics, our scheme is plausibly considered to be secure under quantum attacks. We note that the work of Lipmaa [Lip13] makes use of error-correcting codes to improve the performance of span programs and does not concern with code-based assumptions.

Overview of our technique. Our starting point is the framework of Gennaro et al. [GMNO18]. Conceptually, based on the techniques of [DFGK14] and [GGPR13], the framework of [GMNO18] uses square span programs to characterize the complexity class NP, leading to a simpler and faster designatedverifier zk-SNARK. The main technical challenge in the framework of [GMNO18] is the growth of noise of the lattice-based homomorphic operations. As mentioned there, this growth might leak information of the witness to the verifier, thus violate the zero-knowledge property. Fortunately, in the asset of lattice-based techniques, the so-called noise-smudging technique can be used to overcome this leakage problem. The idea is that after doing homomorphic addition, a noise with much larger weight is added to the computed one, thus, the final noise is dominated by that of the adding noise. (One might think of this technique as hiding "leaves" in "forest.") This technical challenge, resolved by smudging, also causes the setting of the common reference string to become involved, that is, the natures of encodings are not the same: some having small noise while others requiring much larger one. The reason underlying this setting is to guarantee success of the reduction.

The naive scheme obtained when one carries out the construction to the rank metric context is even worse since the noise grows linearly with respect to the number of homomorphic operations. And in order to be able to decrypt these ciphertexts, the length of the public code in used must be very large (and thus, the degree of extension field as well) causing parameters of the whole system to be out of concern. (We assume one uses the rank-quasi cyclic (RQC) encryption scheme to design the underlying encoding scheme.) Out of this situation, a natural question arises:

Can we design a SNARK in code-based cryptography (and even in lattice-based cryptography) without using the smudging technique?

We put forth effort to resolve this question in code-based cryptography by making use of the rank support learning problem. We now recall the main technical ingredients of [GMNO18]'s framework, which lie in the way the common reference string (CRS) is constructed. In particular, the CRS in the construction of Gennaro et al. consists of encoding elements together with the description of a square span program which computes the statement and public parameters of some additively homomorphic "noisy" encoding scheme.

In [GMNO18], their encoding scheme is instantiated from lattice-based assumption. Let E denote this encoding scheme. By examining the form of the CRS, we make the observation that the encodings therein could be divided into three groups. The first group consists of encodings of powers of a hidden element, say, E(1), E(s), . . . , E(s d ), where s is kept secret. The second group consists of encodings of elements which are resulted from the first group by a common mask, i.e., E(α), E(αs), . . . , E(αs d ), where α plays the role of a mask. The third group consists of encodings of elements which are values of polynomials at s masked by a common element, i.e., E βt(s) , E βv ℓu+1 (s) , . . . , E βv m (s) . The crucial point is that the error for each of these encodings has to be chosen carefully, so that addition of encodings computationally hides the witness. This is needed when showing the zero-knowledge property of the scheme, whose security proof is based on the smudging technique. Furthermore, when paying closer attention to the way a proof is generated, we observe that homomorphic evaluations (or rather additions) are always performed between elements of each group together with a set of coefficients in the prescribed finite field.

In rank metric code-based cryptography, it seems difficult to do so due to the aforementioned reasons. However, these two observations lead us to the idea of using one and the same vector space of noises for each group. More precisely, let V 1 , V 2 , V 3 be randomly chosen subspaces of prescribed dimensions, then for i = 1, 2, 3, all elements of the ith group are produced by using noises coming from V i . The effect is that after doing homomorphic additions with coefficients in the base field, the noise of the obtained ciphertext has the same magnitude as that of its components. Furthermore, the magnitude of noises in the three groups are slightly different, i.e., the one in the first group is of the smallest value while the other two groups have the same magnitude of noises, and allow "truly" homomorphic addition of order two, that is, any linear combination of two independent encodings/ciphertexts is again a valid encoding/ciphertext. The reason for this requirement will become clear in the proof of security. By further adding another encoding, i.e., a mask, whose noises belong essentially to the same vector space as that of each group, we can argue from this property that the resulted ciphertext does not leak any potential information of the witness.

We also note that though the concrete parameters of our scheme do not compete well with those of [GMNO18], we emphasize that the novelty of our work lies in the way the encoding elements are divided and treated. We believe this method may be of independent interest for other applications.

Organization of the paper. The rest of this work is organized as follows. Section 2 recalls some basic matters needed; Section 3 and 4 describe an encoding scheme and the corresponding zk-SNARK construction. The efficiency and some examples of parameter are the content of Section 6.

Preliminaries

Notations

Vectors are denoted by bold low-case letters, e.g., vector v. Bold capital letters are used to denote matrices, e.g., matrix A. The notation S n r is defined to be the sphere of radius r in F n q m 0 for some positive integer m 0 . We use the notation [n] to denote the set {0, 1, . . . , n} for a positive integer n, ⌊x⌋ to denote the greatest integer less than or equal to x, and a | b to denote a divides b. Negligible functions are denoted by neg(•).

Background on Code-Based Cryptography

This section recalls some basic code-based notions as well as ingredients needed, all of which could be found in [BGM22]. Let m 0 , n be two positive integers and q a power of a prime number. Let {α 1 , . . . , α m0 } be a basis of F q m 0 over F q . This basis can be used to associate any vector x := (x 1 , . . . , x n ) ∈ F n q m 0 to the corresponding matrix

A x ∈ F n×m0 q as    x 1 . . . x n    =    a 11 • • • a 1m0 . . . . . . . . . a n1 • • • a nm0    •    α 1 . . . α m0    .
The rank weight of x is defined to be the rank of matrix A x , that is, ∥x∥ := rank(A x ). In this metric, the distance between two vectors x and y, denoted by d(x, y), is defined to be equal the rank weight of xy, i.e., d(x, y) := ∥x -y∥. Now, let f (x) ∈ F q m 0 [x] be a polynomial of degree n and R f := F q m 0 [x]/⟨f ⟩. Consider the following mapping:

ϕ : F n q m 0 -→ R f (a 0 , . . . , a n-1 ) -→ a 0 + • • • + a n-1 x n-1 .
The inverse mapping, denoted by ϕ -1 , simply maps a polynomial to the vector formed by its coefficients. For the sake of simplicity, if a := (a 0 , . . . , a n-1 ) ∈ F n q m 0 , we let ϕ(a

) = a 0 + • • • + a n-1 x n-1 = a(x). For a, b ∈ F n q m 0 , their product a • b is defined as a • b := ϕ -1 a(x) • b(x) .
Clearly, we have a

• b = b • a. It is also not hard to see that a • b = (a 0 , . . . , a n-1 ) •    ϕ -1 b(x) . . . ϕ -1 x n-1 b(x)    . (1) 
The right-most expression on the right-hand side of Equation 1 is usually referred to as the ideal matrix generated by b(x) with respect to f (x). For ease of notation, vectors are identified with their corresponding polynomials, i.e., x k b is understood to be ϕ -1 x k b(x) . Thus, the ideal matrix of a vector b with respect to f is written as

⃗ b =      b x • b . . . x n-1 • b     
.

In our construction, we will use 2-and 3-ideal codes. A 2-ideal code of length 2n with respect to a polynomial f (x) of degree n over F q m 0 is a code whose parity-check matrix is of the form

H = I n | ⃗ h T , (2) 
where ⃗ h is the ideal matrix of a vector h with respect to f (x) in F n q m 0 . Similarly, a 3-ideal code of length 3n with respect to a polynomial f (x) of degree n over F q m 0 is a code whose parity matrix is of the form

H = I n 0 ⃗ h T 1 0 I n ⃗ h T 2 .
(3)

For a given vector x ∈ F n q m 0 , it is usually associated with the vector space generated by its coordinates. Definition 1. Let x := (x 1 , . . . , x n ) ∈ F n q m 0 . The vector space over F q defined by x 1 , . . . , x n is called the support of x, and denoted by supp(x). That is,

supp(x) := Span Fq (x 1 , . . . , x n ).
Next, we recall some definitions concerning code-based hardness assumptions.

Definition 2 (Rank Syndrome Decoding Problem). Let n, k, and w be positive integers, H a random matrix over

F (n-k)×n q m 0
, and y a random vector in F n-k q m 0 . The rank syndrome decoding problem, RSD(n, k, w), asks to find a vector x ∈ S n w such that Hx T = y T . In the following definitions, for ν ∈ {2, 3}, let S P (n, ν) be the set of all parity matrices of ν-ideal codes with respect to a polynomial P (x) of degree n over F q m 0 , as defined in Equation 2 or 3, respectively.

Definition 3 (ν-IRSD Distribution). Let n, w be positive integers, P (x) ∈ F q [x] an irreducible polynomial of degree n. The ν-IRSD(n,w) distribution chooses uniformly at random a matrix H ∈ S P (n, ν) together with a vector x ∈ F νn q m 0 such that ∥x∥ = w and outputs H, H • x T .

Definition 4 (Computational ν-IRSD Problem). Let n, w be positive integers, P (x) ∈ F q [x] an irreducible polynomial of degree n, H ∈ S P (n, ν) a random matrix, and y ← F n q m 0 . The computational ν-IRSD(n,w) problem asks to find a vector x ∈ F νn q m 0 such that ∥x∥ = w and H • x T = y T .

Definition 5 (Decisional ν-IRSD Problem). The decisional ν-IRSD(n,w) problem asks to decide with non-negligible advantage whether (H, y T ) came from the ν-IRSD(n,w) distribution or the uniform distribution over S P (n, ν) × F n q m 0 .

Next, we recall the rank support learning problem. It made its first appearance in [GHPT17], in the construction of a rank-metric based public-key encryption scheme, and recently, in [BBBG22]. This problem can be viewed as a relaxation of the RSD problem in which, instead of giving one syndrome instance as in the RSD case, it gives a certain number of syndromes, all produced from the very same support of errors. Its definition reads Definition 6 (Rank Support Learning Problem). Let n, k, r, N be positive integers. Given a matrix H ∈ F (n-k)×n q m 0 and N syndromes s T i = He T i , where e i ← V for all i = 1, 2, . . . , N, and V is a subspace of F n q m 0 of dimension r, the RSL(n, k, r, N ) problem asks to find V.

When the number N increases, the problem becomes easier to solve. The attack in [DT18] suggests that parameters should be chosen satisfying N < kr. The decisional version of this problem is as follows.

Definition 7 (Decisional RSL Problem). Given an instance either from (H, HE) or (H, U), where H is a full rank matrix of size

(n -k) × n, U is a random matrix in F (n-k)×N q m 0
, and E is a matrix formed from N randomly chosen vectors e i 's in a vector space of dimension r, the decisional rank support learning DRSL(n, k, r, N ) asks to decide which is the case.

For our purpose, we also need another variant of this problem. In addition to a set of N vectors, either produced from preimages of the same support or from the uniform distribution, two additional vectors are also given, which are F q -linearly random combinations of these N vectors. The problem now still asks to decide which is the case.

Definition 8 (Variant RSL Problem-vRSL). Given an instance either from (H, HE, HE

•a T , HE•b T ) or (H, U, U • a T , U • b T ), where H ∈ F (n-k)×n q m 0 is a full rank matrix, U is a random matrix in F (n-k)×N q m 0
, a, b are randomly chosen vectors in F N q , and E is a matrix formed from N randomly chosen vectors e i 's in a vector space of dimension r, the vRSL(n, k, r, N ) problem asks to decide which is the case.

The rationale behind this formulation is that what really affects the hardness of the problem is the information of V given in the form of HE or, equivalently, {He T i } N i=1 . Adding one or two random F q -linearly combinations of these vectors does not leak more information about V. In fact, this problem is not easier than the RSL problem. Given an RSL instance, one could create a vRSL instance by randomly picking two vectors a, b ∈ F N q , computing the corresponding linearly combinations; these combinations together with the provided RSL instance then form an instance of the vRSL problem. Therefore, if we can solve the vRSL problem, then we can also solve the RSL problem. The hardness of this problem is used to argue the zero-knowledge property of our scheme. Furthermore, the hardness of this problem also guarantees the zero-knowledge property of the linear coefficients, i.e., the random vectors a and b. An adversary, if being asked for such a set of coefficients, has either to solve the RSL problem or to make a guess, both of which succeed with negligible probability.

Remark 1. We remark that the problem in the above definition could be generalized to the case in which, in addition to the syndromes (either chosen uniformly or not), a polynomial number of random F q -linearly combinations of these syndromes are also given. The reduction could be carried in the same manner.

In the above definitions, the matrix H can be assumed to have ideal structures, and we also make the assumption that the problems corresponding to this situation, namely, the ideal rank support learning (IRSL) problem and its variant (vIRSL), are hard.

Succinct Non-Interactive Arguments

We recall the definition of (designated-verifier) succinct non-interactive arguments of knowledge (SNARKs) below. We specialize our definitions to the problem of Boolean circuit satisfiability.

Definition 9. Let C := {C n } n∈N be a family of Boolean circuits. A designated-verifier non-interactive argument system for an NP relation R C is a triple of algorithms Π = (G, P, V) such that -G(1 λ , 1 n ): On input the security parameter λ and the circuit family parameter n, the setup algorithm G generates a common reference string crs and a verification key vrs. -P(crs, u, w): On input the common reference string crs, a statement u, and its witness w, the prover algorithm P generates a proof π. -V(vrs, u, π): On input the verification key vrs, a statement u and a proof π, the verification algorithm V outputs 1 if the proof π is valid, and 0 otherwise.

An argument of knowledge system is required to be complete and to have knowledge soundness.

Definition 10 (Completeness). An argument of knowledge system Π for a relation R C is complete if for all n ∈ N and for any pair (u, w) ∈ R Cn , we have

Pr   (crs, vrs) ← G(1 λ , 1 n ) π ← P(crs, u, w) s.t. V(vrs, u, π) = 1   ≥ 1 -neg(λ).
Definition 11 (Knowledge Soundness). An argument of knowledge system Π for the relation R C is knowledge-sound if for any PPT adversary A, there exists an extractor Ext A , given access to A's inputs, such that

Pr   (crs, vrs) ← G(1 λ , R) (u, π; w) ← (A ∥ Ext A ) V(vrs,•) (crs) s.t. (u, w) / ∈ R ∧ V(vrs, u, π) = 1   ≤ neg(λ),
where (y; z) ← (A ∥ Ext A ) (x) signifies that on input x, A outputs y, and that Ext A , given the same input x and A's random tape, produces z.

Additionally, a system is said to be succinct if it satisfies the following property.

Definition 12 (Succinctness). There exists a fixed polynomial p(•) independent of C such that for every large enough security parameter λ ∈ N, we have that If an argument system has the property that the witness(es) is (computationally) hiding, then it is said to be zero-knowledge. This notion is captured by the simulation paradigm: there exists a PPT algorithm S, called simulator, such that given a statement u, it generates a valid proof whose distribution is indistinguishable from that generated in the real protocol.

Definition 13 (Zero-knowledge). An argument of knowledge system Π is zero-knowledge if there exists a PPT simulator S = (S 1 , S 2 ) such that for any PPT adversary A given access to an oracle O defined as

Oracle O b (u, w): If R(u, w) = false, return ⊥. If b = 1, then π ← P(crs, u, w), else π ← S 2 (td, u), return π, we have Pr     (crs, vrs, td) ← S 1 (1 λ , 1 n ) b ← {0, 1} b ′ ← A O b (vrs) s.t. b = b ′     ≤ 1 2 + neg(λ).
Definition 14 (zk-SNARK). A succinct non-interactive zero-knowledge argument of knowledge (zk-SNARK) is a non-interactive argument system that is complete, succinct, knowledge-sound and zeroknowledge.

Encoding Schemes

We recall the definition of encoding schemes with noise from [GMNO18], adapted to our secret-key setting.

Definition 15. An encoding scheme Enc over a finite field F q is a tuple of PPT algorithms (K, E, D) such that:

-K(1 λ ):

The key generating algorithm takes as input the security parameter λ and outputs a public information pk and a secret state sk. -E(sk, m): The non-deterministic encoding algorithm maps an element m ∈ F q into some encoding space S using the secret state sk, such that {E(a)} | a ∈ F q partitions S, where {E(a)} denotes the set of the possible evaluations of the algorithm E on a. -D(sk, c): The decoding algorithm takes as input the secret state sk, an encoding c and outputs an element m ∈ F q .

An encoding scheme Enc must have the following properties:

d-linearly homomorphic: there exists a PPT algorithm Eval which takes pk, d encodings E(m 1 ), . . . , E(m d ), and coefficients (a 1 , . . . , a d ) ∈ F d q as input and outputs a valid encoding of d i=1 a i m i with overwhelming probability in λ.

-Quadratic root detection: there exists a PPT algorithm which takes the public key pk, a set of encodings {E(m 1 ), . . . , E(m t )}, and a quadratic polynomial P ∈ F q [x 1 , . . . , x t ] as input and checks for the correctness of the equality P (m 1 , . . . , m t ) = 0. -Image verification: there exists a PPT algorithm which takes the public key pk and an element c as input and decides whether c is a valid encoding of a field element or not.

Assumptions

The following assumptions are the adaptations of q-PDH and q-PKE assumptions (cf. [GMNO18],

[GGPR13]) to the code-based context together with the application of the rank support learning problem.

In the following, all the encodings are produced by using a common vector space of noise.

Assumption 1 (q-PDH). Let Enc = (K, E, D) be an encoding scheme over a finite field F q . The q-power Diffie-Hellman assumption, q-PDH, holds for Enc if for all PPT adversary A, we have

Pr   (pk, sk) ← K(1 λ ), s ← F q y ← A pk, E(1), E(s), . . . , E(s q ), E(s q+2 ), . . . , E(s 2q ) s.t. y = E(s q+1 )   ≤ neg(λ).
Assumption 2 (q-PKE). Let Enc = (K, E, D) be an encoding scheme over a finite field F q . The q-power of knowledge of exponent assumption, q-PKE, holds for Enc if for all PPT adversary A, there exists a non-uniform knowledge extractor Ext A , given access to A's input, such that

Pr     (pk, sk) ← K(1 λ ), α, s ← F q σ ← pk, E(s), . . . , E(s q ), E(α), E(αs), . . . , E(αs q ) (c, c; (a 0 , . . . , a q )) ← (A ∥ Ext A )(σ, z) s.t. c = αc ∧ c / ∈ E q i=0 a i s i     ≤ neg(λ),
for any auxiliary input z ∈ {0, 1} poly(λ) that is generated independently of α.

Square Span Programs

We briefly recall here the definition of a square span program [DFGK14].

Definition 16. A square span program over a finite field F q consists in a tuple of m + 1 polynomials

v 0 (x), v 1 (x), . . . , v m (x) ∈ F q [x] and a target polynomial t(x) such that deg v i ≤ deg t for all 0 ≤ i ≤ m.
We say that the square span program ssp has size m and degree d = deg t. We say that ssp accepts an input a 1 , . . . , a ℓ ∈ {0, 1} if and only if there exist a ℓ+1 , . . . , a m ∈ {0, 1} satisfying

t(x) v 0 (x) + m i=1 a i v i (x) 2 -1.
We say that ssp verifies a boolean circuit C : {0, 1} ℓ → {0, 1} if it accepts exactly those inputs (a 1 , . . . , a ℓ ) ∈ {0, 1} ℓ satisfying C(a 1 , . . . , a ℓ ) = 1.

We follow [GMNO18]'s approach for the SSP generation. That is, on a boolean circuit C of size d, it generates a finite field F q of q elements such that q ≥ max{d, 8}. Next, it randomly picks d elements r 0 , . . . , r d-1 and defines t(x) :

= (x -r 0 ) • • • (x -r d-1 ). It outputs ssp as v 0 (x), . . . , v m (x), t(x) ← SSP(C),
where v 0 , . . . , v m are m + 1 polynomials of degree at most d as in the above definition.

Our Code-based Encoding Scheme

In this section, we describe our instantiation of an encoding scheme from coding theory, which is based on the RQC cryptosystem. The description of the RQC encryption scheme was originally published in [ABD + 16], and can be found in [AAB + 19] with little changes. In this work, it is turned into a secret-key and used as an encoding scheme in the following manner.

1. Setup(1 λ ): Generate parameters n := n(λ), k := k(λ), δ := δ(λ), w := w(λ), w e := w e (λ), w r := w r (λ).

The plaintext space is F k q m 0 . Output param := n, k, δ, w, w e , w r , P (x) , where P (x) ∈ F q [x] is an irreducible polynomial of degree n which remains irreducible over F q m 0 [x].

2. KeyGen(param): Generate h ← F n q m 0 , x, y ← S n w , a generator matrix G ∈ F k×n q m 0 of a public code C, which is capable of correcting up to δ errors. Output the public parameters pp := (param, h, G) and sk := (x, y).

Enc(pp, sk, m):

To encrypt a message m ∈ F k q m 0 , randomly choose r 1 , r 2 ← S n wr and e ← S n we . Compute

c 1 ← r 1 + h • r 2 , c 2 ← (x + h • y) • r 2 + e + m • G.
Return c := (c 1 , c 2 ). We note that the noises vectors r 1 , r 2 , e are chosen from a common vector space. Therefore, we also have w r = w e . 4. Dec(sk, c): To decrypt, first compute c 2 -y • c 1 , and then use the decoding algorithm of the code C to recover m.

From the RQC encryption scheme describe above, our encoding scheme (K, E, D) is defined in which K consists of Setup and KeyGen algorithms, the encoding algorithm E is the encryption algorithm Enc, the decoding algorithm D is the decryption algorithm Dec.

We aim at encoding of elements of the finite field F q , we do it as follows. For an element s ∈ F q , define s = (s, 0, . . . , 0) ∈ F k q , i.e., the vector s is formed by placing s in the first entry and 0 elsewhere. An encoding of s is defined to be an encryption of s, i.e., E(s) := Enc(s). For two elements s 1 , s 2 ∈ F q , if we denote t = s 1 s 2 , then we have t = s 1 • s 2 = (s 1 s 2 , 0, . . . , 0), and hence, E(s 1 s 2 ) = Enc(s 1 • s 2 ). Therefore, this mapping (from F q to F k q m 0 ) is well-defined. To complete the description of our encoding scheme, its properties are defined below.

-Eval(pk, c 1 , . . . , c d ; a 1 , . . . , a d ) computes and outputs c = (c 1 , c2 ), where cb = d i=1 a i c b,i , for some prescribed positive integer d describing the number of desired homomorphic additions and b ∈ {1, 2}.

-Quadratic root detection uses the decryption algorithm to invert ciphertexts and evaluates value of the polynomial at the obtained messages. -Image verification uses the decryption algorithm of RQC to test whether a given vector c is a valid encoding of some plaintext or not.

By the hardness of IRSL problem, a random vector space of noise can be used a couple of times, which is described in the problem. Our zk-SNARK construction will exploit this variation in subsequent sections. Furthermore, similar to previous work [GMNO18], we will assume that our encoding scheme satisfies the q-PDH and q-PKE assumptions as described in Section 2.5.

Bound of Noise

The main point of this section is to give a feature of the sum of noises in a particular case, that is, when the sum of noise's weight is much smaller than either the vector length or the degree of the field extension. Simply stated, the weight of the sum is upper-bounded by the sum of every single noise's weight.

Proposition 1. Let ℓ, m 0 , n, w 1 , . . . , w ℓ be positive integers such that m 0 , n > d w , where d w = w 1 + • • • + w ℓ . Let t i be randomly chosen from S n wi for i = 1, . . . , ℓ, and U = supp

ℓ i=1 t i . Then, we have dim U ≤ d w .
Proof. The proof is quite straightforwards, since we have

U ⊆ supp t 1 ⊕ • • • ⊕ supp t ℓ .
As mentioned earlier, for our construction, noises used in the encodings (in each group) share a common vector space and the linear coefficient would be in the based field. Therefore, the noise of the resulted encoding would also belong to the prescribed vector space. The above proposition proves to be helpful in the security proof of our zk-SNARK later, and in fact, the equality holds with overwhelming probability [Mac21].

Additive Homomorphism

The purpose of this section is to show the additive homomorphism of the RQC scheme. Intuitively, by the result of the previous section, the noise of the homomorphic ciphertext grows linearly with respect to the number of additive components. However, as long as the magnitude of the homomorphic noise is within the decoding capability of the public code C, the decoding algorithm will always succeed.

Proposition 2. Let d be the number of additive operations, w, w e , w r be magnitudes of the secret key and noises from an RQC scheme whose public code can decode errors of rank weight up to δ. If d(2ww r +w e ) ≤ δ, then c, which is the output of Eval is a correct encoding.

Proof. Observe that c = (c 1 , c2 ), where

c1 = d i=1 a i r (1) i + h • d i=1 a i r (2) i , c2 = s • d i=1 a i r (2) i + d i=1 a i e i + d i=1 a i m i • G.
Since a i 's are elements of F q m 0 , so ∥a i r

(j) i ∥ = ∥r (j)
i ∥ and ∥a i e i ∥ = ∥e i ∥ for all 1 ≤ i ≤ d and j = 1, 2. By Proposition 1, we get

     w r d ≤ d i=1 a i r (1) i , w r d ≤ d i=1 a i r (2) i , w e d ≤ d i=1 a i e i . Thus, x • d i=1 a i r (2) i -y • d i=1 a i r (1) i + d i=1 a i e i ≤ w • w r d + w • w r d + w e d ≤ δ,
which allows successful decryption.

Our Code-based zk-SNARK Scheme

In the following, let (K, E, D) be the encoding scheme described in Section 3. We assume Our zk-SNARK scheme Π is detailed as:

-Setup. The setup algorithm takes as input the security parameter 1 λ in the unary form and the circuit C. It generates a square span program of degree d over the field F q of size q ≥ d that verifies C by running: ssp = v 0 (x), . . . , v m (x), t(x) ← SSP(C).

Then, it runs (pp, sk) ← K(1 λ ) using our encoding scheme. It samples α, β, s ← F q such that t(s) ̸ = 0, and returns the crs:

crs := ssp, pp, G 1 , G 2 , G 3 ,
where

G 1 := E(1), E(s), . . . , E(s d ) ,
G 2 := E(α), E(αs), . . . , E(αs d ) ,

G 3 := E(βt(s)), {E(βv i (s))} m i=ℓu+1 ,
and ℓ u denotes the size of input u of circuit C. Elements in each group are formed from the encoding scheme which uses three vector spaces of noises

V 1 , V 2 , V 3 , respectively. Furthermore, dim V 1 = r, dim V 2 = dim V 3 = r, where 0 < r -r.
Finally, it sets vrs = sk and td = (α, β, s) as the verification key and the trapdoor, respectively.

-Prover. The prover algorithm, on input some statement u := (a 1 , . . . , a ℓu ), and its witness w = (a ℓu+1 , . . . , a m ) such that (a 1 , . . . , a m ) is a satisfying assignment for the circuit C. The {a i } i also satisfies

t(x) v 0 (x) + m i=1 a i v i (x) 2 -1.
The prover samples γ ← F q , sets v(x) = v 0 (x) + m i=1 a i v i (x) + γt(x) and

h(x) = v(x) 2 -1 t(x) ∈ F q [x].
It computes

H = E h(s) , H = E α • h(s) , V = E α • v(s) , V w = E m i=ℓu+1 a i v i (s) + γt(s) , B w = E β • m i=ℓu+1 a i v i (s) + γt(s) .
The prover returns π := H, H, V , V w , B w .

We note that the prover computes H and V w from the first encoding group G 1 , H and V from the second group G 2 , and B w from the third group G 3 in the following manners. Assume that

h(x) = h 0 + h 1 x + • • • + h d x d , then 1. H = Eval {E(s i )} d i=0 ; {h i } d i=0 ; the same kind of computation is used for V w ; 2. H = Eval {E(αs i )} d i=0 ; {h i } d i=0 ; this is also applied for V ; 3. B w = Eval E(βt(s)), {E(v i (s))} m i=ℓu+1 ; γ, 1, . . . , 1 with the observation that γE βt(s) = E γβt(s) .
-Verifier. Upon receiving a proof π and a statement u = (a 1 , . . . , a ℓu ), the verifier, in possession of the verification key vrs first checks that 

h s -α • h s = 0, v s -α • v s = 0, v 2 s -1 -h s • t s = 0, b s -β • v s = 0,
:= v 0 + ℓu i=1 a i v i (s) + v s .
(Recall that t(s) and v i (s) are obtained from the CRS.) The verifier checks that whether it is possible to perform one more homomorphic operation. (Thus, in our scheme, essentially d takes the value 2.) If these checks pass, it outputs 1; otherwise, it outputs 0. Theorem 1. If the q-PKE and q-PDH assumptions hold for the encoding scheme (K, E, D) then the protocol above is a zk-SNARK with perfect completeness, computational soundness and computational zero-knowledge.

The perfectness of the scheme is guaranteed by the fact that the decryption step succeeds with probability 1. Therefore, we only need to concern ourselves with the zero-knowledge and soundness property.

5 Security Analysis of Our zk-SNARK Scheme

Zero-Knowledge

The idea behind this property is that the distributions of the elements in a proof does not differ from that of its components. The description of the simulator S is as follows. On input td = (α, β, s) and u = (a 1 , . . . , a ℓu ), 1. S randomly picks an element γ ∈ F q and computes h

= v 0 (s) + ℓu i=1 a i v i (s) + γ 2 -1 t(s) . 2. It computes      H = E(h), H = E(αh), V = E α(v 0 (s) + ℓu i=1 a i v i (s) + γ) , V γ = E(γ), B γ = E(βγ). 3. It outputs (H, H, V , V γ , B γ ).
Proof. Since the encodings in each group G i share a same vector space V i for i = 1, 2, 3, and all the polynomials in consideration are in F q [x], therefore, after homomorphically adding, the noises in the new encodings belong to the same vector spaces as that of its component encodings.

Observe that in the real protocol, H and V w are resulted from adding encodings of G 1 , H and V from G 2 , and B w from G 3 , respectively. By the vIRSL(2n, n, r, N ) problem (for each group), these outputs are computationally indistinguishable from truly random ones.

On the other hand, by the decisional IRSL(2n, n, r, N ) problem, the distribution of the outputs of the simulated protocol are computationally indistinguishable from the uniformly random. Therefore, by hybrid argument, we conclude that the outputs distribution of the real execution and that of the simulation are computationally indistinguishable.

We note also that the role of γt(s) in the scheme is to hide the witness and is indispensable. Indeed, since the homomorphic linear coefficients are elements of F q , so they form a vector which can be viewed as a rank-1 vector over F N q m 0 . In this particular situation, finding these low rank vectors can be performed as follows. From the encodings of G 3 , except the first, form an n × (m -ℓ u ) matrix whose columns are the first parts of these encodings. Note that, without adding γt(s), the last term of the proof becomes

B w = E β • m i=ℓu+1 a i v i (s) = Eval {E(βv i (s))} m i=ℓu+1 ; {a i } m i=ℓu+1 .
Regarding as a rank decoding problem and by applying algorithm in [CS96], (a ℓu+1 , . . . , a m ) could be recovered in polynomial time. Thus, witness must be concealed by the necessary use of the term γt(s).

One may hide the witness by further repeating one more time exactly the encryption step of the RQC scheme, i.e., re-randomizing the resulted encoding before outputting it (thus modifying the evaluation algorithm). By the hardness of the IRSL problem, we can argue the (computational) indistinguishability of the output. This is somewhat similar to the technique of [ISW21].

Soundness

The idea of the proof follows the frame of [PGHR13] and [GMNO18] with some adaptations to rank-code hardness assumptions.

Proof. Assume that there is an adversary A who can break the scheme Π with non-negligible probability, we construct an algorithm B to solve q-PDH or q-PKE problems. First, we show how B can use A for this purpose.

Let π be a proof produced by A which is accepted. Using an extractor of the d-PKE assumption, B can recover the coefficients of the polynomials v(x), h(x). Define

v mid (x) = v(x) -v 0 (x) - ℓu i=1 a i v i (x).
Since the proof is accepted but the statement is false, so by the same arguments as in the proof in [PGHR13], there are only two possibilities 6 Efficiency and Parameters 6.1 Efficiency -A proof consists of 5 encodings, each of which is a ciphertext of the underlying RQC scheme. Therefore, the size of proof is |π| = 10m 0 n log q.

-A crs contains m+1 polynomials v i 's, a polynomial t(x), the public parameters pp, and (m-ℓ u +2d+3) encodings. Each polynomial is of degree at most d, hence needs (d + 1)m 0 log q bits for its description.

The size of pp is dominated by (k + 1)m 0 n log q. Thus, the size of crs is (2d + 4 + k + m -ℓ u )m 0 n log q + (m + 2)(d + 1)m 0 log q = O(mm 0 d log q).

Parameters

This section provides an example of parameters for the scheme. These parameters are selected to target the security level of 128 bits and soundness error of the same level.

Taking attacks in [DT18, BBBG22] into consideration, for the IRSL(2n, n, r, N ) problem to be at the 128 bit-level of security, m 0 , n, and r are chosen such that

m 0 > m 0 n -N 2n -⌊ N r ⌋
.

And to guarantee the success of decoding, n, r, r, w, and k are chosen such that w(r + r) ≤ n-k 2 . (We use the RQC version in which 1 belongs to the vector space of the secret keys.) Also, the relation between m 0 and n is always m 0 ≥ n, since a Gabidulin code is employed. To sum up, parameters are chosen to satisfy that

       m 0 > m0n-N 2n-⌊ N r ⌋ , w(r + r) ≤ n-k 2 , n ≤ m 0 .
The parameter d is fixed to be d = 2 13 , and N = 4d is the number of given "syndromes." Recall that the size of a proof is |π| = 10m 0 n log q, so we get the result.

N q = |F| m 0 n k r r w |π| (kB) 2 15 ≈ 2 143 503 491 3 59 61 2 44147

  -Fully Succinct: G runs in time p(λ + log |C n |), V runs in time p(λ + |x| + log |C n |), and the length of the proof output by P is bounded by p(λ + log |C n |). -Preprocessing: G runs in time p(λ + |C n |), V runs in time p(λ + |x| + log |C n |), and the length of the proof output by P is bounded by p(λ + log |C n |).
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(i) t(x)h(x) ̸ = v 2 (x) -1 but t(s)h(s) = v 2 (s) -1, or (ii) B w is an encoding of βv mid (s) but v mid is not in the linear span of {v ℓu+1 , . . . , v m , t} Claim. If (i) holds, then B can break the q-PDH assumption with q = 2d -1.

Proof. Let p(x) = v 2 (x) -1 -t(x)h(x). In this case, p(x) is a polynomial of degree at most 2d having s as a root. Assume that p k is the leading coefficient of p(x), define

We see that s is a root of x k -p(x), therefore, it also is a root of x q+1 -x q+1-k p(x). Observe that for q = 2d-1, x q+1-k p(x) is a polynomial of degree at most 2d-1. Therefore, E s q+1-k p(s) can be computed from E(1), E(s), . . . , E(s 2d-1 ), which form a challenge of the q-PDH assumption for q = 2d -1. This means that B can compute E(s q+1 ) = E s q+1-k p(s) and break the q-PDH assumption for q = 2d -1.

Claim. If (ii) holds, then B can break the q-PDH assumption with q = d.

Proof. First, B generates a uniformly random polynomial a(x) of degree q = d subject to the constraint that all the polynomials a(x)t(x) and {a(x)v i (x)} m i=ℓu+1 do not contain the term x q . Since deg a(x) = d, so B can compute the value a(s) from the challenge of the d-PDH assumption, namely, E(1), E(s), . . . , E(s d ), E(s d+2 ), . . . , E(s 2d ). Thus, when preparing inputs for adversary A, B sets β = a(s). The proof is accepted, so the term B w must be an encoding of a known polynomial in s, i.e., the polynomial a(s

Since v mid is not in the linear span of {v ℓu+1 , . . . , v m , t}, so the above polynomial has the term s q+1 with overwhelming probability (cf. [GGPR13]). B performs an evaluation as

Then b -1 q+1 (h + B w ) is an encoding of s q+1 , which is a solution to the q-PDH assumption for q = d.

From these above analyses, B proceeds as follows.

-Target at the q-PDH problem with q = 2d -1. (B can equally target the q-PDH assumption with q = d, and follow the case (ii).) -B, from its challenge E(1), E(s), . . . , E(s q ), E(s q+2 ), . . . , E(s 2q ), prepares inputs for adversary A, i.e., the crs. That is , B randomly picks α, β ∈ F q and computes the corresponding terms in the crs from E(1), E(s), . . . , E(s d ) (depending on which problem B would target) which form a subset of the set of elements of the challenge. The elements of the first group come directly from the challenge while the elements of the second and third groups are produced by a further step of re-randomization, i.e., by adding some noises from a common vector space to each encoding. (This operation could be viewed as re-randomization.) The preparation for a value β is shown as in (ii). All the encodings of the so-generated crs are ciphertexts sharing a common vector space of noise, however, by the IRSL(2n, n, r, N ) problem, the view of A on this input is computationally indistinguishable from input of the real protocol. -By the contradictory assumption, A outputs a proof which is accepted, however, the statement is false.

-By using the extractor of the d-PKE assumption, B obtains the coefficients of polynomial v(x) and h(x). -If (i) holds, B would find a solution for the q-PDH assumption as described above and break the q-PDH assumption for q = 2d -1. -If (ii) holds, B aborts.

We note that the distribution of the input for A prepared by B is computationally indistinguishable from that of the real scheme. Therefore, (i) and (ii) happen with equal chance. Thus, B can break the targeted assumption with non-negligible probability.