

Immune effector cell–associated hematotoxicity: EHA/EBMT consensus grading and best practice recommendations

Kai Rejeski, Marion Subklewe, Mahmoud Aljurf, Emmanuel Bachy, Adriana Balduzzi, Pere Barba, Benedetto Bruno, Reuben Benjamin, Matteo Carrabba, Christian Chabannon, et al.

▶ To cite this version:

Kai Rejeski, Marion Subklewe, Mahmoud Aljurf, Emmanuel Bachy, Adriana Balduzzi, et al.. Immune effector cell–associated hematotoxicity: EHA/EBMT consensus grading and best practice recommendations. Blood, 2023, 142 (10), pp.865-877. 10.1182/blood.2023020578 . hal-04212662

HAL Id: hal-04212662 https://hal.science/hal-04212662v1

Submitted on 3 Oct 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Immune Effector Cell-Associated Hematotoxicity (ICAHT): **EHA/EBMT** Consensus Grading and Best Practice Recommendations

Kai Rejeski*¹, Marion Subklewe*¹, Mahmoud Aljurf², Emmanuel Bachy³, Adriana Balduzzi⁴, Pere Barba⁵, Benedetto Bruno⁶, Reuben Benjamin⁷, Matteo G. Carrabba⁸, Christian Chabannon⁹, Fabio Ciceri⁸, Paolo Corradini¹⁰, Julio Delgado¹¹, Roberta Di Blasi¹², Raffaella Greco⁸, Roch Houot¹³, Gloria Iacoboni⁵, Ulrich Jäger¹⁴, Marie José Kersten¹⁵, Stephan Mielke¹⁶, Arnon Nagler¹⁷, Francesco Onida¹⁸, Zinaida Peric¹⁹, Claire Roddie²⁰, Annalisa Ruggeri⁸, Fermín Sánchez-Guijo²¹, Isabel Sánchez-Ortega²², Dominik Schneidawind²³, Maria-Luisa Schubert²⁴, John A. Snowden²⁵, Catherine Thieblemont¹², Max Topp²⁶, Pier-Luigi Zinzani²⁷, John G. Gribben²⁸, Chiara Bonini²⁹, Anna Sureda³⁰, Ibrahim Yakoub-Agha³¹

* Participated equally to this work

1-Department of Medicine III - Hematology/Oncology, University Hospital, Ludwig-Maximilians- University, Munich, Germany

2-Oncology Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia

3-Department of Hematology, Hospices Civils de Lyon and University Claude Bernard Lyon 1, Lyon, France

4- Pediatric Transplantation Unit, Department of Medicine and Surgery, University of Milano-Bicocca -Fondazione IRCCS San Gerardo dei Tintori

5- Department of Hematology, Vall d'Hebron University Hospital, Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona; Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra

6-Division of Hematology and Cell Therapy Unit, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy

7- School of Cancer & Pharmaceutical Sciences, King's College London

8- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Hospital, Vita-Salute San

Raffaele University, Milan, Italy 9- Institut Paoli-Calmettes Comprehensive Cancer Centre & module Biothérapies du Centre d'Investigations Cliniques de Marseille, Inserm – Aic-Marseille Université – AP-HM – IPC, CBT-1409

10- Division of Hematology & Stem Cell Transplantation, Fondazione IRCCS Istituto Nazionale dei Tumori, University of Milano

11- Oncoimmunotherapy Unit, Department of Hematology, Hospital Clinic de Barcelona, University of Barcelona, FCRB-IDIBAPS, Barcelona, Spain

12- Université de Paris : Assistance Publique - Hopitaux de Paris, Service d'hémato-oncologie, DMU DHI, Paris, France

13- Department of Hematology, CHU Rennes, University of Rennes, INSERM U1236, Rennes, France

14- Medical University of Vienna, Department of Medicine I, Division of Hematology and Hemostaseology, Vienna, Austria

15- Department of Hematology, Amsterdam University Medical Centers, location University of Amsterdam, Cancer Center Amsterdam, Amsterdam, LYMMCARE, the Netherlands

16- Department of Cellular Therapy and Allogenic Stem Cell Transplantation (CAST), Department of Laboratory Medicine and Medicine Huddinge, Karolinska University Hospital and Institutet, Karolinska Comprehensive Cancer Center, Stockholm, Sweden

17- Division of Hematology and CBB, Chaim Sheba Medical Center, Tel Aviv University, Tel-Hashomer, Israel.

18- Hematology and BMT Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy.

19- Department of Hematology, University Hospital Centre Zagreb and School of Medicine, University of Zagreb, Zagreb, Croatia.

20-University College London Cancer Institute, London, UK; Department of Hematology, University College London Hospital, London, UK.

21-University of Salamanca, IBSAL-University Hospital of Salamanca, Salamanca, Spain

22-EBMT, Executive Office, Barcelona, Spain

23-University Hospital Zurich, Department of Medical Oncology and Hematology, Zurich, Switzerland 24-Department of Medicine V, University Hospital Heidelberg, Heidelberg, Germany

25-Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust & Department of Oncology and Metabolism, University of Sheffield, United Kingdom.
26-Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
27-IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli," Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy.
28-Barts Cancer Institute, Queen Mary, University of London, London UK
29-Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Disease, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, Milan, Italy.
30-Clinical Hematology Department, Institut Català d'Oncologia-L'Hospitalet, Barcelona. Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Universitat de Barcelona (UB), Spain

31-CHU de Lille, Univ Lille, INSERM U1286, Infinite, 59000 Lille, France

Corresponding authors:

Marion Subklewe, M.D.

LMU – Klinikum der Universität München Department of Hematology & Oncology Marchioninistrasse 15, 81377 München, Germany Email: marion.subklewe@med.uni-muenchen.de

Prof. Ibrahim Yakoub-Agha, M.D, P.H.D

UAM allogreffes de CSH, CHRU, F-59037 Lille CEDEX, France Tel: +33(0)3.20.44.55.51 Email: ibrahim.yakoubagha@chu-lille.fr

Running head: Hematotoxicity following CAR T-cell therapy

Keywords: immune effector cell-associated hematotoxicity, ICAHT, growth factors, hematopoietic cell boost, chimeric antigen receptor (CAR) T-cell therapy

1 Abstract

2 Hematological toxicity represents the most common adverse event following chimeric antigen 3 receptor (CAR) T-cell therapy. Cytopenias can be profound, long-lasting, and can predispose for 4 severe infectious complications. In a recent worldwide survey, we demonstrated that there 5 remains considerable heterogeneity in regards to current practice patterns. Here, we sought to 6 build consensus on the grading and management of Immune Effector Cell Associated Hemato-7 Toxicity (ICAHT) following CAR-T therapy. For this purpose, a joint effort between the European 8 society for Blood and Marrow Transplantation (EBMT) and the European Hematology Association 9 (EHA) involved an international panel of 36 CAR-T experts who met in a series of virtual 10 conferences, culminating in a 2-day meeting in Lille, France. On the basis of these deliberations, 11 best practice recommendations were developed. For the grading of ICAHT, a classification 12 system based on depth and duration of neutropenia was developed for early (day 0-30) and late 13 cytopenia (after day +30). Detailed recommendations on risk factors, available pre-infusion 14 scoring systems (e.g. CAR-HEMATOTOX score), and diagnostic work-up are provided. A further 15 section focuses on identifying hemophagocytosis in the context of severe hematotoxicity. Finally, 16 we review current evidence and provide consensus recommendations for the management of 17 ICAHT, including growth factor support, anti-infectious prophylaxis, transfusions, autologous 18 hematopoietic cell boost, and allogeneic hematopoietic cell transplantation. In conclusion, we 19 propose ICAHT as a novel toxicity category following immune effector cell therapy, provide a 20 framework for its grading, review literature on risk factors, and outline expert recommendations 21 for the diagnostic work-up and short- and long-term management.

Rejeski & Subklewe et al.

22 Introduction and state-of-the-art

23 The last decade has firmly established chimeric antigen receptor (CAR) T-cell therapy as a 24 practice-changing immunotherapy platform for an increasing number of refractory B-cell 25 malignancies.¹⁻⁷ While durable remissions can be achieved, this comes with the caveat of a 26 unique spectrum of side effects ranging from Cytokine Release Syndrome (CRS), to Immune 27 Effector Cell Associated Neurotoxicity Syndrome (ICANS), and Immune Effector Cell Associated Hemophagocytic Lymphohistiocytosis-like Syndrome (IEC-HS).⁸⁻¹¹ Real-world evidence has 28 29 underlined the growing importance of hematological toxicity as the most frequent Common 30 Terminology Criteria for Adverse Events (CTCAE) grade ≥3 adverse event following CAR T-cell therapy.¹²⁻¹⁴ Similarly high rates of cytopenias have been reported for other T-cell based 31 immunotherapies such as bispecific antibodies.¹⁵⁻¹⁹ Notably, profound and often long-lasting 32 33 cytopenias can add to the immunosuppression conferred by B-cell aplasia and consecutive hypogammaglobulinemia.²⁰ Importantly, severe infections are a major driver of both morbidity and 34 non-relapse mortality (NRM) following CAR T-cell therapies.²¹⁻²³ 35

36

37 Hematological side effects have been described after CAR T-cell therapy regardless of the target 38 antigen (e.g., CD19 vs. CD22 vs. BCMA) and across various disease entities (e.g., LBCL, BCP-39 ALL, MCL, MM, FL).^{3-5,24-29} Several features underline the unique nature of CAR-T related 40 hematotoxicity. First, cytopenias can persist long after the resolution of clinical CRS, and have been reported as long as months to years following CAR T-cell infuson.³⁰ Hematopoietic count 41 42 recovery often follows a biphasic trajectory, with intermittent recovery followed by second, or 43 multiple, dips.^{12,13} Second, patients can develop very severe bone marrow (BM) aplasia that is 44 often refractory to therapeutic measures such as growth factor support.^{13,31,32} Finally, the 45 underlying pathophysiology remains to be elucidated, although recent evidence points towards 46 the importance of both baseline hematopoietic reserve and the systemic inflammatory state of the host.¹³ Moreover, the inflammatory stress conferred by severe CRS and the associated 47 48 alterations in cytokine patterns can exert myelosuppressive effects.³³⁻³⁵

49

50 In a recent international survey led by EHA and EBMT, we identified a high degree of 51 heterogeneity both in regards to the grading and management of cytopenias.³⁶ Current grading

52 systems such as the CTCAE describe cytopenias predominantly in quantitative terms by 53 assigning severity grades according to the depth of cytopenia. However, they are difficult to apply 54 in daily practice and fail to capture the distinct nature of post-CAR-T hematopoietic reconstitution, 55 such as the biphasic and/or delayed course. Furthermore, the cumulative risk of secondary 56 complications (e.g., infections, bleeding) primarily increases with the respective duration of observed cytopenia.^{22,37} Classification systems that were developed for cytopenia following 57 58 classic cytotoxic chemotherapies may not apply to patients receiving novel T-cell based 59 immunotherapies. To accommodate these unique features of hematological side effects in adult 60 patients receiving such therapies, we herein introduce the concept of Immune Effector Cell 61 Associated Hemato-Toxicity, or ICAHT. Based on a novel framework for grading, we outline 62 expert recommendations for its diagnostic work-up and management.

63

64 Methodology

65 This workshop is based on the EBMT PH & G committee method.³⁸ In September 2022, KR and 66 MS proposed to set up a workshop to issue European recommendations regarding the grading 67 and management of ICAHT, particularly following autologous CAR T-cell therapy. As a first step, 68 an international survey on current practices at >50 global CAR-T centers was sent out and results 69 were analyzed.³⁶ Experts from different countries and belonging to EBMT and EHA were 70 subsequently invited to join the workshop. As a second step, several teleconferences took place 71 to discuss and advance the first draft. Along with the results of the international survey, a 72 comprehensive literature review was carried out by the workshop participants within each 73 subgroup, which served as the basis for the discussions. The third step consisted of a two-day 74 face-to-face meeting which took place in Lille, France on March 2nd and 3rd, 2023.

75

These recommendations are intended to be general in scope and applicable to all diseases and types of autologous CAR T-cell therapies or other T-cell based immunotherapies (e.g., bispecific antibody constructs) adopted as standard clinical practice. They are intended to reflect current best practices in this new and rapidly evolving field and aim to help clinicians and other healthcare professionals in providing consistent, high-quality patient care. These recommendations were created due to the growing number of autologous CAR T-cell therapies

currently available outside clinical trials for the treatment of hematological malignancies. Given the lack of high-quality evidence from randomized trials in this area (expected Evidence Levels 3-5, Oxford Centre for Evidence Based Medicine), the decision was made not to grade these recommendations. They therefore represent the consensus point of view of the authors. When administering CAR T-cell therapies within clinical trials, physicians are advised to follow respective trial protocols.

88

89 Consensus recommendations

90 **1. ICAHT Grading**

91 On the basis of the results of the international survey on behalf of EHA and EBMT, the expert 92 panel defined early ICAHT as cytopenia occurring during the first 30 days after CAR T-cell 93 infusion. Conversely, late ICAHT was classified as cytopenia observed beyond day +30. The 94 expert panel resolved that the main clinical action points of post-CAR-T cytopenias concerned 95 profound and/or prolonged neutropenia, and that isolated thrombocytopenia or anemia represent 96 rare occurrences. Concomitantly, a grading system based on neutropenia was pursued. For early 97 ICAHT (day 0-30), a grading system based on both depth and duration of neutropenia was 98 defined due to the associated clinical sequelae (Table 1, top). Late ICAHT was graded based on 99 the elapsed time from CAR T-cell infusion (e.g., occurring after day +30) with the severity (grade 100 I-IV) defined by the depth of neutropenia (**Table 1**, bottom). For anemia and thrombocytopenia, 101 the expert panel refers to existing grading systems and recommends that institutional guidelines 102 should be followed, as further outlined in Section 6 and Table 4 (see transfusions).

103

104 2. Risk factors for developing post-CAR-T cytopenias

The overall incidence of hematological toxicity in the key registrational trials for CAR T-cell products endorsed by the European Medicines Agency (EMA) are outlined in the **Supplemental Table 1**. Furthermore, we performed an extensive literature review of prominent real-world studies with a specific focus on correlative studies and potential risk factors (**Supplemental Table 2**). Overall, a plethora of factors contribute to the development of cytopenias after CAR-T, some of which remain incompletely understood. Broadly, they relate to the underlying disease and its previous treatments, baseline risk factors (e.g., hematopoietic reserve, BM infiltration,

112 systemic inflammation), as well as CAR-T product features and CRS-related inflammatory

113 patterns (summarized in Table 2 and the Supplementary Text).^{12,13,23,30,33,34,39-56}

114

115 **3. What scoring systems to use**

116 Based on several of the risk factors delineated above, the CAR-HEMATOTOX score was 117 developed to identify patients at high risk for prolonged neutropenia, and especially the development of the aplastic phenotype of neutrophil recovery.¹³ An online calculator can be found 118 119 on the website of the German Lymphoma Alliance (GLA): https://www.german-lymphoma-120 alliance.de/Scores.html). The score incorporates factors related to hematopoietic reserve 121 (absolute neutrophil count [ANC], hemoglobin, platelet count) and baseline inflammatory state 122 (CRP, ferritin) and was validated for a primary endpoint of severe neutropenia (ANC <500/µL) 123 lasting longer than 14 days during the first 60 days after CAR-T infusion. Importantly, the CAR-124 HEMATOTOX score is determined prior to lymphodepleting chemotherapy and thus enables 125 early risk-stratification into a high vs. low risk of developing severe hematotoxicity after CAR T-126 cell treatment (Figure 1). In subsequent studies, the score also identified patients at risk for 127 severe infections and poor treatment outcomes across multiple disease entities (e.g., LBCL, MCL. MM).^{22,42-44,57} However, it is important to note that the score remains to be validated 128 129 prospectively and for adult and pediatric BCP-ALL patients. Furthermore, the test characteristics 130 (high sensitivity, lower specificity) indicate a lower positive predictive value, meaning that not all 131 patients deemed high-risk will develop severe hematotoxicity. Conversely, the high negative 132 predictive value suggests that the score is particularly helpful in ruling out patients at risk for 133 severe hematotoxicity.

134

135 **4. Assessment and diagnostic work-up of ICAHT**

136 In patients with a high-risk profile for developing ICAHT (**Table 2, Figure 1**), baseline BM 137 studies (prior to apheresis or lymphodepletion) should be considered to risk-stratify patients for 138 hematological toxicity and identify underlying marrow infiltration as a pertinent risk factor. 139 Cryopreservation of the BM aspirate and/or peripheral blood mononuclear cells (PBMCs) is 140 optional, but may provide useful information in case the patient develops secondary BM failure 141 (e.g., presence of CHiP clone).

142

143 In case of cytopenia that persists beyond the expected reconstitution of lymphodepleting 144 chemotherapy (typically following week 2-3 after CAR-T infusion), the first step in the work-up 145 comprises defining the differential diagnosis, which can include drug-induced cytopenia, vitamin 146 deficiencies, infectious causes, sustained inflammatory stressors, relapse and/or active BM 147 disease. The expert panel recommends performing an incremental diagnostic-work-up, with an 148 initial tier 1 assessment comprising standard diagnostic tests that should be performed in all 149 cases of severe, or grade ≥III, ICAHT (Figure 2). In case the tier 1 results are inconclusive and 150 cytopenias persist and/or are G-CSF refractory (absence of count recovery despite ≥5 days of 151 G-CSF support), a subsequent tier 2 diagnostic work-up can be pursued. Importantly, this 152 includes extended viral studies, as well as BM aspiration and biopsy. The expert panel would 153 reserve cytogenetics and next-generation sequencing to rule out an underlying myeloid 154 malignancy to either cases of profound, long-lasting marrow aplasia (e.g., no count recovery 155 above an ANC \geq 500/µL by day +30, pancytopenia), or new-onset pancytopenia that is refractory 156 to therapeutic measures late after CAR-T infusion.

157

5. Hemophagocytosis associated with severe hematotoxicity after CAR T-cell therapy

159 Hemophagocytic lymphohistiocytosis (HLH) represents a hyper-inflammatory condition 160 resulting from abnormal immune activation, which is associated with high fever, 161 hyperferritinemia, prolonged cytopenia and eventually multi-organ failure. HLH remains a 162 diagnostic quandary as unique biomarkers are still lacking and/or not readily available. In the 163 context of CAR T-cell therapy, the incidence of HLH-like symptoms ranges from 1% to 164 3.4%.^{10,58} Two entities, CRS/MAS and IEC-HS, can be distinguished according to time of onset and presence of concomitant CRS/ICANS symptoms.^{29,59-61} In patients with severe 165 166 ICAHT that present with a plastic neutrophil recovery and rising serum ferritin, the diagnosis of 167 HLH should be considered, as both can present with profound immune dysregulation and increased IFN signaling.^{42,54} A comprehensive work-up is recommended in order to identify 168 169 additional abnormalities such as new-onset hepatosplenomegaly, hypertriglyceridemia, 170 coagulopathy and hypofibrinogenemia, as well as hemophagocytosis features on BM biopsy 171 or in other tissues (Fig. 2). Existing scoring systems that can guide the diagnosis of HLH in

Rejeski & Subklewe et al.

172 the context of severe ICAHT include HLH-2004 criteria, the H-score, and the OHI index. 62-64 Additionally, Table S3 outlines the MD Anderson criteria⁵⁸, EBMT/EHA/JACIE 173 174 recommendations⁵⁹ and IEC-HS criteria⁶⁰, which were deemed more specific to CAR-T 175 therapy by the expert panel. In patients in whom ICAHT manifests in the form of HLH, anti-176 inflammatory measures should be promptly initiated to mitigate cytokine storm and its clinical 177 sequelae. Patients should be treated with anakinra, a recombinant humanized IL-1 receptor 178 antagonist, in combination with high-dose corticosteroids (Figure S1). In refractory cases, 179 ruxolitinib, cytokine adsorption, and emapalumab (IFN-γ inhibitor) can be considered, albeit data remains scarce.65-67 180

181

182 6. Management of cytopenias

The management of ICAHT can broadly be separated into an initial phase which addresses the (expected) early cytopenias and aims to mitigate the risk of infections and/other complications, as well as a later phase that is initiated in case of persistent and/or therapy-refractory cytopenias. An overview of the expert recommendations for early ICAHT management if provided in **Table 3**.

188

189 Transfusions

190 Due to the frequent nature of severe anemia and thrombocytopenia after CAR-T therapy, 191 transfusions are an essential part of supportive care and include either packed red blood cell 192 concentrates (pRBCs) or platelet concentrates (PCs). Transfusion-associated GvHD (ta-GvHD) 193 is a rare complication of transfusion wherein viable donor T lymphocytes in cellular blood 194 products mount an immune response against the recipient.⁶⁸ Considering the high mortality rate 195 (>90%), prevention of ta-GvHD is recommended, though there is no internationally agreed upon 196 consensus on the duration of the use of irradiated blood products across cellular therapies. In 197 the setting of HCT, standard practice is to use irradiated blood for (1) at least 2 weeks prior to 198 stem cell collection until at least 3 months after auto-HCT, and (2) starting with conditioning at the latest until at least 6 months after allo-HCT, or until immune reconstitution.⁶⁹ In the context 199 200 of CAR-T therapy, the expert panel recommended the irradiation of blood products from 7 days 201 prior to leukapheresis until at least 90 days post-CAR-T infusion unless conditioning, disease or

- 202 previous treatment determine indefinite duration (Table 3). Of note, the use of the purine
- 203 analogue fludarabine as a component of lymphodepletion prior to CAR-T infusion may impact
- 204 local guidance for irradiated blood products.⁶⁹ Given its relative rarity, we recommend reporting

205 cases of ta-GVHD following CAR-T to regulatory authorities.

206

Growth factor support

208 Granulocyte-macrophage colony-stimulating factor (GM-CSF)

209 GM-CSF is typically elevated in CAR-T patients with CRS and ICANS. The use of GM-CSF as a 210 growth factor for patients with low blood counts should be avoided as it may promote

211 inflammatory toxicity and induce neuroinflammation following CAR-T therapy.^{70,71}

212

213 Granulocyte colony-stimulating factor (G-CSF)

214 Due to the concerns for the use of GM-CSF and the hypothesized, but largely unknown risks of 215 exacerbating toxicities, early guidance suggested generally deferring G-CSF until resolution of 216 acute CAR T-cell related immunotoxicity (typically week 3). However, several recent reports question this as a general rule and point towards an acceptable safety profile for the early use of 217 218 G-CSF, with no increase of high-grade (\geq 3°) CRS/ICANS.⁷²⁻⁷⁶ In the largest retrospective analysis 219 by Miller and colleagues (n=197), prophylactic G-CSF before CAR-T (mostly pegylated G-CSF) 220 was associated with faster neutrophil recovery, comparable treatment outcomes, and similar rates of severe ICANS.⁷⁵ While prophylactic G-CSF was associated with a higher rate of grade ≥2 221 CRS, this observation did not extend to the clinically relevant grade ≥3 CRS. In a subgroup 222 analysis, the authors found that G-CSF did not worsen severity of CRS in patients who already 223 224 present with low-grade (1°) toxicity. In a further study by Lievin et al, early G-CSF administration 225 (from day +2) in neutropenic patients was associated with a reduced risk of febrile neutropenia without increasing the risk of severe CRS or ICANS.⁷⁴ Notably, G-CSF was also safe in 226 227 maintaining CAR T-cell expansion kinetics and anti-lymphoma activity, without any deleterious impact on the quality of response and outcomes.^{73,74} Appraising the above evidence and 228 229 weighing the benefits and risks, early G-CSF administration on day +2 can be considered in high-230 risk patients to shorten the length of expected severe neutropenia (see **Table 2** and **Figure 1**). 231 Therapeutic G-CSF in case of prolonged severe neutropenia (ANC <500/µL) can also be

Rejeski & Subklewe et al.

232 considered, and can be of diagnostic benefit for identifying the aplastic neutrophil recovery 233 phenotype^{13,32}, which is often G-CSF unresponsive. The large majority of CAR-T patients (>80%) 234 ultimately respond to growth factor support with count recovery.^{32,34} However, recurrent neutrophil 235 dips (biphasic course) can necessitate intermittent application of therapeutic G-CSF (Figure 3). 236 Finally, a uniform consensus was reached on the necessity of prospective, and ideally 237 multicenter, clinical trials that evaluate the safety and optimal treatment protocol for G-CSF 238 (prophylactic vs. early / pegylated vs. non-pegylated) in the context of CAR-T therapy and across 239 disease entities (B-ALL vs. B-NHL vs. MM).

240

241 Thrombopoietin (TPO) agonists

242 TPO agonists (e.g., eltrombopag, romiplostim) are considered primarily in patients with 243 prolonged and late thrombocytopenia, with the thrombocytopenic nadir typically occurring in the 244 2nd month after CAR-T therapy.^{12,13} Data supporting the use of TPO agonists in the CAR-T 245 setting are extremely limited and are restricted to a few case series from single centers with limited patient numbers.⁷⁷⁻⁷⁹ In these limited reports, improvement in platelets and also 246 247 hemoglobin and ANC was noted, with some patients becoming transfusion independent both 248 for platelets and pRBCs similar to improvement in hematopoiesis observed with TPO agonist 249 use in cases of acquired BM failure.^{80,81} Due to the limited available data, the expert panel advises that the use of TPO agonists should parallel the practice for HCT.⁸² They can also be 250 251 utilized in G-CSF refractory cases of ICAHT (Figure 3).

252

253 Infection prophylaxis

Regarding the administration of anti-infectious prophylaxis during cytopenia, the expert panel broadly recommends adherence to the general EHA/EBMT/JACIE guidelines for patients receiving CAR T-cell therapy.⁵⁹ The following specific recommendations were issued (**Table 3**):

- Adherence to current EHA/EBMT guidelines regarding anti-viral and anti-pneumocystis
 pneumonia (PCP) prophylaxis, as well as intravenous immunoglobulin (IVIG) substitution
 for post-CAR-T hypogammaglobulinemia.⁵⁹
- The expert panel does not recommend the use of a neutropenic diet to reduce the risk of
 infection in neutropenic CAR-T patients.⁸³⁻⁸⁵

262 Antibacterial prophylaxis: the panel proposes a risk-adapted strategy based on the 263 patient-individual risk profile for infections including the expected incidence rate of 264 protracted, profound neutropenia (ANC <100/µL for ≥7 days), in line with the consensus 265 American Society of Clinical Oncology (ASCO)/ Infectious Diseases Society of America (IDSA) recommendations for adult cancer patients.⁸⁶ Antibacterial prophylaxis with a 266 267 fluoroquinolone (e.g. levofloxacin, ciprofloxacin) is not recommended in patients who are at 268 a low risk of severe (grade ≥III) ICAHT (Table 1, Table 3) and should be avoided due to 269 fluoroquinolone-specific side effects, the potential emergence of resistant strains, and selection for C, difficile and enterococci.^{37,87-90} Furthermore, recent publications have 270 271 demonstrated that antibiotic exposure prior to CAR T-cell therapy reduces microbiome 272 diversity and is associated with inferior outcomes, potentially due to the multifunctional and immunomodulatory role of the gut microbiome.91-94 On the other hand, antibacterial 273 274 prophylaxis can be considered in high-risk patients once the ANC falls below <500/µL to 275 mitigate the risk of severe infections. The CAR-HEMATOTOX score may be useful for guidance and identification of high-risk candidates.¹³ In a large retrospective analysis of 276 277 LBCL patients receiving CD19 CAR-T, a significant reduction of severe bacterial infections 278 with fluoroquinolone prophylaxis was observed in CAR-HEMATOTOX^{high} but not CAR-279 HEMATOTOX^{low} patients, supporting a risk-adapted approach. Importantly, the panel 280 recommends adherence to institutional guidelines that take into account local epidemiology 281 and resistance patterns. In this context, monitoring for multi-drug resistant gram-negative 282 bacteria (MDR GNB) colonization (i.e., active surveillance through rectal swab culture) may 283 be useful both for baseline risk assessment and during prolonged neutropenia.

284 Antifungal prophylaxis: To reduce the risk of invasive fungal disease (IFD), anti-mold 285 prophylaxis (e.g., micafungin or posaconazole) can be considered in patients at high risk 286 for severe ICAHT (grade ≥III) once the ANC falls below <500/µL (Table 3). Additional risk 287 factors to consider are prior allo-HCT, prior invasive aspergillosis and receipt of 288 corticosteroids (either long-term ≥72h or high-dose, e.g., greater than 10 mg of 289 dexamethasone or equivalent). The low overall incidence rate for IFD in the context of CAR-T should be taken into account⁹⁵, although fungal infections represent a frequent 290 cause of fatal infectious complications.^{22,96} Systemic primary antifungal prophylaxis should 291

be continued until stable count recovery (ANC >500/μL over 3 days) and discontinuation of
 steroids for CRS/ICANS management.

294

295 Hematopoietic cell boost

296 Patients who are unresponsive and/or refractory to G-CSF beyond day +14 after CAR-T infusion 297 represent a clinically challenging subgroup of patients at high risk for severe and even fatal 298 infectious complications. While the evidence remains limited, TPO agonists can be offered in this 299 setting, especially in cases of associated thrombocytopenia.⁷⁹ In cases of severe ICAHT in which 300 an inflammatory stressor is deemed contributory (severe CRS/ICANS, CRS/MAS), anti-301 inflammatory strategies such as pulse-dose corticosteroids and/or anti-cytokine therapies (e.g., 302 tocilizumab, anakinra) should be used. A promising strategy pertains to the use of cryopreserved 303 autologous or allogeneic CD34⁺ hematopoietic cells from prior collection (either prior auto- or allo-HCT).97-99 Three recent case series shed light on both the safety and clinical feasibility of this 304 305 approach across a broad population of pediatric and adult patients (summarized in 306 Supplemental Table 4). High rates of sustained neutrophil and platelet engraftment were noted 307 across studies. While hematopoietic cell boost (HCB) has been successfully applied during active 308 infection¹⁰⁰, clinicians should be aware of the possibility of immune reconstitution inflammatory 309 syndrome (IRIS) in patients with prolonged bone marrow aplasia.³¹ As the earlier application of an available HCB was associated with superior survival outcomes,⁹⁹ the expert panel recommends 310 311 considering the application of a HCB without prior conditioning chemotherapy for grade ≥III 312 ICAHT beyond day +14 if (1) a boost is readily available and (2) G-CSF refractoriness has been 313 established. At the same time, the survey results highlighted that even when HCB were 314 considered a viable treatment option in a patient with prior auto-HCT, they were often not 315 available. While prophylactic collection in high-risk candidates has been proposed as a potential 316 mitigating strategy, the panel cautioned that the collection process may add to the already high 317 logistic burden of CAR T-cell therapy (e.g., coordination of apheresis slots and storage capacity), 318 which could negatively impact vein-to-vein times in a state of high disease burden. Furthermore, the process could incur unnecessary collection- and storage-associated costs.^{101,102} Ultimately, it 319 320 was concluded that further research is needed to assess the number needed to treat for 321 prophylactic stem cell collection.

322

323 Allogeneic hematopoietic cell transplantation

324 If the above options remain ineffective or elusive and grade IV ICAHT persists beyond day +30, 325 the expert panel recommends initiating a donor search for a potential allo-HCT as a last resort 326 (ultima ratio). In such cases of life-threatening ICAHT, the benefit and risks of allo-HCT need to 327 be carefully weighed and aligned with the patient's goals-of-care. Furthermore, the possibility of spontaneous count recovery needs to seriously be considered. 34,103,104 Accordingly, the expert 328 329 panel suggested that the ultimate trigger for allo-HCT needs to be discussed on a case-by-case 330 basis. Month 3-6 post CAR-T infusion was deemed a reasonable time frame to balance both the 331 risk of infection and possibility of spontaneous count recovery. Once the decision for allo-HCT 332 has been made, details regarding donor selection, conditioning regimens and 333 immunosuppression have to be discussed. Experience and evidence are very limited and only 334 general considerations can be reviewed here. As for every allo-HCT, the same basic principles 335 should apply keeping in mind that the primary indication is severe and persistent cytopenia 336 although basically all patients currently receive commercially available CAR-T cells to treat 337 malignant lymphoid disorders. Most importantly, salvage allo-HCT is also capable to provide 338 tumor control through the conditioning regimen and graft-versus-tumor effects and current 339 standard procedures will most likely lead to eradication of CAR-T cells at the latest when full 340 donor chimerism has been established. Therefore, remission status must be determined prior to 341 allo-HCT and may guide the choice of conditioning regimen and the taper of immunosuppression. 342 As usual, performance status, comorbidities, prior therapies and expected anti-tumor activity 343 should be carefully considered when discussing the transplantation modalities, donor choice and 344 selection.

345

346 7. Conclusions and Outlook

Much progress has been made in the last years in defining hematological toxicity as a distinct toxicity entity of CAR T-cell therapy. While the underlying pathophysiology remains incompletely understood, growing evidence points towards critical interactions between host hematopoiesis and CAR T-cell function and efficacy. By defining ICAHT and delineating a specific grading

351 system, we herein provide a nomenclature that enables cross-trial comparisons and invites352 severity-based management strategies.

353

354 In this international consensus guidelines document, we have proposed a structured approach 355 to diagnosis, grading/staging and clinical management of ICAHT. This endeavor has also set 356 the stage for areas of future development that will require collaboration between various 357 European and non-European stakeholders involved in CAR T-cell therapy. Structured sample 358 collection across multiple centers represents the basis for translational projects that delineate 359 the underlying mechanisms of ICAHT by leveraging novel technologies such as multi-omics and 360 single-cell approaches. One area of particular interest lies in identifying early determinants of 361 ICAHT by studying the peripheral blood immune contexture and/or the local BM 362 microenvironment from pre-CAR-T samples. Furthermore, large retrospective real-world 363 analyses may shed light on some of the differences in the clinical management of ICAHT that 364 were identified by the EHA/EBMT survey. Residual guestions relate to the optimal timing of G-365 CSF initiation as well as the optimal protocol to employ (e.g., prophylactic vs. early G-CSF). The 366 question of prophylactic collection of CD34+ hematopoietic cells in high-risk candidates and the 367 optimal trigger time point for both HCB and allo-HCT represent unresolved issues that warrant 368 further systematic study. Ultimately, prospective clinical trials will be needed that determine the 369 potential benefits and evidence-base of treatment strategies that mitigate ICAHT.

370 Acknowledgements

- 371 We are grateful for the support by EHA and EBMT without whom this work would not have been
- 372 possible.
- 373

374 Competing interests

- 375 **K.R.** Kite/Gilead: Research Funding and travel support; Novartis: Honoraria; BMS/Celgene:
- 376 Consultancy, Honoraria

M.S. receives industry research support from Amgen, BMS/Celgene, Kite/Gilead, Janssen,
Miltenyi Biotec, Novartis, Roche, Seattle Genetics and Takeda and serves as a
consultant/advisor to AvenCell, CDR-Life, Ichnos Sciences, Incyte Biosciences, Janssen,
Miltenyi Biotec, Molecular Partners, Novartis, Pfizer and Takeda. She serves on the speakers'
bureau at Amgen, AstraZeneca, BMS/Celgene, Gilead, GSK, Janssen, Novartis, Pfizer, Roche
and Takeda.
E.B. Honorarium/Advisory Board: Kite/Gilead, BMS/Celgene, Novartis, Pfizer, Incyte, ADC

- 384 Therapeutics, Roche, Takeda. Personal fees: Kite/Gilead, BMS/Celgene, Novartis, Pfizer.
- 385 Research funding: Amgen, BMS.
- 386 **A.B.** Speaker's bureau from Novartis, Amgen, Medac; meeting support from Novartis, Amgen,

387 Medac, Neovii

- 388 P.B. Honoraria and travel support from Allogene, Amgen, BMS, Kit/Gilead, Incyte, Jazz
 389 Pharmaceuticals, Miltenyi Biomedicine, Nektar, Novartis and Pierre Fabre
- 390 **R.B.** Research funding from Servier and Allogene. Participated in advisory boards for
- 391 BMS/Celgene, Janssen, Allogene, Takeda, Enara Bio, Securabio, Menarini Stemline, Arovella,
- 392 Kite/Gilead
- 393 M.C. Consultancy: Novartis, Janssen.
- 394 C.C. Consultant advisor: Bellicum Pharmaceuticals, BMS, Kite/Gilead, Janssen
 395 Pharmaceuticals, Novartis. Speaker's bureau: BMS, Kite/Gilead, Janssen Pharmaceuticals,
 396 Jazz, Miltenyi Biotec, Novartis. Travel support: BMS, Kite/Gilead
- 397 P.C. Honoraria: Abbvie, Amgen, Celgene, Daiichi Sankyo, Janssen, Kite/Gilead, Novartis,
 398 Roche, Sanofi, Servier, Takeda (Consulting, Advisory role or Lecturer); travel and

16

Rejeski & Subklewe et al.

- 399 accommodations paid by for-profit health care companies during the past 2 years: Novartis,
- 400 Janssen, BMS/Celgene, Takeda, Kite/Gilead, Roche
- 401 R.D. Novartis: Scientific Advisory Board and Conference speaker. Kite/Gilead: Scientific
- 402 Advisory Board, Conference speaker, Travel accommodation. Janssen: Scientific Advisory
- 403 Board. Pfizer: Conference speaker. BMS/Celgene: Scientific Advisory Board. Abbvie :
- 404 Conference speaker. Incyte : Conference speaker
- 405 **R.G.** discloses speaking honoraria from Biotest, Pfizer, Medac, and Magenta.RH:
- 406 R.H. honoraria from Kite/Gilead, Novartis, Incyte, Janssen, MSD, Takeda and Roche; and
- 407 consultancy at Kite/Gilead, Novartis, Bristol-Myers Squibb/Celgene, ADC Therapeutics, Incyte,
- 408 Miltenyi.
- 409 G.I. Honoraria: BMS/Celgene, Novartis, Janssen, AstraZeneca, Abbvie, Miltenyi, Roche.
- 410 U.J. Consultancy: Novartis, Janssen, Roche; Honoraria: Gilead, BMS/CELGENE, Miltenyi
- 411 M.J.K. honoraria from and consulting/advisory role for Bristol Myers Squibb, Celgene, Kite, a
- 412 Gilead Company, Miltenyi Biotech, Novartis, and Roche; research funding from Kite, Roche,
- 413 Takeda, and Celgene; and travel support from Kite, Miltenyi Biotech, Novartis, and Roche.
- 414 **S.M.** Via Institution: Celgene/BMS: Speaker's bureau; Novartis: Speaker's bureau; Janssen:
- 415 Speaker's bureau; Gilead/KITE: Travel support, Expert panel; Miltenyi: Data safety monitoring
- 416 board; Immunicum/Mendes: Data safety monitoring board; SWECARNET: Founder/Leadership;
- 417 ScientifyResearch: Founder (spouse).
- 418 F.O. Travel, Accommodations, Expenses: Takeda, Kyowa Kirin International, Medac
- 419 C.R. Honoraria BMS, Kite/Gilead, Novartis, Amgen
- 420 F.S.G. Research support from Novartis, Gilead. Honorary from Novartis, Gilead, Pfizer, BMS-
- 421 Celgene,
- 422 **D.S.** Advisory Board with Autolus
- 423 M.L.S. Advisory board / consultancy: Novartis, Kite-Gilead, Takeda, Janssen; Honoraria:
- 424 Kite/Gilead
- 425 J.S. received speaker fees from Gilead and consultancy from Kiadis, Medac and Vertex.
- 426 C.T. Board with Novartis, Kite/Gilead, BMS, Roche, Takeda, Incyte, Beigene
- 427 MT: Ad Board: KITE/Gilead, BMS, Janssen, Novartis, Roche, Incyte, Astra Zeneca. Research
- 428 funding: KITE/Gilead, Takeda, Incyte, Roche, Regeneron

- 429 P.L.Z. Consultancy: MSD, Eusapharma, Novartis; Advisory Board: Securia Bio, Celltrion, 430 Kite/Gilead, Janssen, BMS/Celgene, Servier, Sandoz, MSD, AstraZeneca, Takeda, Roche, 431 Eusapharma, Kyowa Kirin, Novartis, ADC therap., Incyte, Belgene. Speakers' Bureau: Celltrion, 432 Kite/Gilead, Janssen, BMS/Celgene, Servier, MSD, AstraZeneca, Takeda, Roche, Eusapharma, 433 Kyowa Kirin, Novartis, Incyte, Belgene. 434 J.G.G. Received honoraria from Amgen, BMS Gilead/Kite, Janssen, Novartis, and received 435 research funding from AZ, BMS and Janssen. 436 **C.B.** inventor of different patents on cancer immunotherapy and genetic engineering; member of 437 Advisory Boards and Consultant for, Intellia, Kite/Gilead, Miltenyi, Kiadis, QuellTx, Janssen,
- 438 Chroma, Genyo, Pancancer-T, Alia, and received research support from Intellia Therapeutics.
- 439 A.S. Honoraria: Takeda, Bristol Myers Squibb, Merck Sharp & Dohme, Celgene, Janssen, Sanofi,
- 440 Roche, Novartis, Gilead Sciences, Janssen-Cilag; Consulting or Advisory Role: Takeda, Bristol
- 441 Myers Squibb, Gilead Sciences, Celgene, Janssen, Novartis; Speakers' Bureau: Takeda; Travel,
- 442 Accommodations, Expenses: Kite/Gilead
- 443 **I.Y-A.** Recived honoraria from Novartis, Gilead/Kite, BMS and Janssen.
- 444
- 445 The remaining authors have nothing to declare. None of the mentioned conflicts of interest were
- 446 related to financing of the content of this manuscript.
- 447

448 Author contributions

- 449 Conceptualization: KR, MS;
- 450 Investigation: KR, MS, MA, EB, AB, PB, BB, RB, MGC, CC, FC, PC, JD, RDB, RG, RH, GI, UJ,
- 451 MJK, SM, AN, FO, ZP, CR, AR, FSG, ISO, DS, MLS, JAS, CT, MT, PLZ, JGG, CB, AS, IYA;
- 452 Formal Analysis and Visualization: KR, MS, RG, RH, MJK, SM, CR, FSG, DS, MLS, CT, AS, IYA
- 453 Methodology: KR, MS, ISO, AS, IYA
- 454 Writing Original Draft: KR, MS
- 455 Writing Review and Editing: KR, MS, MA, EB, AB, PB, BB, RB, MGC, CC, FC, PC, JD, RDB, RG,
- 456 RH, GI, UJ, MJK, SM, AN, FO, ZP, CR, AR, FSG, ISO, DS, MLS, JAS, CT, MT, PLZ, JGG, CB,
- 457 AS, IYA
- 458 All authors read and approved the final manuscript.

18

459 References

460		
461	1.	Locke FL, Miklos DB, Jacobson CA, et al. Axicabtagene Ciloleucel as Second-Line
462		Therapy for Large B-Cell Lymphoma. N Engl J Med. 2022;386(7):640-654.
463	2.	Abramson JS, Solomon SR, Arnason JE, et al. Lisocabtagene maraleucel as second-
464		line therapy for large B-cell lymphoma: primary analysis of phase 3 TRANSFORM
465		study. Blood. 2022.
466	3.	Shah BD, Ghobadi A, Oluwole OO, et al. KTE-X19 for relapsed or refractory adult B-cell
467		acute lymphoblastic leukaemia: phase 2 results of the single-arm, open-label,
468		multicentre ZUMA-3 study. Lancet. 2021;398(10299):491-502.
469	4.	Wang M, Munoz J, Goy A, et al. KTE-X19 CAR T-Cell Therapy in Relapsed or
470		Refractory Mantle-Cell Lymphoma. N Engl J Med. 2020;382(14):1331-1342.
471	5.	Raje N, Berdeja J, Lin Y, et al. Anti-BCMA CAR T-Cell Therapy bb2121 in Relapsed or
472		Refractory Multiple Myeloma. N Engl J Med. 2019;380(18):1726-1737.
473	6.	Snowden JA, Sanchez-Ortega I, Corbacioglu S, et al. Indications for haematopoietic cell
474	-	transplantation for haematological diseases, solid tumours and immune disorders:
475		current practice in Europe, 2022. Bone Marrow Transplant. 2022;57(8):1217-1239.
476	7.	Passweg JR, Baldomero H, Chabannon C, et al. Hematopoietic cell transplantation and
477		cellular therapy survey of the EBMT: monitoring of activities and trends over 30 years.
478		Bone Marrow Transplant. 2021;56(7):1651-1664.
479	8.	Shimabukuro-Vornhagen A, Godel P, Subklewe M, et al. Cytokine release syndrome. <i>J</i>
480	•	Immunother Cancer. 2018;6(1):56.
481	9.	Karschnia P, Jordan JT, Forst DA, et al. Clinical presentation, management, and
482	-	biomarkers of neurotoxicity after adoptive immunotherapy with CAR T cells. Blood.
483		2019;133(20):2212-2221.
484	10.	Sandler RD, Tattersall RS, Schoemans H, et al. Diagnosis and Management of
485		Secondary HLH/MAS Following HSCT and CAR-T Cell Therapy in Adults; A Review of
486		the Literature and a Survey of Practice Within EBMT Centres on Behalf of the
487		Autoimmune Diseases Working Party (ADWP) and Transplant Complications Working
488		Party (TCWP). Front Immunol. 2020;11:524.
489	11.	Hines MR, Knight TE, McNerney KO, et al. Immune Effector Cell associated
490		Hemophagocytic Lymphohistiocytosis-like Syndrome (IEC-HS). Transplant Cell Ther.
491		2023.
492	12.	Fried S, Avigdor A, Bielorai B, et al. Early and late hematologic toxicity following CD19
493		CAR-T cells. Bone Marrow Transplant. 2019;54(10):1643-1650.
494	13.	Rejeski K, Perez A, Sesques P, et al. CAR-HEMATOTOX: a model for CAR T-cell-
495		related hematologic toxicity in relapsed/refractory large B-cell lymphoma. Blood.
496		2021;138(24):2499-2513.
497	14.	Wudhikarn K, Pennisi M, Garcia-Recio M, et al. DLBCL patients treated with CD19 CAR
498		T cells experience a high burden of organ toxicities but low nonrelapse mortality. <i>Blood</i>
499		Adv. 2020;4(13):3024-3033.
500	15.	Dickinson MJ, Carlo-Stella C, Morschhauser F, et al. Glofitamab for Relapsed or
501		Refractory Diffuse Large B-Cell Lymphoma. N Engl J Med. 2022;387(24):2220-2231.
502	16.	Thieblemont C, Phillips T, Ghesquieres H, et al. Epcoritamab, a Novel, Subcutaneous
503		CD3xCD20 Bispecific T-Cell-Engaging Antibody, in Relapsed or Refractory Large B-
504		Cell Lymphoma: Dose Expansion in a Phase I/II Trial. J Clin Oncol. 2022: JCO2201725.
505	17.	Chari A, Minnema MC, Berdeja JG, et al. Talquetamab, a T-Cell-Redirecting GPRC5D
506		Bispecific Antibody for Multiple Myeloma. N Engl J Med. 2022;387(24):2232-2244.
507	18.	Moreau P, Girgis S, Goldberg JD. Teclistamab in Relapsed or Refractory Multiple
508		Myeloma. Reply. N Engl J Med. 2022;387(18):1722-1723.
509	19.	Goebeler ME, Knop S, Viardot A, et al. Bispecific T-Cell Engager (BiTE) Antibody
510		Construct Blinatumomab for the Treatment of Patients With Relapsed/Refractory Non-
511		Hodgkin Lymphoma: Final Results From a Phase I Study. J Clin Oncol.
512		2016;34(10):1104-1111.
513	20.	Hill JA, Seo SK. How I prevent infections in patients receiving CD19-targeted chimeric
514		antigen receptor T cells for B-cell malignancies. <i>Blood.</i> 2020;136(8):925-935.
515	21.	Nastoupil LJ, Jain MD, Feng L, et al. Standard-of-Care Axicabtagene Ciloleucel for
516		Relapsed or Refractory Large B-Cell Lymphoma: Results From the US Lymphoma CAR
517		T Consortium. J Clin Oncol. 2020;38(27):3119-3128.

518	22.	Rejeski K, Perez A, lacoboni G, et al. The CAR-HEMATOTOX risk-stratifies patients for
519		severe infections and disease progression after CD19 CAR-T in R/R LBCL. J
520		Immunother Cancer. 2022;10(5).
521	23.	Bethge WA, Martus P, Schmitt M, et al. GLA/DRST real-world outcome analysis of
	23.	
522	~ 1	CAR-T cell therapies for large B-cell lymphoma in Germany. <i>Blood.</i> 2022.
523	24.	Berdeja JG, Madduri D, Usmani SZ, et al. Ciltacabtagene autoleucel, a B-cell
524		maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with
525		relapsed or refractory multiple myeloma (CARTITUDE-1): a phase 1b/2 open-label
526		study. Lancet. 2021;398(10297):314-324.
527	25.	Munshi NC, Anderson LD, Jr., Shah N, et al. Idecabtagene Vicleucel in Relapsed and
528		Refractory Multiple Myeloma. N Engl J Med. 2021;384(8):705-716.
529	26.	Jacobson CA, Chavez JC, Sehgal AR, et al. Axicabtagene ciloleucel in relapsed or
	20.	
530		refractory indolent non-Hodgkin lymphoma (ZUMA-5): a single-arm, multicentre, phase
531		2 trial. Lancet Oncol. 2022;23(1):91-103.
532	27.	lacoboni G, Rejeski K, Villacampa G, et al. Real-world evidence of brexucabtagene
533		autoleucel for the treatment of relapsed or refractory mantle cell lymphoma. Blood Adv.
534		2022.
535	28.	Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in Children and Young
536		Adults with B-Cell Lymphoblastic Leukemia. N Engl J Med. 2018;378(5):439-448.
537	29.	Lichtenstein DA, Schischlik F, Shao L, et al. Characterization of HLH-like manifestations
538	20.	as a CRS variant in patients receiving CD22 CAR T cells. <i>Blood.</i> 2021;138(24):2469-
539		
	20	2484.
540	30.	Cordeiro A, Bezerra ED, Hirayama AV, et al. Late Events after Treatment with CD19-
541		Targeted Chimeric Antigen Receptor Modified T Cells. Biol Blood Marrow Transplant.
542		2020;26(1):26-33.
543	31.	Rejeski K, Kunz WG, Rudelius M, et al. Severe Candida glabrata pancolitis and fatal
544		Aspergillus fumigatus pulmonary infection in the setting of bone marrow aplasia after
545		CD19-directed CAR T-cell therapy - a case report. BMC Infect Dis. 2021;21(1):121.
546	32.	Jain T, Olson TS, Locke FL. How I Treat Cytopenias after CAR T-cell Therapy. Blood.
547	•=-	2023.
548	33.	Juluri KR, Wu V, Voutsinas JM, et al. Severe cytokine release syndrome is associated
549	55.	with hematologic toxicity following CD19 CAR T-cell therapy. <i>Blood Adv.</i> 2021.
	24	
550	34.	Jain T, Knezevic A, Pennisi M, et al. Hematopoietic recovery in patients receiving
551		chimeric antigen receptor T-cell therapy for hematologic malignancies. Blood Adv.
552		2020;4(15):3776-3787.
553	35.	Rejeski K, Wu Z, Blumenberg V, et al. Oligoclonal T-cell expansion in a patient with
554		bone marrow failure after CD19 CAR-T for Richter transformed DLBCL. <i>Blood</i> . 2022.
555	36.	Rejeski K, Greco R, Onida F, et al. An International Survey on Grading, Diagnosis, and
556		Management of Immune Effector Cell-Associated Hematotoxicity (ICAHT) Following
557		CAR T-cell Therapy on Behalf of the EBMT and EHA. Hemasphere. 2023;7(5):e889.
558	37.	Taplitz RA, Kennedy EB, Bow EJ, et al. Antimicrobial Prophylaxis for Adult Patients
559	01.	With Cancer-Related Immunosuppression: ASCO and IDSA Clinical Practice Guideline
560		
	00	Update. J Clin Oncol. 2018;36(30):3043-3054.
561	38.	Yakoub-Agha I, Greco R, Onida F, et al. Practice harmonization workshops of EBMT:
562		an expert-based approach to generate practical and contemporary guidelines within the
563		arena of hematopoietic cell transplantation and cellular therapy. Bone Marrow
564		Transplant. 2023.
565	39.	Xia Y, Zhang J, Li J, et al. Cytopenias following anti-CD19 chimeric antigen receptor
566		(CAR) T cell therapy: a systematic analysis for contributing factors. Ann Med.
567		2022;54(1):2951-2965.
568	40.	Brudno JN, Natrakul D, Lam N, Dulau-Florea A, Yuan CM, Kochenderfer JN. Acute and
569	40.	
		delayed cytopenias following CAR T-cell therapy: an investigation of risk factors and
570		mechanisms. <i>Leuk Lymphoma</i> . 2022;63(8):1849-1860.
571	41.	Roddie C, Neill L, Osborne W, et al. Effective bridging therapy can improve CD19 CAR-
572		T outcomes while maintaining safety in patients with large B-cell lymphoma. Blood Adv.
573		2023.
574	42.	Rejeski K, Perez Perez A, Iacoboni G, et al. Biphasic Neutrophil Recovery after CD19
575		CART in R/R LBCL Is Associated with Superior PFS/OS, Robust CAR T-Cell Expansion
576		in Relation to Baseline Tumor Volume, and a Decrease of Systemic Inflammation over
577		Time. <i>Blood.</i> 2022;140(Supplement 1):4549-4551.
- • •		· · · · · · · · · · · · · · · · · · ·

578	43.	Rejeski K, Wang Y, Albanyan O, et al. The CAR-Hematotox Score Identifies Patients at
579		High Risk for Hematological Toxicity, Infections and Poor Clinical Outcomes Following
580		Brexucabtagene Autoleucel in Relapsed/Refractory Mantle Cell Lymphoma. Blood.
581		2022;140(Supplement 1):651-653.
582	44.	Rejeski K, Hansen DK, Bansal R, et al. The CAR-Hematotox Score As a Prognostic
583		Model of Toxicity and Response in Patients Receiving BCMA-Directed CAR-T for
584		Relapsed/Refractory Multiple Myeloma. <i>Blood.</i> 2022;140(Supplement 1):7506-7508.
	45	
585	45.	Liu Y, Derkach A, Lewis N, et al. Clonal hematopoiesis in diffuse large B-cell lymphoma:
586		clinical impact and genetic relatedness to lymphoma and therapy-related myeloid
587		neoplasm. <i>Haematologica</i> . 2023;108(3):917-922.
588	46.	Saini NY, Swoboda DM, Greenbaum U, et al. Clonal Hematopoiesis Is Associated with
589		Increased Risk of Severe Neurotoxicity in Axicabtagene Ciloleucel Therapy of Large B-
590		Cell Lymphoma. <i>Blood Cancer Discov</i> . 2022;3(5):385-393.
591	47.	Miller PG, Sperling AS, Brea EJ, et al. Clonal hematopoiesis in patients receiving
592		chimeric antigen receptor T-cell therapy. <i>Blood Adv.</i> 2021;5(15):2982-2986.
593	48.	Jain MD, Zhao H, Wang X, et al. Tumor interferon signaling and suppressive myeloid
594		cells are associated with CAR T-cell failure in large B-cell lymphoma. Blood.
595		2021;137(19):2621-2633.
596	49.	Bachy E, Le Gouill S, Di Blasi R, et al. A real-world comparison of tisagenlecleucel and
597	40.	axicabtagene ciloleucel CAR T cells in relapsed or refractory diffuse large B cell
598		
	50	lymphoma. Nat Med. 2022;28(10):2145-2154.
599	50.	Luo W, Li C, Zhang Y, et al. Adverse effects in hematologic malignancies treated with
600		chimeric antigen receptor (CAR) T cell therapy: a systematic review and Meta-analysis.
601		BMC Cancer. 2022;22(1):98.
602	51.	Kawalekar OU, RS OC, Fraietta JA, et al. Distinct Signaling of Coreceptors Regulates
603		Specific Metabolism Pathways and Impacts Memory Development in CAR T Cells.
604		Immunity. 2016;44(3):712.
605	52.	Zhao Z, Condomines M, van der Stegen SJC, et al. Structural Design of Engineered
606		Costimulation Determines Tumor Rejection Kinetics and Persistence of CAR T Cells.
607		Cancer Cell. 2015;28(4):415-428.
608	53.	Wang Y, Song Z, Geng Y, et al. The risk factors and early predictive model of
609		hematotoxicity after CD19 chimeric antigen receptor T cell therapy. Front Oncol.
610		2022;12:987965.
611	54.	Li X, Deng Q, Henderson J, et al. Targetable Cellular Etiology of Prolonged Cytopenia
612	01.	Following CD19 CAR T-Cell Therapy. <i>Blood.</i> 2022;140(Supplement 1):4502-4503.
613	55.	de Bruin AM, Demirel O, Hooibrink B, Brandts CH, Nolte MA. Interferon-gamma impairs
614	55.	
	50	proliferation of hematopoietic stem cells in mice. <i>Blood.</i> 2013;121(18):3578-3585.
615	56.	Morales-Mantilla DE, King KY. The Role of Interferon-Gamma in Hematopoietic Stem
616		Cell Development, Homeostasis, and Disease. Curr Stem Cell Rep. 2018;4(3):264-271.
617	57.	Rejeski K, Blumenberg V, Iacoboni G, et al. Identifying Early Infections in the Setting of
618		CRS With Routine and Exploratory Serum Proteomics and the HT10 Score Following
619		CD19 CAR-T for Relapsed/Refractory B-NHL. <i>Hemasphere</i> . 2023;7(4):e858.
620	58.	Neelapu SS, Tummala S, Kebriaei P, et al. Chimeric antigen receptor T-cell therapy -
621		assessment and management of toxicities. <i>Nat Rev Clin Oncol.</i> 2018;15(1):47-62.
622	59.	Hayden PJ, Roddie C, Bader P, et al. Management of adults and children receiving
623		CAR T-cell therapy: 2021 best practice recommendations of the European Society for
624		Blood and Marrow Transplantation (EBMT) and the Joint Accreditation Committee of
625		ISCT and EBMT (JACIE) and the European Haematology Association (EHA). Ann
626		Oncol. 2022;33(3):259-275.
627	60.	Hines MR, Knight TE, McNerney KO, et al. Immune Effector Cell associated
628	00.	
		Hemophagocytic Lymphohistiocytosis-like Syndrome (IEC-HS). Transplantation and
629		Cellular Therapy 2023.
630	61.	Cutini I, Puccini B, Fabbri A, et al. Late haemophagocytic lymphohistiocytosis in a
631		patient treated with Axicabtagene ciloleucel. <i>Transpl Immunol.</i> 2022;75:101719.
632	62.	Henter JI, Horne A, Arico M, et al. HLH-2004: Diagnostic and therapeutic guidelines for
633		hemophagocytic lymphohistiocytosis. Pediatr Blood Cancer. 2007;48(2):124-131.
634	63.	Fardet L, Galicier L, Lambotte O, et al. Development and validation of the HScore, a
635		score for the diagnosis of reactive hemophagocytic syndrome. Arthritis Rheumatol.
636		2014;66(9):2613-2620.

- 637 64. Zoref-Lorenz A, Murakami J, Hofstetter L, et al. An improved index for diagnosis and mortality prediction in malignancy-associated hemophagocytic lymphohistiocytosis. *Blood.* 2022;139(7):1098-1110.
- 640 65. McNerney KO, DiNofia AM, Teachey DT, Grupp SA, Maude SL. Potential Role of
 641 IFNgamma Inhibition in Refractory Cytokine Release Syndrome Associated with CAR
 642 T-cell Therapy. *Blood Cancer Discov.* 2022;3(2):90-94.
- 643
 66. Rainone M, Ngo D, Baird JH, et al. Interferon-gamma blockade in CAR T-cell therapyassociated macrophage activation syndrome/hemophagocytic lymphohistiocytosis. *Blood Adv.* 2023;7(4):533-536.
- 646 67. La Rosee P, Horne A, Hines M, et al. Recommendations for the management of 647 hemophagocytic lymphohistiocytosis in adults. *Blood.* 2019;133(23):2465-2477.
- 648 68. Kopolovic I, Ostro J, Tsubota H, et al. A systematic review of transfusion-associated graft-versus-host disease. *Blood.* 2015;126(3):406-414.
- 650 69. Foukaneli T, Kerr P, Bolton-Maggs PHB, et al. Guidelines on the use of irradiated blood components. *Br J Haematol.* 2020;191(5):704-724.
- 652 70. Giavridis T, van der Stegen SJC, Eyquem J, Hamieh M, Piersigilli A, Sadelain M. CAR
 653 T cell-induced cytokine release syndrome is mediated by macrophages and abated by
 654 IL-1 blockade. *Nat Med.* 2018;24(6):731-738.
- Sterner RM, Sakemura R, Cox MJ, et al. GM-CSF inhibition reduces cytokine release
 syndrome and neuroinflammation but enhances CAR-T cell function in xenografts. *Blood.* 2019;133(7):697-709.
- Barreto JN, Bansal R, Hathcock MA, et al. The impact of granulocyte colony stimulating
 factor on patients receiving chimeric antigen receptor T-cell therapy. *Am J Hematol.*2021;96(10):E399-E402.
- 661 73. Galli E, Allain V, Di Blasi R, et al. G-CSF does not worsen toxicities and efficacy of
 662 CAR-T cells in refractory/relapsed B-cell lymphoma. *Bone Marrow Transplant*.
 2020;55(12):2347-2349.
- Lievin R, Di Blasi R, Morin F, et al. Effect of early granulocyte-colony-stimulating factor
 administration in the prevention of febrile neutropenia and impact on toxicity and
 efficacy of anti-CD19 CAR-T in patients with relapsed/refractory B-cell lymphoma. *Bone Marrow Transplant.* 2022.
- Miller KC, Johnson PC, Abramson JS, et al. Effect of granulocyte colony-stimulating
 factor on toxicities after CAR T cell therapy for lymphoma and myeloma. *Blood Cancer*J. 2022;12(10):146.
- 671 76. Ma S, Li H, Zhou D, et al. Associations of granulocyte colony-stimulating factor with 672 toxicities and efficacy of chimeric antigen receptor T-cell therapy in relapsed or 673 refractory multiple myeloma. *Cytotherapy.* 2023.
- 674 77. Baur R, Jitschin R, Kharboutli S, et al. Thrombopoietin receptor agonists for acquired
 675 thrombocytopenia following anti-CD19 CAR-T-cell therapy: a case report. *J Immunother*676 *Cancer.* 2021;9(7).
- 67778.Beyar-Katz O, Perry C, On YB, et al. Thrombopoietin receptor agonist for treating bone678marrow aplasia following anti-CD19 CAR-T cells-single-center experience. Ann679Hematol. 2022;101(8):1769-1776.
- Drillet G, Lhomme F, De Guibert S, Manson G, Houot R. Prolonged thrombocytopenia
 after CAR T-cell therapy: the role of thrombopoietin receptor agonists. *Blood Adv.*2023;7(4):537-540.
- 683 80. Drexler B, Passweg J. Current evidence and the emerging role of eltrombopag in severe aplastic anemia. *Ther Adv Hematol.* 2021;12:2040620721998126.
- 68581.Peffault de Latour R, Kulasekararaj A, Iacobelli S, et al. Eltrombopag Added to686Immunosuppression in Severe Aplastic Anemia. N Engl J Med. 2022;386(1):11-23.
- 82. Bento L, Bastida JM, Garcia-Cadenas I, et al. Thrombopoietin Receptor Agonists for
 88. Severe Thrombocytopenia after Allogeneic Stem Cell Transplantation: Experience of
 89 the Spanish Group of Hematopoietic Stem Cell Transplant. *Biol Blood Marrow*690 *Transplant.* 2019;25(9):1825-1831.
- 83. Ball S, Brown TJ, Das A, Khera R, Khanna S, Gupta A. Effect of Neutropenic Diet on Infection Rates in Cancer Patients With Neutropenia: A Meta-analysis of Randomized Controlled Trials. *Am J Clin Oncol.* 2019;42(3):270-274.
- 69484.Sonbol MB, Jain T, Firwana B, et al. Neutropenic diets to prevent cancer infections:695updated systematic review and meta-analysis.BMJ Support Palliat Care.6962019;9(4):425-433.

- 69785.Stella F, Marasco V, Levati GV, et al. Non-Restrictive Diet Does Not Increase Infections698in Patients with Neutropenia after Stem Cell Transplantation: Final Analysis of the699Neutrodiet Multicenter, Randomized Trial. *Blood.* 2022;140(Supplement 1):417-419.
- 70086.Teipel R, Kroschinsky F, Kramer M, et al. Prevalence and variation of CHIP in patients701with aggressive lymphomas undergoing CD19-directed CAR T-cell treatment. Blood702Adv. 2022;6(6):1941-1946.
- 703 87. Spellberg B, Doi Y. The Rise of Fluoroquinolone-Resistant Escherichia coli in the Community: Scarier Than We Thought. *J Infect Dis.* 2015;212(12):1853-1855.
- 70588.Lautenbach E, Metlay JP, Bilker WB, Edelstein PH, Fishman NO. Association between706fluoroquinolone resistance and mortality in Escherichia coli and Klebsiella pneumoniae707infections: the role of inadequate empirical antimicrobial therapy. Clin Infect Dis.7082005;41(7):923-929.
- 70989.Trecarichi EM, Tumbarello M, Spanu T, et al. Incidence and clinical impact of extended-
spectrum-beta-lactamase (ESBL) production and fluoroquinolone resistance in
bloodstream infections caused by Escherichia coli in patients with hematological
malignancies. J Infect. 2009;58(4):299-307.
- 71390.Bow EJ. Fluoroquinolones, antimicrobial resistance and neutropenic cancer patients.714Curr Opin Infect Dis. 2011;24(6):545-553.
- 71591.Schubert ML, Rohrbach R, Schmitt M, Stein-Thoeringer CK. The Potential Role of the716Intestinal Micromilieu and Individual Microbes in the Immunobiology of Chimeric Antigen717Receptor T-Cell Therapy. Front Immunol. 2021;12:670286.
- 71892.Blumenberg V, Busch G, Baumann S, et al. High Bacterial Abundances of Dorea and
Pediococcus in the Gut Microbiome Linked to Expansion, Immune Checkpoint
Expression and Efficacy of CD19-Directed CAR T-Cells in Patients with r/r DLBCL.
Blood. 2021;138(Supplement 1):2792-2792.
- 72293.Smith M, Dai A, Ghilardi G, et al. Gut microbiome correlates of response and toxicity723following anti-CD19 CAR T cell therapy. Nat Med. 2022;28(4):713-723.
- 94. Stein-Thoeringer CK, Saini NY, Zamir E, et al. A non-antibiotic-disrupted gut
 microbiome is associated with clinical responses to CD19-CAR-T cell cancer
 immunotherapy. *Nat Med.* 2023.
- 5. Little JS, Aleissa MM, Beluch K, et al. Low incidence of invasive fungal disease following CD19 chimeric antigen receptor T-cell therapy for non-Hodgkin lymphoma. Blood Adv. 2022;6(16):4821-4830.
- Haidar G, Dorritie K, Farah R, Bogdanovich T, Nguyen MH, Samanta P. Invasive Mold
 Infections After Chimeric Antigen Receptor-Modified T-cell Therapy: A Case Series,
 Review of the Literature, and Implications for Prophylaxis. *Clin Infect Dis.* 2019.
- Rejeski K, Burchert A, Iacoboni G, et al. Safety and feasibility of stem cell boost as a salvage therapy for severe hematotoxicity after CD19 CAR T-cell therapy. *Blood Adv.* 2022;6(16):4719-4725.
- 73698.Mullanfiroze K, Lazareva A, Chu J, et al. CD34+-selected stem cell boost can safely737improve cytopenias following CAR T-cell therapy. *Blood Adv.* 2022;6(16):4715-4718.
- Gagelmann N, Wulf GG, Duell J, et al. Hematopoietic stem cell boost for persistent neutropenia after CAR T-cell therapy: a GLA/DRST study. *Blood Adv.* 2023;7(4):555-559.
- 741100.Lipsitt A, Beattie L, Harstead E, et al. Allogeneic CD34(+) selected hematopoietic stem742cell boost following CAR T-cell therapy in a patient with prolonged cytopenia and active743infection. Pediatr Blood Cancer. 2023;70(3):e30166.
- Chhabra S, Thapa B, Szabo A, et al. Utilization and Cost Implications of Hematopoietic
 Progenitor Cells Stored for a Future Salvage Autologous Transplantation or Stem Cell
 Boost in Myeloma Patients. *Biol Blood Marrow Transplant.* 2020;26(11):2011-2017.
- Liang EC, Muffly LS, Shiraz P, et al. Use of Backup Stem Cells for Stem Cell Boost and Second Transplant in Patients with Multiple Myeloma Undergoing Autologous Stem Cell Transplantation. *Transplant Cell Ther.* 2021;27(5):405 e401-405 e406.
- Logue JM, Peres LC, Hashmi H, et al. Early cytopenias and infections after standard of care idecabtagene vicleucel in relapsed or refractory multiple myeloma. *Blood Adv.* 2022;6(24):6109-6119.
- 104. Logue JM, Zucchetti E, Bachmeier CA, et al. Immune reconstitution and associated infections following axicabtagene ciloleucel in relapsed or refractory large B-cell lymphoma. *Haematologica*. 2020.

- 756 105. Alizadeh D, Wong RA, Yang X, et al. IL15 Enhances CAR-T Cell Antitumor Activity by 757 758 759 Reducing mTORC1 Activity and Preserving Their Stem Cell Memory Phenotype. Cancer Immunol Res. 2019;7(5):759-772.
- Pascutti MF, Erkelens MN, Nolte MA. Impact of Viral Infections on Hematopoiesis: From 106. 760 Beneficial to Detrimental Effects on Bone Marrow Output. Front Immunol. 2016;7:364.
- Porter TJ, Lazarevic A, Ziggas JE, et al. Hyperinflammatory syndrome resembling 761 107. 762 haemophagocytic lymphohistiocytosis following axicabtagene ciloleucel and 763 brexucabtagene autoleucel. Br J Haematol. 2022;199(5):720-727.
- 764

765 Main Tables and Table Legends

766 Table 1: ICAHT Grading

I	II	III	IV
))			
<7 days	7-13 days	≥14 days	Never above 500/µL
-	-	≥7 days	≥14 days
+30)*			
	<7 days -)) <7 days 7-13 days)) <7 days 7-13 days ≥14 days ≥7 days

767

*measured ≥2 time points, or non-transient neutropenia

768

769 Table 2: Risk factors associated with an increased risk of post-CAR-T cytopenias

	Risk Factors	Comments	References
Disease-	Underlying disease (ALL > B-NHL)	Evidence concerning the rate of cytopenias in multiple myeloma patients still emerging	Xia et al. ³⁹
related features	Disease burden at CAR-T infusion (progressive disease, high LDH)	Specially BM disease burden	Wudhikarn et al. ¹⁴ Logue et al. ¹⁰³
	Number of prior therapy lines	Associated with baseline hematopoietic function	Xia et al. ³⁹
Prior therapies	Prior hematopoietic stem cell transplantation (HSCT)		Fried et al. ¹⁰⁵
	Bridging Therapy		Roddie et al. ⁴¹
	Bone marrow infiltration		Rejeski et al. ⁴² Brudno et al. ⁴⁰
Baseline Marrow Status	Pre-existing cytopenias	Particularly pre-existing thrombocytopenia	Rejeski et al. ¹³ Juluri et al. ³³
	Clonal hematopoiesis of indeterminate potential (CHiP)?	Has been linked to increased inflammation, potential emerging risk factor	Saini et al. ⁴⁶ Miller et al. ⁴⁷ Teipel et al. ⁸⁶
Baseline	Increased Serum CRP		Rejeski et al. ¹³
Inflammatory Status	Increased Serum Ferritin		Rejeski et al. ¹³
	Co-stimulatory molecule (CD28>41BB)	May also reflect differences in lymphodepletion dosing (cyclophosphamide dosing)	Xia et al. ³⁹
	Type of construct (Tandem > single target)		Xia et al. ³⁹
	Severe CRS		Juluri et al. ³³ Jain et al. ³⁴
CAR-T Product and post-	Sustained increased inflammatory markers		Juluri et al. ³³
infusion risk factors	Oligoclonal T-cell expansion	In select patients; the success of auto-HCT boost argues against this as a general mechanism	Rejeski et al. ³⁵
	Active Infection	Mainly viral or in case of concomitant sepsis	Pascutti et al. ¹⁰⁶
	CRS/MAS or IEC-HS	Cytopenia as overlapping symptomology	Sandler et al. ¹⁰ Hines et al. ¹¹ Porter et al. ¹⁰⁷

770 Table 3: Short-term management of cytopenias

	When	How	Precautions	Comments
Packed red bood cell (pRBC)/ Platelet transfusions	As per institutional standards, based on patient risk profile	As per institutional standards For pRBC: consider using 1 product per time to reduce iron overload ⁶⁹	Irradiation of blood products; Start 7 days prior to leukapheresis until at least 90 days post CAR-T	Due to the use of fludarabine
G-CSF	Prophylactic G-CSF: On day +2 in patients with a high-risk profile for ICAHT (e.g. high CAR-HEMATOTOX score and risk profile according to Table 2)	Based on individual risk profile: Consider early G- CSF administration (from day +2) as prophylaxis in high risk for ICAHT Dosing: 5 µg/kg once daily	In patients at low risk for ICAHT, G- CSF probably not necessary*	Reduced risk of febrile neutropenia (without increasing the risk of severe, or grade ≥3, CRS nor ICANS). No detrimental effect on CAR-T expansion kinetics or treatment outcomes ^{74,75}
	Therapeutic G-CSF: Severe neutropenia (ANC <500/µL) neutropenia with or without infectious complications	In case of prolonged neutropenia with/without infectious complications. Dosing: 5 µg/kg once daily, consider increasing dose in case of non- response		Patients with intermittent neutrophil recovery often rapidly respond to G-CSF stimulation, while aplastic patients are often G-CSF unresponsive
Antibacterial prophylaxis	In patients with a low risk for ICAHT, not recommended. In patients with a high- risk profile for ICAHT, prophylaxis may be considered once ANC <500/µL.	As per institutional standards (e.g. levofloxacin or ciprofloxacin).	Warning in case of colonization by MDR pathogens.	Look at local bacterial epidemiology. High local prevalence of MDR GNB might prevent the use of antibacterial prophylaxis
Anti-viral	All patients	Start from LD conditioning until 1-year post-CAR T- cell infusion AND/OR until CD4+ count >0.2 × 10 ⁹ /l Valaciclovir 500 mg bid or aciclovir 800 mg bid		
Anti- pneumocystis	All patients	To start from LD conditioning until 1-year post-CAR-T cell infusion AND/OR until CD4+ count >0.2x10 G/I Co-trimoxazole 480 mg once daily or 960 mg three times each week	In case of co- trimoxazole allergy, pentamidine inhalation (300 mg once every month), dapsone 100 mg daily or atovaquone 1500 mg once daily can be considered	Can be started later depending on center guidelines
Systemic primary anti- fungal prophylaxis	Prophylaxis may be considered in severe neutropenia (ANC <500) with a high-risk profile for ICAHT (e.g. CAR HEMATOTOX score and risk profile according to Table 2) and/or prolonged neutropenia	Mold-active prophylaxis for 1-3 months (depending on the duration of neutropenia and use of steroids): posaconazole (300 mg/day) or micafungin (50 mg i.v./day)		In patients with prior allo-HCT, prior invasive aspergillosis and those receiving corticosteroids (long-term >72 h, or high-dose), prophylaxis is recommended

771

772 Figure Legends

- 773 Figure 1. The CAR-HEMATOTOX score as a risk-stratification tool
- 774

775 Figure 2. Step-by-step diagnostic work-up depending on ICAHT severity

- ^{*} In case of elevated ferritin and clinical suspicion of MAS, see **Table S3** and **Figure S1**
- 777

778 Figure 3. Treatment algorithm for Immune Effector Cell Associated Neutropenia

- ^{*}High-risk defined as prior history of hematopoietic stem cell transplantation, baseline cytopenia,
- 780 high tumor burden and systemic inflammation, presence of BM infiltration.
- ^{**}Anti-fungal prophylaxis particularly recommended in patients with prior IFD, prior allo-HCT, and
- 782 receiving corticosteroids (long-term >72h or high-dose). Decision for/against anti-bacterial
- prophylaxis should incorporate local bacterial epidemiology (e.g. prevalence for MDR GNB); not
- 784 recommended for patients with a low-risk profile for ICAHT
- 785 [†] Also extends to late ICAHT if these criteria are met

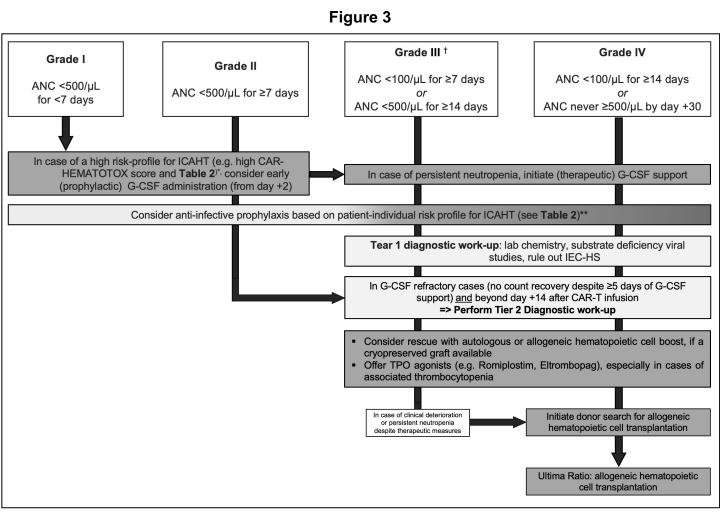
Figure 1

Prior to lymphodepleting chemotherapy (day -5)

Determine patient-individual risk of heme-tox and infections using the CAR-HEMATOTOX score

Leniency time period for lab values: 3 days

Features	0 Point 1 Point		2 Points	
Platelet Count	> 175.000/µl	75.000 - 175.000/µl	< 75.000/µl	
Absolute Neutrophil Count (ANC)	> 1200/µl	< 1200/µl	-	
Hemoglobin	> 9.0 g/dl	< 9.0 g/dl	-	
C-reactive protein (CRP)	< 3.0 mg/dl	> 3.0 mg/dl	-	
Ferritin	< 650 ng/ml	650-2000 ng/ml	> 2000 ng/ml	
Low: 0-1 High: ≥ 2			·	


High Risk (HT 2-7)

		LBCL (n=235)	MCL (n=103)	MM (n=113)
	Median duration of severe neutropenia (ANC<500/µL, D0-60)	5.5 days (95% Cl 5-8 days)	6 days (95% CI 5-7 days)	3 days (95% Cl 2-5 days)
Risk Profile	Aplastic Phenotype	2.6%	0%	3%
	Severe Infection Rate	8%	5%	5%
	Severe Bacterial Infection Rate	0.9%	5%	3%

	LBCL (n=235)	MCL (n=103)	MM (n=113)
Duration of severe neutropenia (ANC <500/µL day 0-60)	12 days (95% Cl 10-16 days)	14 days (95% Cl 9-18 days)	9 days (95% Cl 7-13 days)
Aplastic Phenotype	36%	47%	32%
Severe Infection Rate	40%	30%	40%
Severe Bacterial Infection Rate	27%	28%	34%

Figure 2

	Categories	Putative causes	Test	Time points	Comments from expert panel	
TIER 1	Lower threshold to perform – minir	Lower threshold to perform – minimal workup				
		fludarabine, marrow infiltration	Complete blood count (CBC), reticulocyte production index (RPI), peripheral blood smear	routinely	Recommended	
	Medication – drug side effects	Check for concomitant myelosuppressive medications		routinely		
	Vitamin deficiencies	Vitamin B12, Folic acid	Serum levels	routinely	Recommended	
	Rule out infections		Blood cultures, CMV PCR, Procalcitonin CD4* T-cell, IgG, B-cell levels	routinely	Recommended	
	Rule out macrophage-activation syndrome*	CRS/MAS or IEC-HS	Ferritin, triglycerides	routinely	Recommended	
TIER 2	Subsequent work-up – In case of G	CSF refractory state, if tier 1 results a	are negative and/or risk factors are present			
	Viral PCR considering the clinical presentation	Parvovirus	Parvovirus B19 PCR	In case of prolonged anemia	Recommended	
		HHV6, JC	HHV6, JC PCR blood/CSF	In case of neurologic symptoms	Recommended	
		EBV, adeno, HSV	PCR	In case of HLH	Recommended	
	Bone marrow disease		BM aspirate, biopsy, Flow cytometry, immunohistochemistry, cytogenetics, NGS	In case of prolonged cytopenia	Recommended	
			Flow cytometry peripheral blood / bone marrow, With B-cell panel	routinely	Recommended	
				In case of suspected MPN/PNH/ autoimmune processes	Recommended	

