
HAL Id: hal-04212642
https://hal.science/hal-04212642

Submitted on 20 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

First Steps Towards Taming Description Logics with
Strings

Stéphane Demri, Karin Quaas

To cite this version:
Stéphane Demri, Karin Quaas. First Steps Towards Taming Description Logics with Strings. 18th
Edition of the European Conference on Logics in Artificial Intelligence (JELIA’23), Sep 2023, Dresden
(GERMANY), Germany. pp.322–337. �hal-04212642�

https://hal.science/hal-04212642
https://hal.archives-ouvertes.fr

First Steps Towards Taming
Description Logics with Strings‹

Stéphane Demri1 and Karin Quaas2

1Université Paris-Saclay, CNRS, ENS Paris-Saclay,
Laboratoire Méthodes Formelles, 91190, Gif-Sur-Yvette, France
2 Universität Leipzig, Fakultät für Mathematik und Informatik

Abstract. We consider the description logic ALCFP
pDΣq over the con-

crete domain DΣ “ pΣ˚,ă,“, p“wqwPΣ˚ q, where ă is the strict prefix
order over finite strings in Σ˚. Using an automata-based approach, we
show that the concept satisfiability problem w.r.t. general TBoxes for
ALCFP

pDΣq is ExpTime-complete for all finite alphabets Σ. As far as
we know, this is the first complexity result for an expressive description
logic with a nontrivial concrete domain on strings.

1 Introduction
Description logics with concrete domains. A concrete domain is a relational struc-
ture with a fixed nonempty domain and a family of relations. In this paper, we
are most and for all interested in the concrete domain pΣ˚,ă,“, p“wqwPΣ˚q,
where Σ is a finite alphabet, ă is the strict prefix relation over Σ˚, “ is the
usual equality relation, and “w stands for equality with w. Other typical ex-
amples of concrete domains (also playing a role herein) are pN,ă,“, p“zqzPNq
and pZ,ă,“, p“zqzPZq, that are the (nonnegative) integers with the usual order
relation ă, equality, and equality with z.

We aim to reason about concrete domains using description logics. A stan-
dard way to do so is to enrich the semantical structures with values from a
concrete domain (see e.g. [5,14,22]); then, specific atomic concepts are used to
express constraints between these values. In description logics with concrete do-
mains, the domain elements are enriched with tuples of values coming from the
concrete domain, see e.g. [5,30,31,32,33,7]. Constraints on concrete domains em-
bedded in concepts from description logics may quickly be expressive enough to
encode counting mechanisms, leading to the undecidability of the main reason-
ing tasks, see e.g. [30]. However, nontrivial properties of concrete domains have
been identified to get decidability, see e.g. [11,33,9] and also [14].
String theories. Description logics with concrete domains on strings are often
evoked in the literature, see e.g. [5,10,4,24], but such logics are seldom studied.
There are a few exceptions, see e.g. [23] handling strings with equality and in-
equality relations (only). In a way, string domains remain only a potentiality
for description logics with concrete domains, although it is believed that con-
crete domains on strings could be useful in ontologies. Reasoning about strings
‹ The second author is supported by the Deutsche Forschungsgemeinschaft (DFG),

project 504343613.

2 S. Demri and K. Quaas

is often required in program verification, and much effort has been dedicated
towards designing solvers that handle string theories, see e.g. [28,1,2]. An expla-
nation for the lack of works on description logics may be the complexity inherent
to string theories. For instance, first-order theory on strings with concatenation
is undecidable [37]. On the other hand, satisfiability of word equations is in
PSpace [34,36,20]. Herein, we are interested in the challenging question of de-
ciding reasoning tasks for description logics with a non-trivial string domain.
Our motivations. What is particularly interesting about concrete domains on
strings is to observe that these domains are absolutely not captured by the
recent and sophisticated methods for determining decidability of description
logics with concrete domains, see e.g. [33,8,9,39]. Moreover, the string domain
pΣ˚,ă,“, p“wqwPΣ˚q, in the following denoted by DΣ , is known to be diffi-
cult to handle, see e.g. [13, Theorem 1]. This applies also to the concrete do-
main N (which can be understood as the string domain DΣ with a singleton
alphabet), but for this one, the remarkable works [15,27,26] lead to the Exp-
Time-completeness of reasoning tasks for the description logic ALCFPpZq. The
concrete domain N still requires complex developments, but at least it is known
today how to manage it, see e.g. [18,40,14]. Our motivation in this work is to
investigate the decidability/complexity status of ALCFPpDΣq, that is, for the
nontrivial string domain with the prefix order. To do so, we take advantage of
recent results on tree constraint automata on Z from [19] combined with an en-
coding of string constraints by numerical constraints from [17]. These are only
some first steps to tame reasoning tasks for description logics with string do-
mains, and of course, other string domains are possibly interesting, see e.g. [35].
Our contributions. In Section 2, we introduce the description logic ALCFPpDΣq,
similarly to the definition of ALCFPpZq in [27,26]. In Section 3, we introduce the
class of tree constraint automata (TCA) accepting infinite finite-branching trees
with nodes labelled by letters from a finite alphabet and finite tuples of values
in Σ˚. Our definition for TCA naturally extends the constraint automata for
words (see e.g. [16,38,21,40,25,43]) as well as a similar one for trees on pZ,ă,“q
from [19, Section 3.1]. In Section 4, the nonemptiness problem for TCA is shown
ExpTime-complete. Though ExpTime-hardness is a consequence of [19, Section
3.1], the ExpTime-membership is by reduction to the nonemptiness problem for
TCA on N by lifting arguments from [17, Section 3] to the automata-based set-
ting.
In Section 5, we show how to reduce the concept satisfiability problem w.r.t. gen-
eral TBoxes for ALCFPpDΣq (written TSATpALCFPpDΣqq) to the nonempti-
ness problem for TCA, following the automata-based approach developed in [42]
(see also [44,3]). To do so, in Section 2, we establish a simple form for ALCFPpDΣq

concepts from which TCA are defined, adapting the developments from [15,
Lemma 15] and [27, Lemma 5]. Though we use a standard approach in Section 5,
we need to carefully handle the constraints in the TCA in order to provide a
complexity analysis that leads to the optimal upper bound. The complexity of
ALCFPpDΣq concepts requires sophisticated TCA constructions and involved
developments. As a result, we establish that TSATpALCFPpDΣqq is ExpTime-

First Steps Towards Taming Description Logics with Strings 3

complete for all finite alphabets Σ. As far as we know, this is the first complexity
characterisation for a reasoning task related to a description logic with a non-
trivial string domain. As explained above, we reuse or adapt several results from
the literature (not always related to description logics), and we provide several
new insights to combine them adequately.

2 Description Logics with String Domains

Given a finite alphabet Σ, we consider the concrete domain DΣ
def
“ pΣ˚,ă,“

, p“wqwPΣ˚q, where ă is the strict prefix relation on Σ˚, “ is the equality on
Σ˚, and “w is a unary predicate stating the equality with the string w. In the
following, we use cardpΣq to denote the cardinality of Σ.

Let VAR “ tx, y, . . .u be a countably infinite set of variables (also called
registers in [27] and concrete features in the description logic literature). A term
t over VAR is an expression of the form Six, where x P VAR and Si is a (possibly
empty) sequence of i symbols ‘S’. A term Six should be understood as a variable
(that needs to be interpreted) but, later on, we will see that the prefix Si will
have a relational interpretation. We write TVAR to denote the set of all terms
over VAR. For all i P N, we write Tďi

VAR to denote the subset of terms of the
form Sjx, where j ď i. For instance, Tď0

VAR “ VAR. An atomic constraint θ over
TVAR is an expression of one of the forms below:

t ă t1 t “ t1 “w ptq (also written t “ w),
where w P Σ˚ and t, t1 P TVAR. A constraint Θ is defined as a Boolean
combination of atomic constraints. Constraints are interpreted on valuations
v : TVAR Ñ Σ˚ that assign elements from Σ˚ to the terms in TVAR, so that v
satisfies θ, written v |ù θ iff the interpretation of the terms in θ makes θ true in
Σ˚ in the usual way. Boolean connectives are interpreted as usual. A constraint
Θ is satisfiable

def
ô there is a valuation v : TVAR Ñ Σ˚ such that v |ù Θ.

Below, we define the description logic ALCFPpDΣq (over the concrete do-
main DΣ) defined exactly as the description logic ALCFPpZcq from [27] except
that Zc is replaced by DΣ . We deliberately use the notations from [27] whenever
possible and we provide a formal definition for ALCFPpDΣq to be self-contained.
Let NC “ tA,B, . . .u and NR “ tr, s, . . .u, respectively, be countably infinite sets
of concept names and role names. We further assume that NR contains a sub-
family NF Ď NR of functional role names (a.k.a abstract features). A role path
P “ r1 ¨ ¨ ¨ rn is a (possibly empty) word in N˚

R. We use |P | to denote the length
of P (possibly zero). The set of ALCFPpDΣq-concepts is defined as follows.

C ::“ J |K| A | ␣C | C [C | C \ C | Dr.C | @r.C | DP.JΘK | @P.JΘK,

where A P NC, r P NR, P is a role path, Θ is a Boolean constraint in Σ˚ built
over terms of the form Sjx. Moreover, if Sjx occurs in Θ, then we require j ď |P |.
An axiom is an expression of the form C Ď D, where C, D are ALCFPpDΣq

concepts. A terminological box T (TBox, for short) is a finite set of axioms.

4 S. Demri and K. Quaas

An interpretation is a tuple I “ p∆I , ¨I , vq, where ∆I is a nonempty set
(the domain), v : ∆I ˆ VAR Ñ Σ˚ (the valuation function), and ¨I is an in-
terpretation function that assigns AI Ď ∆I to every concept name A P NC,
and rI Ď ∆I ˆ ∆I to every role name r P NR. For all f P NF, we require
tpa, a1q, pa, a2qu Ď fI implies a1 “ a2, that is, fI is a partial function. Given a role
path P “ r1r2 . . . rn, we define P I to be the set of all tuples pa0, . . . , anq P ∆n`1

such that pai´1, aiq P r
I
i for all i P r1, ns. Given an interpretation I and a tuple

π “ pa0, a1, . . . , anq of elements in ∆I , constraints Θ1, Θ2, and w P Σ˚, we define

– I, π |ù Six ă Sjy
def
ô vpai, xq ă vpaj , yq,

– I, π |ù Six “ Sjy
def
ô vpai, xq “ vpaj , yq; I, π |ù Six “ w

def
ô vpai, xq “ w,

– I, π |ù ␣Θ1
def
ô not I, π |ù Θ1; I, π |ù Θ1^Θ2

def
ô I, π |ù Θ1 and I, π |ù Θ2,

– I, π |ù Θ1 _Θ2
def
ô I, π |ù Θ1 or I, π |ù Θ2.

We extend the interpretation function ¨I to complex concepts as follows:

– JI def
“ ∆I , KI def

“ H, p␣CqI def
“ ∆IzCI ,

– pC [DqI
def
“ CI XDI ; pC \DqI def

“ CI YDI ,
– pDr.CqI

def
“ ta P ∆I | there is a1 P ∆I such that a1 P CI and pa, a1q P rIu,

– p@r.CqI
def
“ ta P ∆I | for all a1 P ∆I , pa, a1q P rI implies a1 P CIu,

– pDP.JΘKqI def
“ ta0 P ∆

I | there exist a1, . . . , an P ∆
I s.t. π “ pa0, a1, . . . , anq P

P I and I, π |ù Θu,
– p@P.JΘKqI def

“ ta0 P ∆I | for all a1, . . . , an P ∆I , π “ pa0, a1, . . . , anq P
P I implies I, π |ù Θu.

An interpretation I is a model of a TBox T , written I |ù T , if CI Ď DI for all
axioms C Ď D in T . The concept satisfiability problem with respect to general
TBoxes, written TSATpALCFPpDΣqq, is defined as follows:

Input: An ALCFPpDΣq concept C0, and a TBox T .
Question: Is there an interpretation I of T such that I |ù T and CI

0 ‰ H?

For instance, Drr1.JS2x ă xK, tJ Ď Drr1.JS2y ă xK,J Ď Drr1.Jx ă S2xK,J Ď

Dr.J,J Ď Dr1.Ju is a positive instance of TSATpALCFPpDΣqq.
Given an ALCFPpDΣq concept C0 and a TBox T , we write subpC0, T q to

denote the set of subconcepts obtained from the concepts in C0 and T . A concept
C is in simple form iff it is in negation normal form (negation occurs only in
constraints) and terms are only from Tď1

VAR. For instance, Drr1.JS2y ă xK is not
in simple form but all the concepts in Dr.Dr1.Dε.Jy ă x::K, J Ď @r.Jx “ Sx:K and
J Ď @r1.Jx: “ Sx::K are. Negation normal form is easy to get by standard means
as each concept constructor has its dual and the constraints Θ are closed under
negations. In Section 5, we reduce TSATpALCFPpDΣqq to the nonemptiness
problem for tree constraint automata (defined in Section 3). For this, we assume
that the input concept and the concepts occurring in the TBox are in simple
form. In Proposition 1 we state that this assumption is without loss of generality
and does not cause any computational harm.

First Steps Towards Taming Description Logics with Strings 5

Proposition 1. Let C0 be an ALCFPpDΣq concept and T be a TBox. One can
construct in polynomial-time in the size of C0, T a concept C 1

0 and a finite TBox
T 1 in simple form such that C0, T is a positive instance of TSATpALCFPpDΣqq

iff C 1
0, T 1 is a positive instance of TSATpALCFPpDΣqq.

Proposition 1 is analogous to [15, Lemma 15] and [27, Lemma 5]. Though based
on similar principles, our proof is slightly simpler than the ones cited above,
because we demand less from concepts in simple form, as the forthcoming tree
constraint automata can handle such concepts (see Section 5).

Before defining tree constraint automata, we give a formal definition of trees.
Given d ě 1, a labeled tree of degree d is a map t : domptq Ñ Σ where Σ is some
(potentially infinite) alphabet and domptq is an infinite subset of r0, d´1s˚, that
is, if n ¨j P domptq for some n P r0, d´1s˚ and j P r0, d´1s, then n P domptq and
n ¨ i P domptq for all 0 ď i ă j, too. The elements of domptq are called nodes.
The empty word ε is the root node of t. For every n P domptq, the elements
n ¨ i (with i P r0, d ´ 1s) are called the children nodes of n, and n is called the
parent node of n ¨ i. We say that the tree t is a full d-ary tree if every node n has
exactly d children n ¨0, . . . ,n ¨ pd´1q. Given a tree t and a node n in domptq, an
infinite path in t starting from n is an infinite sequence n ¨ j1 ¨ j2 ¨ j3 . . . , where
ji P r0, d´ 1s and n ¨ j1 . . . ji P domptq for all i ě 1.

3 Tree Constraint Automata Manipulating Strings

In this section, we introduce the class of tree constraint automata that accept
sets of trees of the form t : r0, d ´ 1s˚ Ñ pΣ ˆ pΣ˚qβq for some finite alphabet
Σ and some β ě 1. Note that two alphabets are involved here: Σ is a finite
alphabet as usually in automata, Σ is inherited from DΣ and used to interpret
β variables at each position of the trees. The transition relation of such automata
states constraints between the β string values at a node and the string values
at its children nodes. To do so, we write TreeConspβq to denote the Boolean
constraints built over the terms x1, . . . , xβ , Sx1, . . . , Sxβ . These constraints are
used to define the transition relation of such automata. We also write x1

i to denote
the term Sxi, and we shall use valuations v with profile txi, x1

i | i P r1, βsu Ñ Σ˚.
In the forthcoming definition, the acceptance condition on infinite branches is
a Büchi condition, but this can be easily extended to more general conditions.
Moreover, the definition is specific to the concrete domain Σ˚ but it can be
easily adapted to other concrete domains. A tree constraint automaton (TCA)
on DΣ is a tuple A “ pQ,Σ, d, β,Qin, δ, F q, where

– Q is a finite set of locations; Σ is a finite alphabet,
– d ě 1 is the (branching) degree of (the trees accepted by) A,
– β ě 1 is the number of variables (a.k.a. registers) interpreted in Σ˚,
– Qin Ď Q is the set of initial locations,
– δ is a finite subset of Q ˆ Σ ˆ pTreeConspβq ˆ Qqd, the transition rela-

tion. That is, δ consists of tuples of the form pq, a, pΘ0, q0q, . . . , pΘd´1, qd´1qq,
where q, q0, . . . , qd´1 P Q, a P Σ, and Θ0, . . . , Θd´1 are constraints built over
x1, . . . , xβ , x

1
1, . . . , x

1
β for the concrete domain DΣ .

6 S. Demri and K. Quaas

...
...

...

a

b

b b

a

x1“aaba
x2“aa

x1“a
x2“aa

x1“aab
x2“aaa

x1“ε
x2“aa

x1“ε
x2“aa

...

q

qb

qb qb

qa

Θ0 Θ1

Θ0 Θ0

Θ0 “

Θ1 “

px1
1 ă x1q ^

px1
1 ă x2q ^

px1
2 “ x2q

px2 ă x1
2q ^

px2 ă x1
1q

Fig. 1: On the left, the prefix of an infinite tree t with two string variables x1
and x2. In the middle, the beginning of a run of A from Example 1 on t.

– F Ď Q encodes the Büchi acceptance condition.

Let t : r0, d´1s˚ Ñ pΣˆpΣ˚qβq be an infinite full d-ary tree over ΣˆpΣ˚qβ . A
run of A on t is a mapping ρ : r0, d´1s˚ Ñ Q satisfying the following conditions:

– ρpεq P Qin;
– for every n P r0, d´1s˚ with tpnq “ pa,vq and ρpnq “ q, tpn¨iq “ pai,viq and
ρpn ¨ iq “ qi for all 0 ď i ă d, there exists pq, a, pΘ0, q0q, . . . , pΘd´1, qd´1qq P δ
and Σ˚ |ù Θipv,viq for all 0 ď i ă d. Here, Σ˚ |ù Θipv,viq is short for
r⃗x Ð v, x⃗1 Ð vis |ù Θi, where r⃗x Ð v, x⃗1 Ð vis is a valuation v on txj , x1

j |

j P r1, βsu with vpxjq “ vpjq and vpx1
jq “ vipjq for all j P r1, βs.

Note that string expressions labelling the transitions may state constraints be-
tween string values at a node and its children nodes.

Suppose ρ is a run of A on t. Given an infinite path π “ j1 ¨ j2 ¨ j3 . . . in
ρ starting from the root, we define infpρ, πq to be the set of control states that
appear infinitely often in ρpεqρpj1qρpj1 ¨ j2qρpj1 ¨ j2 ¨ j3q A run ρ is accepting
if for all paths π in ρ starting from ε, we have infpρ, πqXF ‰ H. We write LpAq
to denote the set of trees t that admit an accepting run.

Example 1. Let A “ ptq, qa, qbu, ta, bu, 2, 2, tqu, δ, tqa, qbuq, and δ containing pre-
cisely pq, a, pΘ0, qbq, pΘ1, qaqq, pqa, a, pJ, qaq, pJ, qaqq, and pqb, b, pΘ0, qbq, pΘ0, qbqq,
where Θ0 “ px

1
1 ă x1q ^ px

1
1 ă x2q ^ px

1
2 “ x2q and Θ1 “ px2 ă x1

2q ^ px2 ă x1
1q.

In Figure 1, we show the beginning of a run on the tree t on the left. Note that
this run cannot be extended to an infinite run of A on t: on the leftmost branch,
there is no value for x1

1 that satisfies the constraint x1
1 ă x1 for the value of x1

being ε, hence no transition from A can be taken. In fact, there cannot be any
infinite tree for which there exists some accepting run, and hence LpAq “ H.

As usual, the nonemptiness problem for TCA, written NE(TCA), takes as input
a TCA A “ pQ,Σ, d, β,Qin, δ, F q and asks whether LpAq is nonempty. We aim
to prove that this problem is ExpTime-complete. Unlike (plain) Büchi tree au-
tomata [42], the number of transitions in a tree constraint automaton is a priori
unbounded (TreeConspβq is infinite) and the maximal size of a constraint occur-
ring in transitions is unbounded too. In particular, this means that the number

First Steps Towards Taming Description Logics with Strings 7

of transitions in δ, denoted by cardpδq, is a priori unbounded, even if Q and Σ
are fixed. We write MCSpAq to denote the maximal size of a constraint occurring
in A. The complexity of the nonemptiness problem must therefore also take into
account these parameters.

Below, we use TCA on the concrete domain pN,ă,“, p“nqnPNq. These are
defined as for DΣ , but with Σ being a singleton alphabet. Moreover, we assume
that the natural numbers are encoded in binary. As a consequence of [19, Section
4], the nonemptiness problem for TCA on N is ExpTime-complete and the
purpose of the next section is to show how to generalise this result for any
concrete domain DΣ (with a non-singleton alphabet Σ).

Our tree constraint automata differ from Presburger Büchi tree automata
defined in [41,12] for which, in the runs, arithmetical expressions are constraints
between the numbers of children labelled by different locations. Herein, the string
expressions state constraints between string values (possibly at different nodes).

4 Nonemptiness Problem for TCA on DΣ

To reduce the nonemptiness problem for TCA on DΣ to the nonemptiness prob-
lem for TCA on the concrete domain pN,ă,“, p“nqnPNq, we show how to take
advantage of [17, Lemma 6] dedicated to the transformation of prefix constraints
into Boolean combinations of atomic constraints on N. For the sake of being self-
contained, we recall below a few definitions useful in Section 4.2.

4.1 From string constraints to natural number constraints

Given a string w P Σ˚, we write |w| to denote its length. Given w,w1 P Σ˚,
we write clenpw,w1q to denote the length of the longest common prefix between
w and w1. We view the arguments of clenp¨q as a set, so that clenpw,w1q and
clenpw1,wq are identical. More precisely, there are w0, w1, and w1

1 such that
w “ w0 ¨ w1, w1 “ w0 ¨ w

1
1 and, w1 and w1

1 cannot start by the same first
letter, if any. We set clenpw,w1q

def
“ |w0|. For example, clenpaba, abbbabq “ 2. So,

clenpw,wq “ |w|, and w is a strict prefix of w1 iff clenpw,wq “ clenpw,w1q and
clenpw,wq ă clenpw1,w1q. Here are simple properties, see e.g. [17, Proposition
2], that play a special role in the sequel (assuming cardpΣq “ k).

(I) For all w,w1 P Σ˚, |w| ě clenpw,w1q.
(II) For all w0,w1, . . . ,wk P Σ

˚ such that clenpw0,w1q “ ¨ ¨ ¨ “ clenpw0,wkq

and for all i P r0, ks, clenpw0,w1q ă |wi|, there are i ‰ j P r1, ks such that
clenpw0,w1q ă clenpwi,wjq.

(III) For all w0,w1,w2 P Σ
˚, clenpw0,w1q ă clenpw1,w2q implies

clenpw0,w1q “ clenpw0,w2q.

Let VAR1 be a finite subset of VAR. A string valuation s with respect to VAR1

is a map s : VAR1
Ñ Σ˚. A counter valuation c with respect to VAR1 is defined

as a map c : tclenpx, x1q : x, x1 P VAR1
u Ñ N, where expressions of the form

8 S. Demri and K. Quaas

clenpx, x1q are understood as “variables” interpreted on N (we also adopt a set-
theoretical reading: clenpx, x1q and clenpx1, xq are considered as identical). In
forthcoming Section 4.2, we adopt a similar notation. We say that a counter val-
uation c is string-compatible (with respect to VAR1) if c satisfies the conjunction
of the three constraints below in the concrete domain pN,ă,“, p“nqnPNq.

– Formula ψIpVAR1
q is related to (I):

Ź

x,x1PVAR1pclenpx, xq ě clenpx, x1qq.
– Formula ψIIpVAR1

q is related to (II):
Ź

x0,...,xkPVAR1pp
Ź

iPr0,kspclenpx0, x1q ă clenpxi, xiqqq ^ clenpx0, x1q “

¨ ¨ ¨ “ clenpx0, xkqq ñ p
Ž

i‰jPr1,kspclenpx0, x1q ă clenpxi, xjqqq.

– Formula ψIIIpVAR1
q is related to (III):

Ź

x,x1,x2PVAR1pclenpx, x1q ă clenpx1, x2qq ñ pclenpx, x1q “ clenpx, x2qq.

The size of the above conjunction is in OpcardpVAR1
qk`2q, i.e. polynomial in

cardpVAR1
q, assuming Σ is fixed. If X Ď VAR1 and c is string-compatible w.r.t.

VAR1, the restriction of c to X is also string-compatible with respect to X.
Let X be a nonempty subset of VAR1, s be a string valuation and c be a

counter valuation, both with respect to VAR1. We say that c agrees with s on
X (written c «X s) def

ô cpclenpx, x1qq “ clenpspxq, spx1qq for all x, x1 P X (‘clen’
is overloaded here, used to define natural number variables and a function on
pairs of strings but we hope this does not lead to confusions). So, if X 1 Ď X
and c «X s, then c «X1 s too. Given a string valuation s, there is a counter
valuation c such that c «X s [17, Lemma 5] and c can be defined obviously by:
cpclenpx, x1qq

def
“ clenpspxq, spx1qq for all x, x1 P X.

However, there are counter valuations c for which there exists no string val-
uation s with c «X s (cf. Example 2 below). We state below the main property
relating string constraints on DΣ and constraints on pN,ă,“, p“nqnPNq. Namely,
for every string-compatible counter valuation c for which the restriction to a sub-
set of variables agrees with some string valuation s, it is possible to extend s to
all the variables so that c agrees with it.

Proposition 2. [17, Lemma 6] Let X ‰ H and Y be finite and disjoint sets of
string variables, c be a string-compatible counter valuation with respect to XZY
and s : Y Ñ Σ˚ be such that c «Y s. Then, there is a string valuation s1 that is
a conservative extension of s, such that c «XZY s1.

Example 2. Let VAR1
“ tx1, x2, x

1
1, x

1
2u and let spx1q “ aaba, spx2q “ aa, spx1

1q “

aab, and spx1
2q “ aaa. This string valuation satisfies the constraint x2 ă x1

2 ^

x2 ă x1
1. In Figure 2, we show the counter valuation c with respect to VAR1

induced by s; for instance, cpclenpx1, x1
2qq “ 2. Note that c satisfies the constraint

over N corresponding to the above string constraint; for instance, clenpx2, x2q ă
clenpx1

2, x
1
2q ^ clenpx2, x2q “ clenpx2, x

1
2q holds true (the yellow cells). The

other three tables show three counter valuations that are not string-compatible:

First Steps Towards Taming Description Logics with Strings 9

clen x1 x2 x1
1 x1

2

x1 4 2 3 2
x2 2 2 2
x1
1 3 2
x1
2 3

clen x1 x2 x1
1 x1

2

x1 4 2 3 4
x2 2 2 2
x1
1 3 2
x1
2 3

clen x1 x2 x1
1 x1

2

x1 4 2 2 2
x2 2 2 2
x1
1 3 2
x1
2 3

clen x1 x2 x1
1 x1

2

x1 4 1 3 2
x2 2 2 2
x1
1 3 2

x1
2 3

c cI cII cIII

Fig. 2: Counter valuations.

– ă cIpclenpx1
2, x

1
2qq ă cIpclenpx1, x

1
2qq violates constraint ψIpVAR1

q;
– cIIpclenpx1

2, x
1
1qq “ cIIpclenpx1

2, x1qq “ 2, cIIpclenpx1
2, x

1
2qq ą 2,

cIIpclenpx1, x1qq ą 2, cIIpclenpx1
1, x

1
1qq ą 2, cIIpclenpx1

1, x
1
2qq “ cIIpclenpx1, x

1
1qq

violate the constraint ψIIpVAR1
q, assuming cardpΣq “ 2.

– cIIIpclenpx1, x2qq ă cIIIpclenpx2, x
1
2qq and cIIIpclenpx1, x2qq ă cIIIpclenpx1, x

1
2qq

violate constraint ψIIIpVAR1
q.

Even though each of these counter valuations satisfies the constraint correspond-
ing to the string constraint Θ1, there does not exist any agreeing string valua-
tion. Proposition 2 shows that if a counter valuation is string-compatible, then
an agreeing string valuation exists.

4.2 Reducing TCA on strings to TCA on natural numbers

Let A “ pQ,Σ, d, β,Qin, δ, F q be a TCA on the concrete domain DΣ for which
we wish to check the nonemptiness of LpAq. Below, we define a TCA A1 “

pQ,Σ, d, β1, Qin, δ
1, F q on the concrete domain pN,ă,“, p“nqnPNq such that LpAq

is nonempty iff LpA1q is nonempty. It is worth noting that A and A1 share the
same set of locations, initial locations and the same acceptance condition. More-
over, the finite alphabet Σ and the degree d are identical too. The differences
are related to the number of variables β1 as well as the definition of the tran-
sition relation δ1. Since the two TCA are built over distinct concrete domains
(DΣ versus N), the transition relations necessarily differ. As far as the number
of variables is concerned, we lift what is done in Section 4.1 to all the string
values occurring in trees accepted by the input TCA A.

– Assume that the constant strings occurring in constraints in δ are w1, . . . ,wα

for some α ě 0. We write VARA1 to denote the expressions in txi | i P
r1, β`αsuYtS´1xi | i P r1, β`αsu (not yet variables in A1). Here, S´1x refers
to a value for the parent node, if any. The variables in A1 are of the form
clenpt1, t2q where t1, t2 P VARA1 (ad-hoc notation). Consequently, β1 “

4pβ ` αq2 (polynomial in the size of A). Each string wi from A is implicitly
associated to an expression xβ`i in VARA1 . The variables clenpt1, t2q’s with
tt1, t2u X txβ`iu ‰ H are intended to specify the length of the longest
common prefix between wi and another value.

– The definition of δ1 reflects that string-compatible counter valuations satisfy
(I)-(III) above, as well as the way we manage the values between the parent

10 S. Demri and K. Quaas

node and its children nodes. Given pq, a, pΘ0, q0q, . . . , pΘd´1, qd´1qq in δ, there
is a corresponding transition pq, a, pΘ1

0, q0q, . . . , pΘ
1
d´1, qd´1qq in δ1 (leading

to cardpδ1q “ cardpδq by construction). What remains to be done is to define
each Θ1

ℓ from Θℓ. Θ1
ℓ is a conjunction made of three conjuncts:

‚ The 1st conjunct (independent of Θℓ) stating that the counter valuations
are string-compatible is equal to ψIpVARA1q^ψIIpVARA1q^ψIIIpVARA1q,
see Section 4.1. Its size is in Opβ ` αqk`2q with cardpΣq “ k.

‚ The 2nd conjunct has a double purpose: to define constraints between a
node and its parent node (if any), and to guarantee that the expressions
of the form S´1xβ`i and xβ`i can be interpreted as the string wi. Here
is the 2nd conjunct (also independent of Θℓ):

`

ľ

i,jPr1,β`αs

clenpS´1xi, S
´1xjq

1 “ clenpxi, xjq
˘

^

`

ľ

i,jPr1,αs

clenpxβ`i, xβ`jq “ clenpwi,wjq
˘

.

Observe that in the equalities in the second conjunct above, the left-hand
side is a variable in A1 (using our ad-hoc notation) whereas the right-
hand side is a value in N (clearly bounded by the length of the longest
string in A). The size of this conjunct is in Oppβ`αq2`α2ˆmax |wi|q.

‚ The 3rd conjunct is equal to tpΘℓq where t is a translation map that
is homomorphic for Boolean connectives. The translation of the atomic
constraints is defined in Figure 3, and it takes into account how the values
are constrained between a parent node and its child node. For instance,
if in some accepted tree t of A, tpnq “ pa, z⃗q and tpn ¨ ℓq “ paℓ, z⃗ℓq,
the variable clenpxi, S

´1xjq
1 occuring in Θ1

ℓ refers to the length of the
longest common prefix between the value of xi at n ¨ ℓ (i.e. z⃗ℓpiq) and
the value of xj at the parent node of n ¨ ℓ (i.e. z⃗pjq). The size of the 3rd
conjunct tpΘℓq is linear in the size of Θℓ.

Example 3. Consider A from Example 1. The automaton A1 obtained from the
above construction is of the form ptq, qa, qbu, ta, bu, 2, 16, tqu, δ

1, tqa, qbuq, where
δ1 contains the transitions pq, a, pΘ1

0, qbq, pΘ
1
1, qaqq, pqa, a, pΘ1, qaq, pΘ

1, qaqq, and
pqb, b, pΘ

1
0, qbq, pΘ

1
0, qbqq, with Θ1

0, Θ
1
1, and Θ1 obtained from the corresponding

string constraints in A as described above. Θ1
1 consists (amongst others) of the

constraints clenpS´1x2, S
´1x2q

1 “ clenpS´1x2, x1q
1 ^ clenpS´1x2, S

´1x2q
1 ă

clenpx1, x1q
1 (the translation of the string constraint x2 ă x1

1). By the 2nd
conjunct in the definition of δ1, we have clenpx2, x2q “ clenpS´1x2, S

´1x2q
1.

The correctness of the construction of A1 is best illustrated by the statement
below, which can be viewed as an automata-based counterpart of [17, Lemma 10]
and requires a lengthy proof. It relies on Proposition 2 when new string values
need to be considered.

Lemma 1. LpAq ‰ H iff LpA1q ‰ H.

First Steps Towards Taming Description Logics with Strings 11

Atomic θ Translation tpθq

xi ă xj clenpxi, xiq “ clenpxi, xjq ^ clenpxi, xiq ă clenpxj , xjq

xi “ xj clenpxi, xiq “ clenpxi, xjq “ clenpxj , xjq

xi “ wj clenpxi, xiq “ clenpxi, xβ`jq “ clenpxβ`j , xβ`jq

x1
i ă xj clenpxi, xiq

1
“ clenpxi, S

´1xjq
1
^

clenpxi, xiq
1

ă clenpS´1xj , S
´1xjq

1

x1
i “ xj clenpxi, xiq

1
“ clenpxi, S

´1xjq
1

“ clenpS´1xj , S
´1xjq

1

x1
i “ wj clenpxi, xiq

1
“ clenpxi, xβ`jq

1
“ clenpxβ`j , xβ`jq

1

xi ă x1
j clenpS´1xi, S

´1xiq
1

“ clenpS´1xi, xjq
1
^

clenpS´1xi, S
´1xiq

1
ă clenpxj , xjq

1

x1
i ă x1

j clenpxi, xiq
1

“ clenpxi, xjq
1

^ clenpxi, xiq
1

ă clenpxj , xjq
1

x1
i “ x1

j clenpxi, xiq
1

“ clenpxi, xjq
1

“ clenpxj , xjq
1

Fig. 3: Translation of atomic constraints.

We are ready to present our main result about the complexity of NE(TCA(DΣ)).

Theorem 1. For every finite alphabet Σ, NE(TCA(DΣ)) is ExpTime-complete.

ExpTime-hardness of NE(TCA(DΣ)) is due to ExpTime-hardness of the prob-
lem NE(TCA(N)) established in [19, Section 4.1]. To prove ExpTime-member-
ship, given A1 (on the concrete domain N) built from A (on the concrete domain
DΣ), we know from [19, Lemma 10] that, the nonemptiness of LpA1q can be
solved in time

O
´

R1

`

cardpQq ˆ cardpδ1q ˆ MCSpA1q ˆ cardpΣq ˆR2pβ
1q

˘R2pβ1
qˆR3pdq

¯

for some polynomials R1, R2 and R3, where MCSpA1q denotes the maximal size
of a constraint occurring in A1. Note that the result is stated for the concrete
domain Z in [19, Lemma 10], but it applies to N too (there is a simple way to
enforce xi ě 0 everywhere). We adopt a similar notation for A and from the
above developments, MCSpA1q is in Oppβ`MCSpAqˆ cardpδqˆdqk`3q as α can be
shown to be bounded above by MCSpAq ˆ cardpδq ˆ d. Since cardpδ1q “ cardpδq,
β1 “ 4pβ ` αq2, nonemptiness of LpAq can be solved in time O

´

R1

`

cardpQq ˆ

cardpδq ˆ pβ ` MCSpAq ˆ cardpδq ˆ dqk`3ˆ cardpΣq ˆR2pβ
:q

˘R2pβ:
qˆR3pdq

¯

with

β: “ 4pβ ` MCSpAq ˆ cardpδq ˆ dq2. Hence, NE(TCA(DΣ)) is in ExpTime; this
holds even if Σ is part of the input.

5 Automata-Based Approach for ALCFPpDΣq

Below, we reduce TSATpALCFPpDΣqq to NE(TCA): given an ALCFPpDΣq

concept C0 and a TBox T , we construct a TCA A on DΣ such that C0, T is
a positive instance of TSATpALCFPpDΣqq iff LpAq ‰ H. The material below
follows the arguments from [19, Section 5.2] but for DΣ . Obviously, the tree

12 S. Demri and K. Quaas

interpretation property of ALCFPpDΣq (cf. the proof of Proposition 1) is of use
in the reduction. Thanks to Proposition 1, we can assume that all input concepts
are in negation normal form and terms are restricted to those in Tď1

VAR, that is,
the role paths are restricted to single role names r and to ε. This simplifies the
reduction; for instance, @ε.JΘK is logically equivalent to Dε.JΘK, and Θ contains
solely variables that state constraints only for the current individual. At this
point, it is worth noting that atomic concepts of the form DP.JΘK or @P.JΘK can
be expressed by constraints in TCA, unlike the automata-based approach used
in [18,27,26] that involves abstractions and finite alphabets only.

Since interpretations for ALCFPpDΣq concepts provide a semantics for sev-
eral role names, we use a standard trick and reserve directions in r0, d´1s for each
role name r occurring in the instance of TSATpALCFPpDΣqq. This is needed
because in the trees t : r0, d ´ 1s˚ Ñ Σ ˆ pΣ˚qβ , the (implicit) edges are not
labelled. Another way to proceed would be to add a role name to each location
of the TCA in order to remember how the node in the tree r0, d´1s˚ is accessed
to, which is a technique used in [3, Section 3.2]. We also have to handle the
determinism of the binary relations rI with r P NF.

So let C0 be an ALCFPpDΣq concept and let T be tC1 Ď D1, . . . , Cℓ Ď Dℓu,
with the above-mentioned syntactic restrictions. Given X Ď subpC0, T q, we say
that X is propositionally T -consistent iff the conditions below hold.

– There is no concept name A such that tA,␣Au Ď X.
– X does not contain K and if J P subpC0, T q, then J P X.
– If E1\E2 P X, then tE1, E2uXX ‰ H. if E1[E2 P X, then tE1, E2u Ď X.
– For all k P r1, ℓs, if Ck P X, then Dk P X.

Propositionally T -consistent sets correspond to Hintikka sets from [3, Section
3.2] and their introduction is common for developing an automata-based ap-
proach for (description) logics. There is no clause for the concept constructor
negation because the concepts are in simple form and negation occurs only in
front of concept names or within constraints Θ.

Given r P NR, we define subDrpC0, T q
def
“ tDr.D | Dr.D P subpC0, T qu and

subDcstrpC0, T q
def
“ tDr.JΘK | Dr.JΘK P subpC0, T qu. The superscript ‘cst’ in Dcst

is intended to remind us that the respective sets are made of atomic concepts
involving constraints in the string domain (a.k.a. predicate restrictions). We sim-
ilarly define sub@rpC0, T q and sub@cstrpC0, T q. We further define NFpC0, T q

def
“

tr P NF | subDrpC0, T q Y subDcstrpC0, T q ‰ Hu and DFpC0, T q
def
“ tDr.JΘK P

subpC0, T q | r R NFpC0, T quYtDr.D P subpC0, T q | r R NFpC0, T qu. So NFpC0, T q
contains functional role names r related to predicate or existential restrictions
from subpC0, T q involving r, DFpC0, T q contains predicate or existential restric-
tions from subpC0, T q involving non-functional role names. This difference of
treatment is handy to define the value d below though we need to distinguish in
several definitions functional role names from the other ones.

Set d “ cardpNFpC0, T qq`cardpDFpC0, T qq and ι be a bijection ι :
`

NFpC0, T qY
DFpC0, T q

˘

Ñ r1, ds. We write r� j whenever ι´1pjq “ r or ι´1pjq is of the form
either Dr.D or Dr.JΘK (direction j contributes to witnesses for r).

First Steps Towards Taming Description Logics with Strings 13

We build a TCA A “ pQ,Σ, d` 1, β,Qin, δ, F q such that C0, T is a positive
instance iff LpAq ‰ H. The automaton A accepts infinite trees of the form
t : r0, ds˚ Ñ Σ ˆ pΣ˚qβ where Σ “ PptA1, . . . , AMuq, tA1, . . . , AMu being the
set of concept names occurring in C0, T . Let us define A formally.

– Q is the set of propositionally T -consistent subsets of subpC0, T q plus the
distinguished “dead-end” location K (and never D PK, for all concepts D).
K is useful as seriality is not required for the interpretation of role names.

– Qin
def
“ tY P Q | C0 P Y u, F

def
“ Q (all the locations are accepting similarly to

looping automata, see e.g. [6, Section 3.2]).
– The transition relation δ is made of tuples pY,X, pΘ0, Y0q, . . . , pΘd, Ydqq s.t.:

1. For all A P Y , we have A P X and for all ␣A P Y , we have A R X.
2. If Y “K, then Y0 “ ¨ ¨ ¨ “ Yd “K.
3. For all j P r1, ds such that Yj “K, (a) if ι´1pjq “ r for some r P NF,

then Y has no concepts of the form either Dr.D or Dr.JΘK and (b) if
ι´1pjq R NF then ι´1pjq R Y .

4. For all Dr.D P Y , we have either (r P NF and D P Yιprq) or (r R NF and
D P YιpDr.Dq). The direction to satisfy Dr.D is either ιprq or ιpDr.Dq.

5. For all @r.D P Y and j P r1, ds such that Yj ‰K and r � j, we have
D P Yj . In this case, the direction j is reserved for the role name r and
for obligations related to the satisfaction of @r.D. The satisfaction of
@r.D implies the satisfaction of D for all the rI-successors, if any.

6. For all j P r0, ds, the constraint Θj is defined as follows.
(a) If Y “K, then Θj

def
“ J.

(b) Otherwise, if j “ 0 or Yj “K, then Θj
def
“ p

Ź

Dε.JΘ1K,@ε.JΘ1KPY Θ
1q.

This conjunction needs actually to be satisfied whenever Yj ‰K.
(c) Otherwise, if

`

(Dr.JΘK R Y and ιpDr.JΘKq “ j) or ιpDr.Dq “ j for
some Dr.JΘK, Dr.D P DFpC0, T q

˘

and Yj ‰K (necessarily r R NF),
then Θj

def
“ p

Ź

Dε.JΘ1K,@ε.JΘ1KPY Θ
1q ^ p

Ź

@r.JΘ1KPY Θ
1q.

(d) Otherwise, if there is Dr.JΘK P Y s.t. ιpDr.JΘKq “ j (necessarily r R

NF), Θj
def
“ p

Ź

Dε.JΘ1K,@ε.JΘ1KPY Θ
1q ^ p

Ź

@r.JΘ1KPY Θ
1q ^ Θ. By (3.)

above, Dr.JΘK P Y , ιpDr.JΘKq “ j and r R NF imply Yj ‰K. So, the
direction j is reserved for the role name r and for obligations related
to the satisfaction of Dr.JΘK. This case occurs if there are obligations
to satisfy Dr.JΘK whereas the case 6(b) gives more freedom because
the satisfaction of Dr.JΘK is not imposed from Y .

(e) Otherwise, i.e. r “ ι´1pjq P NF and Yj ‰K,

Θj
def
“ p

ľ

Dε.JΘ1K,@ε.JΘ1KPY

Θ1q ^ p
ľ

@r.JΘ1K,Dr.JΘ1KPY

Θ1q.

Unlike the previous cases, if r P NF, then @r.JΘ1K and Dr.JΘ1K are
logically equivalent, assuming that there is one rI-successor.

We can show that our construction is correct.

Lemma 2. C0, T is a positive instance of TSATpALCFPpDΣqq iff LpAq ‰ H.

14 S. Demri and K. Quaas

Despite the involved construction of A due to the expressiveness of the logic
ALCFPpDΣq, the proof follows a standard pattern. If C0, T is a positive instance,
then we can extract a tree interpretation that can be associated to a tree accepted
by A. Conversely, any tree accepted by A can be turned into a tree interpretation
witnessing the satisfaction of C0, T . The result below is the main technical result
in this paper, whose proof combines the previous key lemmas.

Theorem 2. For every finite Σ, TSATpALCFPpDΣqq is ExpTime-complete.

Due to our complexity analysis, the ExpTime-membership is preserved if the
alphabetΣ is part of the input (and not a parameter as in TSATpALCFPpDΣqq).

Concluding remarks. We have shown that the nonemptiness problem for tree
constraint automata on DΣ is ExpTime-complete (Theorem 1) and the con-
cept satisfiability problem w.r.t. general TBoxes for ALCFPpDΣq is ExpTime-
complete too (Theorem 2). The suite of key steps is schematised below.

TSAT(ALCFPpDΣq) TSAT(ALCFPpDΣq)
in simple form

NE(TCA(DΣ)) NE(TCA(N))
Prop. 1 Lemma 2 Lemma 1

These are only first steps to handle more concrete domains based on strings and
on richer description logics. Typically, though we believe we could generalise the
developments herein to mix numerical constraints and prefix constraints or to
admit an infinite alphabet (based on developments in [17]), it is unclear how
to handle DΣ within logics from [29] (see also [27, Section 4.1]). Similarly, it is
open how to handle the string domain DΣ with regularity constraints, to name
another possibility for future work.

References

1. Abdulla, P., Atig, M., Chen, Y., Holík, L., Rezine, A., Rümmer, P., Stenman,
J.: String constraints for verification. In: CAV’14. LNCS, vol. 8559, pp. 150–166.
Springer (2014)

2. Abdulla, P., Atig, M., Chen, Y., Diep, B., Dolby, J., Janku, P., Lin, H., Holik, L.,
Wu, W.: Efficient handling of string-number conversion. In: PLDI’20. pp. 943–957.
ACM (2020)

3. Baader, F.: Description Logics. In: Reasoning Web. Semantic Technologies for
Information Systems, 5th International Summer School 2009, Tutorial Lectures.
LNCS, vol. 5689, pp. 1–39. Springer (2009)

4. Baader, F., Calvanese, D., Guinness, D.M., Nardi, D., Patel-Schneider, P. (eds.):
The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press (2003)

5. Baader, F., Hanschke, P.: A scheme for integrating concrete domains into concept
languages. In: IJCAI’91. pp. 452–457 (1991)

6. Baader, F., Hladik, J., Lutz, C., Wolter, F.: From Tableaux to Automata for De-
scription Logics. Fundamenta Informaticae 57(2–4), 247–279 (2003)

7. Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description
Logic. Cambridge University Press (2017)

First Steps Towards Taming Description Logics with Strings 15

8. Baader, F., Rydval, J.: An Algebraic View on p-Admissible Concrete Domains
for Lightweight Description Logics. In: JELIA’21. LNCS, vol. 12678, pp. 194–209.
Springer (2021)

9. Baader, F., Rydval, J.: Using model theory to find decidable and tractable descrip-
tion logics with concrete domains. JAR 66(3), 357–407 (2022)

10. Baader, F., Sattler, U.: Description logics with concrete domains and aggregation.
In: ECAI’98. pp. 336–340. John Wiley and Sons (1998)

11. Balbiani, P., Condotta, J.: Computational complexity of propositional linear tem-
poral logics based on qualitative spatial or temporal reasoning. In: FroCoS’02.
LNAI, vol. 2309, pp. 162–173. Springer (2002)

12. Bednarczyk, B., Fiuk, O.: Presburger Büchi tree automata with applications to
logics with expressive counting. In: WoLLIC’22. LNCS, vol. 13468, pp. 295–308.
Springer (2022)

13. Carapelle, C., Feng, S., Kartzow, A., Lohrey, M.: Satisfiability of ECTL˚ with local
tree constraints. Theory Computing Systems 61(2), 689–720 (2017)

14. Carapelle, C., Kartzow, A., Lohrey, M.: Satisfiability of ECTL˚ with constraints.
Journal of Computer and System Sciences 82(5), 826–855 (2016)

15. Carapelle, C., Turhan, A.: Description Logics Reasoning w.r.t. General TBoxes is
Decidable for Concrete Domains with the EHD-property. In: ECAI’16. vol. 285,
pp. 1440–1448. IOS Press (2016)

16. Čerans, K.: Deciding properties of integral relational automata. In: ICALP’94.
LNCS, vol. 820, pp. 35–46. Springer (1994)

17. Demri, S., Deters, M.: Temporal logics on strings with prefix relation. JLC 26,
989–1017 (2016)

18. Demri, S., D’Souza, D.: An automata-theoretic approach to constraint LTL. I &
C 205(3), 380–415 (2007)

19. Demri, S., Quaas, K.: Constraint automata on infinite data trees: From
CTL(Z)/CTL*(Z) to decision procedures. CoRR, abs/2302.05327 (2023)

20. Diekert, V., Gutierrez, C., Hagenah, C.: The existential theory of equations with
rational constraints in free groups is PSPACE-complete. I & C 202 (2005)

21. Gascon, R.: An automata-based approach for CTL* with constraints. Electronic
Notes in Theoretical Computer Science 239, 193–211 (2009)

22. Geatti, L., Gianola, A., Gigante, N.: Linear temporal logic modulo theories over
finite traces. In: IJCAI’22. pp. 2641–2647. ijcai.org (2022)

23. Haarslev, V., Möller, R.: Description Logic Systems with Concrete Domains: Ap-
plications for the Semantic Web. In: KRDB’03. CEUR Workshop Proceedings,
vol. 79. CEUR-WS.org (2003)

24. Hustadt, U., Motik, B., Sattler, U.: Reasoning in Description Logics with a Con-
crete Domain in the Framework of Resolution. In: ECAI’04. pp. 353–357. IOS Press
(2004)

25. Kartzow, A., Weidner, T.: Model checking constraint LTL over trees. CoRR,
abs/1504.06105 (2015)

26. Labai, N.: Automata-based reasoning for decidable logics with data values. Ph.D.
thesis, TU Wien (May 2021)

27. Labai, N., Ortiz, M., Simkus, M.: An Exptime Upper Bound for ALC with integers.
In: KR’20. pp. 425–436. Morgan Kaufman (2020)

28. Liang, T., Reynolds, A., Tinelli, C., Barrett, C., Deters, M.: A DPLL(T) theory
solver for a theory of strings and regular expressions. In: CAV’14. LNCS, vol. 8559,
pp. 646–662 (2014)

29. Lutz, C.: NEXPTIME-complete description logics with concrete domains. In: IJ-
CAR’01. LNCS, vol. 2083, pp. 46–60. Springer (2001)

16 S. Demri and K. Quaas

30. Lutz, C.: The Complexity of Description Logics with Concrete Domains. Ph.D.
thesis, RWTH, Aachen (2002)

31. Lutz, C.: Description logics with concrete domains—a survey. In: Advances in
Modal Logics Volume 4. pp. 265–296. King’s College Publications (2003)

32. Lutz, C.: NEXPTIME-complete description logics with concrete domains. ACM
ToCL 5(4), 669–705 (2004)

33. Lutz, C., Milicić, M.: A Tableau Algorithm for Description Logics with Concrete
Domains and General Tboxes. JAR 38(1-3), 227–259 (2007)

34. Makanin, G.: The problem of solvability of equations in a free semigroup (english
translation). Mathematics of the USSR-Sbornik 32(2), 129–198 (feb 1977)

35. Peteler, D., Quaas, K.: Deciding Emptiness for Constraint Automata on Strings
with the Prefix and Suffix Order. In: MFCS’22. LIPIcs, vol. 241, pp. 76:1–76:15.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)

36. Plandowski, W.: Satisfiability of word equations with constants is in PSPACE.
Journal of the Association for Computing Machinery 51(3), 483–496 (2004)

37. Quine, W.: Concatenation as a basis for arithmetic. The Journal of Symbolic Logic
11(4), 105–114 (1946)

38. Revesz, P.: Introduction to Constraint Databases. Springer, New York (2002)
39. Rydval, J.: Using Model Theory to Find Decidable and Tractable Description Log-

ics with Concrete Domains. Ph.D. thesis, Dresden University (2022)
40. Segoufin, L., Toruńczyk, S.: Automata based verification over linearly ordered data

domains. In: STACS’11. pp. 81–92 (2011)
41. Seidl, H., Schwentick, T., Muscholl, A.: Counting in trees. In: Logic and Automata:

History and Perspectives. Texts in Logic and Games, vol. 2, pp. 575–612. Amster-
dam University Press (2008)

42. Vardi, M., Wolper, P.: Automata-theoretic techniques for modal logics of programs.
Journal of Computer and System Sciences 32, 183–221 (1986)

43. Weidner, T.: Probabilistic Logic, Probabilistic Regular Expressions, and Constraint
Temporal Logic. Ph.D. thesis, University of Leipzig (2016)

44. Wolper, P.: On the relation of programs and computations to models of temporal
logic. In: Temporal Logic in Specifications. LNCS, vol. 398, pp. 75–123. Springer
(1987)

	 First Steps Towards Taming Description Logics with Strings

