N

N

First Steps Towards Taming Description Logics with
Strings

Stéphane Demri, Karin Quaas

» To cite this version:

Stéphane Demri, Karin Quaas. First Steps Towards Taming Description Logics with Strings. 18th
Edition of the European Conference on Logics in Artificial Intelligence (JELIA’23), Sep 2023, Dresden
(GERMANY), Germany. pp.322-337. hal-04212642

HAL Id: hal-04212642
https://hal.science/hal-04212642

Submitted on 20 Sep 2023

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-04212642
https://hal.archives-ouvertes.fr

First Steps Towards Taming
Description Logics with Strings*

Stéphane Demri! and Karin Quaas?

!Université Paris-Saclay, CNRS, ENS Paris-Saclay,
Laboratoire Méthodes Formelles, 91190, Gif-Sur-Yvette, France
2 Universitét Leipzig, Fakultit fiir Mathematik und Informatik

Abstract. We consider the description logic ALCF” (Ds) over the con-
crete domain Dy = (X% <, =, (= )wex* ), Where < is the strict prefix
order over finite strings in X*. Using an automata-based approach, we
show that the concept satisfiability problem w.r.t. general TBoxes for
ALCFP (Ds) is ExpTiME-complete for all finite alphabets X. As far as
we know, this is the first complexity result for an expressive description
logic with a nontrivial concrete domain on strings.

1 Introduction

Description logics with concrete domains. A concrete domain is a relational struc-
ture with a fixed nonempty domain and a family of relations. In this paper, we
are most and for all interested in the concrete domain (X*, <, =, (= )wex+),
where X' is a finite alphabet, < is the strict prefix relation over X*, = is the
usual equality relation, and =, stands for equality with to. Other typical ex-
amples of concrete domains (also playing a role herein) are (N, <, =,(=.).en)
and (Z, <, =, (=.).ez), that are the (nonnegative) integers with the usual order
relation <, equality, and equality with z.

We aim to reason about concrete domains using description logics. A stan-
dard way to do so is to enrich the semantical structures with values from a
concrete domain (see e.g. [BII422]); then, specific atomic concepts are used to
express constraints between these values. In description logics with concrete do-
mains, the domain elements are enriched with tuples of values coming from the
concrete domain, see e.g. [BIB0I3TI32I33]7]. Constraints on concrete domains em-
bedded in concepts from description logics may quickly be expressive enough to
encode counting mechanisms, leading to the undecidability of the main reason-
ing tasks, see e.g. [30]. However, nontrivial properties of concrete domains have
been identified to get decidability, see e.g. [ITI33I9] and also [I4].

String theories. Description logics with concrete domains on strings are often
evoked in the literature, see e.g. [BUT0J4I24], but such logics are seldom studied.
There are a few exceptions, see e.g. [23] handling strings with equality and in-
equality relations (only). In a way, string domains remain only a potentiality
for description logics with concrete domains, although it is believed that con-
crete domains on strings could be useful in ontologies. Reasoning about strings

* The second author is supported by the Deutsche Forschungsgemeinschaft (DFQG),
project 504343613.
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is often required in program verification, and much effort has been dedicated
towards designing solvers that handle string theories, see e.g. [28/1I2]. An expla-
nation for the lack of works on description logics may be the complexity inherent
to string theories. For instance, first-order theory on strings with concatenation
is undecidable [37]. On the other hand, satisfiability of word equations is in
PSpacE [34I36120]. Herein, we are interested in the challenging question of de-
ciding reasoning tasks for description logics with a non-trivial string domain.
Our motivations. What is particularly interesting about concrete domains on
strings is to observe that these domains are absolutely not captured by the
recent and sophisticated methods for determining decidability of description
logics with concrete domains, see e.g. [33I89)39]. Moreover, the string domain
(X*, <, =, (=w)wex*), in the following denoted by Dy, is known to be diffi-
cult to handle, see e.g. [I3, Theorem 1]. This applies also to the concrete do-
main N (which can be understood as the string domain Dy with a singleton
alphabet), but for this one, the remarkable works [I512726] lead to the EXP-
TIME-completeness of reasoning tasks for the description logic ACCF” (Z). The
concrete domain N still requires complex developments, but at least it is known
today how to manage it, see e.g. [I840/I4]. Our motivation in this work is to
investigate the decidability /complexity status of ALCFT (Dyx), that is, for the
nontrivial string domain with the prefix order. To do so, we take advantage of
recent results on tree constraint automata on Z from [I9] combined with an en-
coding of string constraints by numerical constraints from [I7]. These are only
some first steps to tame reasoning tasks for description logics with string do-
mains, and of course, other string domains are possibly interesting, see e.g. [35].
Our contributions. In Section we introduce the description logic ALCF” (Dy),
similarly to the definition of ACCF7 (Z) in [27/26]. In Section we introduce the
class of tree constraint automata (TCA) accepting infinite finite-branching trees
with nodes labelled by letters from a finite alphabet and finite tuples of values
in X*. Our definition for TCA naturally extends the constraint automata for
words (see e.g. [T6I3812TI40125/43]) as well as a similar one for trees on (Z, <, =)
from [19, Section 3.1]. In Section [4] the nonemptiness problem for TCA is shown
ExPTIME-complete. Though EXPTIME-hardness is a consequence of [19], Section
3.1], the EXPTIME-membership is by reduction to the nonemptiness problem for
TCA on N by lifting arguments from [I7, Section 3] to the automata-based set-
ting.

In Section [5] we show how to reduce the concept satisfiability problem w.r.t. gen-
eral TBoxes for ALCFP (Dsx) (written TSAT(ALCFP (Dyx))) to the nonempti-
ness problem for TCA, following the automata-based approach developed in [42]
(see also [4413]). To do so, in Section we establish a simple form for ACCFF (Dyx)
concepts from which TCA are defined, adapting the developments from [I5]
Lemma 15| and [27, Lemma 5. Though we use a standard approach in Section [f]
we need to carefully handle the constraints in the TCA in order to provide a
complexity analysis that leads to the optimal upper bound. The complexity of
ALCFF (Dx) concepts requires sophisticated TCA constructions and involved
developments. As a result, we establish that TSAT(ALCFF (Dx)) is EXPTIME-
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complete for all finite alphabets Y. As far as we know, this is the first complexity
characterisation for a reasoning task related to a description logic with a non-
trivial string domain. As explained above, we reuse or adapt several results from
the literature (not always related to description logics), and we provide several
new insights to combine them adequately.

2 Description Logics with String Domains

Given a finite alphabet ¥, we consider the concrete domain Dy & (X%, <, =

, (=w)wex=), where < is the strict prefix relation on X*, = is the equality on
X* and =y, is a unary predicate stating the equality with the string w. In the
following, we use card(X) to denote the cardinality of X.

Let VAR = {x,y,...} be a countably infinite set of variables (also called
registers in [27] and concrete features in the description logic literature). A term
t over VAR is an expression of the form S’x, where x € VAR and S’ is a (possibly
empty) sequence of i symbols *S’. A term S’x should be understood as a variable
(that needs to be interpreted) but, later on, we will see that the prefix S¢ will
have a relational interpretation. We write Ty, to denote the set of all terms
over VAR. For all i € N, we write T\ﬁiR to denote the subset of terms of the
form S7x, where j < 4. For instance, ngR = VAR. An atomic constraint 6 over
Tyag is an expression of one of the forms below:

t<t t=t = (t) (also written t = tv),
where tv € X* and t,t' € Ty,g. A constraint © is defined as a Boolean
combination of atomic constraints. Constraints are interpreted on valuations
v : Tyar — 2™ that assign elements from X* to the terms in Ty, so that v
satisfies 0, written v = 6 iff the interpretation of the terms in 6 makes 6 true in
2* in the usual way. Boolean connectives are interpreted as usual. A constraint
O is satisfiable <> there is a valuation v : Tyar — 27 such that v = 6.

Below, we define the description logic ALCFT (Dy) (over the concrete do-
main Dy) defined exactly as the description logic ALCFP (Z.) from [27] except
that Z, is replaced by Dyx. We deliberately use the notations from [27] whenever
possible and we provide a formal definition for ALCFT (Dyx) to be self-contained.
Let Nc = {4, B,...} and Ng = {r,s,...}, respectively, be countably infinite sets
of concept names and role names. We further assume that Ng contains a sub-
family Ng © Ngr of functional role names (a.k.a abstract features). A role path
P =ry---ryis a (possibly empty) word in Nj;. We use |P| to denote the length
of P (possibly zero). The set of ALCFP (Dyx)-concepts is defined as follows.

Cu=TI|LA|=C|CnC|CLC|3rC|YVr.C|3IP[6] | ¥P]6],

where A € Ng, r € NR, P is a role path, © is a Boolean constraint in X* built
over terms of the form S7x. Moreover, if $7x occurs in ©, then we require j < |P|.
An aziom is an expression of the form C' = D, where C, D are ALCFF (Dyx)
concepts. A terminological box T (TBox, for short) is a finite set of axioms.
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An interpretation is a tuple T = (AZ,-Z,v), where A is a nonempty set
(the domain), v: AT x VAR — X* (the valuation function), and - is an in-
terpretation function that assigns AZ < AZ to every concept name A € Ng,
and rT < AT x AZ to every role name r € Ng. For all f € Ny, we require
{(a,a"), (a,a”)} < f implies a’ = a”, that is, f7 is a partial function. Given a role
path P = ri7y...7,, we define PT to be the set of all tuples (ag,...,a,) e A"*!
such that (a;,_1,qa;) € rZ for all i € [1,n]. Given an interpretation Z and a tuple
7 = (ag,ay,...,a,) of elements in AZ, constraints ©1, O, and tv € X*, we define

— I, = S'x < Siy £ v(a;,x) < v(a;,y),
— I,m = Sx =8y £ v(a;,x) = v(a;,y); L, 7 = Six =1 £ v(a;,x) =,
- I,m = -6, < notZ,m =O01;Z,m =601 A0, £ I,mEOand I, 7 = Oy,

- I, =61 v O, £ I,mE=EOorI,7 = Os.
We extend the interpretation function - to complex concepts as follows:

[ def AI, 1z def &, (—'C)I def AI\CI,

— (CnDXIECTADL (CuDT=ECtuDE,

— (3r.C)T = {a e AT | there is a’ € AT such that a’ € C7 and (a, ') € 77},

— (Vr.0)* = {ae AT | for all o’ € A%, (a,d’) € 7 implies o’ € CT},

— (AP[O])* = {ag € AT | there exist aj,...,a, € AT s.t. 7 = (ag, a1, ...,0a,) €
PT and Z,7 |= O},

- (VP[O]T = {ag € AT | forallay,...,a, € AT, 7w = (ag,a1,...,a,) €
PT implies Z, 7 = O}.

An interpretation Z is a model of a TBox T, written Z = T, if CT < D7 for all
axioms C' =& D in T. The concept satisfiability problem with respect to general
TBozes, written TSAT(ALCFP (Dyx)), is defined as follows:

Input: An ALCFP(Dyx) concept Cp, and a TBox T.
Question: Is there an interpretation Z of 7 such that Z =7 and CZ # 7

For instance, 3rr’.[S%x < x|, {T = Ir".[S?y < x], T = Ir'.[x < S%x], T =
Ir.T,T £ 3r'. T} is a positive instance of TSAT(ALCFT (Dx)).

Given an ALCFF(Dyx) concept Cy and a TBox T, we write sub(Cp,T) to
denote the set of subconcepts obtained from the concepts in Cy and 7. A concept
C is in simple form iff it is in negation normal form (negation occurs only in
constraints) and terms are only from T5,g. For instance, Irr’.[S%y < x] is not
in simple form but all the concepts in 3r.3r".3e.[y < x!T], T = Vr.[x = Sx!] and
T = Vr'.[x! = Sx!T] are. Negation normal form is easy to get by standard means
as each concept constructor has its dual and the constraints @ are closed under
negations. In Section 5, we reduce TSAT(ALCFP (Ds)) to the nonemptiness
problem for tree constraint automata (defined in Section. For this, we assume
that the input concept and the concepts occurring in the TBox are in simple
form. In Proposition [1| we state that this assumption is without loss of generality
and does not cause any computational harm.
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Proposition 1. Let Cy be an ALCFP (Dyx) concept and T be a TBox. One can
construct in polynomial-time in the size of Co, T a concept C{) and a finite TBox
T in simple form such that Co, T is a positive instance of TSAT(ALCFT (Dx))
iff Cb, T is a positive instance of TSAT(ALCFT (Dyx)).

Proposition [I]is analogous to [I5, Lemma 15] and [27, Lemma 5]. Though based
on similar principles, our proof is slightly simpler than the ones cited above,
because we demand less from concepts in simple form, as the forthcoming tree
constraint automata can handle such concepts (see Section .

Before defining tree constraint automata, we give a formal definition of trees.
Given d > 1, a labeled tree of degree d is a map t : dom(t) — X where X is some
(potentially infinite) alphabet and dom(t) is an infinite subset of [0,d —1]*, that
is, if n-j € dom(t) for some n € [0,d—1]* and j € [0,d—1], then n € dom(t) and
n-i€ dom(t) for all 0 < i < j, too. The elements of dom(t) are called nodes.
The empty word ¢ is the root node of t. For every n € dom(t), the elements
n-i (with i € [0,d — 1]) are called the children nodes of n, and n is called the
parent node of n-i. We say that the tree t is a full d-ary tree if every node n has
exactly d children n-0,...,n-(d—1). Given a tree t and a node n in dom(t), an
infinite path in t starting from n is an infinite sequence n - j; - jo - jz ..., where
ji€[0,d—1] and n- j; ...j; € dom(t) for all 4 > 1.

3 Tree Constraint Automata Manipulating Strings

In this section, we introduce the class of tree constraint automata that accept
sets of trees of the form t : [0,d — 1]* — (¥ x (£*)%) for some finite alphabet
3 and some 8 > 1. Note that two alphabets are involved here: X is a finite
alphabet as usually in automata, X' is inherited from Dy and used to interpret
[ variables at each position of the trees. The transition relation of such automata
states constraints between the § string values at a node and the string values
at its children nodes. To do so, we write TreeCons(S) to denote the Boolean
constraints built over the terms xi,...,xg,S5%1,...,5%g. These constraints are
used to define the transition relation of such automata. We also write x, to denote
the term Sx;, and we shall use valuations v with profile {x;,x} | i € [1, 8]} — X*.
In the forthcoming definition, the acceptance condition on infinite branches is
a Biichi condition, but this can be easily extended to more general conditions.
Moreover, the definition is specific to the concrete domain X* but it can be
easily adapted to other concrete domains. A tree constraint automaton (TCA)
on Dy is a tuple A = (Q, X, d, 8, Qin, d, F), where

— @ is a finite set of locations; X is a finite alphabet,

— d =1 is the (branching) degree of (the trees accepted by) A,

— [ =1 is the number of variables (a.k.a. registers) interpreted in X*,

— Qin € Q is the set of initial locations,

— § is a finite subset of @ x X x (TreeCons(8) x Q)¢, the transition rela-
tion. That is, § consists of tuples of the form (¢, a, (@0, ), - - -, (Od—1,qa-1)),
where q,qo, . ..,q4—1 € Q, a€ X, and Oy, ...,O4_1 are constraints built over
X1,...,%g,%],..., Xy for the concrete domain Dy.
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/)\ ’ o
o= (x] <x1)A
S0 G (x5 < x2) A
b Qe 20 Nl @ % O (x5 = x2)
A A% : 01 = (x2 <x5H) A
. ( 1)

b O el 8O i » O ® O

Fig.1: On the left, the prefix of an infinite tree t with two string variables x;
and x5. In the middle, the beginning of a run of A from Example |I| on t.

— F < @ encodes the Biichi acceptance condition.

Lett : [0,d—1]* — (Zx(X*)?) be an infinite full d-ary tree over X x (X*)%. A
run of A on t is a mapping p : [0,d—1]* — @ satisfying the following conditions:

— p(e) € Qin;

— for every n € [0,d—1]* with t(n) = (a,v) and p(n) = ¢, t(n-i) = (a;, v;) and
p(n-i) = g; for all 0 < i < d, there exists (¢, a, (@o, ), - - -, (Od—1,q4—1)) € 0
and X* | ©;(v,v;) for all 0 < i < d. Here, ¥* = O;(v,v;) is short for
[X — v,x — v;] & 6;, where [£ — v,x < v;] is a valuation v on {x;,%} |
j € [1, 8]} with v(x;) = v(j) and v(x}) = v;(j) for all j € [1,5].

Note that string expressions labelling the transitions may state constraints be-
tween string values at a node and its children nodes.

Suppose p is a run of A on t. Given an infinite path 7 = j; - jo - j3... in
p starting from the root, we define inf(p, ) to be the set of control states that
appear infinitely often in p(e)p(j1)p(j1 - j2)p(j1 - j2 - 43) . ... A run p is accepting
if for all paths 7 in p starting from e, we have inf(p, 7) N F # §. We write L(A)
to denote the set of trees t that admit an accepting run.

Ezample 1. Let A = ({¢,¢a, g}, {2,b},2,2,{q}, 9, {¢a, ®}), and § containing pre-
Cisely (q7 a, (QOa qb)> (@17 qa))7 (qa? a, (T7 qa)a (T7 qa))7 and (qb7b7 (@Oa Qb)7 (@07 Qb));
where Op = (x] <x1) A (%] <x2) A (x§ = x2) and O1 = (x2 < x5) A (%2 < x)).
In Figure [T} we show the beginning of a run on the tree t on the left. Note that
this run cannot be extended to an infinite run of A on t: on the leftmost branch,
there is no value for x| that satisfies the constraint x} < x; for the value of x;
being ¢, hence no transition from A can be taken. In fact, there cannot be any
infinite tree for which there exists some accepting run, and hence L(A) = .

As usual, the nonemptiness problem for TCA, written NE(TCA), takes as input
a TCA A = (Q,%,d,,Qim,d, F) and asks whether L(A) is nonempty. We aim
to prove that this problem is EXPTIME-complete. Unlike (plain) Biichi tree au-
tomata [42], the number of transitions in a tree constraint automaton is a priori
unbounded (TreeCons(/3) is infinite) and the maximal size of a constraint occur-
ring in transitions is unbounded too. In particular, this means that the number
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of transitions in §, denoted by card(d), is a priori unbounded, even if Q and X
are fixed. We write MCS(A) to denote the maximal size of a constraint occurring
in A. The complexity of the nonemptiness problem must therefore also take into
account these parameters.

Below, we use TCA on the concrete domain (N, <, =, (=, )nen). These are
defined as for Dy, but with X being a singleton alphabet. Moreover, we assume
that the natural numbers are encoded in binary. As a consequence of [19, Section
4], the nonemptiness problem for TCA on N is EXPTIME-complete and the
purpose of the next section is to show how to generalise this result for any
concrete domain Dy; (with a non-singleton alphabet X).

Our tree constraint automata differ from Presburger Biichi tree automata
defined in [41/12] for which, in the runs, arithmetical expressions are constraints
between the numbers of children labelled by different locations. Herein, the string
expressions state constraints between string values (possibly at different nodes).

4 Nonemptiness Problem for TCA on Dy

To reduce the nonemptiness problem for TCA on Dy to the nonemptiness prob-
lem for TCA on the concrete domain (N, <, =, (=5)nen), we show how to take
advantage of [I7, Lemma 6] dedicated to the transformation of prefix constraints
into Boolean combinations of atomic constraints on N. For the sake of being self-
contained, we recall below a few definitions useful in Section [.2]

4.1 From string constraints to natural number constraints

Given a string to € X*  we write || to denote its length. Given w, o’ € X%
we write clen(t, to’) to denote the length of the longest common prefix between
w and w’. We view the arguments of clen(-) as a set, so that clen(to, ) and
clen(w’,w) are identical. More precisely, there are tg, wy, and 1) such that
W = g - oy, ' = wg -} and, ; and w) cannot start by the same first
letter, if any. We set clen(v, w’) = |rog|. For example, clen(aba, abbbab) = 2. So,
clen(ro, o) = ||, and w is a strict prefix of w’ iff clen(w,w) = clen(w, w’) and
clen(w,w) < clen(r’,1’). Here are simple properties, see e.g. [I7, Proposition
2], that play a special role in the sequel (assuming card(X) = k).

(I) For all o, 10’ € X*, || = clen(t, w’).

(IT) For all wg,w1,...,1w € X* such that clen(wg,w1) = --- = clen(iog, tog)
and for all i € [0, k], clen(wg, 01) < |w;|, there are i # j € [1, k] such that
clen(tog, 101) < clen(w;, w;).

(III) For all tg, 1,109 € X*, clen(tog, wy) < clen(toy, ws) implies
clen(wg, 01) = clen(g, toz).

Let VAR’ be a finite subset of VAR. A string valuation s with respect to VAR’
is amap s : VAR — X*. A counter valuation ¢ with respect to VAR’ is defined
as a map ¢ : {clen(x,x’) : x,x’ € VAR'} — N, where expressions of the form
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clen(x,x’) are understood as “variables” interpreted on N (we also adopt a set-
theoretical reading: clen(x,x’) and clen(x’,x) are considered as identical). In
forthcoming Section [£.2] we adopt a similar notation. We say that a counter val-
uation ¢ is string-compatible (with respect to VAR') if ¢ satisfies the conjunction
of the three constraints below in the concrete domain (N, <, =, (=, )nen).

— Formula 11(VAR') is related to (I): Nswevar (clen(x,x) > clen(x, x')).
— Formula 91;(VAR') is related to (I1):

Nso... svevar (Aicfo sy (clen(xo, x1) < clen(x,x;))) A clen(xo,x1) =
-+ = clen(xo, xk)) = (V,zjep x(clen(xo, x1) < clen(x;, x;))).

— Formula 111 (VAR/) is related to (III):
Ny xrevar (clen(x, x’) < clen(x’,x")) = (clen(x,x’) = clen(x,x")).

The size of the above conjunction is in O(card(VAR')**2), i.e. polynomial in
card(VAR'), assuming X is fixed. If X € VAR’ and c¢ is string-compatible w.r.t.
VAR/, the restriction of ¢ to X is also string-compatible with respect to X.

Let X be a nonempty subset of VAR', s be a string valuation and ¢ be a
counter valuation, both with respect to VAR'. We say that ¢ agrees with s on
X (written ¢ ~x 5) £ c¢(clen(x,x’)) = clen(s(x),s(x')) for all x,x" € X (‘clen’
is overloaded here, used to define natural number variables and a function on
pairs of strings but we hope this does not lead to confusions). So, if X' € X
and ¢ ~x s, then ¢ ~x/ s too. Given a string valuation s, there is a counter
valuation ¢ such that ¢ ~x s [I7, Lemma 5] and ¢ can be defined obviously by:
c(clen(x, x')) = clen(s(x),s(x')) for all x,x" € X.

However, there are counter valuations ¢ for which there exists no string val-
uation s with ¢ ~x s (¢f. Example [2| below). We state below the main property
relating string constraints on Dy and constraints on (N, <, =, (=, )nen). Namely,
for every string-compatible counter valuation ¢ for which the restriction to a sub-
set of variables agrees with some string valuation s, it is possible to extend s to
all the variables so that ¢ agrees with it.

Proposition 2. [17, Lemma 6] Let X # & and Y be finite and disjoint sets of
string variables, ¢ be a string-compatible counter valuation with respect to X w'Y
and 5:Y — X* be such that ¢ ~y s. Then, there is a string valuation s’ that is
a conservative extension of s, such that ¢ ~x .y §'.

Example 2. Let VAR = {x1,%2,x},%5} and let 5(x1) = aaba,s(x2) = aa,s(x}) =
aab, and §(x5) = aaa. This string valuation satisfies the constraint xo < x5 A
x3 < xy. In Figure [2 we show the counter valuation ¢ with respect to VAR’
induced by s; for instance, ¢(clen(x,x5)) = 2. Note that ¢ satisfies the constraint
over N corresponding to the above string constraint; for instance, clen(xa,x2) <
clen(x,x5) A clen(xa,x2) = clen(xg,x5) holds true (the yellow cells). The
other three tables show three counter valuations that are not string-compatible:
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cleonl‘xz‘xﬁ‘xé cleonl‘xz‘x’l‘x'Z ClenHX1‘X2‘X’1‘XIQ ClenHX1‘X2‘X/]_‘X/2

x1 (|412]|13]2 x1 (|4]12|3]4 x1 ||41212]2 x1 ||4]1113]2

X9 2122 X9 21212 X9 21212 X2 21212

x] 3|2 x] 312 x] 312 x) 312

x5 3 x5 3 x5 3 x5 3
¢ o 1 CIII

Fig. 2: Counter valuations.

— < cr(clen(xh, b)) < a(clen(xi,x5)) violates constraint 11(VAR');

— car(clen(xh, x1)) = c(clen(xh, x1)) = 2, cr(clen(xh, x5)) > 2,
cr(clen(x1,x1)) > 2, cu(clen(x], x7)) > 2, ca(clen(x],x5)) = crr(clen(xi,x}))
violate the constraint ¢y (VAR'), assuming card(X) = 2.

— CH[(Clen(Xl,Xg)) < cIII(Clen(XQ,XIQ)) and cm(clen(xl,xz)) < cIII(Clen(X17X/2))
violate constraint rr(VAR').

Even though each of these counter valuations satisfies the constraint correspond-
ing to the string constraint ©;, there does not exist any agreeing string valua-
tion. Proposition [2] shows that if a counter valuation is string-compatible, then
an agreeing string valuation exists.

4.2 Reducing TCA on strings to TCA on natural numbers

Let A = (Q,X,d, 58, Qin, 6, F) be a TCA on the concrete domain Dy, for which
we wish to check the nonemptiness of L(A). Below, we define a TCA A’ =
(Q,%,d, ', Qin, ¢, F) on the concrete domain (N, <, =, (=,,)nen) such that L(A)
is nonempty iff L(A’) is nonempty. It is worth noting that A and A’ share the
same set of locations, initial locations and the same acceptance condition. More-
over, the finite alphabet 3 and the degree d are identical too. The differences
are related to the number of variables 5’ as well as the definition of the tran-
sition relation ¢’. Since the two TCA are built over distinct concrete domains
(Dyx versus N), the transition relations necessarily differ. As far as the number
of variables is concerned, we lift what is done in Section to all the string
values occurring in trees accepted by the input TCA A.

— Assume that the constant strings occurring in constraints in § are toq, ..., 0,
for some a > 0. We write VARys to denote the expressions in {x; | i €
[1,8+a]}u{S™1x; | i€ [1,B+a]} (not yet variables in A’). Here, S~!x refers
to a value for the parent node, if any. The variables in A’ are of the form
clen(ty,ts) where t1,t2 € VAR, (ad-hoc notation). Consequently, 5’ =
4(B + a)? (polynomial in the size of A). Each string to; from A is implicitly
associated to an expression xg4; in VAR,/. The variables clen(ty, t2)’s with
{t1,t2} N {xp4i} # & are intended to specify the length of the longest
common prefix between ; and another value.

— The definition of ¢’ reflects that string-compatible counter valuations satisfy
(I)-(III) above, as well as the way we manage the values between the parent
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node and its children nodes. Given (¢, a, (€, ), - - -, (Od—1,¢4—1)) in 4, there
is a corresponding transition (g, a, (€, qo),--.,(©4_1,¢a—1)) in ¢’ (leading
to card(d’) = card(d) by construction). What remains to be done is to define
each @), from ©,. @ is a conjunction made of three conjuncts:

e The 1st conjunct (independent of ©y) stating that the counter valuations
are string-compatible is equal to ¥ (VARa/) A1 (VARA) At (VAR ),
see Section Its size is in O(B + a)**2) with card(X) = k.

e The 2nd conjunct has a double purpose: to define constraints between a
node and its parent node (if any), and to guarantee that the expressions
of the form S~'x4,; and x5, can be interpreted as the string ;. Here
is the 2nd conjunct (also independent of ©y):

( /\ clen(S 'x;, S7'x;)" = clen(x;, x;)) A

i,je[1,8+a]

( /\ clen(xg4i, Xg4j) = clen(mi,mj)).
i,jel1,a]
Observe that in the equalities in the second conjunct above, the left-hand
side is a variable in A’ (using our ad-hoc notation) whereas the right-
hand side is a value in N (clearly bounded by the length of the longest
string in A). The size of this conjunct is in O((8 + a)? + a? x max |w;|).
e The 3rd conjunct is equal to ¢(@,) where t is a translation map that
is homomorphic for Boolean connectives. The translation of the atomic
constraints is defined in Figure[3] and it takes into account how the values
are constrained between a parent node and its child node. For instance,
if in some accepted tree t of A, t(n) = (a,2) and t(n-¥¢) = (as, 2),
the variable clen(x;, S™'x;) occuring in @) refers to the length of the
longest common prefix between the value of x; at n - ¢ (i.e. Z;(i)) and
the value of x; at the parent node of n- ¢ (i.e. Z(j)). The size of the 3rd
conjunct t(@y) is linear in the size of Oy.

Example 8. Consider A from Example [I} The automaton A’ obtained from the
above construction is of the form ({g, qa, g}, {a,b},2,16,{q}, ¢, {qa, gb}), Where
¢’ contains the transitions (g, a, (0(, ), (01, ¢)), (¢a;a, (0, ¢a), (60, ¢a)), and
(gv, b, (O}, ), (O}, b)), With ©f, O], and O’ obtained from the corresponding
string constraints in A as described above. @] consists (amongst others) of the
constraints clen(S™1xa, S71x2)" = clen(S7'x2,x1)" A clen(S™1xa, S71xy) <
clen(xy,x1)" (the translation of the string constraint x, < x}). By the 2nd
conjunct in the definition of §’, we have clen(xg,x2) = clen(S~'xp, S71x,)".

The correctness of the construction of A’ is best illustrated by the statement
below, which can be viewed as an automata-based counterpart of [I7, Lemma 10]
and requires a lengthy proof. It relies on Proposition 2] when new string values
need to be considered.

Lemma 1. L(A) # & iff L(A') # .
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Atomic 6 Translation t(6)

x; <x; | clen(x;,x;) = clen(x;,x;) A clen(x;,x;) < clen(xj,x;)
X = Xj clen(x;,x;) = clen(x;, x;) = clen(x;,x;)

X; = 10; clen(x;,x;) = clen(x;,x5+;) = clen(xg+;,%X8+;)

x; < % clen(x;,x;) = clen(x;, S~ 'x;) A

clen(x;,x;) < clen(S™'x;, S 'x;)’

x;, = x; | clen(x;,x;)’ = clen(x;, S 'x;) = clen(S 'x;,5 'x;)
X; = 10, clen(x;,x;) = clen(x;,xp+;) = clen(xp+;,%Xg+;)

xi < X clen(S™ 'x;, S 'x;) = clen(S Tx;, x;) A
clen(S™'x;, 87 'x;) < clen(x;,x;)’

x; < x; |clen(xi,x;)" = clen(xs,x;) A clen(xi,x;)" < clen(x;,x;)’
x; = x; clen(x;,x;) = clen(x;,x;)’ = clen(x;,x;)’

Fig. 3: Translation of atomic constraints.

We are ready to present our main result about the complexity of NE(TCA(Dyx)).
Theorem 1. For every finite alphabet X, NE(TCA (Dyx)) is EXPTIME-complete.

ExPTIME-hardness of NE(TCA(Dy;)) is due to EXPTIME-hardness of the prob-
lem NE(TCA(N)) established in [I9, Section 4.1]. To prove EXPTIME-member-
ship, given A’ (on the concrete domain N) built from A (on the concrete domain
Dyx), we know from [I9, Lemma 10| that, the nonemptiness of L(A’) can be
solved in time

O(R1 (card(Q) x card(d') x MCS(A) x card(X) x Rg(ﬂ'))R2(B/)XR3(d))

for some polynomials Ry, Ry and R3, where MCS(A’) denotes the maximal size
of a constraint occurring in A’. Note that the result is stated for the concrete
domain Z in [19, Lemma 10|, but it applies to N too (there is a simple way to
enforce x; = 0 everywhere). We adopt a similar notation for A and from the
above developments, MCS(A’) is in O((3 +MCS(A) x card(d) x d)¥*+3) as o can be
shown to be bounded above by MCS(A) x card(d) x d. Since card(d’) = card(d),

B = 4(B + «a)?, nonemptiness of L(A) can be solved in time (’)(R1 (card(Q) x

card(d) x (8 +MCS(A) x card() x d)**3 x card(X) x Rg(ﬂT))RQ(ﬂT)XR3(d)) with

BT = 4(B + MCS(A) x card(§) x d). Hence, NE(TCA(Dyx)) is in EXPTIME; this
holds even if X is part of the input.

5 Automata-Based Approach for ALCFF (Dy)

Below, we reduce TSAT(ALCF? (Dyx)) to NE(TCA): given an ALCFT (Dy)
concept Cy and a TBox T, we construct a TCA A on Dy such that Cy, T is
a positive instance of TSAT(ALCFF (Dx)) iff L(A) # . The material below
follows the arguments from [19, Section 5.2] but for Dys. Obviously, the tree
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interpretation property of ACCFP (Dx) (cf. the proof of Proposition [1)) is of use
in the reduction. Thanks to Proposition [l we can assume that all input concepts
are in negation normal form and terms are restricted to those in T\S,iR, that is,
the role paths are restricted to single role names r and to e. This simplifies the
reduction; for instance, Ve.[O)] is logically equivalent to Je.[@], and © contains
solely variables that state constraints only for the current individual. At this
point, it is worth noting that atomic concepts of the form 3P.[O] or VP.[O] can
be expressed by constraints in TCA, unlike the automata-based approach used
in [I82726] that involves abstractions and finite alphabets only.

Since interpretations for ALCFF (Dyx) concepts provide a semantics for sev-
eral role names, we use a standard trick and reserve directions in [0, d—1] for each
role name 7 occurring in the instance of TSAT(ALCF” (Dy)). This is needed
because in the trees t : [0,d — 1]* — X x (X*)?, the (implicit) edges are not
labelled. Another way to proceed would be to add a role name to each location
of the TCA in order to remember how the node in the tree [0,d — 1]* is accessed
to, which is a technique used in [3, Section 3.2]. We also have to handle the
determinism of the binary relations rZ with 7 € Ng.

So let Cy be an ALCFP (Dyx) concept and let 7 be {C} & Dy,...,Cy E Dy},
with the above-mentioned syntactic restrictions. Given X < sub(Cp, 7)), we say
that X is propositionally T -consistent iff the conditions below hold.

— There is no concept name A such that {4, —A} € X.

— X does not contain L and if T € sub(Cy, T), then T € X.

- IfEl\_lEQ EX, then {El,Eg}ﬂX #* @ ifE1I_|E2 EX, then {El,EQ} c X.
— For all k € [1,/], if Ck € X, then Dy € X.

Propositionally T-consistent sets correspond to Hintikka sets from [3] Section
3.2] and their introduction is common for developing an automata-based ap-
proach for (description) logics. There is no clause for the concept constructor
negation because the concepts are in simple form and negation occurs only in
front of concept names or within constraints ©.

Given 7 € Ng, we define subs,(Co,7) = {3Ir.D | Ir.D € sub(Cp,T)} and
subzest,.(Co, T) = {3r.[O] | 3r.[O] € sub(Cy, T)}. The superscript ‘cst’ in 3¢5
is intended to remind us that the respective sets are made of atomic concepts
involving constraints in the string domain (a.k.a. predicate restrictions). We sim-
ilarly define suby,(Cy, T) and subyest,.(Co, T). We further define Ng(Cy, T) def
{7” € Ng | SubgT»(Oo,T) U SubgcstT(Co,T) #* @} and HF(CO,T) f {HT[[@H €
Sub(Co,T) ‘ T ¢ NF(C(), T)}U{HT’D € Sub(Co,T) | r ¢ NF(O(J, T)} So NF(C(),T)
contains functional role names r related to predicate or existential restrictions
from sub(Cy, T') involving r, 3x(Co, T) contains predicate or existential restric-
tions from sub(Cy,7T) involving non-functional role names. This difference of
treatment is handy to define the value d below though we need to distinguish in
several definitions functional role names from the other ones.

Set d = card(Ng(Cy, T))+card(Ig(Co, T)) and ¢ be a bijection ¢ : (Ng(Co, T)u
35(Co, T)) — [1,d]. We write r > j whenever ¢=!(j) = r or .!(j) is of the form
either 3r.D or 3r.[O] (direction j contributes to witnesses for r).
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We build a TCA A = (Q,X,d + 1,8, Qin, d, F) such that Cp, T is a positive
instance iff L(A) # J. The automaton A accepts infinite trees of the form
t:[0,d]* — X x (X*)? where & = P({Ay,...,An}), {A1,..., Ay} being the
set of concept names occurring in Cy, 7. Let us define A formally.

— @ is the set of propositionally 7 -consistent subsets of sub(Cp,7) plus the
distinguished “dead-end” location L (and never D €l, for all concepts D).
1 is useful as seriality is not required for the interpretation of role names.

- QuE{YeQ|CyeY}, F=Q (all the locations are accepting similarly to
looping automata, see e.g. [0, Section 3.2]).

— The transition relation ¢ is made of tuples (Y, X, (0, Yp), ..., (@4, Yy)) s.t.:

1. For all AeY, we have A€ X and for all —A €Y, we have A ¢ X.

2. IfY =1,then Yy =---=Y; =1.

3. For all j € [1,d] such that Y; =1, (a) if ¢:7(j) = r for some r € N,
then Y has no concepts of the form either 3r.D or 3r.[@] and (b) if
t7(j) ¢ Ng then t71(j) ¢ Y.

4. For all 3r.D € Y, we have either (r € Ng and D € Y,(,y) or (r ¢ Ng and
D €Y, (3, py). The direction to satisfy 3r.D is either +(r) or ¢(3r.D).

5. For all Vr.D € Y and j € [1,d] such that Y; #L1 and r > j, we have
D e Yj. In this case, the direction j is reserved for the role name r and
for obligations related to the satisfaction of Vr.D. The satisfaction of
Vr.D implies the satisfaction of D for all the rZ-successors, if any.

6. For all j € [0,d], the constraint ©; is defined as follows.

(a) IfY =1, then ©; = T.

(b) Otherwise, if j = 0 or Y; =1, then ; = (Aae.or,ve jor1ey ©)-
This conjunction needs actually to be satisfied whenever Y; #.1.

(c) Otherwise, if ((3r.[0] ¢ Y and (3r.[O]) = j) or «(3r.D) = j for
some 3r.[0],3r.D € I5(Co,T)) and Y; #L (necessarily 7 ¢ Np),
then O = (/\35.[[(9’]],Va[[(9’]]6¥ CORA (/\w.[[ef]]ey o).

(d) Otherwise, if there is 3r.[@] € Y s.t. «(Ir.[O]) = j (necessarily r ¢
Nr), Qj < (/\Hs.ﬂ@’ﬂ,VE.[[@’]]EY 9’) A (/\Vr.ﬂ@’]]eY 9/) A ©. By (3.)
above, 3r.[@] € Y, «(Ir.[O]) = j and r ¢ Ng imply Y; #L. So, the
direction j is reserved for the role name r and for obligations related
to the satisfaction of Ir.[O]. This case occurs if there are obligations
to satisfy 3r.[@] whereas the case 6(b) gives more freedom because
the satisfaction of 3r.[@] is not imposed from Y.

(e) Otherwise, i.e. 7 =¢71(j) € Ng and Y; #.1,

Y AN R G AN
3e.[0'],Ve.[O']eY vr.[0'],3r.[0']eY

Unlike the previous cases, if 7 € Ng, then Vr.[@'] and 3r.[O'] are

logically equivalent, assuming that there is one rZ-successor.

We can show that our construction is correct.

Lemma 2. Cy, 7T is a positive instance of TSAT(ALCFF (Dx)) iff L(A) # .
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Despite the involved construction of A due to the expressiveness of the logic
ALCFT (Dx), the proof follows a standard pattern. If Cy, T is a positive instance,
then we can extract a tree interpretation that can be associated to a tree accepted
by A. Conversely, any tree accepted by A can be turned into a tree interpretation
witnessing the satisfaction of Cy, 7. The result below is the main technical result
in this paper, whose proof combines the previous key lemmas.

Theorem 2. For every finite X, TSAT(ALCF” (Dy)) is EXPTIME-complete.

Due to our complexity analysis, the EXPTIME-membership is preserved if the
alphabet X is part of the input (and not a parameter as in TSAT(ALCF7 (Dx))).

Concluding remarks. We have shown that the nonemptiness problem for tree
constraint automata on Dy is EXPTIME-complete (Theorem and the con-
cept satisfiability problem w.r.t. general TBoxes for ALCF” (Dyx) is EXPTIME-
complete too (Theorem . The suite of key steps is schematised below.

Prop. . .
TSAT(ALCFP (D)) ﬂ) TSAT(ALCF? (Dy)) ~22 B b re by 222\ roa )

in simple form

These are only first steps to handle more concrete domains based on strings and
on richer description logics. Typically, though we believe we could generalise the
developments herein to mix numerical constraints and prefix constraints or to
admit an infinite alphabet (based on developments in [I7]), it is unclear how
to handle Dy, within logics from [29] (see also [27) Section 4.1]). Similarly, it is
open how to handle the string domain Dy with regularity constraints, to name
another possibility for future work.
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