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Micromechanics-Informed Parametric Deep Material Network for Physics
Behavior Prediction of Heterogeneous Materials with a Varying Morphology

Tianyi Lia

aDassault Systèmes, 10 rue Marcel Dassault, 78140 Vélizy-Villacoublay, France

Abstract

Deep Material Network (DMN) has recently emerged as a data-driven surrogate model for heterogeneous materials.
Given a particular microstructural morphology, the effective linear and nonlinear behaviors can be successfully ap-
proximated by such physics-based neural-network like architecture. In this work, a novel micromechanics-informed
parametric DMN (MIpDMN) architecture is proposed for multiscale materials with a varying microstructure char-
acterized by several parameters. A single-layer feedforward neural network is used to account for the dependence
of DMN fitting parameters on the microstructural ones. Micromechanical constraints are prescribed both on the
architecture and the outputs of this new neural network. The proposed MIpDMN is also recast in a multiple
physics setting, where physical properties other than the mechanical ones can also be predicted. In the numerical
simulations conducted on three parameterized microstructures, MIpDMN demonstrates satisfying generalization
capabilities when morphology varies. The effective behaviors of such parametric multiscale materials can thus be
predicted and encoded by MIpDMN with high accuracy and efficiency.

Keywords: Deep material network, Parameterized microstructures, Structure-property relationships, Neural
network, Machine learning

1. Introduction

The effective macroscopic behaviors of heterogeneous materials can be predicted by the physical properties of the
constituents and the underlying microstructures using a multiscale modeling approach [1, 2, 3]. Among such models,
mean-field homogenization schemes rely on the micromechanical assumptions (inclusion shapes, interaction between
the constituents) of the microstructure being considered and are frequently used to predict linear and nonlinear
behaviors of specific composites (such as the fiber-reinforced plastics) [4, 5]. Thanks to their analytical nature, they
are computationally efficient and can be used as a local constitutive model on each integration point for concurrent
structural-scale simulation of industrial components. However, their inherent simplifying hypotheses on the idealized
microstructure may not be appropriate for other complex morphologies. In this case, full-field simulation of the
micromechanical problem would be necessary, following a computational homogenization approach [6]. For instance,
finite element (FE) simulation of a Representative Volume Element (RVE) of the underlying microstructure can be
carried out to compute the local solution fields. The accurate linear and nonlinear effective responses can then be
obtained through field averaging. However, such full-field method involves much higher computational cost and is
impractical to be run concurrently in multiscale simulations on industrial parts.

Recently, the Deep Material Network (DMN) method [7] has emerged as a novel data-driven surrogate model
for such multiscale materials. Based on linear elastic training data generated by high-fidelity computational ho-
mogenization (FE-RVE simulation, for instance), DMN is capable of predicting their elastic and inelastic behaviors
with high accuracy and efficiency even in the finite-strain range. Compared to other data-driven approaches for
material modeling [8] that rely on the (effective) strain-stress pair data, DMN learns instead the morphological
characterizations of the microstructure via its homogenization function (C1,C2) 7→ C. Here, (C1,C2) are the stiff-
ness tensors of the constituents and C is the effective stiffness tensor. Due to its physics-based neural-network like
architecture, DMN demonstrates great expressive power with much fewer fitting parameters compared to traditional
machine learning methods. Thanks to these interesting properties, it is now gaining popularity in the computational
mechanics community:
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• In [9], DMN has been successfully applied for 3-d particle-reinforced composites, polycrystalline materials
and woven composites involving three modeling scales. Nonlinear complex material behaviors such as hy-
perelasticity with stress softening and rate-dependent crystal plasticity are investigated under a finite-strain
setting.

• A new rotation-free formulation along with a flattened architecture is proposed in [10]. It has been tested for
short-fiber plastics and metal matrix composites with an elasto-plastic behavior in the matrix phase.

• Applications to short-fiber reinforced materials are also considered further in [11, 12, 13]. The thermomechan-
ical behaviors of such composites can be successfully captured by DMN. Concurrent multiscale simulations
combining a macroscopic finite element model and DMN on each integration point are performed for static
and dynamic problems on structural components.

• More complex material behaviors such as viscoplasticity or failure are investigated in [14, 15, 16, 17]. New
training strategies are also proposed to obtain more accurate nonlinear responses.

• In [18], other DMN architectures are explored with mean-field homogenization based building blocks. Appli-
cations to woven microstructures are considered. A generalization of the original DMN framework based on
interactions between discrete material nodes is also proposed in [19, 20]. It has been successfully applied to
porous microstructures with an elasto-plastic behavior.

Despite these successes indicated by numerical evidences, the expressive power of DMN remains to be fully
understood from a theoretical perspective. In [10], its micromechanical justifications are provided in the context
of generalized standard materials [21]. Thanks to the hierarchical architecture based on an appropriate laminate
microstructure as the building block, DMN is thermodynamically consistent and verifies the micromechanical bounds
on the effective linear and nonlinear behaviors. Actually, DMN can be identified as a multiple-rank laminate
microstructure in homogenization theory [22, 23], in which each constituent of a laminate is also a laminate.
Sequential laminates (also called coated laminates) are a subset among such hierarchical microstructures, where
one of the constituents in the lamination process is always the same. It is well known that the Hashin-Shtrikman
bounds [24] can be attained by such finite-rank sequential laminates. In the case of an effectively isotropic composite
of two isotropic phases, such bounds can be realized by a rank-3 laminate in 2-d or a rank-6 laminate for 3-d elasticity
[25]. As noted in [23, pg. 294], sequential laminates can approximate the homogenization function (C1,C2) 7→ C
associated with a two-phase microstructure to the second order in C1 −C2. Since sequential laminates are a proper
subset of multi-rank laminates, these results can be naturally extended to DMN and hence provide some preliminary
theoretical justifications of its expressive power.

In general, we are often dealing with a class of microstructures that present similar morphologies. These
microstructures are characterized by several parameters defining the geometrical shapes of each constituent inside
the RVE. For instance, the volume fraction parameter vf describes the overall relative volume of each constituent.
Other parameters also exist, depending on the exact morphological characterization of the microstructure. These
micromechanical parameters may have an important influence on the effective properties. Hence, it would be
beneficial that DMN also captures such structure-property relationships with high accuracy and efficiency. In
[26, 27], a transfer-learning based approach is proposed to construct a DMN database for such parameterized
microstructures. Training of several DMN instances is performed sequentially following a pre-determined path
in the parametric space. Piecewise linear interpolation is then used to include the dependence of DMN fitting
parameters on the microstructural parameters. In their work, they only focus on microstructures that can be
characterized by vf and a second-order orientation tensor [28].

Meanwhile, a regression-based approach is proposed in [11] for short-fiber reinforced materials with a constant
fiber volume fraction. The fitting parameters of one single DMN instance are assumed dependent on the varying
(principal) fiber orientation tensor (a1, a2, a3). The offline training is performed using a total loss function that
aggregates multiple microstructures with different (a1, a2, a3) values. The main objective of this paper is to extend
this formulation to generic parameterized microstructures, with varying volume fractions and possibly other geo-
metrical parameters. In particular, we investigate of the use of a single-layer feedforward neural network to account
for the dependence of DMN parameters on the microstructural ones. Additional micromechanics-based constraints
are included to improve generalization capability of our parametric DMN architecture.

Another objective of this paper is to recast DMN in a multiple physics setting. In the literature, DMN has been
used extensively as a surrogate of the possibly nonlinear mechanical behaviors of heterogeneous materials. Other
physical behaviors have not been explored except in [12], where a two-way coupled thermomechanical problem is
considered. The temperature-dependent stress-strain behaviors as well as the mechanically-induced self-heating
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are predicted. However, effective physical properties, such as thermal conductivity or the coefficient of thermal
expansion, are not explicitly computed by DMN. In this paper, we demonstrate that physical properties other than
the mechanical ones can also be accurately predicted by DMN, even though it is trained using isothermal linear
elastic mechanical data. It should be noted that multiphysics coupling is not considered in this paper.

The paper is organized as follows. The original DMN formulation [7, 9] is first reviewed and then recast in a
multiple physics setting in Sect. 2. Extensions to parameterized microstructures are then considered in Sect. 3, in
which we introduce a new micromechanics-informed parametric DMN architecture. The proposed method is further
evaluated on three parameterized microstructures in Sect. 4. The obtained numerical results highlight the effects
of the introduced physical constraints. Finally, the conclusions from the current work are summarized in Sect. 5.

2. Deep Material Network

Instead of learning the macroscopic (nonlinear) strain-stress behaviors of a particular two-phase microstructure
Ω, as shown in Fig. 1, DMN learns its linear elastic homogenization function

(C1,C2) 7→ C. (1)

The effective computation of Eq. (1) on complex microstructures Ω is in general realized by computational homoge-
nization like FE-RVE methods. The homogenization function encodes in particular the microstructure morphology,
which can be defined by the characteristic function

χ(x) =
{

1 x ∈ Phase 1,

0 otherwise.
(2)

In this regard, DMN is not a surrogate of the effective behaviors of the microstructure but the microstructure per
se.

CDMN ≈ CFE
C1

C2

(w,θ)

DMN

C2

C1

FE-RVE

Figure 1: DMN learns the morphology of a particular microstructure Ω through its homogenization function.

2.1. Network architecture and fitting parameters
In this work, we follow the original formulation of [7, 9] based on a perfect binary tree architecture and a

rotation-based formulation for laminates, with minor modifications that will be explained in the sequel.
DMN is a multiple-rank laminate microstructure as defined in [23, Chap. 9], comprised of hierarchically nested

laminates of laminates on different length scales, see Fig. 2. The rank L of such multiple-rank laminates, also called
the number of DMN layers, characterizes the number of nesting levels. Its architecture corresponds topologically
to a perfect binary tree. Each “node” is a rank-1 laminate microstructure, serving as the “mechanistic building
blocks” [7, 9, 10] or “neurons” in this neural-network like architecture.

On the input layer, each leaf laminate of the binary tree receives the linear elastic properties of the two phases
(C1,C2) expressed in their respective material frames. All these N = 2L entries are called DMN material nodes,
since each of them will be associated with a constitutive model of the phase 1 or 2 for online multiple physics
behavior prediction. The index set of the material nodes will be denoted I. It can be partitioned evenly into two
subsets for each of the phase.

I = {1, . . . , N} = I1 ∪ I2, I1 = {2j − 1 | j = 1, . . . , 2L−1}, I2 = {2j | j = 1, . . . , 2L−1}. (3)

On the output layer, the effective properties of the microstructure C are predicted through the root laminate
and are given in the global frame of the microstructure Ω. The homogenization function DMNL : (C1,C2) 7→ C of
such L-layer DMN can be defined recursively as follows

C = DMNL(C1,C2) =
{

Lam(C1,C2) L = 1,

Lam
(
DMNL−1(C1,C2), DMNL−1(C1,C2)

)
L > 1.

(4)
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Figure 2: An L-layer DMN architecture can be represented by a perfect binary tree with each “node” being a rank-1 laminate microstruc-
ture. The DMN material nodes 1 ≤ i ≤ N = 2L are represented by dots · on the input layer and receive the linear elastic properties
(C1,C2) of the two phases. In this example with 3 DMN layers, three nesting levels is involved in order to compute the homogenization
function DMN3 : (C1,C2) 7→ C. The fitting parameters are the weights w defined on the leaf laminates and the rotations θ on each
laminate.

In Eq. (4), each Lam denotes the homogenization function of the rank-1 laminate associated with different weights
(w′

1, w′
2) and rotations θ′, see Fig. 2. Compared to the original formulation [7], we omit the material rotation

matrices for phase constitutive properties on the input layer. Note that by omitting these input rotations, the
material frames of the input properties will actually coincide with the local laminate frames.

A rank-1 laminate is a microstructure in which its characteristic function Eq. (2) only varies in the direction of
lamination χ(x) = χ(x · n). In 3-d, its homogenization function Lam : (C′

1,C′
2) 7→ C′ can thus be characterized

by only two parameters: the volume fraction f ′ of one of the phases, and a 3 × 3 rotation matrix R(θ′) ∈ SO(3),
where SO(3) is the special orthogonal group acting on R3. The primes on the parameters and on the input and
output tensors indicate that they don’t represent necessarily the properties of the constituents (except for the input
layer), nor the effective behaviors of the microstructure (except for the output layer). The constituent properties
(C′

1,C′
2) are expressed in the laminate frame (e1, e2, e3), see Fig. 2. The lamination direction n aligns with this

local frame: e2 for 2-d microstructures [7], and e3 for 3-d ones [9]. The homogenized behaviors of the laminate are
first computed locally, then rotated to the frame of another laminate on the next nesting level or the global frame
for the laminate on level 0. Thanks to the simplifying geometry, the homogenization function Lam is analytical.

In summary, the fitting parameters of an L-layer DMN are

• Weights w = (w1, . . . , wN ), defined on the leaf laminates. Its length N = 2L is the number of DMN material
nodes. They are required to be non-negative, hence an adequate nonlinear activation function σ is applied

w = σ(z) ≥ 0, z ∈ RN . (5)

ReLU σ(z) = max(0, z) is used in [7, 9, 10, 11, 18], while Softplus σ(z) = log(1+exp(βz))/β is used in [19, 20]
as a smooth approximation to ReLU.
These weights are propagated from the leaf laminates to the root so that each laminate receives different
(w′

1, w′
2), see Fig. 2. Denoting the weights on level 0 ≤ i < L by w′(i), with w′(L−1) = w the weights on the

leaf laminates, we have
w

′(i)
j = w

′(i+1)
2j−1 + w

′(i+1)
2j , j = 1, . . . , 2i+1. (6)

For each laminate, the volume fraction f ′ can then be computed

f ′ = w′
1

w′
1 + w′

2
. (7)

Due to Eq. (6) and Eq. (7), the DMN homogenization function Eq. (4) is invariant with respect to a scaling
on DMN weights w 7→ kw for k > 0.
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• Rotations θ = (θ1, . . . , θ2L−1), defined for each laminate. Its length 2L −1 equals to the number of “nodes” in
a perfect binary tree. Its elements can be organized using breadth-first ordering like in Fig. 2. Each element
θi represents a 3 × 3 rotation matrix R(θi). In [9, 18], the three Euler angles are used. In this work however,
we use the quaternion representation which avoids singularity issues with Euler angles [29]. Hence, θ is a
(2L − 1) × 4 matrix.

The total number of fitting parameters can be found in Tab. 1.

L-layer DMN Weights Rotations Total
Number of fitting parameters N = 2L 4 × (2L − 1) 5 × 2L − 4

Table 1: Number of fitting parameters for an L-layer DMN, using the network architecture explained in Sect. 2.1 with in particular the
quaternion representation for the rotation matrices.

The training of these fitting parameters follows a data-driven approach, by comparing the DMN prediction of
the homogenized stiffness tensor and that predicted by computational homogenization, see Fig. 1. The machine
learning procedure is described in [9, 10] and will be presented in Sect. 3.5 for our parametric DMN architecture.

After training, DMN not only provides an accurate and efficient surrogate of the linear homogenization function
Eq. (4), it serves also as a surrogate microstructure to predict its nonlinear behaviors. In Appendix A, the nonlinear
online prediction architecture of DMN [7] is recalled. In addition, we introduce and numerically investigate the use
of acceleration methods [30] to further improve computational efficiency.

2.2. Multiple physics property prediction
As noted at the beginning of Sect. 2 and in Fig. 1, DMN should not be regarded as a surrogate of the effective

mechanical behaviors but the microstructure per se. It is hence desirable that other physical properties can be
predicted along with the mechanical ones at the online prediction stage. In this paper, we propose to consider the
following two additional physical properties

1. Thermal conductivity k, which is a symmetric second-order tensor for anisotropic behaviors.
2. Coefficient of thermal expansion α, also a symmetric second-order tensor in the anisotropic case.
It turns out that the online prediction of k and α requires only an adequate redefinition of the building block

(neuron), denoted by Lam in Eq. (4). In particular, the DMN network architecture as well as the fitted parameters
after offline training remain exactly the same. This property naturally recasts DMN in a multiple physics setting.
Although each DMN neuron corresponds to a laminate microstructure, the exact formula of Lam will now depend
on the physics being considered. Below, we will provide the definition of Lam for these additional physics properties.
For completeness, its original definition [7, 9] for (linear elastic) mechanical behaviors is also included.

To ease the notation, we will now ignore the primes on the input and output tensors in the laminate homoge-
nization function, see Fig. 1. For instance, for linear elasticity we now have

C = LamC(C1,C2).

It should be remembered that the input tensors don’t necessarily refer to those of the two constituents (except
for the input layer), and the output effective tensor is not necessarily the final effective property tensor of the
microstructure (except for the output layer).

Linear elastic behaviors
The linear elastic behaviors of the laminate microstructure is governed by static equilibrium. Based on the

lamination direction n, the stress components can be partitioned into two parts: a tangential part σt and a normal
part σn. For example, if the lamination direction aligns with the local e3 vector, then in Mandel notation we have

σt = (σ11, σ22,
√

2σ12), σn = (σ33,
√

2σ13,
√

2σ23). (8)

The strain tensor as well as the stiffness tensors can be partitioned similarly. The interface condition prescribes that
the normal part of the stress tensor σn is continuous, while the tangential part of the strain tensor εt is continuous.
It can be encoded by the following matrix equation[

εt
1

σn
1

]
=

[
εt

2
σn

2

]
=⇒

[
I3×3 03×3
Cnt

1 Cnn
1

]
︸ ︷︷ ︸

Ĉ1

[
εt

1
εn

1

]
=

[
I3×3 03×3
Cnt

2 Cnn
2

]
︸ ︷︷ ︸

Ĉ2

[
εt

2
εn

2

]
, (9)
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where C1 and C2 are the 6 × 6 stiffness tensors of the two laminate phases in Mandel notation.
Using the definition of the effective strain tensor ε = fε1 + (1 − f)ε2, where f is the volume fraction of the

phase 1, we obtain the following formula that computes ε1 from ε(
(1 − f)Ĉ1 + fĈ2

)
ε1 = Ĉ2ε =⇒ ε1 = Aε = Ĉ−1Ĉ2ε, Ĉ = (1 − f)Ĉ1 + fĈ2, (10)

where A = Ĉ−1Ĉ2 is the strain localization tensor.
Finally, with the effective stress tensor σ = fσ1 +(1−f)σ2 = fC1ε1 +(1−f)C2ε2, the effective stiffness tensor

can be obtained as follows
σ = Cε, C = f(C1 − C2)A + C2. (11)

The rotation can then be applied adequately for the fourth-order stiffness tensor C.

Thermal conductivity
Now, the neuron homogenization function computes the second-order effective (anisotropic) conductivity tensor

k from those of its constituents k1 and k2
k = Lamk(k1, k2).

The laminate microstructure is governed by steady-state heat equation and the Fourier’s law q = −k∇T that
relates the temperature gradient ∇T to the heat flux q through the conductivity tensor. As in Eq. (8), the heat
flux and the temperature gradient can be decomposed into a tangential and a normal part

qt = (q1, q2), qn = (q3).

Similar to Eq. (9), the interface condition can be described by the following linear system[
∇T t

1
qn

1

]
=

[
∇T t

2
qn

2

]
=⇒

[
I2×2 02×1
knt

1 knn
1

]
︸ ︷︷ ︸

k̂1

[
∇T t

1
∇T n

1

]
=

[
I2×2 02×1
knt

2 knn
2

]
︸ ︷︷ ︸

k̂2

[
∇T t

2
∇T n

2

]
.

Following the same procedure as before, the effective conductivity tensor is given by

q = −k ∇T , k = f(k1 − k2)A + k2, A = k̂−1k̂2, k̂ = (1 − f)k̂1 + f k̂2. (12)

The rotation can be applied to the second-order tensor k.

Coefficient of thermal expansion
The effective coefficient of thermal expansion (CTE), as a second-order tensor α in the anisotropic case, can be

computed along with the effective stiffness tensor. Now, the laminate homogenization function becomes

(C, α) = LamC,α(C1,C2, α1, α2).

While C is still given by Eq. (11), the effective CTE can be obtained by using the relationship [31, 32] between α

and the effective compliance tensor S = C−1. For completeness, its derivation is now recalled below.
Consider an arbitrary two-phase microstructure with fixed material orientation. It is subjected to a uniform

temperature difference ∆T and a traction vector σn on its boundary, such that the strain, stress and temperature
fields are uniform inside the microstructure. Using the thermoelastic constitutive equation, we obtain

ε1 = ε2 = S1σ + α1∆T = S2σ + α2∆T =⇒ σ = (S1 − S2)−1(α2 − α1)∆T. (13)

In Eq. (13), similar to stiffness and compliance tensors, the second-order CTE tensors are also expressed in Mandel
notation by a 6 × 1 vector. The expression S−1α = Cα is hence understood as matrix multiplication similar to Cε.

The volume-averaged stress σ1 of the phase 1 can be related to σ and ∆T by using the mechanical stress
concentration tensor B and the thermal stress concentration tensor b

σ1 = Bσ + b∆T. (14)

Under the previous thermoelastic loading, using Eq. (13), we obtain hence

b = (I6×6 − B)(S1 − S2)−1(α2 − α1). (15)
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This universal relationship Eq. (15) is valid for arbitrary thermoelastic loading of the microstructure. It implies
that the thermal stress concentration tensor b can be uniquely determined as long as the mechanical one is given.

The effective thermoelastic constitutive equation for the microstructure is given by

ε = Sσ + α∆T. (16)

With Eq. (14) under isothermal loading ∆T = 0, the effective compliance tensor can be computed by

S = f(S1 − S2)B + S2, (17)

where f is the volume fraction of the phase 1 as before. Combining Eq. (14) to Eq. (17) with σ = fσ1+(1−f)σ2 = 0,
we obtain

ε = α∆T = fε1 + (1 − f)ε2 =
(
fα1 + (1 − f)α2

)
∆T + f(S1 − S2)σ1

=
(
fα1 + (1 − f)α2

)
∆T +

(
S − fS1 − (1 − f)S2

)
(S1 − S2)−1(α1 − α2)∆T.

(18)

After some manipulations, we deduce that the effective CTE tensor reads

α = α1 + (S − S1)(S1 − S2)−1(α1 − α2). (19)

Note that Eq. (19) is not only valid for each laminate microstructure (DMN neuron) but also for the microstruc-
ture being approximated by DMN, as long as material orientation is fixed for both phases. In the latter case, first
C is predicted by using Eq. (4), then Eq. (19) can be directly applied using S = C−1 computed by DMN. The only
requirement is that the (effective) thermoelastic constituent properties are expressed in the same global frame.

When at least one of the phases contains varying local material orientation, Eq. (19) needs to be applied as a
neuron operation similar to Eq. (11) and Eq. (12), from the input layer to the output layer. For each laminate
microstructure, the following operations are expressed and performed in the same laminate frame:

1. Compute C using Eq. (11).
2. Compute α using Eq. (19) and S = C−1 just obtained.
3. Apply appropriate rotation operations for C and α.

Rotations must be applied at the end, since Eq. (19) is only valid when expressed in the same frame. The rotated
C and α then become the inputs for a laminate of the next nesting level (or directly the final DMN outputs).

3. Extension to parameterized microstructures

In general, we are often dealing with a class of morphologically similar microstructures, described by one or
several parameters p = (p1, p2, . . .). In the case of the unidirectional fiber composite, illustrated in Fig. 3, they are
parameterized by the single vf parameter which indicates the volume fraction of the fibers.

(w,θ)

Training

(w′,θ′)

Training

(w′′,θ′′)

Training

Independent Independent

vf20% 50% 80%

Prediction with a fixed
parameter value

Figure 3: With the original formulation, each DMN is trained independently to learn a particular microstructure Ωpi .

7



The original DMN formulation [7] is not adapted for such parameterized microstructures p 7→ Ωp, since each
DMN is trained to learn a particular microstructure Ωpi with a fixed parameter value pi. After independent training
on such n microstructures, we only obtain a discrete set of DMN objects

{DMN(wi,θi), i = 1, . . . , n}.

Each DMN(wi,θi) is tailored to approximate the homogenized behavior of a particular microstructure Ωpi . Without
another training (which requires the costly computational homogenization data), it is not possible to predict the
behavior of a new microstructure Ωp′ that is absent in the previous set.

3.1. Transfer-learning based interpolative DMN
In [26], a transfer-learning strategy is proposed to interpolate different DMN models trained at different parame-

ter values pi. The functional dependence p 7→
(
w(p), θ(p)

)
is defined by interpolating the DMN parameters (wi, θi)

between different microstructural parameters pi. This assumes implicitly that the same DMN architecture with
the same number of layers is used. If each DMN is trained independently using random initialization of its fitting
parameters, p 7→

(
w(p), θ(p)

)
would not be smooth, which leads to less accurate predictions when interpolating

between known pi. This motivates hence a transfer-learning based training strategy, illustrated in Fig. 4.

(w0,θ0)

Training

(w1,θ1) (w2,θ2)

vf

Transfer
learning

Training

Transfer
learning

Training

Interpolation of (wi,θi)

Prediction for arbitrary parameter value

Figure 4: Transfer-learning based interpolative deep material network.

A pre-determined sequential path (p0, p1, . . . , pn) in the parametric space is required to carry out transfer-
learning training on DMN parameters

DMN(w0,θ0) → DMN(w1,θ1) → · · · → DMN(wn,θn) .

The training of (wi, θi) is initialized using previously trained (wi−1, θi−1), for i > 0. Only the first training at p0 is
performed using standard random initialization. Transfer learning not only ensures a smooth interpolation between
DMN parameters, it also accelerates training of subsequent DMN models for new microstructural parameters pi.

While this transfer-learning based approach has been tested with success for microstructures depending solely
on the volume fraction parameter [26], and those depending on the volume fraction and the orientation tensor [27].
In our opinion it has also some limitations:

• Definition of a pre-determined training sequence may become difficult especially for higher parametric dimen-
sions. For microstructures with multiple geometrical parameters of different natures, it is not trivial to choose
the starting point p0 as well as the sequential interpolation points pi. Furthermore, the expressive power of
DMN in the parametric space may also depend on the chosen training path (p0, p1, . . . , pn). The number of
DMN active material nodes (those with a positive weight) may decrease in the process of transfer learning
with the ReLU activation function. An example is given in [26].
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• Extrapolation especially for higher parametric dimensions. Based on interpolation points, it would be difficult
to extrapolate “outside” the training domain. In [26, 27] for instance, extrapolation in the parametric space
is not considered.

• Computational efficiency concerns. Since transfer learning is sequential in nature, DMN at different mi-
crostructural parameters can only be trained one after another. Also, each DMN instance associated with its
parameters needs to be stored for interpolation.

3.2. Micromechanics-informed parametric DMN
In this work, we propose a novel micromechanics-informed parametric DMN (MIpDMN) architecture dedicated

for parameterized microstructures. The functional dependence of DMN parameters (w, θ) on the microstructural
parameters p is now directly accounted for by a single-layer feedforward neural network. We obtain thus

w(p) = σ(W1p + w0), (20a)
θ(p) = Θ1p + θ0, (20b)

where W1 and Θ1 are ”weight” tensors of appropriate dimensions, w0 and θ0 are “bias” tensors and σ denotes a
nonlinear activation function as in Eq. (5). Several remarks are in order:

• The tensors W1 and Θ1 characterize the dependence of DMN parameters w and θ on microstructural pa-
rameters, while w0 and θ0 remain constant while microstructural parameters change.

• When the microstructural parameters have little effect on the effective behaviors of the microstructures, we
would have W1 = Θ1 = 0 and thus recover the original DMN formulation [7]. The “bias” parameters w0 and
θ0 solely are needed to approximate the homogenized behavior of this parameterized microstructure.

• Due to the presence of a nonlinear activation function applied after affine transformation, the functional
dependence of the DMN weights Eq. (20a) is different from piecewise linear interpolation used in the transfer-
learning based interpolative DMN approach [26, 27]. Even when the ReLU activation function is used,
Eq. (20a) implies that each wi is individually piecewise linear with different slope-changing points. In [26, 27]
however, linear interpolation is performed globally on the DMN weights vector w.

• Similar functional dependence for the DMN rotations Eq. (20b) has been proposed in [11]. They have shown
that an affine dependence works best in terms of accuracy and generalization capabilities, in comparison with
other nonlinear functions. Hence, hidden layers as well as nonlinear activation functions are not considered
for θ(p) in this work.

The neural network proposed in Eq. (20) follows a fully-connected architecture in the sense that the DMN
weights w and rotations θ depend on all the microstructural parameters. Meanwhile, several findings in the
literature motivate a micromechanics-informed (MI) architecture by separating the dependence of DMN weights
and rotations:

• For parameterized microstructures with a single volume fraction parameter, the näıve approach, as proposed
by [26] in which only the DMN weights vary with vf and the DMN rotations remain constant, actually predicts
physically plausible vf-dependence of the homogenized behaviors.

• For microstructures with parameters that do not change the volume fraction, such as for short-fiber reinforced
composites with a fixed volume fraction but different fiber orientations, [11] indicates that only the DMN
rotations need to vary with such parameters, with a constant DMN weights vector.

It should be noted that these results originate directly from the micromechanics-based design of DMN [10]. In order
that the parametric DMN reflects these micromechanical properties, the microstructural parameters are partitioned

p = (vf, q) ∈ R × Rq, (21)

where vf is the volume fraction of the phase 2, while q denotes all other q independent purely morphological
parameters that are orthogonal to vf. Given the partition Eq. (21), the MI architecture is now given by

w(p) = w(vf) = σ(vf · w1 + w0), (22a)
θ(p) = θ(q) = Θ1q + θ0, (22b)
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Figure 5: Parametric deep material network: (a) fully-connected architecture; (b) micromechanics-informed one.

where w0 and w1 are vectors of length N , θ0 is a (2L − 1) × 4 matrix and Θ1 is a (2L − 1) × 4 × q tensor. The
fully-connected architecture Eq. (20) and the MI one Eq. (22) are compared in Fig. 5.

The partition Eq. (21) can be made more mathematically precise through the n-point correlation functions
[33] which provide a hierarchy of statistical descriptions of the microstructure. The vf parameter only quantifies
the relative volume proportion of each phase and corresponds to the 1-point correlation function. The other q
purely morphological parameters do not change the current volume fraction (which is specified by vf) and contain
information from higher-order correlation functions (2-point, 3-point, etc.). The orthogonal partition can be achieved
through a principal component analysis [34, 35, 36] on such correlation functions. The vf parameter can be extracted
as a major principal feature orthogonal to other principal parameters q that are purely morphological.

The advantages of the MI architecture Eq. (22) compared to the fully-connected one is two-fold. Firstly, fewer fit-
ting parameters are required due to the partition Eq. (21), which increases computational efficiency. Secondly, as we
shall see through numerical examples, it provides comparable expressive power and may also enhance generalization
ability in the parametric space.

Compared to the transfer learning-based interpolative DMN described in Sect. 3.1, a unique offline training is
now required to optimize the fitting parameters of MIpDMN, see Fig. 6. The expressive power of DMN is evaluated
jointly using the linear elastic behavior data at each pi in the parametric space. Furthermore, a neural-network
functional dependence naturally defines interpolation and extrapolation inside or outside the training domain and
extends easily to higher parametric dimensions.

p0

vfPrediction for arbitrary parameter value

p1 p2

wvf Training
θ q

Figure 6: Offline training for MIpDMN based on the linear elastic behavior data at each pi in the parametric space.

This micromechanics-informed parametric DMN will be denoted in the sequel by MIpDMN. To summarize, it
is defined by:

• DMN homogenization function Eq. (4) which learns the morphology of a particular microstructure Ωp.
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• Micromechanics-informed single-layer feedforward neural network Eq. (22) which learns the functional depen-
dence of DMN parameters on microstructural parameters p. It contains the fitting parameters of MIpDMN:
(w0, w1, θ0, Θ1).

With an L-layer architecture, the number of fitting parameters can be found in Tab. 2. The offline training of
these fitting parameters follows a data-driven machine learning approach which will be described in Sect. 3.5.

L-layer MIpDMN Weights Rotations
Number of fitting parameters 2N = 2L+1 4(q + 1) × (2L − 1)

Table 2: Fitting parameters and their numbers for an L-layer MIpDMN.

3.3. Volume fraction constraint
Apart from the MI architecture on the functional dependence p 7→ (w, θ), some physical constraints can also

be prescribed on the outputs of this neural network to further improve its generalization ability, similar to the
physics-informed machine learning approach for nonlinear partial differential equations [37].

It is now well known that the DMN weights vector w reflects the actual volume fraction information of the
microstructure Ω being considered [7, 10]. Specifically, the volume fraction of the phase 2 learned by DMN is given
by

vf(w) =
∑

i∈I2
wi∑

i∈I wi
≈ vfΩ. (23)

In [16], this physical property is explicitly included in the loss function as an additional constraint in learning a
particular microstructure. Using our MI functional dependence Eq. (22a), Eq. (23) can be further enforced at all
volume fraction values

vf(w) = vf
(
σ(vf · w1 + w0)

)
= vf, ∀vf ∈ [0, 1]. (24)

This volume fraction constraint is prescribed on DMN weights w.
Due to the presence of a nonlinear activation function σ, Eq. (24) is nonlinear and the unknowns (w0, w1) can

not be solved explicitly. Furthermore, and luckily enough since it contributes to the expressive power of MIpDMN,
there may exist multiple solutions that satisfy Eq. (24). Anticipating the fact that this constraint will also be
included during the offline training of our MIpDMN, we adopt a machine-learning approach to weakly enforce this
volume fraction constraint through a loss function

Lvf = 1
nv

nv∑
i=1

(
vf

(
σ(vfi · w1 + w0)

)
− vfi

)2
, (25)

where vfi denotes the collocation points at which Eq. (24) is weakly prescribed and nv is the number of such
collocation points. The sampling of these collocation points, the initialization of (w0, w1) and the optimization
algorithm will be described together with the offline training of MIpDMN in Sect. 3.5.

Using 5 DMN layers and the ReLU activation function, an example of the minimization of Eq. (25) is shown
in Fig. 7. The loss function is decreasing, which demonstrates that our MI functional dependence Eq. (22a) of
w is capable of satisfying the volume fraction constraint Eq. (24). In this example, after about 200 epochs, the
maximum absolute error of |vf(w) − vf| in [0, 1] becomes approximately 0.5%.

Another physical information that can be extracted from Eq. (22a) is the number of active DMN material nodes.
For arbitrary vf ∈ [0, 1], the number of active nodes for the phase p ∈ {1, 2} is given by

card{i ∈ Ip | wi(vf) > 0},

where card(·) = |·| is the cardinality of a set. In practice, machine epsilon is used instead of 0. The ratio of active
DMN nodes for each phase can be obtained by dividing their respective number of active nodes by 1

2 N , which is
the number of total material nodes per phase. In the whole parametric space, the number of globally active nodes
is defined by

card{i ∈ I | wi(vf) > 0, ∀vf ∈ [0, 1]}.

In Fig. 8, these quantities are plotted as a function of vf, the volume fraction of the phase 2. In order to satisfy
Eq. (24), the ratio of active nodes of the phase 1 decreases from 100% to less than 70%, while for the phase 2 this
ratio increases from less than 60% up to more than 90%. Our MI functional dependence Eq. (22a) of w is hence
capable of adapting the weights of each phase as a function of the microstructure volume fraction.
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Figure 7: Volume fraction constraint prescribed on w(p): (a) minimization of the loss function Eq. (25); (b) predicted DMN volume
fraction at the early stage and at the end of training.
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Figure 8: Variation of the ratio of active DMN nodes with the volume fraction of the phase 2.

3.4. Orientation constraint
DMN not only captures the microstructure morphology, it also learns material orientation distribution function

Ω → SO(3) in the microstructure [9]. Using orientation tensors, we propose an orientation constraint to be
prescribed on DMN weights w and rotations θ, in order that the parametric DMN generalizes such material
orientation knowledge in the whole parametric space.

Orientation tensors [28] describe concisely the statistical information of the orientation distribution of unit
vectors. Given an orientation distribution function f : S2 → R, where S2 denotes the two-dimensional surface of a
unit sphere, the 3 × 3 second-order orientation tensor is defined by

a =
∫
S2

f(e)e ⊗ e dS, ∥e∥ = 1, (e ⊗ e)ij = eiej . (26)

It can be easily shown that a is symmetric and tr(a) = 1, due to the normalization constraints of e and of the
probability density f . Higher order orientation tensors do exist [38], however the second-order one Eq. (26) is the
most frequently used to characterize local fiber orientations due to manufacturing processes and their influence on
material properties [39, 40].

In this work, we propose a generalization of such (second-order) orientation tensors for orientation distributions
of rotations. Contrary to transversely isotropic fibers for which a single unit vector suffices to characterize its
material frame, general anisotropic materials (like orthotropic ones) require a rotation matrix R to describe the
transformation from its material frame (e1, e2, e3) to the global one. In such cases, the orientation distribution
function is now defined for rotation matrices f : SO(3) → R. Such probability density function can also be found
for the texture analysis of polycrystalline materials [41] or rigid body dynamics [42]. Given that each column R(i)

of R essentially expresses ei ∈ S2 in the global frame, it defines an orientation distribution of the material frame,
cf. Fig. 9 for the tows in this woven microstructure.

Given this interpretation, three (second-order) orientation tensors can be defined for each axis of the material
frame

a(i) =
∫

SO(3)
f(R)R(i) ⊗ R(i) dR, (27)
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(a) (b) (c)

Figure 9: Orientation distribution of the material frame of the tows in the woven microstructure: (a) e1; (b) e2; (c) e3.

where dR is the volume element for SO(3) and Einstein summation is not implied. For discrete probability functions
defined on a mesh, the integral can be understood as weighted-averaging using the element volumes as weights.
Note that in the case of a two-phase microstructure, Eq. (27) can be computed for each of the phase. Each of these
orientation tensors satisfies tr(a(i)) = 1. Due to the orthonormality of (e1, e2, e3), we also have

a(1) + a(2) + a(3) =

1
1

1

 .

Using Eq. (27) in the case of Fig. 9, the material frame orientation tensors for the tows are given by

a(1) =

0.5 0 0
0 0.5 0
0 0 0

 , a(2) =

0.5 0 0
0 0.5 0
0 0 0

 , a(3) =

0 0 0
0 0 0
0 0 1

 . (28)

The tows are thus isotropically oriented in the X-Y plane for e1 and e2, and unidirectionally oriented in the Z axis
for e3. For the matrix phase in Fig. 9, its material frame coincides with the global frame. In this case, a is similar
to the unidirectional orientation tensor and satisfies

a
(i)
ii = 1, a

(i)
jk = 0 for other components. (29)

Suggested by [27], such orientation tensors can also be defined for DMN. As explained in Sect. 2.1, DMN
rotations θ define the rotation matrices between the local frame of the current laminate to that of another laminate
on the next nesting level. They can thus be composed to obtain the effective rotation matrix from the material
frame (e1, e2, e3) (leaf laminates) to the global frame of the microstructure Ω (root laminate). Let p(i) denote the
parent of a laminate i in the DMN binary tree architecture. For instance, in the 3-layer DMN example shown in
Fig. 2, we have p(4) = 2 for the leaf laminate 4 and p2(4) = p

(
p(4)

)
= p(2) = 1 which is the root laminate. For

each leaf laminate i which carries the DMN material nodes, the effective rotation matrix from the material frame
to the global one is given by

R̃i = R(θpL−1(i)) · · · R(θp2(i))R(θp(i))R(θi), R̃i ∈ SO(3). (30)

Note that for an L-layer DMN, we have necessarily pL−1(i) = 1 for arbitrary leaf laminate i. Due to the absence
of input rotation matrices for (C1,C2), the material nodes 1 ≤ i ≤ N that share the same leaf laminate also obtain
the same effective rotation matrix. For instance, for the material nodes 3 and 4 contained in the leaf laminate 5 in
Fig. 2, their effective rotation is

R̃5 = R(θ1)R(θ2)R(θ5).
Using these effective rotations on leaf laminates, similar to Eq. (27), the DMN material frame orientation tensors

can be computed for each phase p

a(i)
p (w, θ) =

∑
j∈Ip

wjR̃
(i)
j ⊗ R̃

(i)
j∑

j∈Ip
wj

, p ∈ {1, 2}. (31)

Compared to the DMN volume fraction Eq. (23), the computation of DMN orientation tensors requires both DMN
weights w and rotations θ. Using the MI architecture Eq. (22), we propose the following orientation constraint
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through the definition of a loss function

La = 1
na

2∑
p=1

na∑
i=1

∥ap

(
w(pi), θ(pi)

)
− aΩ,p(pi)∥2, ∥a∥2 =

3∑
i=1

3∑
j=1

3∑
k=1

(
a

(i)
jk

)2
. (32)

In Eq. (32), pi are the na collocation points in the microstructural parametric space and aΩ,p(pi) are the corre-
sponding orientation tensors of the parameterized microstructure, for the phase p. The training strategy of Eq. (32)
will be described further in Sect. 3.5.

With 5 DMN layers and the ReLU activation function, an example of the minimization of Eq. (32) is shown in
Fig. 10. The microstructure is parameterized by two geometrical parameters p = q = (q1, q2) ∈ [0, 1]2 that do not
change vf. Due to Eq. (22a), the DMN weights do not vary with p. We suppose that the material frame of both
phases coincides with the global one, hence in Eq. (32) the unidirectional orientation tensor Eq. (29) is used as the
target values. The decreasing loss history indicates that our MI architecture Eq. (22) is capable of satisfying the
orientation constraint.
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Figure 10: Orientation constraint prescribed on w(p) and θ(p): (a) minimization of the loss function Eq. (32); (b) material frame
orientation tensor component a

(1)
11 for the 1st material axis e1 of the phase 2, at epoch 10 of training. The points in (b) represent the

N = 25 = 32 collocation points.

At the early stage of the training, a
(1)
11 of the phase 2 still presents variations in the parametric space (q1, q2).

Its mean and standard deviation values at epoch 101 and at epoch 103 are indicated in Tab. 3. After training,
a

(1)
11 ≈ 1 becomes quasi-uniform as expected.

a
(1)
11 Mean Standard deviation

At epoch 101 0.866 0.0440
At epoch 103 0.999 0.000686

Table 3: Mean and standard deviation of a
(1)
11 of the phase 2 in the parametric space at epoch 101 and at epoch 103.

3.5. Offline training of MIpDMN
As shown in Fig. 6, the MIpDMN fitting parameters in Eq. (22) are optimized jointly using the linear elastic

behavior data at different microstructural parameters. Each sample s in the training data contains the homogenized
linear elastic stiffness tensor CFE

s of a particular microstructure with parameters ps, given input linear elastic
behaviors of both phases (C1,C2)s, see Fig. 1. Recall that CFE

s is in generally performed by computational
homogenization like FE-RVE. The generation of such synthetic dataset requires sampling both in the input material
space and in the parametric space of the microstructure

(C1,C2)s ∈ M, ps = (vf, q)s ∈ P ⊂ R × Rq =⇒ CFE
s . (33)

In Eq. (33), M represents the discrete material sample set containing various input material properties of (C1,C2),
while P is the parametric sample set. In this work, these two samplings are performed independently then combined
using a Cartesian product. For different ps, the same M is used to evaluate the linear elastic homogenization
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behavior. With this Cartesian product approach, generalization error can be quantified unambiguously in the
material sampling space and in the parametric space. To maintain the training cost manageable, in this work we
limit the number of total samples (FE-RVE simulations) to be |P| × |M| = 1500. Hence, if more ps are present, less
(C1,C2)s will be sampled. For comparison, in the original DMN [9] and the transfer-learning approach [26], they
have fixed |M| to be 500.

In [11], another strategy is proposed for short-fiber reinforced plastics with fixed volume fraction but arbitrary
fiber orientations. The material samples set M is assigned to the parametric sample set P in a cyclic fashion,
resulting thus in a reduced number of |M| samples. Since different material samples are used at different ps, it is
important that no bias is introduced when distributing M into P.

Material sampling. We follow the original material sampling method proposed by [9], assuming that (C1,C2) are
both orthotropic in their respective material frames. In total, 9 + 9 = 18 material parameters are required to
characterize their orthotropic elastic behaviors and 1 additional scaling parameter is used to introduce contrasts
in the elastic moduli between the two phases. In this work, Latin hypercube sampling [43] is used to sample this
19-dimensional space.

After sampling, the generated (C1,C2)i are randomly partitioned into a training set and a validation set. An
example of material sampling is given in Fig. 11, for the unidirectional fiber composite example in Sect. 4.1.
Anisotropy in the phase 2 is similar to Fig. 11(a) and is not shown. In this case, since the actual fibers are much
stiffer than the matrix, the scaling parameter is adapted to generate appropriate contrasts in the synthetic elastic
moduli between the two phases. From Fig. 11(b), it can be seen that ratios between the Young’s moduli range
from 10−1 to 104.
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Figure 11: Material sampling for input orthotropic stiffness tensors (C1,C2).

Sampling in the microstructural parametric space. Two different sampling procedures need to be performed in the
microstructural parametric space. The first one defines the parameters values ps ∈ P in Eq. (33) on which CFE

s

is computed together with the previous material sampling M. For different microstructures, different sampling
strategy may be used to well cover the region of interest in the parametric space. For instance, in [11], the fiber
orientation space is sampled by subdividing recursively the orientation triangle into sub-triangles. For microstruc-
tures depending solely on the volume fraction parameter [26], equidistant sampling can be used in the vf-interval of
interest. In general, all the microstructural parameters p = (vf, q) are sampled jointly in order that less sampling
points are needed to optimally fill the parametric space.

The other sampling concerns the physical constraints prescribed on Eq. (22). The volume fraction constraint
Eq. (25) and the orientation constraint Eq. (32) are weakly enforced using collocation points in the parametric
space. Since the costly computational homogenization is not carried out for these points, more collocation points
can be used.

The volume fraction constraint Eq. (25) requires a sampling of the vf parameter. A uniform sampling in [0, 1]
is simply used to generate them: vfi = i/(N − 1), with i = 0, 1, . . . , N − 1. The number of collocation points is
taken to be the number of DMN material nodes N . A numerical study not reported here shows that N is sufficient
to prescribe Eq. (24) with an acceptable accuracy, which is demonstrated by the example presented in Sect. 3.3.

The orientation constraint Eq. (32) requires collocation points pi in the parametric space, since it is prescribed
both on DMN weights and rotations. Assume that each microstructural parameter is rescaled such that p ∈ [0, 1]q+1.
Sobol low-discrepancy sequence [44] is used to generate these collocation points which presents good space filling
properties. If internal bounds within the parameters are present, such as for the fiber orientation space [11],
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collocation points outside the feasible region are removed. The number of collocation points is also taken to be the
number of DMN material nodes N . Sobol sequence is deterministic so that the same collocation points are used
given the number of layers L. Numerical example shown in Sect. 3.5 shows that the orientation constraint can be
well prescribed with this sampling strategy.

Loss function. Based on the previous material and parameter sampling, a total loss function L is defined as follows

L = 1
|P|

∑
P

Lp + λvfLvf + λaLa, Lp = 1
|M|

∑
M

e2
i , ei = ∥CDMN

i − CFE
i ∥

∥CFE
i ∥

(34)

In Eq. (34), Lvf is the volume fraction constraint Eq. (25) and La is the orientation constraint Eq. (32). Similar to
[9], the data loss at a fixed microstructural parameter value Lp is the mean squared error in the material sample
set M comparing the DMN predictions and the computational homogenization ones, with the relative Frobenius
norm on the stiffness tensors. In the total loss, Lp is then averaged among different samples of the microstructural
parameters.

The scaling factors λvf and λa are symbolically present in Eq. (34). In the physics-informed machine learning
community, they are introduced to balance the interplay between various data-based and PDE residual terms
[45]. In this work, we simply set λvf = λa = 1. Our numerical simulations indicate that both the data loss
and the constraint terms are already of the same order O(1) initially. Furthermore, no improvement in terms of
training, validation and test accuracy has been found by adjusting these scaling factors (for instance, by setting
λvf = λa = 10). This may be related to the physics-based nature of DMN, the mathematically concise constraints
Eq. (25) and Eq. (32) which are derivative-free, and the optimization algorithm described below.

In [9, 10], a penalty term is also introduced to control the magnitude of z in Eq. (5). It is motivated by the fact
that the ReLU activation function is unbounded and the DMN homogenization function Eq. (4) is invariant with
respect to the scaling z 7→ kz for k > 0. In this work, we don’t find it necessary to prescribe such constraints on
our fitting parameters (w0, w1).

Optimization algorithm. The total loss function Eq. (34) is minimized using gradient-based methods, similar to
other DMN formulations [7, 10, 18, 19]. Our MIpDMN architecture is implemented using PyTorch [46]. The
derivatives of the loss function Eq. (34) with respect to the fitting parameters Eq. (22) can thus be easily computed
with automatic differentiation. Single precision is used for offline training.

Our MIpDMN forward function (p,C1,C2) 7→ C is vectorized over both the material sampling dimensions
(C1,C2) ∈ M and the parameter sampling dimension p ∈ P, in order to achieve optimal parallel computational
efficiency. In [7, 11, 18, 19], a mini-batch (or even only one sample) is randomly drawn from the whole dataset
at each iteration of an epoch to introduce randomness in gradient descent and promote more frequent parameter
updates. In the machine learning community, this is known to improve generalization capability [47]. In this work
however, a batch-learning approach is adopted, where the entire dataset is trained in a single batch at every epoch.
Our simulation results indicate that the trained MIpDMN still generalizes well without significant overfitting, thanks
to its physics-based nature. Furthermore, the training time can be reduced due to vectorization.

We have compared different first-order gradient-based optimizers provided in PyTorch, and have found that the
resilient backpropagation (Rprop) algorithm [48] works best in terms of convergence (loss values), stability (noise)
and efficiency (time to train each epoch) in this batch-learning setting. Compared to other algorithms like Adam
[49] used in the DMN community [11, 20], Rprop only considers the signs of gradients and each weight is updated
independently using a dynamically adapted step size. For batch learning, Rprop with default hyperparameters
outperforms Adam even if the hyperparameters of the latter are tuned [50]. Hence, our MIpDMN is trained over
10000 epochs using Rprop with an initial learning rate (step-size) of 10−2.

Initialization. Depending on the activation function used in Eq. (22a), different initialization can be used for w0.
For ReLU, uniform distribution w0 ∼ U(0.2, 0.8) as proposed by [7] is applied. For w1 which characterizes the
dependence of the DMN weights on vf, it is zero-initialized. Compared to a random initialization, numerical
simulations demonstrate that it would result in better convergence of the loss function.

Regarding the DMN rotations in Eq. (22b), similarly Θ1 is zero-initialized. The dependence of p 7→ θ(p) is
hence also learned from zero. For the constant part θ0, a random initialization on quaternions is used. Each
component is initialized using the standard normal distribution, and then normalized to obtain a unit norm. We
don’t find it necessary to control the norm of each DMN rotation θ in Eq. (22b) through the use of an additional
loss term in Eq. (34).

Since initialization can have an impact on trained DMN parameters, training is in general repeated 20 times
and the model with the least final loss value is chosen for further numerical investigations.
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4. Numerical examples

In this section we will numerically evaluate our MIpDMN architecture on three parameterized microstructures.
For the effective stiffness and thermal conductivity tensors, the FE-RVE simulation data are generated by imposing
periodic boundary conditions [6] on the displacement or the temperature field. The effective CTE data are obtained
by post-processing the thermal strains due to a uniform unit temperature increase, using Eq. (16). The finite
element model is set up via the Abaqus FE-RVE plugin [51], then solved by Abaqus 2023 using 24 threads of
Intel(R) Xeon(R) Gold 5220R CPU 2.20GHz. Training of MIpDMN is performed on an NVIDIA GeForce RTX
2080 Ti GPU card with single precision.

4.1. Unidirectional fiber composite
We first consider a unidirectional fiber composite with varying fiber volume fractions. The 3-d finite element

model is built with hexagonal fiber packing. In total, 5 FE-RVE models are constructed, see Fig. 12. Three of
them (vf = 0.2, vf = 0.5 and vf = 0.8) constitute the parametric sample set P and are used to generate training
dataset, while the other two are used to test interpolation accuracy.

(a) vf = 0.2 (b) vf = 0.35 (test) (c) vf = 0.5 (d) vf = 0.65 (test) (e) vf = 0.8

Figure 12: FE-RVE models for the unidirectional fiber composite with varying fiber volume fractions. The models with vf = 0.2,
vf = 0.5 and vf = 0.8 are used to generate training dataset, while those with vf = 0.35 and vf = 0.65 are used to test interpolation
accuracy.

Material sampling M is performed using the method described in Sect. 3.5. In total, the same 500 input
orthotropic material properties are sampled for all the five microstructures, see Fig. 11. Since the actual composite
is made of a polypropylene matrix reinforced with glass fibers, the synthetic fiber stiffnesses C2 are also generated
to be statistically higher than the matrix ones C1. The real linear elastic properties of the two isotropic phases are
indicated in Tab. 4.

E (MPa) ν k (W/(m·K)) α (K−1)
Matrix 3300 0.41 0.27 7 × 10−5

Fiber 72000 0.22 0.93 5 × 10−6

Table 4: Real linear elastic properties, thermal conductivity and CTE of the two phases for the unidirectional fiber composite and the
ellipsoidal inclusion composite.

For training microstructures vf = 0.2, vf = 0.5 and vf = 0.8, 400 of the 500 samples are used as training dataset,
while the other 100 are reserved for validation. For the others vf = 0.35 and vf = 0.65, all the 500 samples are used
for testing the interpolation accuracy. The FE-RVE models contain approximately 100 × 103 to 200 × 103 degrees
of freedom and require up to 6 seconds for each run.

Since the volume fraction (of the fibers) is the only parameter of this microstructure, the MIpDMN architecture
Eq. (22) implies that the DMN weights w vary with vf according to Eq. (22a), while the DMN rotations θ remain
constant. The fitting parameters are hence (w0, w1, θ0). This is somehow similar to the “näıve” approach described
in [26]. Given a pre-trained base DMN with w(b) and corresponding volume fraction vf(b), the DMN weights at a
new vf are scaled appropriately based on the volume fraction

wi =


1 − vf

1 − vf(b) w
(b)
i i ∈ I1,

vf
vf(b) w

(b)
i i ∈ I2.

(35)

The DMN rotations remain unchanged. Compared to Eq. (35), the vf-dependence of w in our MIpDMN is not
directly prescribed but learned from data.
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Training of our MIpDMN is conducted following Sect. 3.5, with the two physical constraints Eq. (25) and
Eq. (32). The ReLU activation function is used. Since the material frames of both phases coincide with the global
one, the unidirectional material frame orientation tensor Eq. (29) is used as the target value for the orientation
constraint. With 5 DMN layers, we first compare Rprop with the frequently used Adam optimizer in terms of
loss history, in Fig. 13. A total of 20 trainings are realized using random initialization for each optimizer. For
Adam, two (initial) learning rates are used, which are common values for DMN training [11, 20]. With a larger
lr = 10−2, Adam results in a much more noisy loss history which could be solved by learning rate decay [11, 20], at
the cost of introducing more hyperparameters. For both learning rates, Adam converges slower than Rprop with no
improvement in the training accuracy. Similar to the finding of [50], our numerical simulations indicate that Rprop
with no hyperparameter tuning outperforms Adam for the batch-training of MIpDMN.
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10 3

10 2

10 1

100

101

Lo
ss

5 layers
Rprop
Adam lr = 10 2

Adam lr = 10 3

Figure 13: Loss history with 5 DMN layers with the Rprop and the Adam optimizers using two learning rates (lr).

Similar to the original DMN formulations [7], adding more layers also increases the expressive power of MIpDMN.
From Fig. 14(a), the final loss values with 7 layers are lower than those obtained with 5 layers. The total loss
can be partitioned into two parts according to Eq. (34): the FE-RVE data part and the physical constraints part.
Their respective history is shown in Fig. 14(b) for the training realization with the least final loss value, for 7
layers. Each of the three “FE-RVE” curves represents one particular training microstructure vf = 0.2, vf = 0.5 or
vf = 0.8, and is monotonically decreasing simultaneously with similar values. The physical constraints part also
converges well and is lower than the FE-RVE part by an order of magnitude. Among the 20 training realizations,
the median training time for 5 or 7 layers is only respectively 570 s and 786 s. Compared to the training times
(several hours) reported in [9, 11], we believe that our batch-learning approach along with the vectorization of the
forward function help to speed up training significantly. In the sequel, we will report the results obtained with 5
layers which provides satisfactory accuracy.
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Figure 14: MIpDMN training for the unidirectional fiber composite: (a) loss histories with 5 and 7 DMN layers; (b) partition of the
total loss into the FE-RVE data part and the physical constraints part.

In Fig. 15, the statistical distribution of the relative Frobenius-norm error ei in Eq. (34) between DMN pre-
dictions and FE-RVE ones on each material sample is shown for the microstructure with vf = 0.5. The 0.1, 0.5
(median) and 0.9-quantiles are also indicated. Even though the maximum relative error can reach 6% for some
localized samples, the error is less than 2.4% for 90% of them. We believe that these quantiles are less sensitive to
outliers and hence more appropriate for comparing different models.
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Figure 15: Statistical distribution of the relative error ei for the microstructure with vf = 0.5.

We first analyze the influence of physical constraints on the MI architecture Eq. (22). The training, validation
and test errors are compared in Fig. 16 using their respective 0.1, 0.5 (median) and 0.9-quantiles at different volume
fractions. The MIpDMN model without physical constraints is trained similarly with 20 realizations and the one
with the least final loss value is chosen. Validation error refers to the relative error computed on the validation
dataset composed of 100 material samples. Overfitting is not observed for both cases, since the validation errors are
comparable to the training errors. When the physical constraints are not included, the training errors at vf = 0.5
and vf = 0.8 are similar or only slightly lower at vf = 0.2 than the case when they are considered. However, the
inclusion of the physical constraints reduces the interpolative test errors at vf = 0.35 and vf = 0.65 for previously
unseen microstructures. The physical constraints may hence improve generalization ability of MIpDMN.
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Figure 16: Training, validation and test errors of MIpDMN at different volume fractions: (a) with physical constraints; (b) without
physical constraints.

In Fig. 17, we analyze the influence of the physical constraints on the fully-connected architecture Eq. (20). Now,
the DMN rotations also become a function of the volume fraction, leading to an additional fitting parameter Θ1
during training. The physical constraints reduce overfitting at the data points. By comparing Fig. 16(a) and Fig.
17(a), we observe similar training, validation and test errors between the MI and the fully-connected architectures,
when the physical constraints are included. The MI architecture Eq. (22) hence demonstrates similar expressive
power compared to the fully-connected one, even with a constant DMN rotations vector θ0 for different volume
fractions. When the physical constraints are not considered, the interpolative test errors become significantly larger
(even the scale of the y-axis needs to be changed) in Fig. 17(b) for the fully-connected architecture. Comparing Fig.
16(b) and Fig. 17(b), we conclude that the MI architecture itself may help to improve generalization capability.

In Fig. 18(a), the DMN volume fraction prediction Eq. (23) is presented as a function of the microstructure
volume fraction. For all cases, DMN recovers well the volume fractions 0.2, 0.5 and 0.8 at the FE-RVE data points.
The microstructure morphologies are hence well learned by DMN using linear elastic data [7, 10]. However, away
from these three data points, the DMN volume fraction prediction may differ from the actual microstructure one.
At vf = 0.35, when Eq. (25) is explicitly included during training, the relative errors |vfDMN − vfΩ|/vfΩ are smaller
than 0.4% for the two parametric DMN architectures. However, when it is not the case, we obtain 2% with the MI
architecture and even 9% with the fully-connected one. This may explain the higher interpolative testing errors at
vf = 0.35 for these two models in Fig. 16(b) and Fig. 17(b). The straight line Eq. (24) can only be well recovered
when the volume fraction constraint Eq. (25) is explicitly included.
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Figure 17: Training, validation and test errors of a fully-connected parametric DMN at different volume fractions: (a) with physical
constraints; (b) without physical constraints.
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Figure 18: Physical constraints verification for the micromechanics-informed (MI) and the fully-connected architectures: (a) DMN
volume fraction prediction; (b) error on the material frame orientation tensors.

Similarly, the error on the material frame orientation tensors ∥ap(vfi) − aΩ,p(vfi)∥ using the norm defined in
Eq. (32) is presented in Fig. 18(b). The errors on the fibers and on the matrix are summed together. When
Eq. (32) is not included during training, deviation from the theoretical unidirectional material frame orientation
tensor Eq. (29) can be observed, even though the error is well bounded between [0.2, 0.8]. Similar to Fig. 18(a),
physical constraint errors increase significantly outside the training domain. The inclusion of Eq. (32) may hence
improve the generalization capability in the whole parametric space.

In this work, the rotation matrix for (C1,C2) of each of the N = 2L material nodes on the input layer is omitted
compared to the original formulation [7, 9]. In Fig. 19, the training, validation and test errors are shown when they
are instead included. Similarly, the training process is realized 20 times with random initialization and the model
with the least final loss value is chosen. Compared to Fig. 16(a), the inclusion of such material rotations does not
increase the expressive power of MIpDMN. This could be partially due to the fact that the microstructure being
considered does not contain local material orientation.

0.2 0.35 0.5 0.65 0.8
Volume fraction

0.00

0.01

0.02

0.03

0.04

0.05

Re
la

tiv
e 

er
ro

r

MIpDMN; with material rotations
Training
Validation
Test

Figure 19: Training, validation and test errors of MIpDMN with additional N = 2L = 32 material rotations at different volume fractions.
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Using the real linear elastic properties of the two phases in Tab. 4, the relative errors between the DMN
predictions and the FE-RVE results for two parametric DMN architectures and with or without the physical
constraints are shown in Fig. 20. The conclusions drawn from Fig. 16 and Fig. 17 are recovered. The MI
architecture and the physical constraints both help to improve generalization ability of the parametric DMN model.
Using MIpDMN with the physical constraints, the relative errors are less than 1.5% among the 5 microstructures
being considered.
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Figure 20: Relative error using the real properties between the DMN predictions and the FE-RVE results for two parametric DMN
architectures with or without the physical constraints.

The homogenized elastic property prediction is presented in Fig. 21 in the whole parametric space. The general
nonlinear influence of the volume fraction is well captured by these two parametric DMN models. The use of the
MI architecture as well as the physical constraints helps to improve generalization capabilities.
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Figure 21: Homogenized elastic moduli prediction as a function of the fiber volume fraction obtained by parametric DMN models: (a)
longitudinal Young’s modulus E1; (b) transverse Poisson ratio ν13; (c) transverse shear modulus µ12. The theoretical values at vf = 0
and vf = 1 are also indicated as test data.

In Fig. 22(a), the MI functional dependence of the DMN weights Eq. (22a) is illustrated. The MIpDMN
architecture with the physical constraints is used. Globally, 22 of the 32 material nodes are active. With the
increasing fiber volume fraction, DMN weights of the matrix decrease gradually and individually, while those of the
fiber increase at the same time. This is also reflected in Fig. 22(b), where the ratio of the active DMN nodes is
presented for both phases. Even though the ratios for both phases gradually increase or decrease, the total number
of active nodes does not vary much. This ensures the expressive power of MIpDMN in the whole parametric space.

Using the proposed MIpDMN architecture and the fitted parameters trained previously on isothermal linear
elastic data, we will now predict the effective thermal conductivity k and the effective CTE α with the redefinitions
of the laminate homogenization function Lam in Sect. 2.2. The constituent properties used in this online prediction
test are provided in Tab. 4. In Fig. 23, the MIpDMN predictions are compared with the FE-RVE results as a
function of the volume fraction. The nonlinear vf-dependences of k and α are well captured by MIpDMN. An
excellent agreement is obtained in the whole interval, even though the longitudinal α1 is slightly underestimated
near vf ≈ 0. Using a similar relative Frobenius-norm error ei in Eq. (34) for second-order tensors, the maximum
error among these 5 FE-RVE data points is 0.85% for k at vf = 0.35, and 4.5% for α also at vf = 0.35. This is a
remarkable result knowing that our MIpDMN is only trained using isothermal linear elastic data. This demonstrates
that DMN learns the microstructure per se, and not a particular physics property in particular.
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Figure 22: MIpDMN: (a) DMN weights evolution with the volume fraction; (b) variation of the ratio of active DMN nodes
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Figure 23: (a) Effective thermal conductivity prediction for the longitudinal k1 and transverse k2 components; (b) effective CTE
prediction. The FE-RVE results and the theoretical values for vf = 0 and vf = 1 are indicated by circles.

Comparison with transfer-learning based interpolative DMN
We follow the procedure described in [26] and the microstructure with the least fiber volume fraction is used as

the starting point in the training sequence vf0 = 0.2 → vf1 = 0.5 → vf2 = 0.8. Subsequent training is initialized
using Eq. (35) based on the previously trained DMN. As for our parametric DMN models, the transfer learning
process is repeated 20 times with random initialization when training the base DMN model. The realization with
the least final total loss value Ltot = L0 + L1 + L2 is then chosen for further analysis. For comparison with previous
MIpDMN results, 5 DMN layers are used.

In Fig. 24(a), loss histories obtained with transfer learning are presented. Transfer learning indeed accelerates
convergence. For vf = 0.5 and vf = 0.8, convergence is achieved within the first 1000 epochs. However, the final
loss value becomes an order of magnitude larger at vf = 0.8 compared to the base DMN. In [26], there is also a
slight increase in the final loss values at the end of the transfer learning process. For vf = 0.8, DMN is also trained
using random initialization. The loss histories are compared with that obtained from transfer learning. A reduction
of the expressive power of DMN is hence observed with transfer learning.

The training, validation and test errors obtained with this transfer-learning based interpolative DMN model
are presented in Fig. 25(a). Compared to the results obtained with MIpDMN (with the physical constraints) in
Fig. 16(a), the errors at the training points vf = 0.2 and vf = 0.5 are lower with this transfer learning approach.
However, due to the reduction of the expressive power, the errors at vf = 0.8 become comparable to those with
MIpDMN. The test errors are significantly larger than the training and the validation ones, especially at vf = 0.65.
The transfer-learning may hence tend to overfit at the data points.

Even though it is not proposed in [26], we can also use Eq. (35) to extrapolate DMN weights outside the training
domain. In this case, the DMN weights at vf = 0 are hence extrapolated from the base DMN at vf = 0.2, while the
DMN trained by transfer-learning at vf = 0.8 can be used to obtain the DMN weights at vf = 1. Since Eq. (35)
respects the actual volume fraction Eq. (23), the volume fraction constraint vfDMN = vfΩ is satisfied at all vf when
combined with piecewise linear interpolation. However, it is not the case for the orientation constraint. In Fig.
25(b), the error on the material frame orientation tensors is computed in the whole parametric space. Compared to
MIpDMN, the error is much larger with the transfer-learning approach and also increases with interpolation. This
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Figure 24: (a) Loss histories for different volume fractions using transfer learning; (b) loss history at vf2 = 0.8 obtained using random
initialization and from transfer learning.

0.2 0.35 0.5 0.65 0.8
Volume fraction

0.00

0.01

0.02

0.03

0.04

0.05

Re
la

tiv
e 

er
ro

r

TL-based interpolative DMN
Training
Validation
Test

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Volume fraction

0.00

0.02

0.04

0.06

0.08

0.10

Er
ro

r i
n 

a

MIpDMN
TL-based interpolative DMN
FE-RVE

(b)

Figure 25: (a) Transfer-learning based interpolative DMN: training, validation and test errors at different volume fractions; (b) error
on the material frame orientation tensors obtained by MIpDMN with the physical constraints and by the transfer-learning approach.

may explain the larger test errors in the transfer-learning model in Fig. 25(a).
The relative errors using the real linear elastic properties of the two phases in Tab. 4 are shown in Fig. 26 for the

MIpDMN model and the transfer-learning approach. Even though the latter is more accurate for the first 3 volume
fractions, it becomes less accurate for the last 2 volume fractions. The relative errors obtained with MIpDMN, on
the contrary, are more uniform in the parametric space.
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Figure 26: Relative error using real properties between the DMN predictions and the FE-RVE results obtained by MIpDMN with the
physical constraints and by the transfer-learning (TL) approach.

The elastic moduli prediction is also compared in Fig. 27 between these two approaches. Both models are able to
capture the nonlinear influence of the volume fraction, especially on the in-plane Poisson ratio ν23. While a perfect
agreement is found for E1, the transfer-learning approach seems to slightly overfit the ν23 prediction between 0.5
and 1.0.

Similar to Fig. 22, the DMN weights evolution in the parametric space is also shown in Fig. 28 for the
transfer-learning approach. Globally, 12 of the 32 material nodes are active. Due to transfer-learning and the ReLU
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Figure 27: Homogenized elastic moduli prediction as a function of the fiber volume fraction obtained by MIpDMN and the transfer-
learning (TL) approach: (a) longitudinal Young’s modulus E1; (b) in-plane Poisson ratio ν23.

activation function, the number of active nodes can only decrease [26]. While 12 material nodes are active for
vf = 0.2 and vf = 0.5, only 9 active nodes are present for vf = 0.8. Compared to MIpDMN, this gradual decrease of
the active DMN material nodes may lead to a reduced expressive power. The functional dependence on vf is mainly
realized by adapting weights values at each transfer-learning interpolation point. There is no gradual change in the
ratios of active nodes for intermediate volume fractions.
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Figure 28: Transfer-learning based interpolative DMN: (a) DMN weights evolution with the volume fraction; (b) variation of the ratio
of active DMN nodes.

4.2. Woven composite
We now consider the 2 × 2 twill woven composites with varying tow volume fractions. Compared to the unidi-

rectional fiber composite, now local material orientation is present for the yarns, illustrated in Fig. 9. The 3-d finite
element model is constructed using TexGen [52] with 4 volume fraction values for the tows, see Fig. 29. Three of
them (vf = 0.459, vf = 0.608 and vf = 0.729) constitute the parametric sample set P and are used to generate the
training dataset, while vf = 0.537 is used to test interpolation accuracy. The FE-RVE model contains 75000 voxel
elements and requires approximately 11 seconds for each run.

(a) vf = 0.459 (b) vf = 0.537 (test) (c) vf = 0.608 (d) vf = 0.729

Figure 29: FE-RVE models for the woven composite with different tow volume fractions. The models with vf = 0.459, vf = 0.608 and
vf = 0.729 are used to generate the training dataset, while vf = 0.537 is used to test interpolation accuracy.

The real linear elastic properties of the two phases are adapted from [9] and can be found in Tab. 5. The matrix is
isotropic while the carbon fiber tows are assumed to be transversely isotropic in the local material frames. Compared
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to [18], the transverse Young’s modulus E2 of the tows is modified to satisfy transverse isotropy. A similar material
sampling M compared to Fig. 11 is performed to generate 500 input orthotropic material properties. Given the
high moduli contrasts in the real properties, the synthetic yarn stiffnesses C2 are also generated to be statistically
higher than the matrix ones C1. For the training microstructures vf = 0.459, vf = 0.608 and vf = 0.729, 400 of the
500 samples are used as the training dataset, while the other 100 are reserved for validation. For vf = 0.537, all
the 500 samples are used for testing the interpolation accuracy.

E (GPa) ν µ (GPa) k (W/(m·K)) α (K−1)
Matrix 3.8 0.387 1.37 0.3 7 × 10−5

Tow (longitudinal) 78.8 0.35 2.39 1 4 × 10−6

Tow (transverse) 6.24 0.6 1.95 0.4 4 × 10−5

Table 5: Real linear elastic properties, thermal conductivity and CTE of the two phases for the woven composite.

MIpDMN is trained following Sect. 3.5 with the two physical constraints Eq. (25) and Eq. (32) and the ReLU
activation function. In Eq. (32), the unidirectional material frame orientation tensor Eq. (29) is defined as the
target for the matrix, since its material frame coincides with the global one. For the tows, we use the “planar
isotropic” tensor Eq. (28) which characterizes the statistical spatial orientation of the yarns in the FE-RVE model.
As before, the training process is realized 20 times with random initialization and the one with the least final loss
value is chosen for further investigations. The median training time is only 800 s for 7 layers and 1176 s for 9 layers.

In Fig. 30, the loss histories are compared for 7 and 9 DMN layers. As for the unidirectional fiber composite,
an increased expressive power is observed with more layers, leading to lower (final) loss values. The FE-RVE data
and the physical constraints parts are monotonically decreasing. The physical constraints Eq. (25) and Eq. (32) are
well satisfied since the corresponding loss value is approaching 10−5 with 9 layers. In the sequel, we will report the
results using 7 layers which provides satisfactory accuracy.

0 2000 4000 6000 8000 10000
Epoch

10 3

10 2

10 1

100

Lo
ss

7 layers
9 layers

(a)

0 2000 4000 6000 8000 10000
Epoch

10 5

10 4

10 3

10 2

10 1

100

Lo
ss

9 layers
Total
FE-RVE data
Constraints

(b)

Figure 30: MIpDMN training for the woven composite: (a) loss histories with 7 and 9 DMN layers; (b) partition of the total loss into
the FE-RVE data part and the physical constraints part.

The volume fraction and the material frame orientation tensors for the tows are compared with their prescribed
values in Fig. 31. The DMN volume fraction matches the FE-RVE data points and agrees well with the theoretical
straight line even when evaluated outside the training region. In Fig. 31(b), the components a

(i)
ii of the DMN

material orientation tensors are shown. An excellent agreement is also obtained. Even without the additional
rotations on the input layer, our DMN architecture is capable of learning local material orientation present in the
microstructure.

In total, 81 DMN material nodes are globally active in the parametric interval [0.4, 0.8], as shown in Fig. 32. As
in Fig. 22, the number of active nodes gradually decreases from 55% to 35% for the matrix while that of the tows
increases from 50% to 65%. The overall ratio of the active nodes remains approximately 55% within the training
region [0.459, 0.729]. This is believed to ensure sufficient expressive power for MIpDMN.

In Fig. 33(a), the training, validation and test errors are computed at different volume fractions for MIpDMN
without material rotations. The median errors are approximately 2% for all the four microstructures. As in Fig.
16(a), the test error is only slightly larger compared to the training ones. In Fig. 33(b), the results are reported
for MIpDMN with the additional 27 = 128 material rotations. The training is also realized 20 times and the model
with the least final loss value is shown. In the presence of local material orientation (tows), such material rotations
do improve training and validation accuracy, but only marginally. Furthermore, the inclusion of these rotations
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Figure 31: Verification of the physical constraints for the woven composite: (a) volume fraction; (b) material frame orientation tensors
for the tows.
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Figure 32: Variation of the ratio of active DMN nodes with varying volume fraction.

may increase the risk of overfitting and higher test interpolative errors, due to more fitting parameters in θ0 of
Eq. (22b). According to Fig. 33(b), the median and the 0.9-quantile values of the test error are now 4.6% and
12%. For the model with the second least final loss value, somehow less overfitting is present. The median test
error becomes 3% and its 0.9-quantile is 6.7%, i.e., still slightly higher than the case when such rotations are not
introduced.

0.46 0.54 0.61 0.73
Volume fraction

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Re
la

tiv
e 

er
ro

r

MIpDMN; without material rotations
Training
Validation
Test

(a)

0.46 0.54 0.61 0.73
Volume fraction

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Re
la

tiv
e 

er
ro

r

MIpDMN; with material rotations
Training
Validation
Test

(b)

Figure 33: Training, validation and test errors of MIpDMN at different volume fractions: (a) without material rotations; (b) with
additional 27 = 128 material rotations.

With the real linear elastic properties provided in Tab. 5, the homogenized elastic moduli are computed in
Fig. 34 with varying volume fraction. For comparison, the fully-connected architecture Eq. (20) is also tested
with the physical constraints. Recall that Eq. (20) implies that the DMN rotations also become a function of the
volume fraction. Both models capture well the nonlinear vf-dependence of these elastic moduli. The fully-connected
architecture not only increases the number of fitting parameters (Θ1 is now added), it does not improve prediction
accuracy compared to the MI one Eq. (22). For MIpDMN, the maximum relative Frobenius-norm error ei in
Eq. (34) is less than 1.5% among the 4 FE-RVE data points.
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Figure 34: Homogenized elastic moduli prediction as a function of the tow volume fraction obtained by parametric DMN models: (a)
in-plane Young’s modulus E2; (b) in-plane Poisson ratio ν12; (c) transverse shear modulus µ23.

Using the previously trained 7-layer MIpDMN, we now predict the effective thermal conductivity and the effective
CTE in Fig. 35 using the real properties of the constituents provided in Tab. 5. Due to the low CTE values of
the tows (fibers) in the woven plane, the effective in-plane α1 is well lower than the out-of-plane one. An excellent
agreement is found with the FE-RVE results. Among the 4 data points, the maximum relative Frobenius-norm
error is 0.25% for k at vf = 0.459 and 0.98% for α also at vf = 0.459. Even though MIpDMN is only trained
using isothermal linear elastic data, it is capable of predicting other physical properties when the microstructure
morphology varies.
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Figure 35: (a) Effective thermal conductivity prediction for the in-plane k1 and out-of-plane k3 components; (b) effective CTE prediction.
The FE-RVE results are indicated by circles.

In this case, the second-order CTE tensor of the tows is transversely isotropic in its material frame, while the
matrix remains isotropic. This implies that Eq. (19) must be applied as a neuron operation from the input layer to
the output layer along with the effective stiffness tensor computation. If the laminate homogenization function of
Eq. (19) for the effective CTE computation is applied directly to the obtained effective stiffness tensor, as shown
in Fig. 36, the result would be incorrect.
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Figure 36: Comparison between a direct application and a DMN layer-by-layer application of the laminate homogenization function of
Eq. (19) for the effective CTE computation.
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The computational efficiency of MIpDMN in terms of computing the homogenized stiffness tensor given C1
and C2 is compared to FE-RVE simulations in Tab. 6. Thanks to this significant speed-up, MIpDMN can be
further used for parametric analysis [26], uncertainty quantification [27] and material property calibration [17]. In
particular, it can be employed to identify simultaneously the material and microstructural parameters in an inverse
identification problem. A preliminary proof-of-concept study is provided in Appendix B.

FE-RVE 7-layer MIpDMN
Wall time (speed-up) 11 s 6.62 ms (1662)

Table 6: Computational speed-up of MIpDMN compared to FE-RVE in terms of homogenized stiffness tensor prediction.

4.3. Ellipsoidal inclusion composite
Finally, we consider the ellipsoidal inclusion composite described by two parameters: volume fraction vf of the

fibers and the aspect ratio ar (ratio between the length and the diameter of the fiber). The aspect ratio parameter
is purely morphological and does not change vf. According to Eq. (21), we have thus q = (ar) in this case.

The two-dimensional parametric space (vf, ar) is sampled using Sobol low-discrepancy sequence which ensures
an optimal space-filling. Since it is deterministic, additional sampling points can thus be easily included. The
bounds for these two parameters are

• Volume fraction: [0.05, 0.065]. Higher volume fractions would lead to mesh generation issues with the body-
centered fiber packing.

• Aspect ratio: [1, 100]. Both spherical inclusions ar = 1 and slender fibers ar ≫ 1 are covered with such large
variation of this ar parameter.

In this work, 20 samples of pi = (vf, ar)i are generated, see Fig. 37. The ar parameter is sampled in the log-scale.
The first 10 points p0≤i<10 constitute the parametric sample set P and are used to generate training dataset. The
other 10 points p10≤i<20 are reserved to evaluate the generalization accuracy of MIpDMN.
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Figure 37: Sampling points in the parametric space for the ellipsoidal inclusion composite.

For each pi = (vf, ar)i, a 3-d FE-RVE model is built using the body-centered fiber packing. In Fig. 38, two
examples are given corresponding to the first two sampling points. The models contain approximately several
hundreds of thousands of quadratic tetrahedral elements and may take up to 60 seconds for each run.

The real linear elastic properties of the two phases are the same as for the unidirectional fiber composite, given
in Tab. 4. Given the high number of microstructures (10 for training, 10 for test), in total 150 input orthotropic
material properties (C1,C2) are sampled to produce M. The synthetic fiber stiffnesses C2 are also generated to be
statistically higher than the matrix ones C1. For the training microstructures p0≤i<10, 100 of the 150 samples are
used as training dataset, while the other 50 are reserved for validation. For the others p10≤i<20, all the 150 material
samples are used for testing the generalization accuracy.

MIpDMN is trained following Sect. 3.5 with the two physical constraints Eq. (25) and Eq. (32) and the ReLU
activation function. Since local material orientation is absent, the unidirectional material frame orientation tensor
Eq. (29) is defined as the target for both phases in Eq. (32). As before, the training process is realized 20 times
with random initialization and the model with the least final loss value is chosen for further investigations. The
median training time is only 800 s for 7 layers and 1198 s for 9 layers. The loss histories for 7 and 9 DMN layers
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(a) p0: vf = 0.35, ar = 10 (b) p1: vf = 0.5, ar = 100.5 ≈ 3.162

Figure 38: Example FE-RVE models for the ellipsoidal composite with different fiber volume fraction and aspect ratio values: (a) p0;
(b) p1.

are presented in Fig. 39. The final loss value is well decreasing with more layers. The FE-RVE data part and the
physical constraints part are also monotonically decreasing.
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Figure 39: MIpDMN training for the ellipsoidal inclusion composite: (a) loss histories with 7 or 9 DMN layers; (b) partition of the total
loss into the FE-RVE data part and the physical constraints part.

The variation of the number of active DMN nodes is presented separately for the matrix and for the fiber in
Fig. 40. 7 DMN layers are used. In total, 73 out of the 128 DMN nodes are globally active in the parametric space
p = (vf, ar) ∈ [0, 0.7] × [1, 100]. Due to the MI architecture Eq. (22), the volume fraction parameter determines the
number of active matrix or fiber nodes while the aspect ratio parameter has no influence.
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Figure 40: Variation of the ratio of active DMN nodes in the parametric space: (a) matrix; (b) fiber. The training points are indicated
by circles.

In Fig. 41(a), the training, validation and test errors are presented for MIpDMN with 7 or 9 layers. These errors
are first computed at each of the 20 sampling points, then aggregated using quantiles. All these errors become lower
with more DMN layers. Overfitting is not observed since the validation errors are comparable with the training
ones. For the training and validation errors, their statistical variations are limited. In the example of a 7-layer
MIpDMN, the 0.9-quantile error is less than 4% while the median error value is less than 2%. However, the test
errors present larger statistical dispersion since their 0.9-quantiles reach approximately 10%. Due to a large amount
of test points in the parametric space (see Fig. 37), MIpDMN is being evaluated both with interpolation and
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extrapolation. The 0.9-quantile of the test errors is mainly due to the presence of “outliers” at some particularly
challenging test microstructures. The median test errors, nevertheless, are only slightly larger than the training
and the validation errors, as before.
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Figure 41: Training, validation and test errors of parametric DMN models: (a) comparison between 7 and 9 layers using the
micromechanics-informed (MI) architecture; (b) comparison with the fully-connected architecture using 7 layers.

These errors are also computed for a fully-connected architecture Eq. (20) with 7 DMN layers. Compared
to the MI one Eq. (22), now the DMN fitting parameters become function of both microstructural parameters
w = w(vf, ar) and θ = θ(vf, ar). The physical constraints Eq. (25) and Eq. (32) are included. According to
Fig. 41(b), not only the fully-connected architecture does not significantly reduce training and validation errors, it
also nearly doubles the 0.9-quantile of the test errors. The MI architecture Eq. (22) ensures hence a comparable
expressive power in the parametric space with certain generalization capability.

In Fig. 42, the median errors are first computed at each of the 20 training and test sampling points, then
interpolated and extrapolated to the whole parametric space using Kriging implemented in the SMT library [53].
In Fig. 42(a), the maximum error (10%) is localized at the “outlier” microstructure p16 with a very high aspect ratio
(87) compared to the training domain. Except this point, the median errors are between 1% and 4% and are visually
uniform in the parametric space. The fully-connected architecture, however, produces more error variations in the
parametric space. This demonstrates again the satisfying interpolation and extrapolation generalization capability
of the MI architecture.
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Figure 42: Median errors of parametric DMN models in the parametric space: (a) micromechanics-informed; (b) fully-connected. The
training and test points are respectively indicated by circles and crosses.

With the real linear elastic properties in Tab. 4, the vf-dependence of the homogenized elastic moduli at fixed
aspect ratio ar = 20 are illustrated in Fig. 43 using a 9-layer MIpDMN. A perfect agreement is found with the
additional test FE-RVE simulation data, knowing that they all correspond to previously unseen microstructures
during training. The microstructure vf = 0.1 lies even outside the training domain. Among the data points, the
maximum relative Frobenius-norm error on C is only 3.3% at vf = 0.6.

In Fig. 44, the influence of the aspect ratio parameter is analyzed with a fixed vf = 0.4 and compared with the
FE-RVE results on these new microstructures. Not only MIpDMN is capable of predicting the increase of E1 with
ar (at least in the training domain), it can also account for the more subtle variations of ν12 and µ23, which are all
in good agreement with the FE-RVE data. Outside the training domain for ar, good predictions are obtained at
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Figure 43: Homogenized elastic moduli prediction as a function of vf at fixed ar = 20 using a 9-layer MIpDMN: (a) longitudinal Young’s
modulus E1; (b) transverse Poisson ratio ν13; (c) transverse shear modulus µ12. The training domain is represented by a gray shadowed
region. The theoretical values at vf = 0 and vf = 1 are indicated as test data.

ar = 1, while some deviations are found near ar = 100, where the relative Frobenius-norm error is 5.9%. While the
physical constraints can indeed improve interpolative and extrapolative generalization capability of MIpDMN, they
cannot replace the input training data. If the prediction at higher aspect ratios is important, more corresponding
FE-RVE data could be included during training.
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Figure 44: Homogenized elastic moduli prediction as a function of ar at fixed vf = 0.4 using a 9-layer MIpDMN: (a) longitudinal Young’s
modulus E1; (b) transverse Poisson ratio ν12; (c) in-plane shear modulus µ23. The training domain is represented by a gray shadowed
region.

Using the real thermal conductivity and CTE properties of the constituents provided previously in Tab. 4, we
will now use MIpDMN trained with isothermal linear elastic data to predict the effective thermal conductivity and
the effective CTE. In Fig. 45, the nonlinear vf- and ar-dependences of k are respectively well predicted. A satisfying
agreement with the FE-RVE results is obtained for both the longitudinal and transverse components. Among the
data points, the maximum relative Frobenius-norm error is 0.64% at vf = 0.4 with fixed ar = 20, and 1.1% at ar = 1
with fixed vf = 0.4. This remarkable result illustrates again the multiple physics property prediction capability of
DMN, knowing that the thermal conductivity and the CTE data are not used as training data at all.
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Figure 45: Effective thermal conductivity prediction using a 9-layer MIpDMN for the longitudinal k1 and transverse (k2, k3) components:
(a) as a function of vf at fixed ar = 20; (b) as a function of ar at fixed vf = 0.4. The FE-RVE results and the theoretical values for
vf = 0 and vf = 1 are indicated by circles.

In Fig. 46, the effective CTE is predicted while varying vf and ar. As before, a good agreement is found between
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the MIpDMN prediction and the FE-RVE results. Among the data points, the maximum relative Frobenius-norm
error is 2.2% at vf = 0.6 with fixed ar = 20, and 4.6% at ar = 1 with fixed vf = 0.4.
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Figure 46: Effective CTE prediction using a 9-layer MIpDMN for the longitudinal α1 and transverse α2 components: (a) as a function
of vf at fixed ar = 20; (b) as a function of ar at fixed vf = 0.4. The FE-RVE results and the theoretical values for vf = 0 and vf = 1
are indicated by circles.

Nonlinear mechanical simulations with an elasto-plastic matrix
Using the online prediction formulation described in Appendix A, we will now evaluate MIpDMN with nonlinear

mechanical material behaviors while varying the microstructural parameters. We assume that the polypropylene
matrix follows an elasto-plastic law with an isotropic power-law hardening

σY = σ0 + k(p + ϵ)n,

where σY defines the yield surface, σ0 is the yield stress, and (k, n) describes strain hardening with the equivalent
plastic strain p. The following numerical values are used: σ0 = 30 MPa, k = 293 MPa and n = 0.34. The small
value ϵ = 10−6 is used to avoid infinite derivative dσY/dp at p = 0. The following proportional cyclic multiaxial
loading–unloading path is considered in the strain space

ε(t) = f(t)ε0, ε0 = (ε11, ε22, ε33,
√

2ε12, 0, 0), ε11 = 1%, ε22 = ε12 = 4%, ε33 = −2%. (36)

The cyclic function f(t) defined on [0, T ] is presented in Fig. 47. The time parameter t is assumed dimensionless
since quasi-static loading is considered.
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Figure 47: Cyclic function f(t) used in Eq. (36).

In Fig. 48, the corresponding temporal stress responses are presented for different volume fraction values. The
influence of the vf-parameter on the nonlinear effective responses is well captured by MIpDMN. With increasing
volume fraction, the maximum value of σ22 increases from approximately 250 MPa to nearly 600 MPa. Furthermore,
more plasticity effects are visible especially on the σ12 components. Good agreement between MIpDMN and the
FE-RVE results is observed, even though these microstructures are previously unseen during offline training. The
difference between them can be quantified with the following error measure on the full stress tensor with the
Frobenius norm

e =
∫ T

0 ∥yDMN(t) − yFE(t)∥ dt∫ T

0 ∥yFE(t)∥ dt
. (37)

32



For vf = 0.1 and vf = 0.6, the errors are only respectively 2.2% and 5.6%, considering that these two microstructures
lie on the boundary of or even outside the parametric training domain.
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Figure 48: Effective nonlinear behavior of the ellipsoidal inclusion composite for different fiber volume fractions at fixed ar = 20 using
a 9-layer MIpDMN: (a) σ22; (b) σ12. The DMN predictions are represented by solid lines, while the FE-RVE data are dashed lines.

The ar-dependence of the nonlinear effective behaviors is then analyzed in Fig. 49. The aspect ratio parameter
has a bigger influence on the longitudinal effective stress, which increases from 300 MPa to nearly 500 MPa when ar
varies from 1 (spherical inclusions) to 50 (slender fibers). The transverse shear stress σ12 seems to converge within
the given ar range. Again, MIpDMN is in good agreement with the FE-RVE responses, even though a visible
difference can be noticed on σ12 for ar = 1. For this microstructure outside the parametric training domain, the
error is 8.6% using Eq. (37).
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Figure 49: Effective nonlinear behavior of the ellipsoidal inclusion composite for different fiber aspect ratios at fixed vf = 0.4 using a
9-layer MIpDMN: (a) σ11; (b) σ12. The DMN predictions are represented by solid lines, while the FE-RVE data are dashed lines.

To further demonstrate the nonlinear prediction capability of MIpDMN, the volume-averaged equivalent plastic
strain is computed and compared with the FE-RVE results in Fig. 50(a). Two microstructures outside the para-
metric training domain, i.e. extrapolating (vf, ar), are considered. For DMN, volume-averaging is performed on pi

stored on the material nodes using their weights. Using Eq. (37) with the absolute-value norm, the errors are only
2.3% for vf = 0.1, ar = 20 and 3.1% for vf = 0.4, ar = 100.

Inspired by the work of [20], we investigate the energy balance and consistency of MIpDMN during nonlinear
online prediction. The (average) mechanical power inside an increment [tn, tn+1] of duration ∆t can be computed
by

P = 1
∆t

∫ tn+1

tn

σ · ε̇ dt = 1
2∆t

((σn + σn+1) · ∆ε) . (38)

In Fig. 50(b), The MIpDMN mechanical power evolution is compared with the FE-RVE one. A relatively good
agreement is also found for these two extrapolating microstructures, since Eq. (37) give respectively 2.8% and 8.7%.
For DMN, the effective mechanical power Eq. (38) can also be retrieved using the weighted-average of Pi on the
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Figure 50: (a) Volume-averaged equivalent plastic strain; (b) Mechanical power. The DMN predictions are represented by solid lines,
while the FE-RVE data are dashed lines.

material nodes with their local stress and strain states [20]. The errors between this material nodes-based approach
and Eq. (38) are only 0.70% for vf = 0.1, ar = 20 and 1.1% for vf = 0.4, ar = 100. This demonstrates the energetic
consistency of MIpDMN even when extrapolating the microstructural parameters.

Finally, the computational efficiency of MIpDMN is presented in Tab. 7 for the previous two microstructures.
Even with a 9-layer architecture, a speed-up of approximately 700 is obtained compared to FE-RVE. Similar factors
have also been reported for instance in [9, 10, 20, 16]. We also recall that the generation of the costly training data
on new microstructures even outside the parametric training domain is also no longer needed with MIpDMN.

Wall time (speed-up) FE-RVE 9-layer MIpDMN
vf = 0.1, ar = 20 3083 s 4.10 s (752)
vf = 0.4, ar = 100 3723 s 5.69 s (654)

Table 7: Computational speed-up of MIpDMN compared to FE-RVE for the two extrapolating microstructures during the nonlinear
online prediction.

5. Conclusions

A novel micromechanics-informed parametric deep material network (MIpDMN) architecture is proposed for
heterogeneous materials with a varying morphology described by multiple parameters. The dependence of the
DMN fitting parameters on the microstructural ones is accounted for by a single layer feedforward neural network
informed by micromechanical properties Eq. (22). While the DMN weights only vary with the scalar volume fraction
parameter Eq. (22a), the DMN rotations are influenced by other purely morphological parameters that do not change
the volume fraction Eq. (22b). Furthermore, two additional micromechanical constraints Eq. (25) and Eq. (32) are
prescribed so that micromechanics-informed neural network recovers the volume fraction and the material frame
orientation tensors of the actual parameterized microstructure. A unique offline training of MIpDMN is required,
based on a total loss function Eq. (34) that aggregates the FE-RVE data at some given microstructural parameter
values. The trained MIpDMN is then able to predict the material behaviors in the parametric space, i.e., even
for previously unseen microstructures during training. The time-consuming generation of the corresponding new
computational homogenization data is hence no longer needed.

Based on the numerical results reported, the micromechanics-informed architecture as well as the constraints
improve generalization capabilities in the parametric space while successfully capturing the structure-property
relationships. The linear and nonlinear effective behaviors of the parameterized microstructure in question can
hence be accurately predicted by MIpDMN. Besides, we show that the inclusion of initial material rotation matrices
on the input layer does not significantly increase the expressive power even for microstructures with local material
orientation.

MIpDMN is also recast in a multiple physics setting. Through the redefinition of the laminate homogenization
function, other physical properties such as the thermal conductivity and the coefficient of thermal expansion can be
accurately predicted at the online prediction stage. Based on the numerical simulations reported, the real relative
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error on α is of the same order of magnitude as C (approximately 1% to 6%), while that on k is in general near
or less than 1%. This is a remarkable result since MIpDMN is trained using isothermal linear elastic data. It
demonstrates that our MIpDMN learns the parameterized microstructure per se, and not a physical property in
particular.

The limitations of this work as well as some possible future directions are summarized as follows:

• Even though Eq. (22) extends naturally to higher parametric dimensions, at most only two microstructural
parameters are considered in the numerical simulations. The microstructures with more morphological pa-
rameters will be investigated in the future to demonstrate its full potential with respect to the existing
approaches.

• A single-layer architecture is considered in Eq. (22). For more complex structure-property relationships, it
can be expected that q 7→ θ(q) in Eq. (22b) may become nonlinear and require hidden layers and weight
regularization. It will be investigated in our future work.

• The MIpDMN formulation presented in this paper mainly targets two-phase parameterized microstructures.
For polycrystalline materials, the partition Eq. (21) needs to be redefined knowing that now the 1-point
correlation function becomes the crystallite orientation distribution function (CODF), see [41]. Hence, it
suggests that in the MI architecture Eq. (22), now the DMN weights would become a function of CODF.
Interestingly, it has been numerically found in [9] that the w indeed remain uniformly distributed for a
uniform (totally random) CODF and vary with the texture information.

• For multiphase materials, the non-parametric DMN architecture can be first generalized by considering mul-
tiphase laminates as building blocks [9, 10] or an interaction-based network [19]. Then, the partition Eq. (21)
can be adapted by using correlation functions for multiphase materials. For instance, the single vf parameter
would be replaced by P − 1 volume fractions for a P -phase microstructure. Also, the physical constraints
Eq. (25) and Eq. (32) need to be accordingly extended for the additional constituents.

• In this work, we focused on the extension of the original DMN formulation to parameterized microstructures.
Hence, much more complex constitutive behaviors such as viscoplasticity [16] are not considered. Furthermore,
accounting for localized material failure such as fracture is also challenging especially for DMN. Compared to
other reduced-order models such as the self-consistent clustering analysis [54], spatial fields in the RVE are
volume-averaged to the DMN material nodes. In [15], a cell division scheme is proposed for consistent scale
transition in DMN with promising results. It would be interesting in the future to couple it with non-local
damage models such as phase-field fracture [55] to tackle multiscale strain-localization problems.

• We investigated the use of MIpDMN trained using stiffness tensors C to predict other physical properties such
as thermal conductivity k. Our preliminary results not reported here indicate that MIpDMN trained with k
can also predict C, with a slightly decreased accuracy. Future work will be devoted to the offline training of
MIpDMN using combined multiple physics data.
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setting. During her internship, Maëlle PRAUD helped with investigating various optimization algorithms.

Appendix A. Nonlinear homogenization formulation for online prediction

Consider a time interval [tn, tn+1] and an increment in the macroscopic strain from εn to εn+1 = εn + ∆ε. As
explained in Sect. 2.1, a material node is attached to each phase of the leaf laminates, see Fig. 2. At time tn,
we suppose that all their material state variables (strains, stresses and internal state variables) are known. The
objective of the DMN surrogate during nonlinear online prediction is to compute at tn+1 the new homogenized
stress tensor and the consistent tangent operator

∆ε 7→ (C, σn+1). (A.1)

As for mean-field homogenization approaches, a linearization scheme is required [1] to linearize nonlinear con-
stitutive laws. In [9], an incrementally affine formulation similar to [56] is proposed for DMN. In this work, we
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continue to use this nonlinear homogenization formulation, since it leads to a fixed-point problem that can be
efficiently solved by acceleration methods [30].

The incrementally affine formulation assumes that for each material node, the stress increment in this time
interval can be computed as follows

σn+1 − σn = ∆σ = C∆ε + δσ, (A.2)

where ∆ε is the strain increment for this material node, δσ the residual stress increment which measures material
nonlinearity in this time interval and C is the consistent tangent operator. Note that in Eq. (A.2), the strain
increment ∆ε is also unknown, since only the increment in the macroscopic strain tensor ∆ε is known. A consequence
of Eq. (A.2) is that the effective stress tensor increment can also be put in this incrementally affine form

σn+1 − σn = ∆σ = C∆ε + δσ. (A.3)

The computation of Eq. (A.1) involves the following three coupled operations in the DMN architecture, see [9].

1. Forward homogenization: The consistent tangent operators C and residual stresses δσ defined on each material
node are homogenized from the leaf laminates to the root laminate, obtaining the homogenized tensors Cl

and δσl for each laminate
Forward : (Ci, δσi)1≤i≤N 7→ (Cl, δσl). (A.4)

2. Backward localization: The strain increment for each material node ∆εi is computed based on the macroscopic
strain increment ∆ε and the strain concentration tensors defined in each laminate obtained during forward
homogenization, from the root laminate to the leaf laminates

Backward : (Cl, δσl; ∆ε) 7→ (∆εi)1≤i≤N . (A.5)

3. Constitutive behavior integration: For each material node, Ci and δσi are computed by integrating constitutive
behaviors, given their respective strain increment ∆εi.

MatInt : (∆εi)1≤i≤N 7→ (Ci, δσi)1≤i≤N . (A.6)

These coupled equations Eq. (A.4), Eq. (A.5) and Eq. (A.6) naturally give rise to a vectorial fixed point problem
x = F(x) on the flattened vector of strain increments x = (∆εi)1≤i≤N for the time interval [tn, tn+1]

x = (Backward ◦ Forward ◦ MatInt︸ ︷︷ ︸
F

)(x) =⇒ xj+1 = F(xj) (A.7)

where j ≥ 0 is the fixed-point iteration number.
In this work, acceleration methods [30] are used to accelerate the convergence of the fixed-point problem

Eq. (A.7). In particular, Aitken relaxation [57] is applied as a post-processing step in Eq. (A.7)

xj+1 = F(xj) + (ωj − 1)rj , rj = F(xj) − xj

ωj =

ω0 j = 0

−ωj−1 (rj−1) · (rj − rj−1)
∥rj − rj−1∥2 j ≥ 1

(A.8)

In Eq. (A.8), after updating the relaxation parameter ωj , it is then numerically bounded by [ωmin, ωmax]. The
algorithm that realizes nonlinear homogenization Eq. (A.1) in [tn, tn+1] is summarized as follows.

• Given macroscopic strain increment ∆ε with ∥∆ε∥ > ϵ. In this work we use ϵ = 10−8.

• Initialize the strain increments x0 on material nodes, by applying backward localization Eq. (A.5) with the
strain concentration tensors computed at the last time increment tn. For the first time increment t0, each
material node and laminate is initialized using linear elastic properties.

• For the fixed-point iteration j ≥ 0:

1. Integrate constitutive behaviors for each material node Eq. (A.6), obtaining (Ci, δσi)1≤i≤N .
2. Forward homogenization Eq. (A.4), obtaining (Cl, δσl).
3. Backward localization Eq. (A.5), obtaining F(xj).
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4. Check convergence. In this work, the relative error in the L2 norm with respect to the macroscopic strain
increment is controlled

erel = ∥F(xj) − xj∥
∥∆ε∥

< rtol. (A.9)

If convergence is reached, end the fixed-point iterations.
5. Apply Aitken relaxation Eq. (A.8), obtaining xj+1.

• Compute the effective stress tensor Eq. (A.3).

If all the material nodes remain linear elastic, only 1 fixed-point iteration is required, since ∥F(x0) − x0∥ = 0 in
Eq. (A.9).

We propose to numerically investigate the use of Aitken relaxation Eq. (A.8) on the convergence of the fixed-point
problem Eq. (A.7), by using the cyclic multiaxial loading problem Eq. (36) on the ellipsoidal inclusion composite
presented in Sect. 4.3. First, two tolerance values in Eq. (A.9) are compared in Fig. A.51, with vf = 0.4 and ar = 2.
We observe that rtol = 10−1 is sufficient to obtain converged nonlinear responses.
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Figure A.51: Effect of the tolerance value on the obtained nonlinear effective behavior for the ellipsoidal inclusion composite.

In Fig. A.52(a), the number of fixed-point iterations is presented for each time increment. In Eq. (A.8), we use
ω0 = 1, ωmin = 1 and ωmax = 2. This means we are over-relaxing the already converging fixed-point iterations.
When the material behavior is linear, only one iteration is required. Otherwise, we observe an overall reduction in
the number of iterations with Aitken relaxation. The total number of iterations is reduced by 15%, which leads to
a reduction in the computational time by approximately 13%. Since Aitken relaxation essentially only involves a
scalar product and a norm computation, it is hence much less costly than each fixed-point iteration.
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Figure A.52: Influence of Aitken relaxation on the convergence of the nonlinear fixed-point problem: (a) number of fixed-point iterations
for each time increment; (b) relative error history for the increment 59.

The history of the relative error Eq. (A.9) at time increment 59 is used to illustrate the effect of Aitken relaxation,
in Fig. A.52(b). Aitken relaxation accelerates convergence and the number of fixed-point iterations is reduced from
13 to 8.
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Appendix B. Inverse identification of unknown material and microstructural parameters

Trained MIpDMN can serve as an accurate and computationally efficient surrogate of the parameterized mi-
crostructure. Not only it can be used in forward prediction, it can also be employed to identify simultaneously
the material and microstructural properties in an inverse identification problem. Below, we provide a preliminary
proof-of-concept study for the woven composite presented in Sect. 4.2. Since the objective here is to show that
microstructural parameters can also be identified, only linear elastic behaviors are considered. For a more realistic
inverse identification problem with complex nonlinear material responses, readers can refer to [17].

Now, the effective stiffness tensor C is provided, and the elastic properties of the matrix C1 and the tows C2 as
well as the volume fraction of the tows vf are to be identified. In practice C can be measured experimentally. Here
we use the FE-RVE simulation result CData on the test microstructure vf = 0.537, obtained with the real properties
in Tab. 5 which are now sought for.

Motivated by the fact that the gradients with respect to (C1,C2, vf) can be easily computed using automatic
differentiation thanks to the MIpDMN architecture, in this work we adopt a gradient-based optimization approach
based on a loss function Eq. (B.1) which compares DMN prediction with CData using the Frobenius norm. Similar
to the training strategy of MIpDMN, the Rprop optimizer is used for minimization.

Lcal = ∥CDMN − CData∥2

∥CData∥2
. (B.1)

The optimization iterations require the initial guess values for the unknowns (C1,C2, vf). Hence, the real
properties in Tab. 5 as well as the true volume fraction vf = 0.537 are randomly perturbed using a normal
distribution with a coefficient of variation equal to 20%. The initial values generated by two random realizations
are indicated in Tab. B.8.

Matrix E (MPa) ν

Realization 1 4491 0.400
Realization 2 3908 0.437

Tow vf E1 (GPa) E2 (GPa) ν12 ν23 µ12 (GPa)
Realization 1 0.550 92.3 5.60 0.347 0.697 2.14
Realization 2 0.541 65.4 5.22 0.297 0.764 1.78

Table B.8: Initial linear elastic properties of the two phases for the inverse identification problem.

The loss histories corresponding to these two initial guess values are given in Fig. B.53. The loss function
converges quickly and may reach 10−5 within 1000 optimization iterations (a few seconds). The effective stiffness
tensor C is well recovered. According to Tab. B.9, the relative error between the converged effective stiffness tensor
and the C data is 0.42% and 0.26% for these two sets of initial guess values.
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Figure B.53: Calibration loss histories using two initial guess values: (a) realization 1; (b) realization 2.

In Tab. B.10, the inversely identified input parameters (C1,C2, vf) are reported. The material and microstruc-
tural parameters found with the realization 1 are similar to the actual properties in Tab. 5. However, with the
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C E1 = E2 (GPa) E3 (GPa) ν12 ν13 = ν23 µ12 (GPa) µ13 = µ23 (GPa) Error
Data 24.4 7.03 0.0866 0.558 1.87 1.73
Realization 1 24.5, 24.3 7.05 0.0879 0.556, 0.555 1.87 1.73 0.42%
Realization 2 24.4 7.02 0.0863 0.560, 0.558 1.86 1.74 0.26%

Table B.9: Converged homogenized stiffness tensor from two different realizations of initial values, compared with the true data.

realization 2, the identified volume fraction 0.667 is higher than the data 0.537. Meanwhile, the longitudinal Young’s
modulus (64.6 GPa) of the tows is also smaller than the data (78.8 GPa). This illustrates the non-uniqueness of the
inverse identification problem. Additional conditions or data (for instance, nonlinear responses) could be provided
to further constrain the inverse problem.

Matrix E (MPa) ν

Realization 1 4309 0.385
Realization 2 4624 0.375

Tow vf E1 (GPa) E2 (GPa) ν12 ν23 µ12 (GPa)
Realization 1 0.533 80.7 5.53 0.340 0.614 2.09
Realization 2 0.667 64.6 5.27 0.364 0.617 1.90

Table B.10: Identified linear elastic properties of the two phases and the volume fraction for the inverse identification problem.
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