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Physics-Informed Neural Network-Based Parametric Deep Material Network for
Multiphysics Behavior Prediction of Heterogeneous Materials with a Varying
Morphology

Tianyi Li*

%Dassault Systémes, 10 rue Marcel Dassault, 78140 Vélizy-Villacoublay, France

Abstract

Deep Material Network (DMN) has recently emerged as a data-driven surrogate model for heterogeneous materials.
Given a particular microstructural morphology, the effective linear and nonlinear behaviors can be successfully
approximated by such physics-based neural-network like architecture. In this work, a novel parametric DMN ar-
chitecture is proposed for multiscale materials with a varying microstructure characterized by several parameters.
A Physics-Informed Neural Network (PINN) is used to account for the dependence of DMN fitting parameters on
the microstructural ones. Micromechanical constraints are prescribed both on the network architecture and on the
output of this PINN. The proposed PINN-DMN architecture is also recast in a multiphysics setting, where physical
properties other than the mechanical ones can also be predicted. In the numerical simulations conducted on three
parametric microstructures, PINN-DMN demonstrates satisfying interpolative and extrapolative generalization ca-
pabilities when morphology varies. The effective multiphysics behaviors of such parametric multiscale materials can
thus be predicted and encoded by PINN-DMN with high accuracy and efficiency.

Keywords: Deep material network, Parametric microstructures, Neural network, Machine learning, Effective
multiphysics properties, Inverse identification

1. Introduction

The effective macroscopic behaviors of heterogeneous materials can be predicted by the physical properties of the
constituents and the underlying microstructures using a multiscale modeling approach [1, 2, 3]. Among such models,
mean-field homogenization schemes rely on the micromechanical assumptions (inclusion shapes, interaction between
the constituents) of the microstructure being considered and are frequently used to predict linear and nonlinear
behaviors of specific composites (such as the fiber-reinforced plastics) [4, 5]. Thanks to their analytical nature, they
are computationally efficient and can be used as a local constitutive model on each integration point for concurrent
structural-scale simulation of industrial components. However, their inherent simplifying hypotheses on the idealized
microstructure may not be appropriate for other complex morphologies. In this case, full-field simulation of the
micromechanical problem would be necessary, following a computational homogenization approach [6]. For instance,
finite element (FE) simulation of a Representative Volume Element (RVE) of the underlying microstructure can be
carried out to compute the local solution fields. The accurate linear and nonlinear effective responses can then be
obtained through field averaging. However, such full-field method involves much higher computational cost and is
impractical to be run concurrently in multiscale simulations on industrial parts.

Recently, the Deep Material Network (DMN) method [7] has emerged as a novel data-driven surrogate model
for such multiscale materials. Based on linear elastic training data generated by high-fidelity computational ho-
mogenization (FE-RVE simulation, for instance), DMN is capable of predicting their elastic and inelastic behaviors
with high accuracy and efficiency even in the finite-strain range. Compared to other data-driven approaches for
material modeling [8] that rely on the (effective) strain-stress pair data, DMN learns instead the morphological
characterizations of the microstructure via its homogenization function (Cy,Cy) + C. Here, (Cy,Cy) are the elas-
ticity tensors of the constituents and C is the effective elasticity tensor. Due to its physics-based neural-network like
architecture, DMN demonstrates great expressive power with much fewer fitting parameters compared to traditional
machine learning methods. Thanks to these interesting properties, it is now gaining popularity in the computational
mechanics community:

Email address: tianyi.1i@3ds.com (Tianyi Li)

Preprint submitted to Elsevier September 20, 2023



e In [9], DMN has been successfully applied for 3-d particle-reinforced composites, polycrystalline materials
and woven composites involving three modeling scales. Nonlinear complex material behaviors such as hy-
perelasticity with stress softening and rate-dependent crystal plasticity are investigated under a finite-strain
setting.

o A new rotation-free formulation along with a flattened architecture is proposed in [10]. It has been tested for
short-fiber plastics and metal matrix composites with an elasto-plastic behavior in the matrix phase.

« Applications to short-fiber reinforced materials are also considered further in [11, 12, 13]. The thermomechan-
ical behaviors of such composites can be successfully captured by DMN. Concurrent multiscale simulations
combining a macroscopic finite element model and DMN on each integration point are performed for static
and dynamic problems on structural components.

o More complex material behaviors such as viscoplasticity or failure are investigated in [14, 15, 16, 17]. New
training strategies are also proposed to obtain more accurate nonlinear responses.

o In [18], other DMN architectures are explored with mean-field homogenization based building blocks. Appli-
cations to woven microstructures are considered. A generalization of the original DMN framework based on
interactions between discrete material nodes is also proposed in [19, 20]. It has been successfully applied to
porous microstructures with an elasto-plastic behavior.

Despite these successes indicated by numerical evidences, the expressive power of DMN remains to be fully
understood from a theoretical perspective. In [10], its micromechanical justifications are provided in the context
of generalized standard materials [21]. Thanks to the hierarchical architecture based on an appropriate laminate
microstructure as the building block, DMN is thermodynamically consistent and verifies the micromechanical bounds
on the effective linear and nonlinear behaviors. Actually, DMN can be identified as a multiple-rank laminate
microstructure in homogenization theory [22, 23], in which each constituent of a laminate is also a laminate.
Sequential laminates (also called coated laminates) are a subset among such hierarchical microstructures, where
one of the constituents in the lamination process is always the same. It is well known that the Hashin-Shtrikman
bounds [24] can be attained by such finite-rank sequential laminates. In the case of an effectively isotropic composite
of two isotropic phases, such bounds can be realized by a rank-3 laminate in 2-d or a rank-6 laminate for 3-d elasticity
[25]. As noted in [23, pg. 294], sequential laminates can approximate the homogenization function (Ci,Cy) +— C
associated with a two-phase microstructure to the second order in C; — C,. Since sequential laminates are a proper
subset of multi-rank laminates, these results can be naturally extended to DMN and hence provide some preliminary
theoretical justifications of its expressive power.

In general, we are often dealing with a class of microstructures that present similar morphologies. These
microstructures are characterized by several parameters defining the geometrical shapes of each constituent inside
the RVE. For instance, the volume fraction parameter vf describes the overall relative volume of each constituent.
Other parameters also exist, depending on the exact morphological characterization of the microstructure. These
micromechanical parameters may have an important influence on the effective properties. Hence, it would be
beneficial that DMN also captures such effects with high accuracy and efficiency. In [26, 27], a transfer-learning
based approach is proposed to construct a DMN database for such parametric microstructures. Training of several
DMN instances is performed sequentially following a pre-determined path in the parametric space. Piecewise linear
interpolation is then used to include the dependence of DMN fitting parameters on the microstructural parameters.
In their work, they only focus on microstructures that can be characterized by vf and a second-order orientation
tensor [28].

Meanwhile, a regression-based approach is proposed in [11] for short-fiber reinforced materials with a constant
fiber volume fraction. The fitting parameters of one single DMN instance are assumed dependent on the varying
(principal) fiber orientation tensor (ai,as,as). The offline training is performed using a total loss function that
aggregates multiple microstructures with different (ai, as, as) values. The main objective of this paper is to extend
this formulation to generic parametric microstructures, with varying volume fractions and possibly other geometrical
parameters. In particular, we investigate of the use of Physics-Informed Neural Networks (PINN) to account for
the dependence of DMN parameters on the microstructural ones. Following other PINN approaches [29, 30],
additional micromechanics-based constraints are included to improve generalization capability of our parametric
DMN architecture.

Another objective of this paper is to recast DMN in a multiphysics setting. In the literature, DMN has been
used extensively as a surrogate of the possibly nonlinear mechanical behaviors of heterogeneous materials. After
training, DMN is able to predict accurately the effective (incremental) stiffness tensor which relates the (current)



macroscopic strains and stresses. Other physical behaviors have not been explored except in [12], where a two-way
coupled thermomechanical problem is considered. The temperature-dependent stress-strain behaviors as well as
the mechanically-induced self-heating are predicted. However, effective multiphysics properties, such as thermal
conductivity or the coefficient of thermal expansion, are not explicitly computed by DMN. In this paper, we
demonstrate that such multiphysics properties can also be accurately predicted by DMN, even though it is trained
using isothermal linear elastic mechanical data.

The paper is organized as follows. The original DMN formulation [7, 9] is first reviewed and then recast in a
multiphysics setting in Sect. 2. Extensions to parametric microstructures are then considered in Sect. 3, in which
we introduce a new PINN-based parametric DMN architecture. The proposed method is further evaluated on
three parametric microstructures in Sect. 4. The obtained numerical results highlight the effects of the introduced
physical constraints. Finally, conclusions from the current work are summarized in Sect. 5.

2. Deep Material Network

Instead of learning the macroscopic (nonlinear) strain-stress behaviors of a particular microstructure 2, DMN
learns its elastic linear homogenization function

(C1,Cy) — C, (1)

where (Cy,Cs) are the elastic stiffness tensors of the constituents and C is the homogenized stiffness tensor, see
Fig. 1. The potentially anisotropic (C1,Cs) tensors are expressed in their respective material frames, while C is
given in the global frame of the microstructure Q. The effective computation of (1) on complex microstructures
) is in general realized by computational homogenization. The homogenization function encodes in particular the
microstructure morphology, which can be defined by the characteristic function

1 x € Phasel
f— ’ 2
x(@) {0 otherwise. 2)

In this regard, DMN is not a surrogate of the effective behaviors of the microstructure but the microstructure per
se.
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Figure 1: DMN learns the morphology of a particular microstructure €2 through its homogenization function, realized in general by
computational homogenization like FE-RVE methods.

2.1. Network architecture and fitting parameters

In this work, we follow the original formulation of [7, 9] based on a perfect binary tree architecture and a
rotation-based formulation for laminates, with minor modifications that will be explained in the sequel.

DMN is a multiple-rank laminate microstructure as defined in [23, Chap. 9], comprised of hierarchically nested
laminates of laminates on different length scales, see Fig. 2. The rank n of such multiple-rank laminates, also called
the number of DMN layers, characterizes the number of nesting levels. Its architecture corresponds topologically
to a perfect binary tree. Each “node” is a rank-1 laminate microstructure, serving as the “mechanistic building
blocks” [7, 9, 10] or “neurons” in this neural-network like architecture.

On the input layer, each leaf laminate of the binary tree receives the constitutive properties of the two phases
(Cq,Cy) expressed in their respective material frames. All these n = 2™ entries are called DMN material nodes,
since each of them will be associated with a (nonlinear) constitutive behavior of the phase 1 or 2 during online
prediction. The index set of the material nodes will be denoted I. It can be partitioned evenly into two subsets for
each of the phase.

H:{l,an}:H1UH27 H1:{2]71“7:17,2n71}, H2:{2‘7“7:17,2n71} (3)
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Figure 2: DMN architecture can be represented by a perfect binary tree with each “node” being a rank-1 laminate microstructure. The
DMN material nodes 1 < i < n = 2™ are represented by dots - on the input layer and receive the constitutive properties (C1,Cz) of
the two phases. In this example with 3 DMN layers, three nesting levels is involved in order to compute the homogenization function
DMN3 : (Cq,C2) — C. The fitting parameters are the weights w defined on the leaf laminates and the rotations € on each laminate.

On the output layer, the effective properties of the microstructure C are predicted through the root laminate
and are given in the global frame of the microstructure 2. The homogenization function DMN,, : (C1,Cy) — C of
such n-layer DMN can be defined recursively as follows

Lam((Cl,(CQ) n= ]-a

4
Lam(DMNn,l((Cl, (CQ), DManl((Cl, CQ)) n> 1. ( )

C = DMN,,(Cy,Co) = {

In (4), each Lam denotes the homogenization function of the rank-1 laminate associated with different weights
(w],wh) and rotations @', see Fig. 2. Compared to the original formulation [7], we omit the material rotation
matrices for phase constitutive properties on the input layer. This is somehow similar to the formulation proposed
by [10], even though the definition of the laminate homogenization function differs. Note that by omitting these
input rotations, the material frames of the input properties will actually coincide with the local laminate frames.

A rank-1 laminate is a microstructure in which its characteristic function (2) only varies in the direction of
lamination x(x) = x(x - n). In 3-d, its homogenization function Lam : (C},C}) — T can thus be characterized by
only two parameters: the volume fraction f’ of one of the phases, and a 3 x 3 rotation matrix R(8") € SO(3) of
the laminate with respect to another frame, see [7, 9]. The primes on the parameters and on the input and output
tensors indicate that they don’t represent necessarily the properties of the constituents (except for the input layer),
nor the effective behaviors of the microstructure (except for the output layer). Thanks to the simplifying geometry,
the homogenization function Lam is analytical and is explicitly defined in [7, 9]. For completeness, its definition is
also recalled in Sect. 2.3.

In [10], the rotation matrix is replaced by the lamination normal vector n, based on the lamination formulas in
[23, Chap. 9]. This results in fewer fitting parameters since only two scalars (n1,n2, /1 — ny — na) are required to
represent a unit-vector. The differences between these two formulations can be summarized as follows

o In [7, 9], the constituent properties (C/,C}) are provided in the laminate frame (e, ez, e3). The lamination
direction n aligns with this local frame: e; for 2-d microstructures, and es for 3-d ones. The homogenized
behaviors of the laminate are first computed locally, then rotated to the frame of the next nesting level or the
global frame for the laminate on level 0 (cf. Fig. 2). This will be referred to as the rotation-based formulation.

o In [10], the tensors (C},C%) and the lamination direction n € R? are given directly with respect to the global
frame. It is called the rotation-free formulation.

It is demonstrated in [10] that the rotation-free formulation also achieves satisfying expressivity for microstructures
without local material orientation. Otherwise, for example when the inclusions are transversely isotropic with a
spatially-varying orientation distribution, additional rotation matrices are required on the input layer, as mentioned
by [10].



In summary, the fitting parameters of an n-layer DMN are

o Weights w = (w1, ...,wy), defined on the leaf laminates. Its length n = 2" is the number of DMN material
nodes. They are required to be non-negative, hence an adequate nonlinear activation function o is applied

w=o0(z) >0, zeR" (5)

ReLU o(z) = max(0, z) is used in [7, 9, 10, 11, 18], while Softplus o(z) = log(1+exp(B8z))/B is used in [19, 20]
as a smooth approximation to ReLU.

These weights are propagated from the leaf laminates to the root so that each laminate receives different
(w},wh), see Fig. 2. Denoting the weights on level 0 < i < n by w’(), with w'("~1) = w the weights on the
leaf laminates, we have

/(1) 1(i+1) 1(i+1)

wi? =wy ) wy ), =1, 2 (6)

For each laminate, the volume fraction f’ can then be computed
wy
wi +wh’

f= (7)
Due to (6) and (7), the DMN homogenization function (4) is invariant with respect to a scaling on DMN
weights w — kw for k > 0.

e Rotations 6 = (04, ...,0+_1), defined for each laminate. Its length 2" —1 equals to the number of “nodes” in
a perfect binary tree. Its elements can be organized using breadth-first ordering like in Fig. 2. Each element
0; represents a 3 x 3 rotation matrix R(6;). In [9, 18], the three Euler angles are used. In this work however,
we use the quaternion representation which avoids singularity issues with Euler angles [31]. Hence, 0 is a
2" — 1 X 4 matrix.

The total number of fitting parameters can be found in Tab. 1.

n-layer DMN Weights Rotations Total
Number of fitting parameters n=2" 4x (2" —-1) 5x2"—4

Table 1: Number of fitting parameters for an n-layer DMN, using the network architecture explained in Sect. 2.1 with in particular the
quaternion representation for the rotation matrices.

The training of these fitting parameters follows a data-driven approach, by comparing the DMN prediction of
the homogenized elasticity tensor Cpyy and that predicted by computational homogenization, see Fig. 1. The
machine learning procedure is described in [7, 9, 10] and will be briefly recalled in Sect. 3.5 for our parametric
DMN architecture.

2.2. Nonlinear homogenization formulation for online prediction

After training, DMN not only provides an accurate and efficient surrogate of the linear homogenization function
(4), it serves also as a surrogate microstructure to predict its nonlinear behaviors. As for mean-field homogenization
approaches, a linearization scheme is required [1] to linearize nonlinear constitutive laws. In [9], an incrementally
affine formulation similar to [32] is proposed for DMN. In this work, we continue to use this nonlinear homogenization
formulation, since it leads to a fixed-point problem that can be efficiently solved by acceleration methods [33]. In
comparison, an incremental variational principle used in [10] results in a nonlinear system. Newton’s method needs
to be used, which requires constructing explicitly the Jacobian matrix and solving tangent linear systems.

Consider a time interval [t,,%,+1] and an increment in the macroscopic strain from g, to €,11 = &, + Ag. As
explained in Sect. 2.1, a material node is attached to each phase of the leaf laminates, see Fig. 2. At time ¢,
we suppose that all their material state variables (strains, stresses and internal state variables) are known. The
objective of the DMN surrogate is to compute at ¢,,1 the new homogenized stress tensor and the consistent tangent
operator

AE — (C,7,41). (8)

The incrementally affine formulation assumes that for each material node, the stress increment in this time
interval can be computed as follows
Opi1 —op =Ac =CAe + do, (9)



where Aeg is the strain increment for this material node, do the residual stress increment which measures material
nonlinearity in this time interval and C is the consistent tangent operator. Note that in (9), the strain increment
Ace is also unknown, since only the increment in the macroscopic strain tensor A€ is known. A consequence of (9)
is that the effective stress tensor increment can also be put in this incrementally affine form

Tpi1 — 0, = Ao = CAE + do. (10)
The computation of (8) involves the following three coupled operations in the DMN architecture, see Fig. 3. They
are explicitly defined in [9].

1. Forward homogenization: The consistent tangent operators C and residual stresses do defined on each material
node are homogenized from the leaf laminates to the root laminate, obtaining the homogenized tensors C;
and do; for each laminate

Forward : (Ciaéai)lgign — (@“El) (11)

2. Backward localization: The strain increment for each material node Aeg; is computed based on the macroscopic
strain increment AZ and the strain concentration tensors defined in each laminate obtained during forward
homogenization, from the root laminate to the leaf laminates

Backward : (@Z,EIL, AE) — (Aei)lgifn- (12)

3. Constitutive behavior integration: For each material node C; and do; are computed by integrating constitutive
behaviors, given their respective strain increment Aeg;.

MatlInt : (Ae;)1<i<n — (Ci,007%)1<i<n. (13)

(b)

Figure 3: Forward homogenization and backward localization for online nonlinear behavior prediction of the microstructure using the
DMN surrogate.

These coupled equations (11), (12) and (13) naturally give rise to a wvectorial fixed point problem z = F(z) on
the flattened vector of strain increments x = (Ag;)1<;<n for the time interval [t,,, t,11]

z = (Backward o Forward o MatInt)(z) = 2/t = F(z7) (14)
F

where j > 0 is the fixed-point iteration number.
In this work, acceleration methods [33] will be used to accelerate the convergence of the fixed-point problem
(14). In particular, Aitken relaxation [34, 35] is applied as a post-processing step in (14)

It = F(@j) 4 (wj — l)zj, ri = F@J’) — g
e T — j=0 (15)
W’ = . rl— rd —prl—
—wiTl L= = > 1
M EETE

In (15), after updating the relaxation parameter w?, it is then numerically bounded by [Winin, Wmax]- Its initial value

w? as well as the bounds will be discussed in Sect. 4. The algorithm that realizes nonlinear homogenization (8) in

[tn, tnt1] is summarized as follows.



o Given macroscopic strain increment A€ with ||AZ|| > €. In this work we use e = 1075.

o Initialize the strain increments z° on material nodes, by applying backward localization (12) with the strain
concentration tensors computed at t,,. For the first time increment ty, each material node and laminate is
initialized using linear elastic properties.

e For the fixed-point iteration j > 0:

1. Integrate constitutive behaviors for each material node (13), obtaining (C;, do;)1<i<n.

2. Forward homogenization (11), obtaining (C;, 6a;).

3. Backward localization (12), obtaining F(z7).

4. Check convergence. In this work, the relative error in the Lo norm with respect to the macroscopic strain
increment is controlled

IF(2?) — 27|
erel = ——————— < tol. 16
= 1o
If convergence is reached, end the fixed-point iterations.
5. Apply Aitken relaxation (15), obtaining 277!,
o Compute the effective stress tensor (10).
If all the material nodes remain linear elastic, only 1 fixed-point iteration is required, since ||[F(z°) — z°|| = 0 in

(16).

2.3. Multiphysics property prediction

Up to now, we have only considered the possibly nonlinear mechanical behaviors of the heterogeneous material.
As noted at the beginning of Sect. 2 and in Fig. 1, DMN should not be regarded as a surrogate of the effective
mechanical behaviors but the microstructure per se. It is hence desirable that other physical properties can be
predicted by DMN along with the mechanical ones at the online prediction stage. In this paper, we propose to
consider the following two additional physical properties

1. Thermal conductivity k, which is a symmetric second-order tensor for anisotropic behaviors.
2. Coefficient of thermal expansion «, also a symmetric second-order tensor in the anisotropic case.

It turns out that the online prediction of k and « requires only an adequate redefinition of the building block
(neuron), denoted by Lam in (4). In particular, the DMN network architecture as well as the fitted parameters after
offline training remain exactly the same. This property naturally recasts DMN in a multiphysics setting. Although
each DMN neuron corresponds to a laminate microstructure, the exact formula of Lam will now depend on the
physics being considered. Below, we will provide the definition of Lam for these additional physics properties. For
completeness, its original definition (7, 9] for (linear elastic) mechanical behaviors is also included.

To ease the notation, we will now ignore the primes on the input and output tensors in the laminate homoge-
nization function, see Fig. 1. For instance, for linear elasticity we now have

C = Lam(Cy, Cy).

It should be remembered that the input tensors don’t necessarily refer to those of the two constituents (except
for the input layer), and the output effective tensor is not necessarily the final effective property tensor of the
microstructure (except for the output layer).

Linear elastic behaviors

The linear elastic behaviors of the laminate microstructure is governed by static equilibrium. Based on the
lamination direction 7, the stress components can be partitioned into two parts: a tangential part o* and a normal
part o”. For example, if the lamination direction aligns with the local es vector, then we have

o' = (011,022,012), " = (033,013,0923). (17)

The strain tensor as well as the stiffness tensors can be partitioned similarly. The interface condition prescribes that
the normal part of the stress tensor o™ is continuous, while the tangential part of the strain tensor €' is continuous.
It can be encoded by the following matrix equation

ei ] [e} I 0][ef] [T 0 1 [ed
Lfﬂ = [03} = {(C‘{t Cgm] L—gl = oy o [en) (18)
——— ~———

o~ o~

(Cl (CZ



where C; and Cy are the stiffness tensors of the two laminate phases.
Using the definition of the effective strain tensor € = fe; + (1 — f)ea, where f is the volume fraction of the
phase 1, we obtain the following formula that computes £; from &

((1- f)@l + f@2)51 =Cyg = e, =Ag=C"'Coz, C= (1- f)@1 + fCo, (19)

where A = @_1@2 is the strain localization tensor.
Finally, with the effective stress tensor & = fo1+ (1 — f)oz = fCie1 + (1 — f)Caea, the effective stiffness tensor
can be obtained as follows
o=Cs, C=f(C;—Cy)A+Cs. (20)

The rotation can then be applied adequately for the fourth-order stiffness tensor C.

Thermal conductivity
Now, the neuron homogenization function computes the second-order effective (anisotropic) conductivity tensor
k from those of its constituents k; and ko
E = Lam(kl, kg)

The laminate microstructure is governed by steady-state heat equation and the Fourier’s law q = —kVT that
relates the temperature gradient VT to the heat flux ¢ through the conductivity tensor. As in (17), the heat flux
and the temperature gradient can be decomposed into a tangential and a normal part

q" = (q1,0), ¢"=(g)

Similar to (18), the interface condition can be described by the following linear system
VTY|  [VTE . I 0 vTil |1 0 VT
a ] | & U A R A T B A
—_——— —_——

El 7;2
Following the same procedure as before, the effective conductivity tensor is given by

G=kVT, k=f(ki—ks)A+ks, A=k'ky, k=(1-f)ki+ fko. (21)
The rotation can be applied to the second-order tensor k.

Coefficient of thermal expansion
The effective coefficient of thermal expansion (CTE), as a second-order tensor in the anisotropic case, can be
computed along with the effective stiffness tensor. Now, the laminate homogenization function becomes

(@, a) = Lam((Cl, (CQ, aq, Oég)
While C can be obtained by (20), the effective CTE is computed using the following relation [36]
a:alJr(Sl 7§)(S27§1)—1(a1 *a2), (22)

where S = C~! is the compliance tensor.

Note that (22) should also be used as a neuron operation similar to (20) and (21), layer by layer. All the input
and output tensors need to be expressed and computed in the same laminate frame (eq, es, e3). This is particularly
true when local material orientation is present for one of the constituents. In such case, the involved stiffness and
CTE tensors will be expressed in the local material frame that varies spatially in the microstructure. Meanwhile,
if local material orientation is absent, i.e. the input constituent as well as the effective properties are expressed in
the global frame, then (22) can also be applied directly using the effective compliance tensor S computed by DMN.
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Figure 4: With the original formulation, each DMN is trained independently to learn a particular microstructure €2p,. It is not possible
to predict the behavior of a new microstructure ., without another training.

3. Extension to parametric microstructures

In general, we are often dealing with a class of microstructures which present similar morphologies. These
microstructures are defined by a characteristic function involving one or several parameters p = (p1,p2,...). In
the case of hex-packed unidirectional fiber composites, illustrated in Fig. 4, they are parametrized by the single vf
parameter which indicates the volume fraction of the fibers.

The original DMN formulation [7] is not adapted for such parametric microstructures p — Qp, since each DMN
is trained to learn a particular microstructure €2,, with a fixed parameter value p;. After independent training on
such n microstructures, we only obtain a discrete set of DMN objects

{DMN(wi,Gi)a = 1,...,n}.

Each DMN(w;, 6;) is tailored to approximate the homogenized behavior of a particular microstructure p,. Without
another training (which requires the costly computational homogenization data), it is not possible to predict the
behavior of a new microstructure €2,/ that is absent in the previous set.

3.1. Transfer-learning based interpolative DMN

In [26], a transfer-learning strategy is proposed to interpolate different DMN models trained at different parame-
ter values p;. The functional dependence p — (w(p), 8(p)) is defined by interpolating the DMN parameters (w;, 6;)
between different microstructural parameters p;. This assumes implicitly that the same DMN architecture with
the same number of layers is used. If each DMN is trained independently using random initialization of its fitting
parameters, p — (w(p), O(p)) would not be smooth, which leads to less accurate predictions when interpolating
between known p;. This motivates hence a transfer-learning based training strategy, illustrated in Fig. 5.

A pre-determined sequential path (pg,pi,...,Pn) in the parametric space is required to carry out transfer-
learning training on DMN parameters

DMN (44,80) = DMN(4p,,0,) = =+ = DMN(4, 0., -

The training of (w;, 6;) is initialized using previously trained (w;_1,6;_1), for i > 0. Only the first training at py is
performed using standard random initialization. Transfer learning not only ensures a smooth interpolation between
DMN parameters, it also accelerates training of subsequent DMN models for new microstructural parameters p;.

While this transfer-learning based approach has been tested with success for microstructures depending solely
on the volume fraction parameter [26], and those depending on the volume fraction and the orientation tensor [27].
In our opinion it has also some limitations:

e Definition of a pre-determined training sequence may become difficult especially for higher parametric dimen-
sions. For microstructures with multiple geometrical parameters of different natures, it is not trivial to choose
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Figure 5: Transfer-learning based interpolative deep material network.

the starting point pg as well as the sequential interpolation points p;. Furthermore, the expressive power of
DMN in the parametric space may also depend on the chosen training path (po,p1,...,Pn). The number of
DMN active material nodes (those with a positive weight) may decrease in the process of transfer learning
with the ReLU activation function. An example is given in [26].

o Extrapolation especially for higher parametric dimensions. Based on interpolation points, it would be difficult
to extrapolate “outside” the training domain. In [26, 27] for instance, extrapolation in the parametric space
is not considered.

e Computational efficiency concerns. Since transfer learning is sequential in nature, DMN at different mi-
crostructural parameters can only be trained one after another. For interpolation, each DMN instance asso-
ciated with its parameters needs to be stored.

3.2. Physics-informed neural network-based parametric DMN

In this work, we propose a novel parametric DMN architecture dedicated for microstructures with parameters.
The functional dependence of DMN parameters (w, @) on the microstructural parameters p is directly accounted for
by feedforward neural networks composed of multiple layers of affine transformations and activation functions. Due
to the physics-based architecture of DMN and its high expressive power of approximating arbitrary microstructures,
hidden layers are ignored in this work. We obtain thus

w(p) = o(Wip + wo), (23a)
8(p) = ©1p + 6o, (23b)

where W7 and ©; are matrices of appropriate dimensions, wy and 6, are “bias” vectors and ¢ denotes a nonlinear
activation function as in (5). Several remarks are in order:

e The matrices W7 and ©®; characterize the dependence of DMN parameters w and € on microstructural
parameters, while wy and 6y remain constant while microstructural parameters change.

e When the microstructural parameters have little effect on the effective behaviors of the microstructures, we
would have W7 = @7 = 0 and thus recover the original DMN formulation [7]. The “bias” parameters wq and
6y solely are needed to approximate the homogenized behavior of this parametric microstructure.

e Due to the presence of a nonlinear activation function applied after affine transformation, the functional
dependence of DMN weights (23a) is different from piecewise linear interpolation used in the transfer-learning
based interpolative DMN approach [26, 27].
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o Similar functional dependence of DMN rotations (23b) has been proposed in [11].

The neural network proposed in (23) follows a fully-connected architecture in the sense that the DMN weights
w and rotations 6 depend on all the microstructural parameters. Meanwhile, several findings in the literature
motivate a physics-informed architecture:

e For parametric microstructures with a single volume fraction parameter, the naive approach, as proposed by
[26] in which only the DMN weights vary with vf and the DMN rotations remain constant, actually predicts
physically plausible vf-dependence of the homogenized behaviors.

e For microstructures with parameters that do not change the volume fraction, such as for short-fiber reinforced
composites with a fixed volume fraction but different fiber orientations, [11] indicates that only the DMN
rotations need to vary with such parameters, with a constant DMN weights vector.

It should be noted that these results originate directly from the micromechanics-based design of DMN [10]. In order
that the parametric DMN reflects these physical properties, the microstructural parameters are partitioned

p = (vf,q) € R xR, (24)

where vf is the volume fraction of the phase 2, while g denotes all other q independent parameters that are orthogonal
to vf. Given the partition (24), the physics-informed neural network (PINN) for DMN parameters is now given by

w(p) = w(vf) = o(vf - w1 + wy), (25a)
6(p) = 6(q) = ©1q + by, (25b)

where wy and w; are vectors of length n, By is a (2" — 1) x 4 matrix and @7 is a (2" — 1) x 4 X ¢ tensor. The
fully-connected architecture (23) and the PINN architecture (25) are compared in Fig. 6.

e ety e

Cy— Cy—

Cy—+ Cy—+
DMN DMN
(a) (b)

Figure 6: Parametric deep material network: (a) fully-connected architecture and (b) physics-informed architecture.

The advantages of the PINN architecture (25) compared to the fully-connected one is two-fold. Firstly, fewer
fitting parameters are required due to the partition (24), which increases computational efficiency. Secondly, as we
shall see through numerical examples, it provides comparable expressive power and may also enhance generalization
ability (interpolation and extrapolation) in the parametric space.

Compared to the transfer learning-based interpolative DMN described in Sect. 3.1, a unique offline training
is now required to optimize the fitting parameters of PINN-DMN, see Fig. 7. The expressive power of DMN is
evaluated jointly using the linear elastic behavior data at each p; in the parametric space. Furthermore, a neural-
network functional dependence naturally defines interpolation and extrapolation inside or outside the training
domain and extends easily to higher parametric dimensions.

This physics-informed neural network-based parametric DMN will be denoted in the sequel by PINN-DMN. To
summarize, it is defined by

o DMN homogenization function (4) which learns the morphology of a particular microstructure €.

o Physics-informed neural network (25) which learns the functional dependence of DMN parameters on mi-
crostructural parameters p. It contains the fitting parameters of PINN-DMN: (wy, w1, 6y, ©1).

With an n-layer architecture, the number of fitting parameters can be found in Tab. 2. The offline training of
these fitting parameters follows a data-driven machine learning approach which will be described in Sect. 3.5.

11
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Figure 7: Offline training for PINN-DMN based on the linear elastic behavior data at each p; in the parametric space.

n-layer PINN-DMN Weights Rotations
Number of fitting parameters 2n = 2"+ 4(g+1) x (2" — 1)

Table 2: Fitting parameters and their numbers for an n-layer PINN-DMN.

3.3. Volume fraction constraint

Apart from the physics-informed architecture on the functional dependence p — (w,8), some physical con-
straints can also be prescribed to further improve its generalization ability, similar to the physics-informed machine
learning approach for nonlinear partial differential equations [29, 30].

It is now well known that the DMN weights vector w reflects the actual volume fraction information of the
microstructure € being considered [7, 10]. Specifically, the volume fraction of the phase 2 learned by DMN is given
by

ws
= €l & vq. (26)

In [16], this physical property is explicitly included in the loss function as an additional constraint in learning a
particular microstructure. Using our PINN functional dependence (25a), (26) can be further enforced at all volume
fraction values

vi(w) = vf(o(vf - wy +wo)) =vE, Wi €[0,1]. (27)

This volume fraction constraint is prescribed on DMN weights w.

Due to the presence of a nonlinear activation function o, (27) is nonlinear and the unknowns (wg, w;) can not
be solved explicitly. Furthermore, and luckily enough since it contributes to the expressive power of PINN-DMN;,
there may exist multiple solutions that satisfy (27). Anticipating the fact that this constraint will also be included
during the offline training of our PINN-DMN, we adopt a machine-learning approach to weakly enforce this volume
fraction constraint through a loss function

n

,Cvf = %Z (Vf(J(VfZ' - W1 + ’UJ())) - Vfi)2 5 (28)

i=1

where vf; denotes the collocation points at which (27) is weakly prescribed and n is the number of such collocation
points. The sampling of these collocation points, the initialization of (wg, w;) and the optimization algorithm will
be described together with the offline training of PINN-DMN in Sect. 3.5.

Using 5 DMN layers and the ReLLU activation function, an example of the minimization of (28) is shown in Fig.
8. The loss function is decreasing, which demonstrates that our PINN functional dependence (25a) of w is capable
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of satisfying the volume fraction constraint (27). In this example, after about 200 epochs, the maximum absolute
error of |vf(w) — vf| in [0, 1] becomes approximately 0.5%.

1501 — At epoch = 10
102 .S 1.251 Converged
g
£1.004 -
2 g
g10 E0.75
°
> 0.50
5
10-6 1 0 0.254 "
0001
0 50 100 150 200 0.0 0.2 0.4 0.6 0.8 1.0
Epoch Microstructure volume fraction

(a) (b)

Figure 8: Volume fraction constraint prescribed on the PINN for w(p): (a) minimization of the loss function (28) and (b) predicted
DMN volume fraction at the early stage and at the end of training.

Another physical information that can be extracted from (25a) is the number of active DMN material nodes.
For arbitrary vf € [0, 1], the number of active nodes for the phase 1 is given by

card{i € I | w;(vf) > 0},

where card(-) = || is the cardinality of a set. Similar formula can be defined for the phase 2. In practice, machine
epsilon is used instead of 0. The ratio of active DMN nodes for each phase can be obtained by dividing their
respective number of active nodes by %n, which is the number of total material nodes per phase. In the whole
parametric space, the number of globally active nodes is defined by

card{i € I | w;(vf) >0, Wvf € [0,1]}.

In Fig. 9, these quantities are plotted as a function of vf, the volume fraction of the phase 2. In order to satisfy
(27), the ratio of active nodes of the phase 1 decreases from 100% to less than 70%, while for the phase 2 this ratio
increases from less than 60% up to more than 90%. Our PINN functional dependence (25a) of w is hence capable
of adapting the weights of each phase as a function of the microstructure volume fraction.

# of globally active (total) nodes: 31 (32)

=
o
;

©
©
"

Ratio of active nodes
o
[e0]

0.7
—— Phase 1

0.6 1 Phase 2
0.0 0.2 0.4 0.6 0.8 1.0

Volume fraction

Figure 9: Variation of the ratio of active DMN nodes with the volume fraction of the phase 2.

3.4. Orientation constraint

DMN not only captures the microstructure morphology, it also learns material orientation distribution function
Q — SO(3) in the microstructure [9]. Using orientation tensors, we propose an orientation constraint to be
prescribed on DMN weights w and rotations @, in order that the parametric DMN generalizes such material
orientation knowledge in the whole parametric space.

Orientation tensors [28] describe concisely the statistical information of the orientation distribution of unit
vectors. Given an orientation distribution function f : S? — R, where S? denotes the two-dimensional surface of a
unit sphere, the 3 x 3 second-order orientation tensor is defined by

a= /SZ fle)e®ede, |e| =1. (29)
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It can be easily shown that a is symmetric and tr(a) = 1, due to the normalization constraints of e and of the
probability density f. Higher order orientation tensors do exist [37], however the second-order one (29) is the
most frequently used to characterize local fiber orientations due to manufacturing processes and their influence on
material properties [38, 39].

In this work, we propose a generalization of such (second-order) orientation tensors for orientation distributions
of rotations. Contrary to transversely isotropic fibers for which a single unit vector suffices to characterize its
material frame, general anisotropic materials (like orthotropic ones) require a rotation matrix R to describe the
transformation from its material frame (e, eq, e3) to the global one. In such cases, the orientation distribution
function is now defined for rotation matrices f : SO(3) — R. Such probability density function can also be found for
the texture analysis of polycrystalline materials [40] or rigid body dynamics [41]. Given that each column 1 <4 <3
of R essentially expresses e; € S? in the global frame, it defines an orientation distribution of the material frame,
cf. Fig. 10 for the tows.

(b)

Figure 10: Orientation distribution of the material frame of the tows in the woven microstructure: (a) e1, (b) e2 and (c) es.

Given this interpretation, three (second-order) orientation tensors can be defined for each axis of the material
frame

al) = f(R)e;®e;de, e =1, (30)
SQ

where Einstein summation is not implied. The tensor a can be understood as a third-order material frame orientation
tensor. For discrete probability functions defined on a mesh, the integral can be understood as weighted-averaging
using the element volumes as weights. Note that in the case of a two-phase microstructure, (30) can be computed for
each of the phase. Each of these orientation tensors satisfies tr(a(”) = 1. Due to the orthonormality of (e1, e, e3),

we also have
1

a(l) + 3(2) + 3(3) = 1
1

Using (30) in the case of Fig. 10, the material frame orientation tensor for the tows is given by

05 0 0 05 0 0 00 0
aW=10 05 0, a®=]0 05 0], a® =10 0 0 (31)
0 0 0 0 0 0 00 1

The tows are thus isotropically oriented in the X-Y plane for e; and es, and unidirectionally oriented in the Z axis
for e3. For the matrix phase in Fig. 10, its material frame coincides with the global frame. In this case, a is similar
to unidirectional orientation tensors and satisfies

(4)

a;; =1, ag.ik) =0 for other components. (32)

Suggested by [27], such orientation tensors can also be defined for DMN. As explained in Sect. 2.1, DMN
rotations 6 define rotation matrices between the local frame of the current laminate to that of the next nesting
level. They can thus be composed to obtain the effective rotation matrix from the material frame (eq, e, e3) (leaf
laminates) to the global frame of the microstructure € (root laminate). Let p(i) denote the parent of a laminate i
in the DMN binary tree architecture. For instance, in the 3-layer DMN example shown in Fig. 2, we have p(4) = 2
for the leaf laminate 4 and p?(4) = p(p(4)) = p(2) = 1 which is the root laminate. For each leaf laminate i which
carries the DMN material nodes, the effective rotation matrix from the material frame to the global one is given by

Ri=R(0,n-1(;)) - R(0p2(i)) R(6,1)) R(0;), R; € SO(3). (33)
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Note that for an n-layer DMN, we have necessarily p”~1(i) = 1 for arbitrary leaf laminate i. Due to the absence
of input rotation matrices for (Cq,Cs), material nodes 1 < ¢ < n that share the same leaf laminate also obtain the
same effective rotation matrix. For instance, for the material nodes 3 and 4 contained in the leaf laminate 5 in Fig.
2, their effective rotation is ~

R; = R(61)R(62)R(65).

Using these effective rotations on leaf laminates, similar to (30), the DMN material frame orientation tensor can
be computed for the phase 1
(i) Dicr, Wii @ &
apun(w,8) = . (34)
EiEHl Wy

Similar formula can be defined for the phase 2. Compared to the DMN volume fraction (26), the computation of
DMN orientation tensors requires both DMN weights w and rotations €. Using the PINN for DMN parameters
(25), we propose the following orientation constraint through the definition of a loss function

3 3

a %Z”aDMN(w(pi)’a(Pi)) —ap)l®, lal®=>_>">" (aﬁ))Q. (35)

i=1 j=1 k=1

Similar loss function is defined for the phase 2 and then summed together. In (35), p; are the collocation points in
the microstructural parametric space and a(p;) are the orientation tensors of the parametric microstructure. The
training strategy of (35) will be described further in Sect. 3.5.

With 5 DMN layers and the ReLU activation function, an example of the minimization of (35) is shown in
Fig. 11. The microstructure is parametrized by two geometrical parameters p = q = (g1, g2) € [0, 1]? that do not
change vf. Due to (25a), the DMN weights do not vary with p. We suppose that the material frame of both phases
coincides with the global one, hence in (35) the unidirectional orientation tensors (32) are used as target values.
The decreasing loss function value indicates that our PINN (25) is capable of satisfying the orientation constraint.

W) of the phase 2

a
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Figure 11: Orientation constraint prescribed on the PINN for w(p) and 6(p): (a) minimization of the loss function (35) and (b) material
a

frame orientation tensor component 311) for the 1st material axis e1 of the phase 2, at epoch 10 of training. The points in (b) represent
the n = 2% = 32 collocation points.

At the early stage of the training, aﬁ) of the phase 2 still presents variations in the parametric space (g1, ¢2).

Its mean and standard deviation values at epoch 10! and at epoch 10® are indicated in Tab. 3. After training,
agll) ~ 1 becomes quasi-uniform as expected.

a(lll) Mean Standard deviation

At epoch 101 0.866  0.0440
At epoch 10%  0.999  0.000686

Table 3: Mean and standard deviation of agll) of the phase 2 in the parametric space at epoch 10! and at epoch 103.
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3.5. Offtine training of PINN-DMN

As shown in Fig. 7, the PINN-DMN fitting parameters in (25) are optimized jointly using the linear elastic
behavior data at different microstructural parameters. This training strategy is also used by [11] for short-fiber
reinforced plastics with fixed volume fraction but arbitrary fiber orientations.

—FE
Each sample s in the training data contains the homogenized linear elastic stiffness tensor C, ~ of a particular
microstructure with parameters pg, given input linear elastic behaviors of both phases (Cy,Cs)s, see Fig. 1. Recall

—FE
that C,  is in generally performed by computational homogenization. The generation of such synthetic dataset
requires sampling both in the input material space and in the parametric space of the microstructure

(C1,Co)s €M, p,=(vf,q)s cPCRxR! = C. . (36)

In (36), M represents the discrete material sample set containing various input material properties of (Cy,Cs),
while P is the parametric sample set. In this work, these two samplings are performed independently. For different
microstructural parameter values, the same material sampling is used to evaluate the linear elastic homogenization
behavior of the microstructure

Material sampling. We follow the original material sampling method proposed by [9], assuming that (Cq,Cs) are
both orthotropic in their respective material frames. In total, 9 + 9 = 18 material parameters are required to
characterize their orthotropic elastic behaviors and 1 additional scaling parameter is used to introduce contrasts
in the elastic moduli between the two phases. In this work, Latin hypercube sampling [42] is used to sample this
19-dimensional space. The stiffness tensors of the phase 1 are also normalized since the homogenization function
(1) that DMN attempts to learn is homogeneous

((Cl,(CQ) H@ — (k(Cl,k(CQ) — k‘@ Vk € R.

This property is satisfied by the DMN homogenization function (4) thanks to its micromechanics-based architecture.
After sampling, the generated (Cy,Cs); are randomly partitioned into a training set and a validation set. An
example of material sampling is given in Fig. 12, for the unidirectional fiber composite example in Sect. 4.1.
Anisotropy in the phase 2 is similar to Fig. 12(a) and is not shown. In this case, since the fibers are much stiffer
than the matrix, the scaling parameter is adapted to generate appropriate contrasts in the elastic moduli between
the two phases. From Fig. 12(b), it can be seen that ratios between the Young’s moduli range from 10~! to 10%.

5 Anisotropy in the phase 1 Contrasts in moduli between the phase 1 and 2
1044 B .
Training '... PRI TS 10%4 « Training
1011 Validation * % &% % Validation | .
o o 2] )
[T ol .
e . Y o
W s w S
_1 o o
10 1004 - e
1024 < . | | | | | ' | | |
1072 107! 100 10t 107 107! 10° 10! 107 103 104
ESY/ED EP?/ED
(a) (b)

Figure 12: Material sampling for input orthotropic stiffness tensors (C1,C2). Both phases present anisotropy in their elastic behaviors
and contrasts in the elastic moduli are also introduced between them.

The distance from isotropy of a given stiffness tensor can characterize its degree of anisotropy, see [43]. Using
the Lo (Frobenius) norm of elasticity tensors, the following relative distance from isotropy can be defined

o ||(C - (CiSOH

diso - ) (37)
ICll

where Cig, is the closest isotropic elasticity tensor of C in the Frobenius norm. An explicit formula is provided in
[43]. If diso = 0, it implies that C is isotropic. In Fig. 13, the statistical distributions of dis, are computed on
the total dataset. Similar histogram is obtained for both phases. Anisotropy is not uniformly distributed in the
sampling space. The median value of dis, is approximately 0.6, while the maximum value is around 0.8.
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Figure 13: Anisotropy in both phases characterized by their relative distance from isotropy.

Sampling in the microstructural parametric space. Two different sampling needs to be performed in the microstruc-
tural parametric space. The first one defines the parameters values p, € P in (36) on which C is computed together
with the previous material sampling M. For different microstructures, different sampling strategy may be used
to well cover the region of interest in the parametric space. For instance, in [11], the fiber orientation space is
sampled by subdividing recursively the orientation triangle into sub-triangles. For microstructures depending solely
on the volume fraction parameter [26], equidistant sampling can be used in the vf-interval of interest. In general,
all the microstructural parameters p = (vf, q) are sampled jointly in order that less sampling points are needed to
optimally fill the parametric space.

The other sampling concerns the physical constraints prescribed on PINN (25). The volume fraction constraint
(28) and the orientation constraint (35) are weakly enforced using collocation points in the parametric space. Since
the costly computational homogenization is not carried out for these points, more collocation points can be used.

The volume fraction constraint (28) requires a sampling of the vf parameter. A uniform sampling in [0,1] is
simply used to generate them: vf; =4/(n — 1), with ¢ = 0,1,...,n — 1. The number of collocation points is taken
to be the number of DMN material nodes n. A numerical study not reported here shows that n is sufficient to
prescribe (27) with an acceptable accuracy, which is demonstrated by the example presented in Sect. 3.3.

The orientation constraint (35) requires collocation points p; in the parametric space, since it is prescribed both
on DMN weights and rotations. Assume that each microstructural parameter is rescaled such that p € [0,1]9F.
Sobol low-discrepancy sequence [44] is used to generate these collocation points which presents good space filling
properties. If internal bounds within the parameters are present, such as for the fiber orientation space [11],
collocation points outside the feasible region are removed. The number of collocation points is also taken to be the
number of DMN material nodes n. Sobol sequence is deterministic so that the same collocation points are used
given the number of layers n. Numerical example shown in Sect. 3.5 shows that the orientation constraint can be
well prescribed with this sampling strategy.

Loss function. Based on the previous material sampling and samplings in the parametric space, a total loss function
L as defined as follows

DMN —<FE
-G,

1 IC;

1 2 |
ZW;LP‘FEVf"‘Ea, Epzm§€i, €; =

c (38)

o
In (38), Lyt is the volume fraction constraint (28) and L, is the orientation constraint (35). Scaling factors are
absent in front of these two terms since our numerical simulations indicate that they are not required. In [9, 10], a
penalty term is introduced to control the magnitude of z in (5). It is motivated by the fact that the ReLU activation
function is unbounded and the DMN homogenization function (4) is invariant with respect to the scaling z — kz
for k > 0. In this work, we don’t find it necessary to prescribe such constraints on our fitting parameters (wg, w1).

Similar to [9], the loss at a fixed microstructural parameter value £, is the mean squared error in the material
sample set M comparing the DMN predictions and the computational homogenization ones, with the relative Lo
norm on the stiffness tensors. In [10, 11}, the L; norm is used to compute each e;, which is then aggregated into £,
with the Ljp norm. This is not tested in this work. In the total loss, £, is then averaged among different samples
of the microstructural parameters.

A separate numerical study not reported here investigated the log-Euclidean distance [43] in computing e;. The
log-Euclidean distance provides an intrinsic distance between two symmetric positive definite matrices, since the
same distance is obtained by using the stiffness tensor or the compliance tensor. However, our numerical results
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show that the prediction in the homogenized Poisson ratios may become less accurate. We suspect that it is due to
the fact that the distance is now computed on matrix logarithms.

Optimization algorithm. The total loss function (38) is minimized using gradient-based methods, similar to other
DMN formulations [7, 10, 18, 19]. Our PINN-DMN architecture is implemented using PyTorch [45]. The derivatives
of the loss function (38) with respect to the fitting parameters (25) can thus be easily computed with automatic
differentiation. Single precision is used for offline training.

Our PINN-DMN forward function (p,C;,Cs) — C is vectorized over both the material sampling dimensions
(C1,C3) € M and the parameter sampling dimension p € S, in order to achieve optimal parallel computational
efficiency. In [7, 11, 18, 19], a mini-batch (or even each sample) is randomly drawn from the whole dataset at each
iteration of an epoch to introduce randomness in gradient descent and promote more frequent parameter updates.
In the machine learning community, this is known to improve generalization capability [46]. In this work however,
the entire dataset is trained in a single batch at every epoch. Our simulation results indicate that the trained
PINN-DMN still generalizes well without significant overfitting, thanks to its physics-based nature. Furthermore,
the training time can be reduced due to vectorization.

We have compared different optimizers provided in PyTorch, and have found that the resilient backpropagation
(Rprop) algorithm [47] works best in terms of convergence (loss values), stability (noise) and efficiency (time to
train each epoch) in this single batch setting. In general, our PINN-DMN is trained over 10000 epochs with an
initial learning rate of 1072,

Initialization. Depending on the activation function used in (25a), different initialization can be used for wy.
For ReLU, uniform distribution wy ~ #(0.2,0.8) as proposed by [7] is applied. For w; which characterizes the
dependence of the DMN weights on vf, it is zero-initialized. Compared to a random initialization, numerical
simulations demonstrate that it would result in better convergence of the loss function.

Regarding the DMN rotations in (25b), similarly ©®; is zero-initialized. The dependence of p — 0(p) is hence
also learned from zero. For the constant part 6y, a random initialization on quaternions is used. Each component
is initialized using the standard normal distribution, and then normalized to obtain a unit norm. We don’t find it
necessary to control the norm of each DMN rotation 0 in (25b) through the use of an additional loss term in (38).

Since initialization can have an impact on trained DMN parameters, training is in general repeated 20 times
and the one with the least final loss value is chosen for further numerical investigations.

4. Numerical examples

In this section we will numerically evaluate our PINN-DMN architecture on three parametric microstructures.
Due to the amount of training data requiring in total |P| x M| FE-RVE simulations, training is performed on an
NVIDIA GeForce RTX 2080 Ti GPU card using single precision.

4.1. Unidirectional fiber composite

We first consider a unidirectional fiber composite with varying fiber volume fractions. The fully-connected
architecture is compared with the physics-informed one in terms of accuracy and generalization ability. The influence
of the physical constraints (28) and (35) is also discussed. Since there is only one microstructural parameter, the
transfer-learning based approach is also tested and then compared with PINN-DMN.

The 3-d finite element model is built with hexagonal fiber packing using the FE-RVE plugin available in Abaqus
CAE [48]. In total, 5 FE-RVE models are constructed, see Fig. 14. Three of them (vf = 0.2, vf = 0.5 and vf = 0.8)
constitute the parametric sample set P and are used to generate training dataset, while the other two are used to
test interpolation accuracy. The FE-RVE analysis is conducted by imposing periodic displacement on the boundary
nodes. The 6 x 6 linear elastic stiffness tensor is obtained by performing a linear perturbation step in Abaqus in
which 6 different load cases are applied.

Material sampling is performed using the method described in Sect. 3.5. In total, the same 500 input orthotropic
material properties are sampled for all the five microstructures, see Fig. 12. Since the actual composite is made
of a polypropylene matrix reinforced with glass fibers, the synthetic fiber stiffnesses Cs are also generated to be
statistically higher than the matrix ones C;. The real linear elastic properties of the two isotropic phases are
indicated in Tab. 4.

For training microstructures vf = 0.2, vf = 0.5 and vf = 0.8, 400 of the 500 samples are used as training dataset,
while the other 100 are reserved for validation. For the others vf = 0.35 and vf = 0.65, all the 500 samples are used
for testing the interpolation accuracy. The simulation is run with 24 threads using Intel(R) Xeon(R) Gold 5220R
CPU @ 2.20GHz. The FE-RVE dataset generation time is summarized in Tab. 5.
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(a) vf=0.2 (b) vf =0.35 (test) (c¢c) vf=0.5 (d) vf =0.65 (test) (e) vf=0.8

Figure 14: FE-RVE models for the unidirectional fiber composite with varying fiber volume fractions. The models with vf = 0.2,
vf = 0.5 and vf = 0.8 are used to generate training dataset, while those with vf = 0.35 and vf = 0.65 are used to test interpolation
accuracy.

E (MPa) v

Matrix 3300 0.41
Fiber 72000 0.22

Table 4: Real linear elastic properties of the two phases for the unidirectional fiber composite.

Since the volume fraction (of the fibers) is the only parameter of this microstructure, the PINN-DMN architecture
(25) implies that the DMN weights w vary with vf according to (25a), while the DMN rotations € remain constant.
The fitting parameters are hence (wp, w1, 0p). This is somehow similar to the “naive” approach described in [26].
Given a pre-trained base DMN with w(® and corresponding volume fraction Vf(b), the DMN weights at a new vf
are scaled appropriately based on the volume fraction

2o ™ e
1—vf® !
% ®) i €Ty,

The DMN rotations also remain unchanged. Compared to (39), the vf-dependence of w in our PINN-DMN is not
directly prescribed but learned from data.

Training of our PINN-DMN is conducted following Sect. 3.5, with the two physical constraints (28) and (35).
The ReLLU activation function is used. Since the material frames of both phases coincide with the global one, the
unidirectional material frame orientation tensor (32) is used as the target value for the orientation constraint. With
5 DMN layers, we first compare the Rprop optimizer with the frequently used Adam optimizer [49] in terms of loss
history, in Fig. 15. A total of 20 trainings are realized using random initialization for each optimizer. With Adam,
the loss history is much more noisy (even using a single batch) and converges slower than Rprop. The loss at the
end of training (10000 epochs) is also slightly lower statistically with the Rprop optimizer. Rprop is hence chosen
as the optimizer of PINN-DMN.

Similar to the original DMN formulations [7], adding more layers also increases the expressive power of PINN-
DMN. From Fig. 16(a), the final loss values with 7 layers are lower than those obtained with 5 layers. The total
loss can be partitioned into two parts according to (38): the FE-RVE data part and the physical constraints part.
Their respective history is shown in Fig. 16(b) for the training realization with the least final loss value, for 7 layers.
Each of the three “FE-RVE” curves represents one particular training microstructure vf = 0.2, vf = 0.5 or vf = 0.8,
and is monotonically decreasing simultaneously with similar values. The physical constraints part also converges
well and is lower than the FE-RVE part by an order of magnitude. Among the 20 training realizations, the median

FE-RVE model Number of degrees of freedom Dataset generation time

vi=0.2 131568 500 x 3 = 1500 s
vi =0.35 169368 500 x 4 = 2000 s
vi=0.5 164328 500 x 4 = 2000 s
vf = 0.65 208752 500 x 5 = 2500 s
v =0.8 247488 500 x 6 = 3000 s

Table 5: FE-RVE dataset generation time for each unidirectional fiber composite at different fiber volume fractions.
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Figure 15: Loss history with 5 DMN layers with the Rprop and the Adam optimizers.

training time for 5 or 7 layers is indicated in Tab. 6. In the sequel, we will report the results obtained with 5 layers
which provides satisfactory accuracy.

7 layers
1]
0% 5 layers 100 — Total
1000 | 7 layers FE-RVE
10714 —— Constraints
10—1,
2 ‘ % 1072
3 10724 -3
10
10734 1074
104 — 10754
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Epoch Epoch

(a) (b)

Figure 16: PINN-DMN training for the unidirectional fiber composite: (a) loss histories with 5 and 7 DMN layers; (b) partition of the
total loss into the FE-RVE data part and the physical constraints part.

5 layers 7 layers
Median training time 570 s 786 s

Table 6: Median training time with 5 or 7 DMN layers for the unidirectional fiber composite.

In Fig. 17, the statistical distribution of the relative error e; in (38) between DMN predictions and FE-RVE
ones at each material sample is shown for the microstructure with vf = 0.5. The 0.1, 0.5 (median) and 0.9-quantiles
are also indicated. Even though the maximum relative error can reach 6% for some localized samples, the error
is less than 2.4% for 90% of them. We believe that these quantiles are less sensitive to outliers and hence more
appropriate for comparing different models.

Influence of physical constraints and parametric DMN architectures

We first analyze the influence of physical constraints on the PINN-DMN architecture (25). The training,
validation and test errors are compared in Fig. 18 using their respective 0.1, 0.5 (median) and 0.9-quantiles
at different volume fractions. The PINN-DMN model without physical constraints is trained similarly with 20
realizations and the one with the least final loss value is chosen. Validation error refers to the relative error
computed on the validation dataset composed of 100 material samples. Overfitting is not observed for both cases,
since the validation errors are comparable to the training errors. When the physical constraints are not included,
the training errors at vf = 0.5 and vf = 0.8 are similar or only slightly lower at vf = 0.2 than the case when they
are considered. However, the inclusion of the physical constraints reduces the interpolative test errors at vf = 0.35
and vf = 0.65 for previously unseen microstructures. The physical constraints may hence improve generalization
ability of PINN-DMN.

In Fig. 19, we analyze the influence of the physical constraints on the fully-connected architecture (23). Now, the
DMN rotations also become a function of the volume fraction, leading to an additional fitting parameter ®; during
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Figure 17: Statistical distribution of the relative error between DMN predictions and FE-RVE ones at each material sample, for the
microstructure with vf = 0.5.
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Figure 18: Training, validation and test errors of PINN-DMN at different volume fractions represented by their respective 0.1, 0.5
(median) and 0.9-quantiles: (a) with physical constraints; (b) without physical constraints.

training. The physical constraints reduce overfitting at the data points. By comparing Fig. 18(a) and Fig. 19(a), we
observe similar training, validation and test errors between the PINN and the fully-connected architectures, when
the physical constraints are included. The PINN architecture (25) hence demonstrates similar expressive power
compared to the fully-connected one, even with a constant DMN rotations vector 6y for different volume fractions.
When the physical constraints are not considered, the interpolative test errors become significantly larger (even the
scale of the y-axis needs to be changed) in Fig. 19(b) for the fully-connected architecture. Comparing Fig. 18(b)
and Fig. 19(b), we conclude that the PINN architecture itself (by requiring a constant DMN rotation vector 6j)
may help to reduce overfitting in the parametric space and improve generalization capability.

0.05 Fully-connected; with physical constraints 0.10 Fully-connected; without physical constraints
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Figure 19: Training, validation and test errors of a fully-connected parametric DMN at different volume fractions represented by their
respective 0.1, 0.5 (median) and 0.9-quantiles: (a) with physical constraints; (b) without physical constraints.

In Fig. 20(a), the DMN volume fraction prediction (26) is presented as a function of the microstructure volume

fraction. For all cases, DMN recovers well the volume fractions 0.2, 0.5 and 0.8 at the FE-RVE data points. The
microstructure morphologies are hence well learned by DMN using linear elastic data [7, 10]. However, away from
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these three data points, the DMN volume fraction prediction may differ from the actual microstructure one. At
vf = 0.35, when (28) is explicitly included during training, the relative errors [vipyn — viq|/vEq are smaller than
0.4% for the two parametric DMN architectures. However, when it is not the case, we obtain 2% with PINN and
even 9% with the fully-connected architecture. This may explain the higher interpolative testing errors at vf = 0.35
for these two models in Fig. 18(b) and Fig. 19(b). The straight line (27) can only be well recovered when the
volume fraction constraint (28) is explicitly included.
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Figure 20: Physical constraints verification for two parametric DMN architectures: (a) DMN volume fraction prediction; (b) error on
the material frame orientation tensor.

Similarly, the error on the material frame orientation tensor |apmn(vf;) — a(vf;)|| using the norm defined in
(35) is presented in Fig. 20(b). The errors on the fibers and on the matrix are summed together. When (35) is not
included during training, deviation from the theoretical unidirectional material frame orientation tensor (32) can
be observed, even though the error is well bounded between [0.2,0.8]. Similar to Fig. 20(a), physical constraint
errors begin to increase significantly when extrapolating outside the training domain. The inclusion of (35) may
hence improve the generalization capability in the whole parametric space.

In this work, the rotation matrix for (Cy, Cy) for each of the n = 2™ material nodes on the input layer is omitted
compared to the original formulation [7, 9]. In Fig. 21, the training, validation and test errors are shown when they
are instead included. Compared to Fig. 18(a), the inclusion of such material rotation matrices does not increase the
expressive power of PINN-DMN. This could be partially due to the fact that the microstructure being considered
does not contain local material orientation.

PINN-DMN; with material rotations
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Figure 21: Training, validation and test errors of PINN-DMN with additional n = 2™ = 32 material rotations at different volume
fractions represented by their respective 0.1, 0.5 (median) and 0.9-quantiles.

Using the real linear elastic properties of the two phases in Tab. 4, the relative errors between the DMN predic-
tions and the FE-RVE result for two parametric DMN architectures and with or without the physical constraints are
shown in Fig. 22. The conclusions drawn from Fig. 18 and Fig. 19 are recovered. The PINN architecture and the
physical constraints both help to improve generalization ability of the parametric DMN model. Using PINN-DMN
with the physical constraints, the relative errors are less than 2% for the microstructures being considered.

The homogenized elastic property prediction is presented in Fig. 23 in the whole parametric space. Since the
effective elastic tensor is orthotropic, it can be reduced to 9 elastic moduli. The global 1 direction refers to the
fiber longitudinal direction. The general nonlinear influence of the volume fraction is well captured by these two
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Figure 22: Relative error using real properties between the DMN predictions and the FE-RVE results for two parametric DMN
architectures and with or without the physical constraints.

parametric DMN models. The use of a PINN architecture as well as the physical constraints helps to improve both
interpolative and extrapolative generalization capabilities.
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Figure 23: Homogenized elastic moduli prediction as a function of the fiber volume fraction obtained by parametric DMN models:
(a) Young’s modulus E1, (b) Poisson ratio 713 and (c) shear modulus fi;5,. The FE-RVE training and test data are indicated. The
theoretical values at vf = 0 and vf = 1 are also provided as test data.

In Fig. 24(a), the PINN functional dependence of the DMN weights (25a) is illustrated. The PINN-DMN
architecture with the physical constraints is used. Globally, 22 of the 32 material nodes are active. With the
increasing fiber volume fraction, DMN weights of the matrix decrease gradually and individually, while those of the
fiber increase at the same time. This is also reflected in Fig. 24(b), where the ratio of the active DMN nodes is
presented for both phases. Even though the ratios for both phases gradually increase or decrease, the total number
of active nodes does not vary much. This ensures the expressive power of PINN-DMN in the whole parametric
space. The functional dependence on vf is realized both by adapting weights values and the number of active nodes
for each phase.
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Figure 24: PINN-DMN: (a) DMN weights evolution with the volume fraction; (b) variation of the ratio of active DMN nodes
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Comparison with transfer-learning based interpolative DMN

We follow the procedure described in [26] and the microstructure with the least fiber volume fraction is used as
the starting point in the training sequence vfy = 0.2 — vf; = 0.5 — vfy = 0.8. Subsequent training is initialized
using (39) based on the previously trained DMN. As for our parametric DMN models, the transfer learning process
is repeated 20 times with random initialization when training the base DMN model. The realization with the
least final total loss value Liot = Lo + £1 + L2 is then chosen for further analysis. For comparison with previous
PINN-DMN results, 5 DMN layers are used.

In Fig. 25(a), loss histories obtained with transfer learning are presented. Transfer learning indeed accelerates
convergence. For vf = 0.5 and vf = 0.8, convergence is achieved within the first 1000 epochs. However, the final
loss values become an order of magnitude larger at vf = 0.8 compared to the base DMN. In [26], there is also a
slight increase in the final loss values at the end of the transfer learning process. For vf = 0.8, DMN is also trained
using random initialization. The loss histories are compared with that obtained from transfer learning. A reduction
of the expressive power of DMN is hence observed with transfer learning.
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Figure 25: (a) Loss histories for different volume fractions using transfer learning; (b) loss history at vfa = 0.8 obtained using random
initialization and from transfer learning.

The training, validation and test errors obtained with this transfer-learning based interpolative DMN model
are presented in Fig. 26. Compared to the results obtained with PINN-DMN (with the physical constraints) in
Fig. 18(a), the errors at the training points vf = 0.2 and vf = 0.5 are lower with this transfer learning approach.
However, due to the reduction of the expressive power, the errors at vf = 0.8 become comparable to those with
PINN-DMN. The test errors are significantly larger than the training / validation ones, especially at vf = 0.65.
The transfer-learning may hence tend to overfit at the data points.
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Figure 26: Transfer-learning based interpolative DMN: training, validation and test errors at different volume fractions represented by
their respective 0.1, 0.5 (median) and 0.9-quantiles.

Even though it is not proposed in [26], we can also use (39) to extrapolate DMN weights outside the training
domain. In this case, the DMN weights at vf = 0 are hence extrapolated from the base DMN at vf = 0.2, while the
DMN trained by transfer-learning at vf = 0.8 can be used to obtain the DMN weights at vf = 1. Since (39) respects
the actual volume fraction (26), the volume fraction constraint vipyn = vfq is satisfied at all vf when combined
with piecewise linear interpolation. However, it is not the case for the orientation constraint. In Fig. 27, the error
on the material frame orientation tensor is computed in the whole parametric space. Compared to PINN-DMN,
the relative error is much larger with the transfer-learning approach. The error also increases with interpolation.
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At the test points vf = 0.35 and vf = 0.65, the errors become approximately 2% and 3%. This may explain the
larger test errors in the transfer-learning model in Fig. 26.
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Figure 27: Error on the material frame orientation tensor obtained by PINN-DMN with the physical constraints and by the transfer-
learning approach.

The relative errors using the real linear elastic properties of the two phases in Tab. 4 are shown in Fig. 28 for
the PINN-DMN model and the transfer-learning (TL) approach. Even though the TL approach is more accurate
for the first 3 volume fractions, it becomes less accurate for the last 2 volume fractions. The relative errors obtained
with PINN-DMN, on the contrary, are more uniform in the parametric space.
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Figure 28: Relative error using real properties between the DMN predictions and the FE-RVE results obtained by PINN-DMN with
the physical constraints and by the transfer-learning approach.

The elastic moduli prediction is also compared in Fig. 29 between these two approaches. Both models are able to
capture the nonlinear influence of the volume fraction, especially on the in-plane Poisson ratio vo3. While a perfect
agreement is found for E1, the transfer-learning approach seems to slightly overfit the 153 prediction between 0.5
and 1.0.

Similar to Fig. 24, the DMN weights evolution in the parametric space is also shown in Fig. 30 for the
transfer-learning approach. Globally, 12 of the 32 material nodes are active. Due to transfer-learning and the
ReLU activation function, the number of active nodes can only decrease [26]. While 12 material nodes are active
for vf = 0.2 and vf = 0.5, only 9 active nodes are present for vf = 0.8. Compared to PINN-DMN, this gradual
decrease of the active DMN material nodes may lead to a reduced expressive power. The functional dependence on
vf is mainly realized by adapting weights values at each transfer-learning interpolation point. There is no gradual
change in the ratios of active nodes for intermediate volume fractions.

Multiphysics property prediction

Using the proposed PINN-DMN architecture and the fitted parameters trained on isothermal linear elastic data,
we will now predict the effective thermal conductivity k and the effective CTE @ with the redefinitions of the
laminate homogenization function Lam in Sect. 2.3. The constituent properties used in this online prediction test
are provided in Tab. 7. The effective properties predicted by PINN-DMN will be compared to FE-RVE simulation
results, carried out using the Abaqus FE-RVE plugin [48].

In Fig. 31, the effective thermal conductivity k predicted by PINN-DMN is compared with the FE-RVE results
(or theoretical results for vf = 0 and vf = 1) as a function of the volume fraction. For both longitudinal and
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Figure 29: Homogenized elastic moduli prediction as a function of the fiber volume fraction obtained by PINN-DMN and the transfer-
learning approach: (a) Young’s modulus F; and (b) Poisson ratio a3.
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Figure 30: Transfer-learning based interpolative DMN: (a) DMN weights evolution with the volume fraction; (b) variation of the ratio
of active DMN nodes

k(W/(mXK)) oK™

Matrix 0.27 7x107°
Fiber 0.93 5x 1076

Table 7: Real thermal conductivity and CTE properties of the two phases for the unidirectional fiber composite.
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transverse components, an excellent agreement is obtained in the whole interval. This is a remarkable result
knowing that our PINN-DMN is only trained using isothermal linear elastic data. This demonstrates that DMN
learns the microstructure per se, and not a particular physics property in particular.
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Figure 31: Effective anisotropic thermal conductivity prediction (a) longitudinal k1 and (b) transverse k2.

The effective CTE is also computed in Fig. 32 using the trained PINN-DMN for an online prediction test. The
nonlinear dependence of & on the volume fraction is well captured by PINN-DMN. A very good agreement with
the FE-RVE data is also observed, even though the longitudinal @; is slightly underestimated near vf ~ 0.
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Figure 32: Effective anisotropic CTE prediction (a) longitudinal @; and (b) transverse @s.

4.2. Woven composite

We now consider the 2 x 2 twill woven composites with varying tow volume fractions. Compared to the unidirec-
tional fiber composite, now local material orientation is present for the yarns, illustrated in Fig. 10. The objective
is to evaluate PINN-DMN for such microstructures in terms of elastic moduli prediction as a function of the volume
fraction. Inverse identification of the material and microstructural parameters is also considered using PINN-DMN
as an accurate and efficient surrogate of the parametric microstructure.

The 3-d finite element model is constructed using TexGen [50] with 4 volume fraction values for the tows, see
Fig. 33. Three of them (vf = 0.459, vf = 0.608 and vf = 0.729) constitute the parametric sample set P and are
used to generate training dataset, while vf = 0.537 is used to test interpolation accuracy. The FE-RVE analysis is
conducted similarly as before under Abaqus to obtain the 6 x 6 linear elastic stiffness tensor. Each FE-RVE model
contains 75000 voxel elements and 241899 degrees of freedom. The simulation is run with 24 threads using Intel(R)
Xeon(R) Gold 5220R CPU @ 2.20GHz and requires approximately 11 seconds.

The real linear elastic properties of the two phases are adapted from [18] and can be found in Tab. 8. The
matrix is isotropic while the carbon fiber tows are assumed to be transversely isotropic in the local material frames.
Compared to [18], the transverse Young’s modulus F5 of the tows is modified to satisfy transverse isotropy. A
similar material sampling compared to Fig. 12 is performed to generate 500 input orthotropic material properties.
Given the high moduli contrasts in the real properties, the synthetic yarn stiffnesses C, are also generated to be
statistically higher than the matrix ones C;. For training microstructures vf = 0.459, vf = 0.608 and vf = 0.729,
400 of the 500 samples are used as training dataset, while the other 100 are reserved for validation. For vf = 0.537,
all the 500 samples are used for testing the interpolation accuracy.
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Figure 33: FE-RVE models for the woven composite with different fiber volume fractions. The models with vf = 0.459, vf = 0.608 and
vi = 0.729 are used to generate training dataset, while vf = 0.537 is used to test interpolation accuracy.

E (MPa) v
Matrix 3800 0.387

E1 (GPa) E2 (GPa) V12 V23 H12 (GPa)
Tow 78.8 6.24 035 06 2.39

Table 8: Real linear elastic properties of the two phases for the woven composite.

PINN-DMN is trained following Sect. 3.5 with the two physical constraints (28) and (35) and the ReLU
activation function. In (35), the unidirectional material frame orientation tensor (32) is defined as the target for
the matrix, since its material frame coincides with the global one. For the tows, we use the “planar isotropic”
tensor (31) which characterizes the statistical spatial orientation of the yarns in the FE-RVE model. As before, the
training process is realized 20 times with random initialization and the one with the least final loss value is chosen
for further investigations. The median training time is summarized in Tab. 9.

7 layers 9 layers

Median training time 800 s 1176 s

Table 9: Median training time with 7 or 9 DMN layers for the woven composite.

In Fig. 34(a), the loss histories are compared for 7 and 9 DMN layers. As for the unidirectional fiber composite,
an increased expressive power is observed with more layers, leading to lower (final) loss values. The total loss can
also be partitioned to a FE-RVE data part and a physical constraints part. These two parts are monotonically
decreasing. The physical constraints (28) and (35) are well satisfied since the corresponding loss value is approaching
1075 with 9 layers. In the sequel, we will report the results using 7 layers which provides satisfactory accuracy.

The volume fraction and the material frame orientation tensor for the tows are compared with their prescribed
values in Fig. 35. The DMN volume fraction matches the FE-RVE data points and agrees well with the theoretical
straight line even when evaluated outside the training region. In Fig. 35(b), the components agz) of the DMN
orientation tensor are shown. An excellent agreement is also obtained. Even without the additional rotations on
the input layer, our DMN architecture is capable of learning local material orientation present in the microstructure.

In total, 81 DMN material nodes are globally active in the parametric space 0 < vf < 1, as shown in Fig. 36. As
in Fig. 24, the number of active nodes gradually decreases from 55% to 35% for the matrix while that of the tows
increases from 50% to 65%. The overall ratio of the active nodes remains approximately 55% within the training
region [0.459,0.729]. This is believed to ensure sufficient expressive power for PINN-DMN.

In Fig. 37, the training, validation and test errors are computed at different volume fractions. In Fig. 37(b),
additional 27 = 128 material rotations on the input layer are included. Even in the presence of local material
orientation, such input material rotations do not significantly improve training and validation accuracy. Further-
more, the inclusion of their input rotations seems to overfit at the data points with much higher test interpolative
errors. For PINN-DMN without these material rotations, the median error is approximately 2% for all the four
microstructures. As in Fig. 18(a), the test error is only slightly larger compared to the training ones.

These training, validation and test errors are also presented for different anisotropies of the homogenized elasticity
tensor, using (37) computed with the FE-RVE data. These errors are uniformly distributed and do not increase
with anisotropy.
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(a)

Figure 34: PINN-DMN training for the woven composite: (a) loss histories with 7 and 9 DMN layers; (b) partition of the total loss into
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Figure 35: Verification of the physical constraints for the woven composite (a) volume fraction; (b) material frame orientation tensor

for the tows.
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Figure 37: Training, validation and test errors of PINN-DMN at different volume fractions represented by their respective 0.1, 0.5
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Figure 36: Variation of the ratio of active DMN nodes with varying volume fraction.
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Figure 38: Training, validation and test errors for different output anisotropies.

With the real linear elastic properties provided in Tab. 8, the homogenized elastic moduli are computed in
Fig. 39 with varying volume fraction. For comparison, the fully-connected architecture (23) is also tested with the
physical constraints. Recall that (23) implies that the DMN rotations also become a function of the volume fraction.
Both models capture well the nonlinear vf-dependence of these elastic moduli. The fully-connected architecture
not only increases the number of fitting parameters (@1 is now added), it does not improve prediction accuracy
compared to PINN (25).
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Figure 39: Homogenized elastic moduli prediction as a function of the tow volume fraction obtained by parametric DMN models: (a)
in-plane Young’s modulus E2, (b) in-plane Poisson ratio 712 and (c) transverse shear modulus fi3. The FE-RVE training and test data
are indicated.

The computational efficiency of DMN in terms of computing the homogenized elasticity tensor given C; and C,
is compared to FE-RVE simulations in Tab. 10. Thanks to this significant speed-up, DMN can be further used for
parametric analysis, uncertainty quantification [27] and material property calibration [17].

FE-RVE 7-layer DMN
Wall time (speed-up) 11 s 6.62 ms (1662)

Table 10: Computational speed-up of DMN compared to FE-RVE in terms of homogenized elasticity tensor prediction. 24 cores of
Intel(R) Xeon(R) Gold 5220R CPU @ 2.20GHz are used in both cases.

Multiphysics property prediction

Using the previously trained 7-layer PINN-DMN, we will now predict the effective thermal conductivity and the
effective CTE using the real properties of the constituents provided in Tab. 11. The effective properties predicted
by PINN-DMN will be compared to FE-RVE simulation results, carried out using the Abaqus FE-RVE plugin [48].

The effective thermal conductivities predicted by PINN-DMN without additional training is given in Fig. 40.
For both the in-plane and out-of-plane components, a very good agreement is found with the Abaqus FE-RVE
results. Even though PINN-DMN is only trained using isothermal linear elastic data, it is capable of predicting
other physical properties when the microstructure morphology varies.

In Fig. 41, the in-plane and out-of-plane effective CTE components predicted by PINN-DMN are compared with
the Abaqus FE-RVE results. An excellent agreement is obtained in the given volume fraction range. Due to the
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k(W/(mK)) oK)

Matrix 0.3 7x107°
Tow (longitudinal) 1 4 %1076
Tow (transverse) 0.4 4%x107°

Table 11: Real thermal conductivity and CTE properties of the two phases for the woven composite.
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Figure 40: Effective anisotropic thermal conductivity prediction (a) in-plane k1 and (b) out-of-plane k3.

low CTE values of the tows (fibers) in the woven plane, the effective in-plane @; is well lower than the out-of-plane
one.
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Figure 41: Effective anisotropic CTE prediction (a) in-plane @1 and (b) out-of-plane as.

In this case, the second-order CTE tensor of the tows is transversely isotropic in its material frame, while the
matrix remains isotropic. This implies that (22) must be applied as a neuron operation from the input layer to the
output layer along with the effective stiffness tensor computation. If the laminate homogenization function of (22)
for the effective CTE computation is naively applied directly to the obtained effective stiffness tensor, as shown in
Fig. 42, the effective CTE would be incorrect.

Inverse identification of input material and microstructural parameters

Trained PINN-DMN can serve as an accurate and computationally efficient surrogate of the parametric mi-
crostructure. Not only it can be used in forward prediction of effective properties at different microstructural
parameters, it can also be employed to identify both the material and microstructural properties in an inverse
identification problem.

Now, the homogenized elasticity tensor C is provided, and the objective is to identify the elastic properties of
the matrix Cy, those of the tows Cy as well as the volume fraction of the tows vf. In practice C can be measured
experimentally. Here we use the FE-RVE simulation result C on the test microstructure vf = 0.537, obtained with
the real properties in Tab. 8 which are now sought for.

Motivated by the fact that the gradients with respect to (Cy,Cs, vf) can be easily computed using automatic
differentiation thanks to the PINN-DMN architecture, in this work we adopt a gradient-based optimization ap-
proach based on a loss function (40) which compares DMN prediction and the input homogenized data Cpag, with
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Figure 42: Comparison between a direct application and a DMN layer-by-layer application of the laminate homogenization function of
(22) for the effective CTE computation.

the standard Frobenius norm. Similar to the training strategy of PINN-DMN, the Rprop optimizer is used for
minimization.

L o ||@DME - @Data”2 ) (40)
[Cpatall®

cal —

The optimization iterations require the initial guess values for the unknowns (Cy,Co,vf). Hence, the real
properties in Tab. 8 as well as the true volume fraction vf = 0.537 are randomly perturbed using a normal
distribution with a coefficient of variation equal to 20%. The initial values generated by two random realizations
are indicated in Tab. 12.

Matrix E (MPa) v

Realization 1 4491 0.400

Realization 2 3908 0.437
Tow vi El (GPa) E2 (GP&) V19 V93 H12 (GPa)
Realization 1  0.550 92.3 5.60 0.347 0.697 2.14
Realization 2 0.541 65.4 5.22 0.297 0.764 1.78

Table 12: Initial linear elastic properties of the two phases for the inverse identification problem.

The loss histories corresponding to these two initial values are given in Fig. 43. The loss function converges
quickly and may reach 10~° within 1000 optimization iterations. The input homogenized elasticity tensor C is well
recovered. According to Tab. 13, the relative error between the converged homogenized elasticity tensor and the
input C data is 0.42% and 0.26% for these two sets of initial values.
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Figure 43: Calibration loss histories using two initial values: (a) realization 1; (b) realization 2.

In Tab. 14, the inversely identified input parameters (Cy, Cy, vf) are reported. The material and microstructural
parameters found with the realization 1 are similar to the actual properties in Tab. 8. However, with the realization
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@ E1 = E2 (GP&) E3 (GP&) V12 V13 = 23 12 (GP&) H13 = H23 (GP&) Error

Data 244 7.03 0.0866 0.558 1.87 1.73
Realization 1 24.5, 24.3 7.05 0.0879 0.556, 0.555 1.87 1.73 0.42%
Realization 2 24.4 7.02 0.0863 0.560, 0.558 1.86 1.74 0.26%

Table 13: Converged homogenized elasticity tensor from two different realizations of initial values, compared with the true data.

2, the identified volume fraction 0.667 is higher than the data 0.537. Meanwhile, the longitudinal Young’s modulus
(64.6 GPa) of the tows is also smaller than the data (78.8 GPa). This illustrates the non-uniqueness of the inverse
identification problem. Additional conditions may be provided by the user to further constrain the inverse problem.
For instance, some input properties, like those of the matrix, can be assumed to be fixed. Nevertheless, such inverse
identification problems can now be solved efficiently using PINN-DMN within seconds.

Matrix E (MPa) v

Realization 1 4309 0.385

Realization 2 4624 0.375
Tow vi E1 (GPa) E2 (GP&) V12 V93 H12 (GPa)
Realization 1  0.533 80.7 5.53 0.340 0.614 2.09
Realization 2 0.667 64.6 5.27 0.364 0.617 1.90

Table 14: Identified linear elastic properties of the two phases and the volume fraction for the inverse identification problem.

4.8. Ellipsoidal inclusion composite

Finally, we consider the ellipsoidal inclusion composite which contains two parameters: volume fraction vf of the
fibers and the aspect ratio ar (ratio between the length and the diameter of the fiber). The aspect ratio parameter
is purely geometrical and is orthogonal to vf. According to (24), we have thus g = (ar) in this case. The objective
is to evaluate PINN-DMN for such microstructures with multiple parameters with the linear elastic and nonlinear
material behaviors.

The two-dimensional parametric space (vf,ar) is sampled using Sobol low-discrepancy sequence which ensures
an optimal space-filling. Since it is deterministic, additional sampling points can thus be easily included. The
bounds for these two parameters are

o Volume fraction: [0.05,0.065]. Higher volume fractions would lead to mesh generation issues with the body-
centered fiber packing.

o Aspect ratio: [1,100]. Both spherical inclusions ar = 1 and slender fibers ar >> 1 are covered with such large
variation of this ar parameter.

In this work, 20 samples of p, = (vf,ar); are generated, see Fig. 44. The ar parameter is sampled in the log-scale.
The first 10 points po<i<10 constitute the parametric sample set P and are used to generate training dataset. The
other 10 points pio<i<20 are reserved to evaluate the interpolation and extrapolation accuracy of PINN-DMN.

For each p; = (vf,ar);, a 3-d FE-RVE model is built with the FE-RVE plugin [48] using the body-centered fiber
packing. It is then solved under Abaqus to obtain the 6 x 6 linear elastic stiffness tensor. In Fig. 45, two examples
are given corresponding to the first two sampling points. Each model contains approximately several hundreds of
thousands of quadratic tetrahedral elements. Each run may take up to 60 seconds with 24 threads on Intel(R)
Xeon(R) Gold 5220R CPU @ 2.20GHz.

The real linear elastic properties of the two phases are the same as for the unidirectional fiber composite, given
in Tab. 4. Given the high number of microstructures (10 for training, 10 for test), in total 150 input orthotropic
material properties (C1,Cy) are generated. The synthetic fiber stiffnesses Cy are also generated to be statistically
higher than the matrix ones C;. For the training microstructures pp<;<i0, 100 of the 150 samples are used as
training dataset, while the other 50 are reserved for validation. For the others pig<;<20, all the 150 material
samples are used for testing the interpolation and extrapolation accuracy.

PINN-DMN is trained following Sect. 3.5 with the two physical constraints (28) and (35) and the ReLU
activation function. Since local material orientation is absent, the unidirectional material frame orientation tensor
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Figure 44: Sampling points in the parametric space for the ellipsoidal inclusion composite.

(a) po: vf =0.35, ar = 10 (b) p1: vf=0.5, ar = 10%° ~ 3.162

Figure 45: Example FE-RVE models for the ellipsoidal composite with different fiber volume fraction and aspect ratio values: (a) po;
(b) p1.

(32) is defined as the target for both phases in (35). As before, the training process is realized 20 times with random
initialization. The median training time is summarized in Tab. 15.

7 layers 9 layers
Median training time 800 s 1198 s

Table 15: Median training time with 7 or 9 DMN layers for the ellipsoidal inclusion composite.

The loss histories for 7 and 9 DMN layers are presented in Fig. 46(a). The final loss value is well decreasing
with more layers. The total loss is then partitioned to a FE-RVE data part and a physical constraints part. These
two parts are also monotonically decreasing. As before, the realization with the least final loss value is chosen for
further investigations.

The variation of the number of active DMN nodes is presented separately for the matrix and for the fiber in
Fig. 47. 7 DMN layers are used. In total, 73 out of the 128 DMN nodes are globally active in the parametric space
p = (vf,ar) € [0,0.7] x [1,100]. The volume fraction parameter determines the number of active matrix or fiber
nodes while the aspect ratio parameter has practically no influence.

In Fig. 48(a), the training, validation and test errors are presented for PINN-DMN with 7 or 9 layers. These
errors are first computed at each of the 20 sampling points, then aggregated using quantiles. All these errors
become lower with more DMN layers. Overfitting is not observed since the validation errors are comparable with
the training ones. For the training and validation errors, their statistical variations are limited. In the example of
a T-layer PINN-DMN, the 0.9-quantile error is less than 4% while the median error value is less than 2%. However,
the test errors present larger statistical dispersion since their 0.9-quantiles reach approximately 10%. Due to a
large amount of test points in the parametric space (see again Fig. 44), PINN-DMN is being evaluated both with
interpolation and extrapolation. The 0.9-quantile of the test errors is mainly due to the presence of “outliers” at
some particularly challenging test microstructures. The median test errors, nevertheless, are only slightly larger
than the training and the validation errors, as before.

These errors are also computed for a fully-connected architecture (23) with 7 DMN layers. Compared to
PINN (25), now the DMN fitting parameters become function of both microstructural parameters w = w(vf, ar)
and @ = O(vf,ar). The physical constraints (28) and (35) are included. According to Fig. 48(b), not only the
fully-connected architecture does not significantly reduce training and validation errors, it also nearly doubles the
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Figure 46: PINN-DMN training for the ellipsoidal inclusion composite: (a) loss histories with 7 or 9 DMN layers; (b) partition of the
total loss into the FE-RVE data part and the physical constraints part.
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Figure 47: Variation of the ratio of active DMN nodes in the parametric space: (a) matrix; (b) fiber
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Figure 48: Training, validation and test errors of parametric DMN models represented by their respective 0.1, 0.5 (median) and 0.9-
quantiles: (a) comparison between 7 and 9 layers with the physics-informed architecture; (b) comparison with the fully-connected
architecture using 7 layers.
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0.9-quantile of the test errors. The PINN architecture (25) ensures hence a comparable expressive power in the
parametric space with certain generalization capability.

In Fig. 49, the median errors are first computed at each of the 20 training and test sampling points, then
interpolated and extrapolated to the whole parametric space using Kriging implemented in the SMT library [51].
In Fig. 49(a), the maximum error (10%) is localized at the “outlier” microstructure pis presents a very high
aspect ratio (87) compared to the training domain. Except this point, the median errors are between 1% and 4%
and are visually uniform in the parametric space. Satisfying interpolation and extrapolation capabilities are also
demonstrated. The fully-connected architecture, however, produces more error variations in the parametric space.
This illustrates again the generalization capability of the PINN architecture.
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Figure 49: Median errors of parametric DMN models in the parametric space (a) PINN (b) fully-connected architecture.

With the real linear elastic properties in Tab. 4, the vf-dependence of the homogenized elastic moduli at fixed
aspect ratio ar = 20 are illustrated in Fig. 50 using a 9-layer PINN-DMN. A perfect agreement is found with the
additional test FE-RVE simulation data. In Fig. 51, the influence of the aspect ratio parameter is analyzed with
a fixed vf = 0.4. Not only PINN-DMN is capable of predicting the increase of E; with ar (at least in the training
domain), it can also account for the more subtle variations of 712 and fiy3, which are all in good agreement with the
FE-RVE data. Some deviations are found near the extrapolative test point ar = 100. While the physical constraints
can indeed improve interpolative and extrapolative generalization capability of PINN-DMN, they cannot replace
the input training data. If the prediction at higher aspect ratios is important, more corresponding FE-RVE data
could be included during training.
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Figure 50: Homogenized elastic moduli prediction as a function of vf at fixed ar = 20 using a 9-layer PINN-DMN: (a) longitudinal
Young’s modulus E1, (b) transverse Poisson ratio 713 and (c) transverse shear modulus fi15. The training domain is represented by a
gray shadowed region. The FE-RVE test data and the theoretical values at vf = 0 and vf = 1 are also indicated.

Multiphysics property prediction

Using the real thermal conductivity and CTE properties of the constituents provided previously in Tab. 7, we
will now use PINN-DMN trained with isothermal linear elastic data to predict the effective physical properties other
than the mechanical ones. In Fig. 52 and Fig. 53, the vf- and ar-dependence of the effective thermal conductivity is
respectively predicted and compared with the Abaqus FE-RVE results. A satisfying agreement is obtained for both
the longitudinal and transverse components. This remarkable result illustrates again the multiphysics property
prediction capability of DMN, knowing that the thermal conductivity data are not used as training data at all.

In Fig. 54 and Fig. 55, the effective anisotropic CTE is predicted while varying vf and ar. As before, a good
agreement is found between the PINN-DMN prediction and the FE-RVE results.
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Figure 51: Homogenized elastic moduli prediction as a function of ar at fixed vf = 0.4 using a 9-layer PINN-DMN: (a) longitudinal
Young’s modulus E1, (b) transverse Poisson ratio 712 and (c¢) in-plane shear modulus Tiz3. The training domain is represented by a
gray shadowed region. The FE-RVE test data are also indicated.
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Figure 52: Effective thermal conductivity prediction as a function of vf at fixed ar = 20 using a 9-layer PINN-DMN: (a) longitudinal
k1 and (b) transverse k3.
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Figure 53: Effective thermal conductivity prediction as a function of ar at fixed vf = 0.4 using a 9-layer PINN-DMN: (a) longitudinal
k1 and (b) transverse k3.
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Figure 54: Effective anisotropic CTE prediction as a function of vf at fixed ar = 20 using a 9-layer PINN-DMN: (a) longitudinal &
and (b) transverse as.
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Figure 55: Effective anisotropic CTE prediction as a function of ar at fixed vf = 0.4 using a 9-layer PINN-DMN: (a) longitudinal @y
and (b) transverse ag.

Nonlinear simulations with an elasto-plastic matrix
The objective is now to evaluate PINN-DMNN with nonlinear material behaviors on different microstructural
parameters. We assume that the polypropylene matrix follows an elasto-plastic law with an isotropic power-law
hardening
oy =09+ k(p+e",

where oy defines the yield surface, o is the yield stress, and (k,n) describes strain hardening with the equivalent
plastic strain p. The following numerical values are used: oy = 30 MPa, k = 293 MPa and n = 0.34. The small
value € = 107 is used to avoid infinite derivative doy/dp at p = 0. The following triaxial strain loading—unloading
path is considered

(11,822,812) = (0,0,0) — (1072,2 x 1072,2 x 107%) — (0, 0,0).

The other strain components are assumed to be zero.

In Fig. 56, the corresponding stress—strain responses are presented (solid lines) in comparison with the FE-
RVE simulation results (dashed lines), for different volume fraction values. The influence of the vf-parameter on
the nonlinear effective responses is well captured by PINN-DMN. With increasing volume fraction, the maximum
longitudinal effective stress @71 increases from approximately 200 MPa to over 600 MPa. Furthermore, more
plasticity effects are present on the 95 and 15 components. Good agreement between PINN-DMN and the FE-
RVE results is observed.
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Figure 56: Effective nonlinear behavior of the ellipsoidal inclusion composite for different fiber volume fractions at fixed ar = 20 using
a 9-layer PINN-DMN: (a) €11 — 711; (b) €22 — 22 and (c) €12 — d12. The DMN predictions are represented by solid lines, while the
FE-RVE data are dashed lines.

The ar-dependence of the nonlinear effective behaviors is then analyzed in Fig. 57. Similarly, the aspect ratio
parameter has a bigger influence on the longitudinal effective stress, which increases from 300 MPa to nearly 500
MPa when ar varies from 1 (spherical inclusions) to 50 (slender fibers). The variation in the transverse tensile
stress oo is negligible, while the transverse shear stress 12 seems to converge within the given ar range. Again,
PINN-DMN is in good agreement with FE-RVE responses.

Finally, we investigate the use of Aitken relaxation (15) on the convergence of the fixed-point problem (14).
First, the tolerance value in (16) is analyzed in Fig. 58, with vf = 0.6 and ar = 20. For this problem, we observe
that tol = 107! is sufficient to obtain converged nonlinear responses.
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Figure 57: Effective nonlinear behavior of the ellipsoidal inclusion composite for different fiber aspect ratios at fixed vf = 0.4 using a
9-layer PINN-DMN: (a) €11 — o11; (b) €22 — 022 and (c) €12 — o12. The DMN predictions are represented by solid lines, while the
FE-RVE data are dashed lines.
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Figure 58: Effect of the tolerance value on the obtained nonlinear effective behavior for the ellipsoidal inclusion composite.

In Fig. 59(a), the number of fixed-point iterations are presented for each time increment. In (15), we use
wo = 1, wmin = 1 and wpax = 2. This means we are over-relaxing the already converging fixed-point iterations.
When the material behavior is linear, only one iteration is required. Otherwise, we observe an overall reduction in
the number of iterations with Aitken relaxation. The total number of iterations is reduced by 20%, which leads to
a reduction in the computational time by approximately 18% on our machine. This is due to the fact that Aitken
relaxation essentially only involves a scalar product and a norm computation, and is hence much less costly than
each fixed-point iteration.

Total iteration reduced by 20%
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Figure 59: Influence of Aitken relaxation on the convergence of the nonlinear fixed-point problem: (a) number of fixed-point iterations
for each time increment; (b) relative error history for the increment 28.

The history of the relative error (16) at time increment 28 is used to illustrate the effect of Aitken relaxation, in

Fig. 59(b). The relaxation parameter begins to increase at iteration 3 and gets a value of 1.96 at iteration 4, which
accelerates convergence of the fixed-point problem. Consequently, only 5 iterations are now required.
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5. Conclusions

A novel physics-informed neural network-based parametric deep material network (PINN-DMN) architecture
is proposed for heterogeneous materials with a varying microstructure described by multiple parameters. The
dependence of the DMN fitting parameters on the microstructural ones is accounted for by a neural network
informed by micromechanical properties (25). While the DMN weights only vary with the scalar volume fraction
parameter (25a), the DMN rotations are influenced by other parameters that do not change the volume fraction
(25b). Furthermore, two additional physical constraints (28) and (35) are prescribed so that PINN recovers the
volume fraction and the material frame orientation tensor of the actual parametric microstructure. A unique offline
training of PINN-DMN is required, based on a total loss function (38) that aggregates the FE-RVE data for different
microstructural parameter values.

Based on the numerical results reported, the PINN architecture as well as the physical constraints reduce over-
fitting on the training data and improve interpolative and extrapolative generalization capabilities in the parametric
space. The inclusion of initial material rotation matrices on the input layer does not significantly increase the ex-
pressive power even for microstructures with local material orientation. The linear and nonlinear effective behaviors
of the parametric microstructure can be predicted by PINN-DMN. As an accurate and efficient surrogate, it can
now be used in an inverse identification problem to calibrate input constituent properties and the microstructural
parameters. We also show that the use of Aitken relaxation improves convergence of the fixed-point problem for
online nonlinear simulations.

Even though hidden layers are ignored (25), our PINN-DMN also demonstrates satisfying expressive power for
the parametric microstructures studied in this work. For microstructures with much more geometrical parameters,
it can be expected that ¢ — 6(q) in (25b) may become nonlinear and requires the composition of multiple affine
and nonlinear activation layers [52]. It will be investigated in our future work.

DMN is also recast in a multiphysics setting. Through the redefinition of the laminate homogenization function,
other physical properties such as the thermal conductivity and the coefficient of thermal expansion can be accurately
predicted at the online prediction stage. This is a remarkable result since DMN is trained using the isothermal
linear elastic data. The numerical results demonstrate that our PINN-DMN learns the parametric microstructure
per se, and not a physics property in particular. Future work will be devoted to the offline training of PINN-DMN
using multiphysics data.

Acknowledgments

The author thanks Rafael SALAZAR TIO for the fruitful discussions on using DMN in a multiphysics setting.

References

[1] P. Kanouté, D. P. Boso, J. L. Chaboche, B. A. Schrefler, Multiscale methods for composites: A review, Archives
of Computational Methods in Engineering 16 (1) (2009) 31-75. doi:10.1007/s11831-008-9028-8.

[2] K. Matous, M. G. Geers, V. G. Kouznetsova, A. Gillman, A review of predictive nonlinear theories for multiscale
modeling of heterogeneous materials, Journal of Computational Physics 330 (2017) 192-220. doi:10.1016/j.
jcp.2016.10.070.

[3] J. Fish, G. J. Wagner, S. Keten, Mesoscopic and multiscale modelling in materials, Nature Materials 20 (6)
(2021) 774-786. doi:10.1038/s41563-020-00913-0

[4] C.L. Tucker III, E. Liang, Stiffness predictions for unidirectional short-fiber composites: Review and evaluation,
Composites Science and Technology 59 (5) (1999) 655-671. doi:10.1016/s0266-3538(98)00120-1.

[5] O. Pierard, C. Friebel, I. Doghri, Mean-field homogenization of multi-phase thermo-elastic composites: a
general framework and its validation, Composites Science and Technology 64 (10-11) (2004) 1587-1603. doi:
10.1016/j.compscitech.2003.11.009.

[6] M. Geers, V. Kouznetsova, W. Brekelmans, Multi-scale computational homogenization: Trends and challenges,
Journal of Computational and Applied Mathematics 234 (7) (2010) 2175-2182. doi:10.1016/j.cam.2009.
08.077.

40


https://doi.org/10.1007/s11831-008-9028-8
https://doi.org/10.1016/j.jcp.2016.10.070
https://doi.org/10.1016/j.jcp.2016.10.070
https://doi.org/10.1038/s41563-020-00913-0
https://doi.org/10.1016/s0266-3538(98)00120-1
https://doi.org/10.1016/j.compscitech.2003.11.009
https://doi.org/10.1016/j.compscitech.2003.11.009
https://doi.org/10.1016/j.cam.2009.08.077
https://doi.org/10.1016/j.cam.2009.08.077

[7]

[12]

[13]

[14]

[15]

[17]

[18]

[19]

[20]

[21]
22]

[23]

Z. Liu, C. Wu, M. Koishi, A deep material network for multiscale topology learning and accelerated nonlinear
modeling of heterogeneous materials, Computer Methods in Applied Mechanics and Engineering 345 (2019)
1138-1168. doi:10.1016/j.cma.2018.09.020

S. Kumar, D. M. Kochmann, What machine learning can do for computational solid mechanics, in: Current
Trends and Open Problems in Computational Mechanics, Springer International Publishing, 2022, pp. 275-285.
doi:10.1007/978-3-030-87312-7_27.

Z. Liu, C. Wu, Exploring the 3d architectures of deep material network in data-driven multiscale mechanics,
Journal of the Mechanics and Physics of Solids 127 (2019) 20-46. doi:10.1016/j. jmps.2019.03.004.

S. Gajek, M. Schneider, T. Bohlke, On the micromechanics of deep material networks, Journal of the Mechanics
and Physics of Solids 142 (2020) 103984. doi:10.1016/j.jmps.2020.103984.

S. Gajek, M. Schneider, T. Bohlke, An FE-DMN method for the multiscale analysis of short fiber reinforced
plastic components, Computer Methods in Applied Mechanics and Engineering 384 (2021) 113952. doi:
10.1016/j.cma.2021.113952

S. Gajek, M. Schneider, T. Bohlke, An FE-DMN method for the multiscale analysis of thermomechanical
composites, Computational Mechanics 69 (5) (2022) 1087-1113. doi:10.1007/s00466-021-02131-0.

H. Wei, C. T. Wu, W. Hu, T.-H. Su, H. Oura, M. Nishi, T. Naito, S. Chung, L. Shen, LS-DYNA machine
learning-based multiscale method for nonlinear modeling of short fiber-reinforced composites, Journal of En-
gineering Mechanics 149 (3) (mar 2023). doi:10.1061/jenmdt.emeng-6945.

Z. Liu, Deep material network with cohesive layers: Multi-stage training and interfacial failure analysis, Com-
puter Methods in Applied Mechanics and Engineering 363 (2020) 112913. doi:10.1016/j.cma.2020.112913.

Z. Liu, Cell division in deep material networks applied to multiscale strain localization modeling, Computer
Methods in Applied Mechanics and Engineering 384 (2021) 113914. doi:10.1016/j.cma.2021.113914.

A. P. Dey, F. Welschinger, M. Schneider, S. Gajek, T. Bohlke, Training deep material networks to reproduce
creep loading of short fiber-reinforced thermoplastics with an inelastically-informed strategy, Archive of Applied
Mechanics 92 (9) (2022) 2733-2755. doi:10.1007/s00419-022-02213-2.

A. P. Dey, F. Welschinger, M. Schneider, S. Gajek, T. Bohlke, Rapid inverse calibration of a multiscale model
for the viscoplastic and creep behavior of short fiber-reinforced thermoplastics based on deep material networks,
International Journal of Plasticity 160 (2023) 103484. doi:10.1016/j.ijplas.2022.103484.

L. Wu, L. Adam, L. Noels, Micro-mechanics and data-driven based reduced order models for multi-scale
analyses of woven composites, Composite Structures 270 (2021) 114058. doi:10.1016/j.compstruct.2021.
114058.

V. D. Nguyen, L. Noels, Micromechanics-based material networks revisited from the interaction viewpoint:
Robust and efficient implementation for multi-phase composites, European Journal of Mechanics - A /Solids 91
(2022) 104384. doi:10.1016/j.euromechsol.2021.104384.

V. D. Nguyen, L. Noels, Interaction-based material network: A general framework for (porous) microstructured
materials, Computer Methods in Applied Mechanics and Engineering 389 (2022) 114300. doi:10.1016/j.cma.
2021.114300

B. Halphen, Q. S. Nguyen, Sur les matériaux standard généralisés, Journal de Mécanique 14 (1) (1975) 39-63.

G. Allaire, Shape Optimization by the Homogenization Method, Springer New York, 2002. doi:10.1007/
978-1-4684-9286-6.

G. W. Milton, The Theory of Composites, Cambridge University Press, 2002. doi:10.1017/
cbo9780511613357.

Z. Hashin, S. Shtrikman, On some variational principles in anisotropic and nonhomogeneous elasticity, Journal
of the Mechanics and Physics of Solids 10 (4) (1962) 335-342. doi:10.1016/0022-5096(62)90004-2.

41


https://doi.org/10.1016/j.cma.2018.09.020
https://doi.org/10.1007/978-3-030-87312-7_27
https://doi.org/10.1016/j.jmps.2019.03.004
https://doi.org/10.1016/j.jmps.2020.103984
https://doi.org/10.1016/j.cma.2021.113952
https://doi.org/10.1016/j.cma.2021.113952
https://doi.org/10.1007/s00466-021-02131-0
https://doi.org/10.1061/jenmdt.emeng-6945
https://doi.org/10.1016/j.cma.2020.112913
https://doi.org/10.1016/j.cma.2021.113914
https://doi.org/10.1007/s00419-022-02213-2
https://doi.org/10.1016/j.ijplas.2022.103484
https://doi.org/10.1016/j.compstruct.2021.114058
https://doi.org/10.1016/j.compstruct.2021.114058
https://doi.org/10.1016/j.euromechsol.2021.104384
https://doi.org/10.1016/j.cma.2021.114300
https://doi.org/10.1016/j.cma.2021.114300
https://doi.org/10.1007/978-1-4684-9286-6
https://doi.org/10.1007/978-1-4684-9286-6
https://doi.org/10.1017/cbo9780511613357
https://doi.org/10.1017/cbo9780511613357
https://doi.org/10.1016/0022-5096(62)90004-2

[25]

[26]

[27]

G. A. Francfort, F. Murat, Homogenization and optimal bounds in linear elasticity, Archive for Rational
Mechanics and Analysis 94 (4) (1986) 307-334. doi:10.1007/b£00280908.

Z. Liu, C. T. Wu, M. Koishi, Transfer learning of deep material network for seamless structure-property
predictions, Computational Mechanics 64 (2) (2019) 451-465. doi:10.1007/s00466-019-01704-4.

T. Huang, Z. Liu, C. Wu, W. Chen, Microstructure-guided deep material network for rapid nonlinear material
modeling and uncertainty quantification, Computer Methods in Applied Mechanics and Engineering 398 (2022)
115197. doi:10.1016/j.cma.2022.115197.

S. G. Advani, C. L. Tucker, The use of tensors to describe and predict fiber orientation in short fiber composites,
Journal of Rheology 31 (8) (1987) 751-784. doi:10.1122/1.549945.

M. Raissi, P. Perdikaris, G. Karniadakis, Physics-informed neural networks: A deep learning framework for
solving forward and inverse problems involving nonlinear partial differential equations, Journal of Computa-
tional Physics 378 (2019) 686—707. doi:10.1016/j.jcp.2018.10.045.

G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, L. Yang, Physics-informed machine learning,
Nature Reviews Physics 3 (6) (2021) 422-440. doi:10.1038/s42254-021-00314-5.

J. Diebel, Representing attitude: Euler angles, unit quaternions, and rotation vectors, Matrix 58 (15-16) (2006)
1-35.

I. Doghri, L. Adam, N. Bilger, Mean-field homogenization of elasto-viscoplastic composites based on a general
incrementally affine linearization method, International Journal of Plasticity 26 (2) (2010) 219-238. doi:
10.1016/j.ijplas.2009.06.003.

I. Ramiere, T. Helfer, Iterative residual-based vector methods to accelerate fixed point iterations, Computers
and Mathematics with Applications 70 (9) (2015) 2210-2226. doi:10.1016/j.camwa.2015.08.025.

B. M. Irons, R. C. Tuck, A version of the aitken accelerator for computer iteration, International Journal for
Numerical Methods in Engineering 1 (3) (1969) 275-277. doi:10.1002/nme.1620010306.

H.-J. Bungartz, F. Lindner, B. Gatzhammer, M. Mehl, K. Scheufele, A. Shukaev, B. Uekermann, preCICE
— a fully parallel library for multi-physics surface coupling, Computers and Fluids 141 (2016) 250-258. doi:
10.1016/j.compfluid.2016.04.003.

Y. Benveniste, G. J. Dvorak, On a correspondence between mechanical and thermal effects in two-phase
composites, in: Micromechanics and Inhomogeneity, Springer New York, 1990, pp. 65-81. doi:10.1007/
978-1-4613-8919-4_4.

J. K. Bauer, T. Bohlke, Variety of fiber orientation tensors, Mathematics and Mechanics of Solids 27 (7) (2021)
1185-1211. doi:10.1177/10812865211057602.

V. Miller, T. Bohlke, Prediction of effective elastic properties of fiber reinforced composites using fiber ori-
entation tensors, Composites Science and Technology 130 (2016) 36-45. doi:10.1016/j.compscitech.2016.
04.009.

J. K. Bauer, M. Schneider, T. Bohlke, On the phase space of fourth-order fiber-orientation tensors, Journal of
Elasticity (jan 2023). doi:10.1007/s10659-022-09977-2.

T. Bohlke, Application of the maximum entropy method in texture analysis, Computational Materials Science
32 (3-4) (2005) 276-283. doi:10.1016/j.commatsci.2004.09.041.

T. Lee, M. Leok, N. H. McClamroch, Global symplectic uncertainty propagation on SO(3), in: 2008 47th IEEE
Conference on Decision and Control, IEEE, 2008. doi:10.1109/cdc.2008.4739058.

M. D. Mckay, R. J. Beckman, W. J. Conover, A comparison of three methods for selecting values of input
variables in the analysis of output from a computer code, Technometrics 42 (1) (2000) 55-61. doi:10.1080/
00401706.2000.10485979.

A. Norris, The isotropic material closest to a given anisotropic material, Journal of Mechanics of Materials and
Structures 1 (2) (2006) 223-238. doi:10.2140/jomms.2006.1.223.

42


https://doi.org/10.1007/bf00280908
https://doi.org/10.1007/s00466-019-01704-4
https://doi.org/10.1016/j.cma.2022.115197
https://doi.org/10.1122/1.549945
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1016/j.ijplas.2009.06.003
https://doi.org/10.1016/j.ijplas.2009.06.003
https://doi.org/10.1016/j.camwa.2015.08.025
https://doi.org/10.1002/nme.1620010306
https://doi.org/10.1016/j.compfluid.2016.04.003
https://doi.org/10.1016/j.compfluid.2016.04.003
https://doi.org/10.1007/978-1-4613-8919-4_4
https://doi.org/10.1007/978-1-4613-8919-4_4
https://doi.org/10.1177/10812865211057602
https://doi.org/10.1016/j.compscitech.2016.04.009
https://doi.org/10.1016/j.compscitech.2016.04.009
https://doi.org/10.1007/s10659-022-09977-2
https://doi.org/10.1016/j.commatsci.2004.09.041
https://doi.org/10.1109/cdc.2008.4739058
https://doi.org/10.1080/00401706.2000.10485979
https://doi.org/10.1080/00401706.2000.10485979
https://doi.org/10.2140/jomms.2006.1.223

[44]

[45]

I. M. Sobol’;, On the distribution of points in a cube and the approximate evaluation of integrals, USSR
Computational Mathematics and Mathematical Physics 7 (4) (1967) 86-112. doi:10.1016/0041-5553(67)
90144-9.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai,
S. Chintala, PyTorch: An Imperative Style, High-Performance Deep Learning Library, Curran Associates Inc.,
Red Hook, NY, USA, 2019.

N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, P. T. P. Tang, On large-batch training for deep
learning: Generalization gap and sharp minima, in: International Conference on Learning Representations,
2017.

M. Riedmiller, H. Braun, A direct adaptive method for faster backpropagation learning: the RPROP algorithm,
in: IEEE International Conference on Neural Networks, IEEE, 1993. doi:10.1109/icnn.1993.298623.

R. McLendon, Micromechanics ~ Plugin =~ for = Abaqus, https://www.linkedin.com/pulse/
micromechanics-plugin-abaqus-ross-mclendon/, accessed: 2023-02-13 (2017).

D. P. Kingma, J. Ba, Adam: A method for stochastic optimization (2014). doi:10.48550/ARXIV.1412.6980.

L. Brown, A. Long, Modeling the geometry of textile reinforcements for composites: TexGen, in: Composite
Reinforcements for Optimum Performance, Elsevier, 2021, pp. 237-265. doi:10.1016/b978-0-12-819005-0.
00008-3.

M. A. Bouhlel, J. T. Hwang, N. Bartoli, R. Lafage, J. Morlier, J. R. Martins, A python surrogate mod-
eling framework with derivatives, Advances in Engineering Software 135 (2019) 102662. doi:10.1016/j.
advengsoft.2019.03.005.

J. He, L. Li, J. Xu, C. Zheng, Relu deep neural networks and linear finite elements, Journal of Computational
Mathematics 38 (3) (2020) 502-527. doi:https://doi.org/10.4208/jcm.1901-m2018-0160.
URL http://global-sci.org/intro/article_detail/jcm/15798.html

43


https://doi.org/10.1016/0041-5553(67)90144-9
https://doi.org/10.1016/0041-5553(67)90144-9
https://doi.org/10.1109/icnn.1993.298623
https://www.linkedin.com/pulse/micromechanics-plugin-abaqus-ross-mclendon/
https://www.linkedin.com/pulse/micromechanics-plugin-abaqus-ross-mclendon/
https://doi.org/10.48550/ARXIV.1412.6980
https://doi.org/10.1016/b978-0-12-819005-0.00008-3
https://doi.org/10.1016/b978-0-12-819005-0.00008-3
https://doi.org/10.1016/j.advengsoft.2019.03.005
https://doi.org/10.1016/j.advengsoft.2019.03.005
http://global-sci.org/intro/article_detail/jcm/15798.html
https://doi.org/https://doi.org/10.4208/jcm.1901-m2018-0160
http://global-sci.org/intro/article_detail/jcm/15798.html

	Introduction
	Deep Material Network
	Network architecture and fitting parameters
	Nonlinear homogenization formulation for online prediction
	Multiphysics property prediction

	Extension to parametric microstructures
	Transfer-learning based interpolative DMN
	Physics-informed neural network-based parametric DMN
	Volume fraction constraint
	Orientation constraint
	Offline training of PINN-DMN

	Numerical examples
	Unidirectional fiber composite
	Woven composite
	Ellipsoidal inclusion composite

	Conclusions

