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Abstract 1 

Background: 15q11.2 Deletions and duplications have been linked to autism spectrum disorder 2 

(ASD), schizophrenia, and intellectual disability (ID). Recent evidence suggests that dysfunctional 3 

Cytoplasmic FMR1 Interacting Protein 1 (CYFIP1) contributes to the clinical phenotypes observed 4 

in individuals with 15q11.2 deletion/duplication syndrome. CYFIP1 plays crucial roles in neuronal 5 

development and brain connectivity, promoting actin polymerization and regulating local protein 6 

synthesis. However, the impact of single nucleotide variants in CYFIP1 to neurodevelopmental 7 

disorders is limited. 8 

Methods: Here, we report a family with two probands exhibiting ID, ASD, spastic tetraparesis, and 9 

brain morphology defects carrying biallelic missense point mutations in the CYFIP1 gene. We 10 

used skin fibroblasts from one of the proband, parents, and typically developing individuals to 11 

investigate the effect of the variants on the functionality of CYFIP1. In addition, we generated 12 

Drosophila knock-in mutants to address the effect of the variants in vivo and gain insight into the 13 

molecular mechanism underlying the clinical phenotype. 14 

Results: Our study revealed that the two missense variants are in protein domains responsible 15 

for maintaining the interaction within the wave regulatory complex (WRC). Molecular and cellular 16 

analyses in skin fibroblasts from one proband showed deficits in actin polymerization. The fly 17 

model for these mutations exhibited abnormal brain morphology and F-actin loss and 18 

recapitulated the core behavioral symptoms, such as deficits in social interaction and motor 19 

coordination.  20 

Conclusions: Our findings suggest that the two CYFIP1 variants contribute to the clinical 21 

phenotype observed in the proband that reflects deficits in actin-mediated brain development 22 

processes.  23 

  24 
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Introduction  1 

The 15q11.2 (BP1-BP2) has emerged as a susceptibility locus for neuropsychiatric disorders, 2 

including intellectual disabilities and neurobehavioral disturbances (1-6). Copy number variants 3 

(CNV) in the 15q11.2 region have been identified in patients with autism spectrum disorders 4 

(ASD), schizophrenia (SCZ), neurodevelopmental delay, intellectual disability (ID) and epilepsy 5 

(1, 5, 7-17). Although, four genes are present within the human BP1-BP2 region (TUBGCP5, 6 

CYFIP1, NIPA2, and NIPA1), increasing evidence points to the relevance of Cytoplasmic FMR1 7 

Interacting Protein 1 (CYFIP1). Due to its crucial role in synaptic development and functionality 8 

(18, 19), neuronal connectivity (19, 20), brain wiring (21, 22) and GABAergic signaling (23, 24), 9 

dysregulation of CYFIP1 has been suggested to contribute to the clinical phenotype observed in 10 

patients with 15q11.2 variations. CYFIP1 CNVs have been associated with ASDs, SCZ, epilepsy, 11 

and cognitive deficits (2, 8, 10, 11, 15, 17, 25-33). Single nucleotide variants (SNV) in coding 12 

regions affecting the protein sequence have been reported in ASD cases (34-36) and in an 13 

individual with congenital heart disease and learning disability (37). In addition, SNVs in the 14 

noncoding regions of the CYFIP1 gene have been detected in large-scale whole genome 15 

sequencing (WGS) studies in cohorts affected by ASD (38-41). Finally, GWAS-ATLAS reveals 16 

CYFIP1 association with neurological and metabolic disorders (42). However, the precise role of 17 

CYFIP1 in those clinically relevant cases remains elusive.  18 

CYFIP1 plays a role in neurodevelopment by linking FMRP-dependent local protein synthesis 19 

with actin cytoskeleton remodeling through Rac1 small GTPase signaling (18, 43). When bound 20 

to Rac1, CYFIP1 is part of the Wave Regulatory Complex (WRC), containing WAVE1/2/3, ABI1/2, 21 

NCKAP1 and HPSC300 (44-46), which regulates the actin nucleation activity of the Arp2/3 22 

complex. Under basal conditions, CYFIP1 inhibits the Arp2/3 complex, while upon binding of 23 

Rac1-GTP, CYFIP1 conformational change in the WRC allows activation of the Arp2/3 complex 24 

and actin polymerization (45-53). Fine-tuned actin cytoskeleton dynamics plays a crucial role in 25 
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neurodevelopmental processes such as dendritic spine morphology (54), axonal guidance and 1 

branching (55), and synapse functionality (56, 57).  2 

This study aimed to understand how SNVs in CYFIP1 could contribute to neurodevelopmental 3 

deficits. We report a family case with two probands carrying biallelic missense variants in the 4 

CYFIP1 gene, one variant inherited from each parent. Individuals are affected by severe ID and 5 

ASD, together with epileptic encephalopathy, spastic tetraparesis, and microcephaly. Parents do 6 

not show the clinical phenotype reported for the probands. Using available skin fibroblasts from 7 

one of the probands, parents and typical developing individuals, and Drosophila CRISPR knock-8 

in (KI) models for the two missense variants, we investigated the impact of these SNVs on the 9 

functionality of CYFIP1 and their contribution to the clinical phenotype of the proband.  10 

  11 
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Methods and Materials 1 

Ethics statements. Human skin fibroblasts from Proband 1 and their parents were received from 2 

clinical collaborators and coauthors of this study. All procedures performed in this study were in 3 

accordance with the ethical standards of the French Institute Cochin research committee and with 4 

the Declaration of Helsinki of 1964 and its subsequent amendments. Written informed consent to 5 

the molecular diagnosis of genetic diseases was obtained from parents. 6 

 7 

Human fibroblast cell lines. Fibroblasts from healthy volunteers (typically developing individuals 8 

(TDI) were obtained from: 1) purchased from Coriell Institute Cell Repositories (Camden, NJ); 2) 9 

UZ/KU Leuven Biobank (Dr. Hilde Van Esch, Belgium) and previously described (58, 59) (n = 4, 10 

age range 22-33 years and n = 3 age 42-57). Human fibroblasts from father (I-1), mother (I-2) and 11 

proband 1 (II-2) were obtained from the Institut Cochin, Université de Paris (France). See 12 

Supplemental Information for culture conditions.  13 

 14 

Live imaging and analysis of actin cytoskeleton remodeling. Cells on glass bottom plates 15 

(MatTek) were transfected with CMV-Lifeact-EGFP (60) using Lipofectamine 2000 transfection 16 

reagent (Invitrogen, Thermo Fisher Scientific) in Opti-MEM (Gibco, Thermo Fisher Scientific). 17 

After 6 h, the medium was replaced and 24 h cells were imaged. Time-lapse imaging was 18 

performed for 2 min/cell, on a Nikon A1R Eclipse Ti for fast and high-resolution acquisition. Argon 19 

laser at 5% and 60x objective (UPlanSApo, NA 1.2, water immersion) were used. A chamber 20 

around the microscope kept the sample at a constant temperature of 37 °C, CO2 level and 21 

humidity. Kymographs were generated from pixel-wide lines drawn orthogonally to the cell edge 22 

in regions where lamellar protrusions of fibroblasts were actively protruding, using FIJI (61). 23 
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Fly stocks and genetics. Flies were maintained on standard cornmeal fly food at 25 ° C, 60 % 1 

humidity, in a 12-h light/dark cycle. Wild type cantonized w1118 (23, 62) flies were used as control. 2 

All transgenic lines tested were initially backcrossed into the w1118 background. Because the two 3 

variants are present in a boy, male flies 5-7 days after eclosion were used for all experiments. 4 

Behavioral experiments were performed between ZT1-ZT4 (Zeitgeber Time). Detailed information 5 

on CRISPR/Cas9 generation of the Drosophila Cyfip-KI mutants, immunofluorescence, 6 

mushroom body morphometric measurement and behavioral experiments are provided in 7 

Supplemental Information. 8 

 9 

Statistics. Analyses were performed using GraphPad Prism software (v.9). The Shapiro-Wilk test 10 

for normal distribution of the data was used. Statistical tests are listed in the respective figure 11 

legends. p-values < 0.05 were considered significant. The results are represented as mean ± 12 

standard error of the mean (S.E.M.). 13 

 14 

See Supplemental Information for description of the following methods: exome sequencing, 15 

description and in silico analysis of the sequence variants, variant validation, structural variant 16 

modeling, RNA isolation and qPCR, western blotting, surface sensing of translation (SUnSET) 17 

assay, immunofluorescence, and immunoprecipitation of the CYFIP1 complex.  18 

  19 
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Results 1 

Exome sequencing and genetic analyses reveal potentially pathogenic missense variants 2 

in CYFIP1 3 

We identified a non-consanguineous family with two individuals (II-2 and II-3) affected by a severe 4 

neurodevelopmental disorder (Figure 1A). Both individuals show developmental delay, 5 

microcephaly (with head circumference (HC) below 2 standard deviations), inability to walk 6 

without assistance, and absence of speech, consistent with a severe form of intellectual disability 7 

(ID). ID was classified in both probands as severe or profound (according to DSM-5 criteria (63)). 8 

The two probands exhibit autistic symptoms characterized by a “pseudo-Angelman” phenotype 9 

(paroxysmal laughter and happy demeanor) and severe motor deficits. Proband 1 shows 10 

hyperactivity and repetitive self-mutilating behavior (head-banging). Frequent generalized non-11 

motor seizures with onset between 3-6 years of age have been detected in both probands. Brain 12 

FLAIR magnetic resonance imaging reported white matter hyperintensities in the thalamus with 13 

moderate ventriculomegaly in proband 1. Table 1 reports a detailed summary of the clinical 14 

characteristics of the two probands. Clinical evaluations report that neither of the parents (I-1 and 15 

I-2) has clinical phenotypes. The family also has one unaffected sibling (II-1). 16 

We performed Whole Exome Sequencing (WES) analysis on proband 1 (II-2) and his parents (I-17 

1 and I-2). In total 26’060 to 26’216 single nucleotide polymorphisms (SNPs) and 902 to 906 small 18 

deletions/insertions (1-10 bp) were identified across the exomes of this family. After testing for de 19 

novo, recessive and X-linked inheritance and filtering the variants for moderate/high pathogenicity 20 

score impact (PolyPhen-2, SIFT, CADD and REVEL scores), we identified 14 potential pathogenic 21 

genetic variants (Table 2). Pathogenic variants that were not detected in both probands and that 22 

were not involved in syndromic disorders that could explain the clinical phenotype were excluded. 23 

We narrowed the list down to two biallelic variants in the Cytoplasmic FMRP interacting protein 1 24 

(CYFIP1) gene, potentially involved in the neurodevelopmental disorder of the probands. The 25 
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variant p.(Ile476Val), inherited from the father (15/152142 alleles in gnomAD v.3.0) was reported 1 

tolerated, disease-causing, and “possibly damaging” by the pathogenicity prediction tools. The 2 

variant p.(Pro742Leu), inherited from the mother (6/152210 alleles) was predicted to be tolerated 3 

and benign by in silico analysis. Both missense variants were also detected in the second proband 4 

and were confirmed by direct Sanger sequencing. Genetic analysis showed that the probands 5 

were compound heterozygotes, while the parents and the sibling are heterozygotes for a single 6 

variant (Figure 1A-B). Considering these findings and the prominent roles of CYFIP1 in 7 

neurodevelopment, we focused our attention on understanding the role of the two CYFIP1 SNVs.  8 

We utilized the available crystal structure of the human WRC (45, 64) to map the two CYFIP1 9 

variants (Figure 1C-D). The p.(Ile476Val) variant is situated in the globular N-domain, in proximity 10 

to the RAC1 binding site A (Figure 1C)(45). The isoleucine residue is embedded within a complex 11 

set of secondary structural elements, specifically α-helices (Figure 1D, lower insets). Our 12 

hypothesis suggests that the substitution of valine for isoleucine at position 476 could potentially 13 

destabilize the structure of CYFIP1, due to the smaller size and lower hydrophobicity of valine 14 

compared to isoleucine, resulting in a decrease in hydrophobicity. This would lead to a subtle 15 

disruption in the contacts between the two secondary structural elements of the proteins and 16 

hinder interaction with the amino acids Leu605 and Phe608 (Figure 1D, lower insets). This is 17 

further supported by the protein stability analysis, which estimates a ΔΔG value of + 1.28 ± 0.036 18 

kcal/mol for the Ile476Val variant. 19 

The p.(Pro742Leu) variant is located in the central domain, that confers structural flexibility to 20 

CYFIP1 (Figure 1C), and contributes to the binding with the translation factor eIF4E and to the 21 

interactions with WAVE1 and NCKAP1 in the WRC (45, 47, 48, 51, 64-66). A butterfly-like motion 22 

has been associated with the ability of CYFIP1 to switch from the WAVE complex towards the 23 

eIF4E complex (43, 65), suggesting that the decrease in flexibility associated with the Pro742Leu 24 

mutation could affect this switching ability (Figure 1D, upper insets). This is consistent with the 25 
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protein stability analysis, which revealed that this variation has a slightly destabilizing effect on 1 

the 3D structure of CYFIP1 with a ΔΔG value of + 0.72 ± 0.023 kcal/mol (Figure 1D, upper insets). 2 

Importantly, both variants affect amino acid regions that are highly conserved between taxa, from 3 

humans to fruit flies (Figure 1E), underlying the relevance of these domains. 4 

 5 

Bi-allelic CYFIP1 variants underlie a complex disorder affecting actin remodeling 6 

To determine the effect of the missense variants in CYFIP1 at the functional level, we used the 7 

available skin fibroblasts from proband 1, the two parents and age-matched typical developing 8 

individuals (TDI). No defective levels of CYFIP1 mRNA (Figure 2A) and protein levels (Figure 2B) 9 

were observed in proband 1, neither differences in expression for the other genes deleted in the 10 

BP1-BP2 deletion syndrome (NIPA1, NIPA2, and TUBGCP5), nor the Angelman syndrome-11 

associated gene UBE3A (Figure S1A). 12 

CYFIP1 coordinates cytoskeletal actin remodeling through interactions with the WRC (18, 20, 67) 13 

and protein synthesis through interactions with FMRP and eIF4E (18, 19, 33, 43, 68). Impairments 14 

in these molecular mechanisms are notably implicated in ASD pathogenesis (34, 68-74). We 15 

performed surface sensing of translation (SUnSET) (75) to measure relative protein synthesis 16 

rates in human fibroblasts (58). No differences in puromycin incorporation were observed 17 

between fibroblasts from the proband and/or parents and TDI individuals, suggesting that these 18 

variants do not affect overall protein synthesis levels (Figure S1B). In contrast, using phalloidin-19 

TRITC immunofluorescence to detect filamentous (F) actin (Figure 3A), we found that fibroblasts 20 

from the proband 1 displayed a reduction in phalloidin intensity and therefore, F-actin levels 21 

(Figure 3B). In addition, an increase in the aspect ratio (AR: major axis/minor axis, Figure 3C) in 22 

the proband fibroblasts, indicated a subtle and yet significative change in cell morphology from a 23 

typical spindle-like to a more stellate-shaped cell phenotype (Figure 3D).  24 
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F-actin remodeling is crucial for lamellar protrusion and cell motility (76). We performed live 1 

imaging of actin lamellar protrusion dynamics in TDI and proband 1 fibroblasts after transfection 2 

with Lifeact-GFP (60) to allow visualization of F-actin dynamics (77). Kymograph analysis of the 3 

lamellar protrusions (Figure 3E) revealed a significant reduction in protrusion length, number, and 4 

velocity (Figure 3F-H) in proband 1 cells, confirming the actin polymerization defects observed in 5 

the presence of bi-allelic CYFIP1 variants. Next, we investigated whether the two missense 6 

variants affect the interaction of CYFIP1 within the WRC. We coprecipitated the CYFIP1-WRC 7 

complex from TDI (Figure 3I-K, lane 1-3) and proband 1 (Figure 3I, lane 4-6) fibroblasts and 8 

assessed the levels of CYFIP1 interactors with known involvement in Arp2/3 activation and actin 9 

remodeling (44, 49, 50, 64, 78, 79). Notably, a significant reduction of CYFIP1 interaction with 10 

NCKAP1 and WAVE1 in the proband 1 compared to TDI fibroblasts was observed (Figure 3I-K). 11 

Collectively, these results suggest that the biallelic missense variants in the cells of proband 1 12 

possibly impair the WRC functionality in actin polymerization due to the reduced CYFIP1 stability 13 

inside the complex leading to the deficits in cytoskeleton actin dynamics.  14 

 15 

CYFIP SNVs recapitulate human deficits in actin polymerization in Drosophila  16 

We utilized the model organism Drosophila melanogaster to investigate the effects of bi-allelic 17 

CYFIP1 missense variants on ID/ASD pathologies. Notably, Drosophila has been extensively 18 

used to model specific aspects of human pathologies (80-82). The Drosophila genome contains 19 

a single homolog (Cyfip) (83) of the two vertebrate genes, CYFIP1 and CYFIP2, with high 20 

homology (DIOPT score 15/18, 65% amino acid identity and 80% similarity). Alignment of the 21 

human CYFIP1 and the Drosophila Cyfip protein sequences revealed that the SNVs-containing 22 

regions are conserved in the two organisms (Figure 4A), therefore, using the scarless CRISPR-23 

Cas9 gene-editing approach (Figure 4B), we generated knock-in (KI) fly lines for the human 24 
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missense variants, the p.(Ile476Val), p.(Ile471Val) in the fly genome and the p.(Pro742Leu) 1 

variant, p.(Pro760Leu) in the fly genome.  2 

While the Cyfip homozygous null mutants are lethal at the pupa stage (83). The homozygous KI 3 

animals (CyfipI471V/CyfipI471V and CyfipP760L/CyfipP760L) and the compound heterozygous genotype 4 

(CyfipI471V/CyfipP760L) were viable, fertile, and did not display visible morphological phenotypes. No 5 

differences in Cyfip mRNA levels were detected in mutant flies (Figure S2A), consistent with the 6 

previous observation in human skin fibroblasts (Figure 2A). Therefore, we asked if the actin 7 

polymerization deficits observed upon the presence of the two variants were recapitulated within 8 

the KI fly model system. We performed biochemical fractionation to measure the F- and globular 9 

(G) actin amounts in the control and Cyfip mutant heads. F-actin appeared to be significantly 10 

reduced compared to G-actin in CyfipI471V/CyfipP760L flies in comparison to control and parental 11 

lines, as shown by the reduced F-/G- actin ratio (Figure 4C). These results show that flies carrying 12 

both Cyfip variants, exhibit actin cytoskeleton deficits, like the molecular phenotypes observed in 13 

the human cells.  14 

 15 

CYFIP SNVs affect neuronal morphology in Drosophila 16 

CYFIP1 has been shown to regulate dendrite morphogenesis and axonal growth, pathfinding, and 17 

branching (67, 84). To determine whether the missense CYFIP1 variants affect neuronal 18 

morphology in the fly model, we analyzed the structure of a well-characterized subset of neurons 19 

called small lateral ventral neurons (s-LNvs). Their stereotyped axonal projection pattern (Figure 20 

4D-E) allows studies of axonal arborization phenotypes (85, 86). Changes in s-LNvs axonal 3D 21 

arborization were analyzed in Cyfip mutant flies and control flies (Figure 4D-F), as previously 22 

described (87). 3D spread analysis of the dorsal s-LNvs termini (Figure 4G) showed a decreased 23 

in the spread of the arborizations in flies carrying the two missense variants, compared to control 24 
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flies and to flies heterozygous for the single missense variant. In addition, the axonal volume 1 

occupied by the dorsal axonal projections was reduced in the CyfipI471V/P760L and CyfipP760L/+ 2 

mutants compared to the control flies (Figure 4H), indicating a morphological deficit. To further 3 

investigate the brain morphology in the different Cyfip-KI mutant flies, we conducted morphology 4 

analyses of the mushroom bodies (MB) and the ellipsoid body (EB), high brain structures involved 5 

in  behaviors, from learning and memory, to social behavior and motor skills (88, 89) (Figure S2B-6 

C). No gross morphological defects were observed in mutant flies, however, a detailed 7 

morphometric analysis (89) of the different structures revealed consistent subtle differences in 8 

neuroanatomical organization. We quantified the widths and lengths of α- and β-lobes and surface 9 

areas of the ellipsoid body (Figure S2D-F), uncovering significant differences in α- and β-lobe 10 

lengths between control and CyfipI471V/CyfipP760L flies (Figure S2D). In addition, the α-lobe length 11 

in heterozygous flies for the single and the double variants was significantly increased, while the 12 

β-lobe length was increased in CyfipI471V/CyfipP760L and in CyfipP760L/+ flies (Figure S2D). No 13 

changes in the α- and β-lobes width was observed (Figure S2E). Finally, an increase in the 14 

ellipsoid surface relative to the control was observed in heterozygous flies for the two single 15 

variants and in biallelic variant flies (Figure S2F). In summary, we showed that biallelic Cyfip 16 

missense variants in flies induces axonal lobe extension defects, suggesting that the biallelic 17 

presence of the CYFIP1 variants negatively impacts the neuronal and brain morphology in flies. 18 

 19 

CYFIP SNVs showed ASD-like behaviors in Drosophila 20 

CYFIP1 heterozygosity in animal models induced cognitive impairments (15), ASD- and SCZ-like 21 

behaviors (22, 62, 90) including social and motor deficits (21-23, 90, 91).  22 

Male flies were tested for competition for food (aggression paradigm), a well-established social 23 

behavior assay (23) (Figure 5A). CyfipI471V/+, CyfipP760L/+ and CyfipI471V/CyfipP760L flies showed 24 
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fewer social events than controls, indicating that the Cyfip variants contribute to the aggression 1 

phenotype and their combination exacerbate this phenotype (Figure 5B and Video S1). Second, 2 

we assessed fly social group behavior using the Social Space Arena paradigm (Figure 5C). 3 

Analyzing the overall social space distribution between each fly, we observed that most control 4 

flies (> 40%) spend time at a close distance (< 0.5 cm). In contrast, Cyfip-KI mutants exhibit a 5 

different distribution in the arena (Figure 5D). Notably, CyfipI471V/CyfipP760L, CyfipI471V/+ and 6 

CyfipP760L/+ flies distribute in the arena at farther distance from each other compared to control 7 

flies. In addition, the social preference index as in (92, 93) revealed a decreased index for the 8 

Cyfip variants (Figure 5E). Overall, our analyses suggest that the Cyfip missense variants give 9 

susceptibility to social interaction defects strengthening the role of CYFIP in regulating social 10 

interactions (23). 11 

Additionally, we assessed motor skills in the flies carrying the missense variants. We evaluated 12 

motor reflex as the ability to climb after sudden stimuli (namely, negative geotaxis behavior) 13 

(Figure 5F) (94). The number of flies above a 6 cm distance 9 seconds after the startle input was 14 

recorded (Figure 5G). The number of CyfipI471V/CyfipP760L flies above the target line compared to 15 

control and flies with the missense variant in heterozygosity was significantly reduced. No 16 

difference was observed between controls and CyfipI471V/+ and CyfipP760L/+ (Figure 5G and Video 17 

S2). The reduced climbing behavior of CyfipI471V/CyfipP760L flies might be related to deficits in motor 18 

reflexes or reflect a general locomotion deficit. To tease these apart, we assessed the total 19 

locomotion (activity paradigm) (Figure 5H-I). Activity analysis revealed a reduced number of total 20 

beam crossings in the bi-allelic mutants CyfipI471V/CyfipP760L compared to control, to CyfipI471V/+ and 21 

CyfipP760L/+ flies, reflecting reduction in locomotion in the presence of both missense variants 22 

(Figure 5I). These results confirm that the bi-allelic presence of the missense variants induces 23 

motor deficits, including motor reflex deficits and hypo-activity in Drosophila.  24 

  25 
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Discussion 1 

Previous reports have identified SNVs in CYFIP1 in individuals with neurodevelopmental 2 

disorders (NDD) or affected by ASD and learning disabilities (34-41), with no clinical evaluation 3 

or investigation of the pathogenicity. Here, we report a complete clinical, molecular, and functional 4 

characterization of two rare biallelic missense variants in the CYFIP1 gene, predicted to be 5 

deleterious and pathogenic. The two probands are affected by severe ID, motor deficits, repetitive 6 

behavior, and social deficits. Notably, alterations in pathways regulated by CYFIP1 lead to cellular 7 

(i.e., spine structure and neurotransmission) and molecular (i.e., actin dynamics and protein 8 

synthesis) (18, 19, 23, 24, 33, 43, 68, 91, 95) defects possibly contributing to the severe 9 

phenotype. CYFIP1 haploinsufficiency in animal models revealed deficits in brain connectivity 10 

abnormalities and ASD/SCZ- like behavioral phenotypes, i.e., social interaction, repetitive 11 

behaviors, learning, and sensory-motor processing (15, 21-23, 90). 12 

The two variants cluster with domains relevant for the CYFIP1 function. In silico structural 13 

modeling analysis revealed that the amino acid substitutions could impair the flexibility, the 14 

motions of the secondary structure, and the network of hydrophobic interactions, possibly 15 

affecting binding to eIF4E or to WRC (45, 47, 48, 51, 65, 96). Protein synthesis was not affected 16 

by the presence of the missense variants, while a general reduction of actin cytoskeleton 17 

dynamics and polymerization was observed. These findings are supported by the protein stability 18 

analysis and immunoprecipitation experiments, indicating that the identified SNVs destabilize the 19 

CYFIP1 structure inside the WRC, with the Pro742Leu and Ile476Val mutations acting inter- and 20 

intra-molecularly, respectively, and impairing the interaction between CYFIP1 and its binding 21 

partners, NCKAP1 and WAVE1. This disruption is likely to lead to WRC function defects that 22 

might explain the observed phenotypes in the actin cytoskeleton and lamellar behavior in Proband 23 

1 fibroblasts. Notably, NCKAP1 and WAVE family protein, including WAVE1, are known to 24 

regulate the activity of Arp2/3 complex-mediated actin assembly (45, 50, 52, 64, 97-100), 25 
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necessary to promote cell shape, motility, and functionality. In line with our findings, F-actin 1 

polymerization is reduced upon disruption of the CYFIP1-NCKAP1 interaction in dendritic spines 2 

(18) and actin remodeling, migration and lamellipodia formation are impaired after NCKAP1 3 

abrogation (49, 101). In addition, lamellipodia protrusion length deficits, reduced F-actin at leading 4 

edges and deficits in dorsal ruffles formation and actin elongation have been observed upon 5 

WAVE1 deletion (97, 102-104). 6 

Dysregulation in actin polymerization causes neuronal and glial developmental abnormalities 7 

(105), leading to ASD and neurological disorder, including seizures (106-109). Fine-tuned 8 

cytoskeleton function regulates proper spine morphology, with spine abnormalities likely to confer 9 

susceptibility to epilepsy due to disruptions to the excitatory/inhibitory (E/I) balance of neuronal 10 

circuitries (110). E/I balance and GABAergic signaling dysregulations have been described in 11 

animal models for CYFIP1 haploinsufficiency, from flies to mice (23, 24). Interestingly, epileptic 12 

encephalopathy, and intellectual disability have also been reported in patients with missense 13 

variants in the CYFIP1-homologous gene, CYFIP2 (106, 111, 112). Drosophila Cyfip null mutant 14 

exhibit impaired axonal growth, guidance, and branching (20, 83). CYFIP1 deficiency has been 15 

shown to reduce axonal growth (84) and to regulate axonal outgrowth (67). We observed that the 16 

CYFIP1 variants affect mushroom bodies and ellipsoid body morphology and s-LNvs neurons 17 

axonal branching in Drosophila. Interestingly, Rho, Cdc42 and Rac1 over-expression in these 18 

neurons in Drosophila induces axonal branch overgrowth (87), a phenotype opposite than the 19 

one observed in the Cyfip-KI bi-allelic mutants. We speculate that the reduced axonal projection 20 

and volume that we observed in flies harboring the bi-allelic missense variants might be related 21 

to deficits in actin polymerization. However, other mechanisms – such as guidance cues, neuronal 22 

activity, and neurotransmitter release (55, 113, 114), not depending on actin remodeling - might 23 

be involved in the observed cellular phenotype. 24 
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Social and motor coordination deficits are hallmarks of ASD and NDDs (115) and reported within 1 

the 15q11.2 deletion (7, 13). These phenotypes have also been described in animal models for 2 

CYFIP1 haploinsufficiency with brain connectivity abnormalities and motor coordination deficits 3 

(21-23, 90). The observed behavioral deficits in social interaction and motor skills in flies harboring 4 

the CYFIP1 missense variants, suggest that the combination of both Cyfip I471V and Cyfip P760L 5 

contribute to the clinical phenotypes of the two probands. Furthermore, in the social domains, 6 

social deficits have also been observed in the presence of single missense variants in 7 

heterozygosity. Although mutants carrying the single or both missense mutations show a similar 8 

pattern for certain cellular and behavioral phenotypes, the variability in the data make us cautious 9 

to conclude on the specific contribution of each variant while the presence of both variants result 10 

in a clear more severe phenotype. Consistently, it was shown that the combination of rare and 11 

recessive biallelic mutations contribute to the pathogenicity of NDDs and ASD (116-120). 12 

In conclusion, we reported a rare case of biallelic missense variants in the CYFIP1 gene in two 13 

individuals with NDD. Using the fly model, we investigated their impact in the absence of the 14 

confounding effects of genetic background gaining insights on the pathogenicity underlying the 15 

relevance of CYFIP1 in NDDs. Variants in the CYFIP1 gene can represent susceptibility factors 16 

for variable cognitive, neurological, and psychiatric disorders and may result in severe NDDs such 17 

as those observed in the probands. Future work on KI mouse models and brain organoids will 18 

complement our study to further clarify the functional consequences of CYFIP1 variants in 19 

mammalian brain development.    20 
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Figure Legends 4 

Figure 1: Identifications of two missense variants in human CYFIP1. 5 

(A) Pedigree chart showing segregation of rare pathogenic CYFIP1 variants c.1426A > G; 6 

p.(Ile476Val) and c.2225C > T; p.(Pro742Leu) in the family. Unfilled shapes denote typically 7 

developing individuals (TDI), while filled shapes denote probands; squares are males; circles are 8 

females. (B) Electropherograms of Sanger sequencing of genomic DNA of exons 14 and 20 of 9 

the CYFIP1 from the family members (I-1, I-2, II-2 and II-3). The variants are highlighted in yellow. 10 

For exon 20 the overlapping peaks have been detected as “N” (an ambiguous, or unknown base) 11 

from the automatic detection software and interpreted as “T”. (C) Schematic representation of the 12 

CYFIP1 protein (NP_001274739.1). The functional domains are color coded: in magenta and 13 

orange (Rac1-binding sites), green (WAVE1-VCA), blue (Abi2-HSPC300) and purple (eIF4E), 14 

Arf1 (grey) respectively (45, 46, 51, 53, 65, 66). The putative FMRP binding region is shown in 15 

light blue (18, 43, 121). In light yellow the putative NCKAP1 binding regions (45, 47, 52, 66). 16 

Asterisks indicate missense variants, in black, the previously identified in individuals with ASD 17 

and learning disabilities (34-37) and in red the new identified variants in this work. (D) Structure 18 

of the WAVE regulatory complex (WRC) indicating the sites of CYFIP1 variants. CYFIP is shown 19 

in red. Amino acid residues affected by missense variants are enlarged in circles. Next to each 20 

substitution the ΔΔG value is reported. (E) Alignment of human CYFIP1 protein 21 

(NP_001274739.1) against the mouse (NP_001158133.1), zebrafish (NP_997924.1) and 22 

Drosophila (NP_650447.1) homologs showing the conservation of sequences where the 23 

missense mutations are located. The variants identified in the probands are marked in light blue.  24 

 25 

Figure 2: Characterization of the CYFIP1 missense variants.  26 
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(A) Quantification of CYFIP1 mRNA levels by real-time qPCR in the affected individual (proband 1 

1, p.[(Ile476Val)];[(Pro742Leu)]) compared to TDI (3 lines, 22-33 years old and 1 line, 50 years 2 

old) and parents (the father, p.[(Ile476Val)];[(=)]) and the mother p. [(=)]; [(Pro742Leu)]) 3 

fibroblasts. TDI n = 12, Proband 1 n = 3, Father n = 3, Mother n = 3, technical replicate. One-Way 4 

ANOVA, n.s. not significant. Data are represented as mean ± S.E.M. (B) Left, representative 5 

Western blot showing CYFIP1 in fibroblasts from the proband 1, parents and TDI (4 lines 22-33 6 

years old and 2 lines 50-57 years old). Right, bar plots showing the quantification of CYFIP1 levels 7 

normalized over Vinculin, α-Tubulin, and total protein content. TDI n = 31, Proband 1 n = 6, Father 8 

n = 7, Mother n = 7, technical replicates. One-Way ANOVA. n.s. not significant. Data are 9 

represented as mean ± S.E.M. 10 

 11 

Figure 3: Impact of human CYFIP1 missense variants on actin polymerization. 12 

(A) Representative images of primary fibroblasts from Proband 1, parental and TDI lines stained 13 

with phalloidin-TRITC to detect F-actin and DAPI for nuclei (Scale bar = 55 µm). Quantification 14 

TRITC fluorescent intensity (B) and aspect ratio (C-D) in the proband 1, parents and TDI (4 lines 15 

22-33 years old and 3 lines 43-57 years old), fibroblasts. (C) Schematic representation of the 16 

Aspect Ratio parameter. Created with BioRender.com. Dots represent the quantification of a 17 

technical replicate performed on cells at different passage (TDI n = 26, Proband 1 = 5, Mother = 18 

5, Father = 5, 50-60 cells for each line). One-Way ANOVA followed by Sidak’s multiple 19 

comparison test; exact significant p-values are reported in the figure. Data are represented as 20 

mean ± S.E.M. (E) Representative kymographs at the level of the lamellar protrusions extracted 21 

from the fibroblasts from the Proband 1 and TDI (2 lines of 22 years). Quantification of length (F) 22 

number (G) and velocity (H) of lamellar protrusions. Dots represent kymographs from TDI (2 lines, 23 

n = 131 and Proband 1 n = 82, from 18-20 cells per genotype recorded and analyzed) (scale bar 24 

= 1 µm). (F and H) unpaired Student’s t-test. (G) Mann Whitney test, exact significant p-values 25 

are reported in the figure. Data are represented as mean ± S.E.M. (I-J) Representative Western 26 
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blot showing the CYFIP1 immunoprecipitated complex from TDI (2 lines) and Proband 1 1 

fibroblasts protein extracts (lanes 1-3 and 4-6, respectively, Input) and the detection of NCKAP1 2 

(I) and WAVE1 (J). (K) Quantification of NCKAP1 and WAVE1 in the CYFIP1 immunoprecipitated 3 

complex. The protein levels were normalized to the immunoprecipitated CYFIP1 levels. Dots 4 

represent the quantification of a technical replicate performed on cells at different passages. 5 

NCKAP1 (TDI n = 16, Proband 1 n = 9), WAVE1 (TDI n = 8, Proband 1 n = 5). Multiple t-test 6 

corrected for multiple comparisons using Holm-Sidak method, exact significant p-values are 7 

reported in the figure. Data are represented as mean ± S.E.M. 8 

 9 

Figure 4: Modelling the human CYFIP1 missense variants in Drosophila. 10 

(A) Alignment of the protein sequences of the human CYFIP1 with the fly CYFIP showing the 11 

similarity in the region affected by the missense variants. The variants identified in the probands 12 

are marked in light blue. (B) Generation of CyfipI471V and CyfipP760L alleles using the scarless 13 

genome editing approach. (C) Upper panel: representative Western blots for F-actin and G-actin 14 

levels from Drosophila whole brain. Lanes belongs to the same blot, n = 5-6 (pool of 20 fly heads) 15 

in control and Cyfip KI flies. Lower panel: Quantification of the F/G actin ratio normalized to control 16 

flies. One-way ANOVA followed by Sidak’s multiple comparisons test, exact significant p-values 17 

are reported in the figure. Data are represented as mean ± S.E.M. (D-H) 3D structure analysis of 18 

the s-LNvs axonal arborization in control and Cyfip KI mutant flies. (D) Schematic representation 19 

of an hemibrain of Drosophila with highlighted the location and structure of the s-LNvs axonal 20 

dorsal projections. Left insets show a schematic magnification of the s-LNv dorsal projections and 21 

a max intensity confocal projection s-LNvs dorsal projections stained with PDF antibody. (E) 22 

Representative 3D reconstructions of the s-LNv dorsal projections showing the local z- and y axis. 23 

(F) Representative confocal max intensity projections of the s-LNv dorsal projections in control 24 

and Cyfip mutant flies (upper panels, scale bar = 10 µm) and their 3D reconstructions (lower 25 

panels) (z-axis in blue-to-red color scale), 1 pixel = 0.06 µm and z-step size = 1 µm (see 26 
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Supplemental Materials and Methods for details). (G - H) Quantification of the 3D spread (G) and 1 

the axonal 3D volume (H) covered by the axonal arborization. n = 24-29 axonal projections from 2 

14-15 brains per genotype. One-way ANOVA followed by Sidak’s multiple comparisons test: exact 3 

significant p-values are reported in the figure. Data are represented as mean ± S.E.M. 4 

 5 

Figure 5: Effects of the human CYFIP1 missense variants on Drosophila social and motor 6 

behaviors. 7 

(A-B) Control and Cyfip mutant flies were analyzed for the total number of social interactions in a 8 

competition for food assay. (A) Schematic representation of the behavioral protocol and setup for 9 

the competition for food assay. (B) Quantification of the total number of social interaction events. 10 

n > 10 (pool of 8 male flies each, from 3-5 independent experiments). One-way ANOVA followed 11 

by Sidak’s multiple comparisons test; exact significant p-values are reported in the figure. Data 12 

are represented as mean ± S.E.M. (C-E) Social space behavior. (C) Representative images of 13 

the social space arena in control and Cyfip mutant flies. Different distances among flies are 14 

depicted in circles: in red, a close distance (0-0.5 cm) and in blue (1.0 – 1.5 cm) (scale bar = 1 15 

cm). (D) Distance to the closest flies indicated as percentage distribution of flies in the indicated 16 

ranges of distances, 0 - 0.5 cm, 0.5 - 1.0 cm, 1.0 -1.5 cm and > 1.5 cm bins. n > 8 arenas of 29-17 

30 flies each per genotype. Kolmogorov–Smirnov test was assessed on the total distribution of 18 

the distances to the closest fly, exact significant p-values are reported in the figure. Data are 19 

represented as mean ± S.E.M. (E) Social preference (social space index) based on the distribution 20 

of flies over a 1 cm maximum distance. n > 8 arenas per genotype. One sample t- test compared 21 

to equal preference (0), exact significant p-values are reported in the figure. Data are represented 22 

as mean ± S.E.M. (F-G) Rapid Iterative Negative Geotaxis climbing assay (RING) in control and 23 

Cyfip KI mutants. (F) Schematic representation of the climbing assay (negative geotaxis) 24 

behavioral protocol. (G) Quantification of the number of flies (in percentage) that climbed the 6 25 

cm distance in 9 seconds after sudden stimulus. n > 11 (groups of 17-20 flies each). One-way 26 
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ANOVA followed by Sidak’s multiple comparisons test; exact significant p-values are reported in 1 

the figure. Data are represented as mean ± S.E.M. (H-I) Locomotor activity in control and Cyfip 2 

KI mutants measured with the Drosophila Activity Monitoring System (DAMs, Trikinetics). (H) 3 

Schematic representation of the experimental setup composed of an activity monitoring tube for 4 

individual fly activity recording. The monitoring tubes are in an incubator with control light dark 5 

cycle and automatically recorded. Created with BioRender.com. (I) Quantification of the total 6 

activity in control and Cyfip KI mutants. Activity (beam crossings) over 24 hr. n = 70-100 flies per 7 

genotype, from > 3 independent experiments. One-way ANOVA followed by Sidak’s multiple 8 

comparisons test: exact significant p-values are reported in the figure. Data are represented as 9 

mean ± S.E.M. 10 

 11 
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Table 1. Clinical features of individuals with recessive CYFIP1 missense variants. 

 Individual 1 (II-2) – Proband 1 Individual 2 (II-3) 

CYFIP1 variant p.(Ile476Val); p.(Pro746Val) p.(Ile476Val); p.(Pro746Val) 

Inheritance p.(Ile476Val) paternal 

p.(Pro746Val) maternal 

p.(Ile476Val) paternal 

p.(Pro746Val) maternal 

Sex Male Male 

Gestational age (weeks) 39 (amenorrhea) 40 (amenorrhea) 

Birth HC/length/weight 

standard deviations 

32,5cm (-2 SD) /50 cm (M)/3315gr (M) 32 cm (–2 SD)/ 48 (-1,5 SD)/  

2630gr (-1,5 SD) 

HC/length/weight at last 

investigation standard 

deviations 

52 cm (-3SD)/ 157 cm (-3SD)/ 43,5 Kgs (-

2,5SD) at 17,5 years 

48 cm (-3SD)/ 120,5 cm (M)/ 23,4kgs  

(-1SD) at 9 years 

Microcephaly Yes Yes 

Morphological features Large mouth, thick lips, hypertelorism,  

low hairline 

Large mouth, thick lips, hypertelorism,  

low hairline 

Developmental delay Severe developmental delay 

can sit up, walk with assistance 

Severe developmental delay 

can sit up, walk with assistance 

Age at unassisted sitting 4 years 1 year 

Age at independent walking No independent walking No independent walking 

Age at first words No words No words 

Age at last evaluation 17 years and 8 months old 13 years et 4 months old 

Speech development Non-verbal Non-verbal 

Intellectual disability Profound Profound 

Abnormal behavior Paroxysmal bursts of laughter/ pseudo-

Angelman behavior (happy demeanor) 

Hyperactivity  

Repetitive behavior (head banging) 

Unmotivated laughter/ pseudo-Angelman 

behavior (happy demeanor) 

Seizure (age of onset) Yes (3 years) Yes (6 years) 

Epilepsy syndrome Yes Yes 

Seizure type/ medicament Absence seizures / ZONISAMIDE and 

valproate 

Absence seizures /  

valproate 

Current seizure frequency Several times a week Stabilized epilepsy 

EEG findings Paroxysm Slow track 

Cerebral MRI findings FLAIR hyper signal in the thalamus, 

moderate ventriculomegaly, normal 

spectroscopy 

Normal 

Muscular hypo-/hypertonia Spasticity of the lower limbs,  

pyramidal syndrome 

Trunk ataxia 

Other neurological issues Autistic symptoms Autistic symptoms 

Other features Scoliosis (arthrodesis), strabismus  Valgus flat feet (arthrodesis) 

Abbreviations: HC: head circumference; EEG: electroencephalogram; MRI: magnetic resonance 
imaging. 

 

 



Table 2. Detection of the SNVs by Sanger sequencing in the proband 1 and prediction of pathogenicity. 

Gene variant Genomic position Mode of 
transmission 

Dbsnp PolyPhen-2 SIFT CADD 
phred 

Revel GnomAD v3 SPiP 
prediction 

Reason for 
exclusion 

CLCN3 
(c.2031G>A 
p.Val677=) 

chr4:g.170628299G>A De novo Not reported Benign Tolerated   Not reported  Considered benign 
by all predicting 
bioinformatic 
softwares; Not 
present in proband 2 

SFI1 
(c.1323G>A 
p.Leu441=) 

chr22:g.31985435G>A De novo rs1479552764  Benign Benign   Not reported  Considered benign 
by all predicting 
bioinformatic 
softwares; Not 
present in proband 2 

POLA1 
(c.617C>T 
p.Thr206Met) 

chrX:g.24734570C>T X-linked rs200356660 Benign Tolerated 7.66 Benign 5/112242 69.33% risk 
of altering 
the 
consensus 
splice site 

Considered 
benign/tolerated by 
SIFT, CADD, 
PolyPhen2, REVEL; 
Not present in 
proband 2 

MAGEB2 
(c.47G>A 
p.Arg16His) 

chrX:g.30236744G>A X-linked rs151181148 Possibly 
damaging 

Tolerated 10.29 Benign 33/112089  Considered 
benign/tolerated by 
SIFT, CADD, 
REVEL; Not present 
in proband 2 

SMC1A 
(c.861G>A 
p.Lys287=) 

chrX:g.53439197C>T X-linked rs782543093 Benign Benign   13/111573  Considered benign 
by all predicting 
bioinformatic 
softwares; 

UXT 
(c.264C>G 
p.Asn88Lys) 

chrX:g.47516991G>C X-linked Not reported Probably 
damaging 

Damaging 24.1 Uncertain Not reported 30.67% risk 
of creation of 
a new splice 
site 

Gene involved in 
syndromic disorder 
that cannot explain 
the probands 
phenotype (124)  

IFIH1 
(c.1230T>G 
p.Ile410Met) 

chr2:g.163138952A>C  Recessive  Not reported Probably 
damaging 

Damaging 22.70  Not reported  Inherited from the 
unaffected father; 
Not present in 
proband 2 

IFIH1 
(c.949C>T 
p.Gln317*) 

chr2:g.163144791G>A Recessive  rs74162079   37.00  5/151872  Inherited from the 
unaffected mother; 
Loss of function of 
the gene is related to 
syndromic disorders 
that cannot explain 
the probands 
phenotype (125) 



TTN 
(c.89846C>T 
p.Thr29949Ile) 

chr2:g.179417781G>A recessive rs1284316750 Possibly 
damaging 

Damaging 22.5 Uncertain 1/247238  Not present in 
proband 2 

TTN 
(c.55378A>G 
p.Thr18460Al
a) 

chr2:g.179466439T>C recessive rs727503600 Probably 
damaging 

Tolerated 24.00 Uncertain 17/152066  Gene involved in 
syndromic disorder 
that cannot explain 
the probands 
phenotype (126) 

CYFIP1 
(c.1426A>G 
p.Ile476Val) 

chr15:g.22954276A>G recessive rs148341871 Possibly 
damaging 

Tolerated 22.70 Benign 15/152142  // 

CYFIP1 
(c.2225C>T 
p.Pro742Leu) 

chr15:g.22962505C>T recessive rs139576657 Benign Tolerated 23.40 Benign 6/152210  // 

SCAF1 
(c.436A>C 
p.S146R) 

chr19:g.50150045A>C recessive Not reported Benign Damaging 23.8 Benign Not reported  Not present in 
proband 2 

SCAF1 
(c.3181G>A 
p.A1061T 

chr19:g.50156827G>A recessive rs183980772 Benign Damaging 22.8 Benign 42/152020  Not present in 
proband 2 

Selected variants have been narrowed down using consecutive filters based on different models of inheritance (De novo, X-linked and recessive) and damage 
prediction scores (PolyPhen-2 (102), SIFT (127), CADD (128), Revel (129) and SPiP (130)). All the variants listed have been checked for their presence in the 
second affected individual (II-3). 

 



A B

C

H. sapiens  CYFIP1 469  ESVFNHAIRHTVYAALQD  486
M. musculus  Cyfip1  469  ESVFNHAIRHTVYAALQD  486
D. rerio  cyfip1  469  ESVFNHAIRHTIYSALQD  486
D. melanogaster CYFIP  464  ETVLCEAIRRNIYSELQD  481

p.I476

H. sapiens  736  GATIH-LPPSNRYETLLK  752
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