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A robust DG-ALE formulation for nonlinear shallow-water interactions with
a floating object

Ali Haidara,∗, Fabien Marchea, Francois Vilara

aIMAG, Univ Montpellier, CNRS, Montpellier, France

Abstract

In this work, a numerical method is introduced for the study of nonlinear interactions between free-
surface shallow-water flows and a partly immersed floating object. At the continuous level, the fluid’s
evolution is modeled with the nonlinear hyperbolic shallow-water equations. The description of the
flow beneath the object reduces to an algebraic and nonlinear equation for the free-surface, together
with a nonlinear differential equation for the discharge. The object’s motion may be either prescribed,
or computed as a response to the hydrodynamic forcing. In the later case, with heaving, surging
and pitching allowed in the horizontal one-dimensional case, these equations are supplemented with
the Newton’s second law for the object’s motion, involving the force and torque applied by the
surrounding fluid, and parts of this external forcing are regarded as an added-mass effect. At the
discrete level, we introduce a discontinuous Galerkin approximation, stabilized by a recent a posteriori
Local Subcell Correction method in the vicinity of the solution’s singularities. The motion of the
fluid-structure contact-points is described with an Arbitrary-Lagrangian-Eulerian strategy, resulting
in a global algorithm that ensures the preservation of the water-height positivity at the sub-cell
level, preserves the class of motionless steady-states even when the object is allowed to evolve freely,
and the Discrete Geometric Conservation Law. Several numerical computations involving wave and
floating object interactions are provided, showing the robust computation of the air-water-body
contact-points dynamics.

Keywords: shallow-water equations, discontinuous Galerkin, a posteriori limitation,
Arbitrary-Lagrangian-Eulerian, floating body, wave-structure interactions

1. Introduction

The modeling of a free-surface water domain in the presence of a floating object is an intricate
problem, combining the time evolution of an incompressible fluid with the motion of a solid surface-
piercing and partly immersed object. Possible applications may include, for instance, the study of
offshore structures, near-ship flows, floating breakwaters or floating wave-energy converters. From
a mathematical viewpoint, such a problem may fall into the family of free-boundary problems, as
the immersed part of the object (the wetted surface) depends on time and the boundary of the free-
surface water domain identifies with the water-object contact-line. In early works [28, 29], this issue is
overcome by assuming small-amplitude motions, neglecting the time-evolution of the wetted surface
and using a linear potential model for the fluid evolution. Among seminal works, let also mention
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[21, 39] where surface-waves generation through prescribed motion of floating or submerged bodies
are studied. As of today, dedicated software generally rely on Boundary Element Methods (BEM)
applied to linear models in the time-domain, like the Cummins equation [10] with hydrodynamic
coefficients coming from linear potential flow, or the (time-dependent) mild-slope equation, see [3].
Let mention, among others, [36] for the study of offshore structures, [34] for wave-energy converters
or [41, 32] for floating breakwaters.

In some situations however, nonlinear effects may become dominant, like for instance in the evo-
lution of energy converters or breakwaters operating inside the resonance domain, or in nearshore
areas. Also, nonlinear bathymetry effects (generally neglected within linear-BEM methods) should
be accurately modeled in shallow-water as they mainly lead the wave’s transformations.
With this in mind, recent attempts to account for nonlinear effects generally rely on fully-nonlinear
potential flow descriptions together with nonlinear-BEM, see for instance [15, 38], or on full Reynolds
Averaged Navier-Stokes (RANS) simulations, like for instance [43]. Both strategies are generally
considered as extremely computationally demanding. Let also mention the recent and general for-
mulation of [33] for the full water-wave equations with a floating body.
Focusing on particular flow regimes, an alternative to the use of the water-wave equations may be
to consider simpler asymptotic (but still nonlinear) flow models. Albeit appearing as an interesting
compromise between linear modeling and fully-nonlinear 3D modeling, this strategy has received
very few attention in the literature. Specifically focusing on the fully-nonlinear and shallow-water
regime, a depth-integrated flow model may be used to describe the free-surface flow away from the
floating object, like for instance in [31] where floating breakwater are modeled through the use of
Boussinesq-type (BT) equations and a Finite-Difference (FD) scheme. Such shallow-water asymp-
totics may also model the fluid under the floating object: in [26, 27, 42] a BT model is applied to
describe near-ship flows and a BT model is used to compute the heave motion of floating structures
with straight-sided vertical boundaries in [4]. Let us also mention [8, 14] among the related works
involving depth-integrated models.
Among shallow-water asymptotics, the Nonlinear Shallow-Water (NSW) equations [11] are certainly
one of the most widely used mathematical model for the simulation of long waves hydrodynamic.
Considering its hydrostatic and hyperbolic nature, it provides an accurate description of steep-fronted
flows, see for instance [35]. Yet, up to our knowledge, very few studies investigate the description
of a floating object with NSW equations. We may mention the recent studies [16, 17] for congested
shallow-water flows with a pseudo-compressible relaxation/projection scheme, or again [4] in which
the NSW equations are finally used in the vicinity of the object instead of BT equations. Very
recently in [22], Initial Boundary Value Problems (IBVP) for the NSW equations with a partly
immersed and floating object are introduced and extensively analyzed, in the simplified horizontal
d = 1 case. We ground the present study on this last work, providing a firm mathematical basis
for the modeling and simulation of floating objects in shallow-water flows. Note also that such a
reduction of the wave-structure interaction problem to free-boundary and transmission problems has
been extended even more recently for a BT model in [5] in the case of a stationary surface obstacle,
and [2] in the case of a floating object with heave motion and vertical sidewalls.

The design of accurate and robust discrete algorithms for such free-boundary problems is also an
intricate issue, especially concerning the description of the contact-points dynamics. Among the
simplest approaches, one may either neglect the wetted-surface variations, as initially proposed in
[28, 29], or consider exclusively pure heaving motions for objects with straight-sided vertical walls, like
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in [31, 4]. We can also refer to [23, 24, 25] in the specific context of floating breakwaters. Going further
in the description, a Mixed Lagrangian-Eulerian (MLE) strategy is developed in [30], for the study of
wave-induced motions with a floating body, with additional difficulties related to the computation of
the time-derivative of the velocity potential in the elliptic equation for the pressure. In practice, the
flow interactions with the time-evolving boundaries may result in unsteady phenomena at various
scales, and it may be convenient for the discrete formulation to handle moving and deforming spatial
domains, in order to avoid interface-tracking methods while still maintaining the required accuracy,
conservation and robustness properties. Hence, the Arbitrary Lagrangian-Eulerian (ALE) description
appears as an attractive solution and we refer to [13] for a general review, and also to the references
provided in [20].
Relying on an ALE description of the contact-points dynamics, we choose to approximate the main
flow variables with discontinuous polynomials and a discontinuous Galerkin (DG) method, see [9]
for a general review. The assets of DG methods are numerous, and briefly recalled in [20], and one
major acknowledged drawback of DG methods is their lack of nonlinear stability. In this work, such
a limitation is alleviated by using the recent a posteriori Local Subcell Correction (LSC) method
introduced in [40] for general hyperbolic equations, in [19] for the NSW equations, and extended very
recently to the ALE framework in [20].
In what follows, gathering all these ingredients, we numerically investigate the nonlinear wave-body
interactions in shallow-water, in order to adaptively and accurately simulate the time-evolution of a
partly immersed object floating in a nonlinear shallow-water flow. To this end, we introduce a novel
discrete formulation based on a robust DG-ALE method and directly modeled from the recent IBVP
described and analyzed in [22]. This is an extension to floating objects of the recent method for free-
boundary problems described in [20] . An explicit mapping between the initial configuration and the
current one is introduced, and the NSW equations are recast in the reference domain before being
approximated by high-order broken-polynomials. Additionally, the discrete formulation associated
with the dynamics of the floating object relies on the introduction of the related added-mass effect,
appearing as an added-mass-inertia matrix and acting as an additional stabilization mechanism. We
emphasize that any object with a continuously differentiable underside’s parameterization may be
considered, and this object can move in any of the three degrees of freedom allowed in the d = 1
surface dimension case (heaving, surging and pitching).
The remaining of this paper is structured as follows: the next section is devoted to the description of
the governing model, based on the NSW equations with a varying bathymetry for the fluid description,
both for the exterior and interior sub-domains, and the corresponding IPVP is explicitly stated, for
the sake of completeness. The next §3 is devoted to the description and study of a discrete formulation
associated with this model. We define a general discrete approximation relying on local polynomials
of arbitrary order and several interesting properties are highlighted. In particular, assuming that
the initial acceleration of the object vanishes, we emphasize that the well-balancing properties is
ensured. In §4, we show several numerical assessments of the resulting discrete algorithm, involving
the preservation of and convergence towards motionless steady-states, nonlinear interactions between
surface-waves and the floating object or the occurence of dry areas and propagation of wet-dry front.

2. The model

In this section, we formulate the equations which are numerically studied in the remainder of the
paper.
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Figure 1: shallow-water interacting with a floating object.

2.1. Shallow-water flow with a floating object

We consider a floating non-deformable object, denoted by Obj, of mass mo, inertia coefficient io, center
of mass MG and diameter do, which is partly immersed in an inviscid, incompressible and irrotational
shallow-water flow, with a reference water-depth H0, under the following assumptions:

1. the object is not entirely immersed, and no wave overtopping can occur,

2. there are only two contact-points where the water, the air, and the object meet, see Fig. 1,

3. do is much smaller than the water-depth at rest: do ≪ H0.

For the sake of simplicity, we assume that the underside’s profile is symmetric with respect to
the vertical axis passing through MG. This additional assumption is not mandatory, but helps to
simplify initial computations related to inertia, see Appendix D. For any given time value t ≥ 0,
the horizontal spatial coordinate of these contact-points are denoted by x−(t) and x+(t), with x−(t) <
x+(t). The horizontal line is split into two time-dependent sub-domains, namely the interior sub-
domain, denoted by I(t), and the exterior sub-domain E(t), E(t) and I(t) being the projections on
the horizontal line of the areas where the water surface get in touch with the floating structure and
the air:

I(t) :=
]
x−(t), x+(t)

[
, E(t) := E−(t) ∪ E+(t), E−(t) :=

]
−∞, x−(t)

[
, E+(t) :=

]
x+(t), +∞

[
, (1)

and we conveniently gather the contact-points into the set ∂I(t) := {x−(t), x+(t)}. The bathymetry
variations are parameterized by a regular function denoted by b : R → R, H i and ui respectively
denote the water-height and the water averaged horizontal velocity in I(t), He and ue the water-
height and the velocity in E(t) and we set ηi := H i + b, ηe := He + b, qe := Heue, qi := H iui the
free-surface elevations and the vertically-averaged horizontal discharge respectively in E(t) and I(t).
We also assume the pressure field to be hydrostatic:

p(x, z, t) :=


patm − ρg(z − ηe(x, t)) in E(t),

pi(x, t)− ρg(z − ηi(x, t)) in I(t),
(2)

where ρ is the density of the water, patm the atmospheric pressure (at the fluid free-surface) and
pi(x, t) is the inner pressure that applies on the underside of the floating object. We consider the
following flow model:
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∂tv
e + ∂xF(v

e, b) = B(ve, b′) in E(t) =
]
−∞, x−(t)

)
∪
(

x+(t),+∞
[
,

∂tv
i + ∂xF(v

i, b) = B(vi, b′) +P(vi, ∂xp
i) in I(t) =

]
x−(t), x+(t)

[
,

ve = vi on ∂I(t),

(3a)

(3b)

(3c)

where

ve : E(t)× R+ ∋ (x, t) 7→ ve(x, t) ∈ Θ := {(η, q) ∈ R2, H = η − b ≥ 0},
vi : I(t)× R+ ∋ (x, t) 7→ vi(x, t) ∈ Θ ,

(4)

(5)

respectively gather the flow’s main variables in E(t) and I(t), F : Θ×R → R2 is the (nonlinear) flux
function, B : Θ × R → R2 is a bathymetry source term and P(vi, pi) : Θ × R → R2 is a pressure
source term, respectively defined as follows:

F(v, b) :=

(
q

uq + 1
2gη(η − 2 b)

)
, B(v, b′) :=

(
0

−gηb′

)
, P(vi, ∂xp

i) :=

 0

−1

ρ
H i∂xp

i

 . (6)

For further use, let introduce the unit vectors ex := (1, 0)T and ez := (0, 1)T in the plane (Oxz). Let
also introduce the following operators, respectively extracting an average and an oscillating part of
any regular enough scalar function v(·, t) defined on I(t), as follows:

⟪v⟫I(t) := H i
−1
∫
I(t)

v

H i
dx, v⋆I(t) := v − ⟪v⟫I(t) , (7)

with the notation H i
−1

=
(∫

I(t)
1
Hi dx

)−1
and the subscript I(t) may be forgotten when no confusion

is possible.

2.2. Object’s position and motion

We consider the case of a moving object and face the following alternative: (i) the motion of the
object is prescribed, and therefore not influenced by the surface waves, (ii) the motion of the object
is free, and submitted to the influence of the wave’s motion, while having a reciprocal influence
on the flow. In both cases, for any time value, the position of Obj is completely specified through
the knowledge of the spatial coordinates xG(t) = (xG(t), zG(t)) of MG (xG, zG are respectively the
horizontal and vertical coordinates), together with the (signed) value of the rotation (pitch) angle
θ(t) with the vertical direction, see Fig. 2.
In a similar way, the motion of Obj may be entirely defined through the knowledge of the velocity
vG(t) =

(
uG(t), wG(t)

)
= xG

′(t) and the angular velocity ω(t) := −θ′(t) (so that θ is oriented
according to the standard trigonometric convention in the plane (Oxz)) of MG. For the sake of
convenience, let introduce the position, velocity and acceleration vectors XG, ϑG and AG, defined
as follows:

XG :=

xGzG
−θ

 , ϑG :=

uGwG

ω

 =
d

dt
XG and AG :=

d

dt
ϑG.
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Figure 2: Moving object in water

In what folllows, either t 7→ (XG(t),ϑG(t)) belongs to the provided data, or it has to be explicitly
computed from external forces and torque. We further observe that:

− at t = 0, the initial location of MG is denoted by (XG, ZG) := (xG(0), zG(0)) and the initial
pitch angle θ(0) is arbitrarily set to zero (so that the inertia momentum vanishes for objects
with symmetric profiles, see Appendix D). We assume that the underside of the floating object
is initially parameterized by a smooth function ηlid defined on an open interval Ilid ⊂ R, with
ηlid ∈ C1(Ilid) ∩W s,∞(Ilid), s ≥ 1 (W s,∞(I) being the Sobolev space of functions which are
uniformly bounded on I, together with their weak derivatives up to order s). We observe that:

ηi(·, 0) = ηlid on I0 =
]
X−

0 , X
+
0

[
⊂ Ilid,

and for any material point located on the underside of the object, identified by its coordinates
(X,Z), we have Z = ηlid(X) = ηi(X, 0). For further use, let define a normal vector on the
underside of the object:

nlid(x) :=

(
−η′lid(x)

1

)
.

− at any time value t > 0, we denote by x = (x, z), with z = ηi(x, t), the coordinates of an
arbitrary point belonging to the object’s underside, and we note by rG := x−xG the translated
coordinate vector of this point with respect to MG, and by ni a normal vector on the underside
of the object:

ni(x, t) :=

(
−∂xηi(x, t)

1

)
= −∂xrG(x, t)⊥.

When a free-motion is allowed, its response to external force and torque is ruled by the Newton’s
second law for the conservation of linear and angular momentum, which is formulated as follows:

M0AG = −
(

mo g ez
0

)
−
∫
I(t)

(
pi − patm

)( −ni

r⊥G · ni

)
, (8)
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where the mass-inertia matrix is defined as:

M0 :=

(
mo Id2×2 0

0 io

)
.

We also introduce the vector TG defined as follows:

TG(x, t) :=

(
−r⊥G(x, t)

1
2 |rG(x, t)|

2

)
,

such that the following identities hold:

∂xTG =

(
−ni

r⊥G · ni

)
, ∂tTG = MGϑG, (9)

with

MG :=

 ex · nlid 0 −r⊥G · nlid

1 0 0
−r⊥G · nlid 0 −(ez · rG)(r⊥G · nlid)

 .

2.3. Interior-flow description

In this sub-section, we reformulate the flow equations in the interior domain. For any point x of the
object’s underside, the corresponding initial coordinates (X,Z) ∈ I0×R, can be traced back through
the following identity:

rG(x, t) =

(
cos(θ(t)) − sin(θ(t))
sin(θ(t)) cos(θ(t))

)
rG(X, 0), (10)

and as a consequence, we have for any given t > 0 and x ∈ I(t):

ηi(x, t) = zG(t) + sin
(
θ(t)

)(
X−XG

)
+ cos

(
θ(t)

)(
ηlid(X)−ZG

)
=: �̃�(X, t, zG(t), θ;XG, ZG, ηlid), (11)

where X satisfies the following nonlinear algebraic equation:

x− xG(t) + sin(θ(t))(ηlid(X)− ZG)

cos(θ(t))
+XG −X = 0. (12)

The ˜ notation, related to the fact that �̃� depends on X, in the initial object’s configuration, is
clearly defined in the next section with the introduction of the ALE description. Under the additional
assumptions that: (i) MG remains close to its initial location, (ii) the pitch angle is small enough, in
the following sense:

∀ t ∈]0, Tmax], |θ(t)| ≤ θmax, with θmax ∈ (0, π/2) such that
∥∥η′lid∥∥∞ tan (θmax) < 1,

then it is possible to show that: (i) there is a unique X ∈ I0 satisfying (12), (ii) the discharge can
be expressed as:

qi(x, t) = ϑG(t) · TG(x, t) + qi(t), (13)

where qi is the solution of the following BVP:

d

dt
qi = −

(
⟪ f1⟫I(t) + ⟪ f2⟫I(t) + ⟪ f3⟫I(t)

)
,

qi(0) := qi
0
,

(14a)

(14b)
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with the following right-hand sides:

f1 := ∂x
(
uiqi
)
+ gH i∂xη

i, f2 := AG · TG and f3 := ϑG · ∂tTG. (15)

The reader is referred to [22] for the detailed derivation of these relations.

Remark 1. It is known that, for immersed objects, part of the force and torque applied on the
object by the surrounding fluid acts as if the mass-inertia matrix in Newton’s laws was modified
through the addition of a positive matrix, which is the so-called added-mass effect, see for instance
[6]. Hence, (8) may be reformulated in order to exhibit the corresponding added-mass, as follows:(

M0 +Ma

(
H i,TG

)) d

dt
ϑG =

(
−mogez

0

)
− ρ

∫
I(t)

(
f ⋆
1 + f ⋆

3

) T ⋆
G

H i
, (16)

where the added-mass-inertia matrix Ma is defined as:

Ma

(
H i,TG

)
:=

∫
I(t)

T ⋆
G ⊗ T ⋆

G

H i
. (17)

This reformulation is detailed in Appendix C.

Remark 2. We observe that deriving the second equation of the geometric relation (10) with respect
to t and x leads to the following identity for the time derivative of the interior free-surface:

∂tη
i(·, t) =

(
vG(t)− rG(·, t)⊥ω(t)

)
· ni(·, t) = −∂x

(
ϑG(t) · TG(x, t)

)
. (18)

Remark 3. The assumption that MG remains close to its initial location helps to ensure that some
singular behaviors, that may break-down the existence conditions, do not occur. In particular, the
motion t 7→ (XG(t),ϑG(t)) should ensure that the object is never entirely immersed, and never
touches the bottom boundary. As already mentioned, we typically require that the object’s diameter
do is smaller than the water-depth at rest (or do ≪< Hb with Hb := H0 − b when the bathymetry is
not flat), in order to ensure that, for all time value, H i(·, t) > 0.

2.4. IBVP in the case of a free-motion

Accounting for the description and notations introduced above, the coupled problem (3) may be
particularized as follows: find (ve,vi, x−, x+,XG) such that:

∂tv
e + ∂xF(v

e, b) = B(ve, b′) in E(t) =
]
−∞, x−(t)

)
∪
(

x+(t),+∞
[
,

ηi(x, t) = �̃�(X, t, zG, XG, ZG, θ, ηlid) where X solves (12),

qi(x, t) = ϑG(t) · TG(x, t) + qi(t),

d

dt
qi = −⟪ f1⟫I(t) − ⟪ f2⟫I(t) − ⟪ f3⟫I(t) ,

 in I(t) =
]
x−(t), x+(t)

[
,

ve = vi on ∂I(t),

d

dt
XG = ϑG,(

M0 +Ma

(
H i,TG

)) d

dt
ϑG =

(
−mogez

0

)
− ρ

∫
I(t)

(
f ⋆
1 + f ⋆

3

) T ⋆
G

H i
.

(19a)

(19b)

(19c)

(19d)
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Supplementing (19) with some initial-data, for s ≥ 2:

ve
|t=0 := ve

0 ∈ (Hs(E0))2,

(x−, x+)|t=0 := (X−
0 , X

+
0 ),

vi
|t=0 := (ηlid, q

i
0) ∈

(
C1(Ilid) ∩W s,∞(Ilid)

)
× R,

XG(0) := (XG, ZG, 0),

ϑG(0) := (u0G, w
0
G, ω0),

(20a)

(20b)

(20c)

(20d)

(20e)

a local well-posedness result is proved in [22]. Specifically, under further assumptions on the data,
which can be summarized as: (i) there is no dry-state in the vicinity of the floating structure, (ii) the
flow is initially sub-critical at x±, (iii) the first-order spatial derivative of the free-surface is initially
discontinuous at contact points:

(ηe0 − ηi0)
′ ̸= 0 on X±

0 , (21)

then there exists a maximum time Tmax ≤ T and a unique solution of (19)-(20) such that ve ◦ χ ∈
C0([0, Tmax];H

s(E0)) ∩ C1([0, Tmax];H
s−1(E0)), qi ∈ Hs+1(0, Tmax), (x−, x+) ∈ (Hs(0, Tmax))

2 and
XG ∈ (Hs+2(0, Tmax))

3.

Remark 4. A well-posedness result is also established in [22] for the case of an object with a
prescribed motion. The corresponding model may be straightforwardly deduced from (19)-(20) by:
(i) removing the Newton’s equation (19d), (ii) removing the initial data on ϑG and XG in (20), (iii)
supplementing the resulting model with the prescribed evolution law:

XG ∈ (Hs+2(0, T ))3,

XG(0) := (XG, ZG, 0) ∈ R3.

(22a)

(22b)

Such prescribed motions are also numerically investigated in §4.

Remark 5. In the next section, as for the numerical validations of §4, we consider these IBVPs on
a bounded computational domain of the form

Ωt := E−(t) ∪ I(t) ∪ E+(t) =
]
xleft(t), x−(t)

[
∪ I(t) ∪

]
x+(t), xright(t)

[
,

so that the domain’s exterior boundary is defined as ∂Ωt := {xleft(t), xright(t)}.

3. Discrete formulations

in this section, we design a discrete formulation associated with the previous model.

3.1. Discrete setting for DG-ALE on mesh elements and FV-ALE on sub-cells

Computational domain, sub-domains and mesh

For any time value t ∈ [0, Tmax], we consider the partition PΩ(t) := {E−(t), I(t), E+(t)} of Ωt into
disjoint sub-domains, defined from the knowledge of the location of the contact points x−(t) < x+(t).

We introduce a conforming partition Th(t) :=
{

ci(t)
}
1≤i≤nel

of Ωt into |Th(t)| =: nel disjoint segments,

such that we have Ωt =
⋃

c(t)∈Th(t)
c(t). Such a partition is characterized by the (time-dependent)

mesh-size
h := max

c(t)∈Th(t)
hc(t),

9



where hc is the length of the element c, and where we hide the time dependency of h for the sake of
simplicity. We make the following additional assumptions:

♯1 nel does not depend on time,

♯2 ∀t ∈ [0, Tmax], x−(t) ̸= xleft(t) and x+(t) ̸= xright(t),

♯3 Th(t) is compatible with PΩ(t): each mesh element c(t) ∈ Th(t) is a subset of only one set of
the partition PΩ(t),

so that we can write:

Th(t) = T e
h (t) ∪ T i

h (t), with E(t) =
⋃

c(t)∈T e
h (t)

c(t) and I(t) =
⋃

c(t)∈T i
h (t)

c(t),

where T e
h (t) and T i

h (t) are respective partitions of the sub-domains E(t) and I(t), and at any time
t ∈ [0, Tmax], the contact points x−(t), x+(t) are uniquely identified with some mesh interfaces. For
some specified mesh element ci(t) ∈ Th(t), we note ci(t) :=

]
xi− 1

2
(t), xi+ 1

2
(t)
[
(with the convention

that x 1
2
:= xleft, xnel+ 1

2
:= xright), xi(t) its barycenter and ∂ci(t) := {xi− 1

2
(t), xi+ 1

2
(t)} its boundary.

Mesh interfaces are collected in the sets ∂T e
h and ∂T i

h , respectively defined as follows:

∂T e
h (t) := {∂c(t), c(t) ∈ T e

h (t)} , ∂T i
h (t) :=

{
∂c(t), c(t) ∈ T i

h (t)
}
,

such that we have

∂I(t) = ∂T e
h (t) ∩ ∂T i

h (t), ∂Th(t) := ∂T e
h (t) ∪ ∂T i

h (t) =
{
xi+ 1

2
(t), 0 ≤ i ≤ nel

}
. (23)

DG: approximation spaces, basis functions

For any integer k ≥ 0 and for any t ∈ [0, Tmax], we consider the broken-polynomials space defined on
the exterior domain:

Pk(T e
h (t)) :=

{
v(·, t) ∈ L2(E(t)), ∀ c(t) ∈ T e

h (t), v|c(t) ∈ Pk(c(t))
}
,

where Pk(c(t)) denotes the space of polynomials of total degree at most k defined onto c(t), with
dim

(
Pk(c(t))

)
= k + 1. In what follows, piecewise polynomial functions (and, more generally, any

discrete counterpart computed from or acting on piecewise polynomial functions) are denoted with
a subscript h. Also, for any c(t) ∈ T e

h (t) and vh(·, t) ∈ Pk(T e
h (t)), we may use the convenient short-

hand: vc := vh|c when no confusion is possible, and we also note Pk(T e
h (t)) :=

(
Pk(T e

h (t))
)2
.

For any mesh element c(t) ∈ T e
h (t) and any integer k ≥ 0, we consider a basis for Pk(c(t)) denoted

by
Ψc(t) =

{
ψc
m(·, t)

}
m∈J1, k+1K.

We observe that we have:

∀t ∈ [0, Tmax], ∀c(t) ∈ T e
h (t), ∀m ∈ J1, k + 1K, supp(ψc

m(·, t)) ⊂ c(t).

A basis for the global space Pk(T e
h (t)) is obtained by gathering the local basis functions:

Ψe
h(t) := ×

c(t)∈T e
h (t)

Ψc(t) =
{{
ψc
m(·, t)

}
m∈J1, k+1K

}
c(t)∈T e

h (t)
.
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Remark 6. Similarly to [20], we choose the set of monomials in the physical space as basis functions,
defined as follows:

∀ci(t) ∈ T e
h (t), ∀ m ∈ J1, . . . , k + 1K, ∀x ∈ ci(t), ψci

m(x, t) :=

(
x− xi(t)

|ci(t)|

)m

. (24)

For any given time value, the degrees of freedom are chosen to be the functionals that map a given
discrete unknown belonging to Pk(T e

h (t)) to the coefficients of its expansion on the chosen basis
functions. The degrees of freedom applied to a given function vh ∈ Pk(T e

h ) return the real numbers{
vc
m

}c∈T e
h (t)

m∈ J1, k+1K
, such that vc =

k+1∑
m=1

vc
mψ

c
m(·, t), ∀c ∈ T e

h (t). (25)

With a little abuse, we refer hereafter to the real numbers (25) as the degrees of freedom associated
with vh and we note vc ∈ Rk+1 the vector that gathers the degrees of freedom associated with vc .

In a similar way, the approximating space Pk(T i
h (t)) may be defined for the interior domain, and the

global approximation space Pk(Th(t)) is obtained by gathering the contributions coming from both
sub-domains. The product spaces Pk(T i

h (t)) and Pk(Th(t)) are defined accordingly. Reversely, any
function ϕh(·, t) ∈ Pk(Th(t)) may be regarded as the gathering of its contributions coming respectively
from the exterior and interior domains:

ϕh(·, t)|E(t) = ϕeh(·, t), ϕh(·, t)|I(t) = ϕih(·, t), ϕeh(·, t) ∈ Pk(T e
h (t)), ϕih(·, t) ∈ Pk(T i

h (t)).

Projection, interpolation, averages and jumps

For c(t) ∈ T e
h (t), we denote by pkc the L2-orthogonal projector onto Pk(c(t)) and pkT e

h
the L2-

orthogonal projector onto Pk(T e
h (t)). Similarly, we denote ikc the element nodal interpolator into

Pk(c(t)), where the nodal distributions in mesh elements are chosen to be the approximate optimal
nodes of [7] (leading to better approximation properties than equidistant distributions, and including,
for each element, the elements boundaries into the interpolation nodes). The global interpolator into
Pk(T e

h (t)), denoted by ikT e
h
, is obtained by gathering the local interpolating polynomials defined on

each elements. Similar projector pk
T i
h

and interpolator ik
T i
h

may be defined on I(t), and globally on

Ωt by gathering the sub-domains contributions.
For any ϕh(·, t) ∈ Pk(Th(t)) defined on ci(t) ∪ ci+1(t), we introduce the following interface-centered
average {{·}} and jump J·K operators defined as follows:

{{ϕh(·, t)}}i+ 1
2
:=

1

2

(
ϕci(·, t)|xi+1

2

+ ϕci+1(·, t)|xi+1
2

)
, Jϕh(·, t)Ki+ 1

2
:= ϕci+1(·, t)|xi+1

2

−ϕci(·, t)|xi+1
2

,

and this definition should be supplemented with suitable values for the averages and jumps at exterior
boundaries, depending on the chosen type of boundary conditions. For any regular-enough scalar-
valued function v(·, t) defined on ci(t), and extending the convenient notation vci(t)(·) := v(·, t)|ci(t),
we also introduce the cell-centered jump value defined as:

q
v(·, t)

y
∂ci(t)

:= vci(t)|xi+1
2

− vci(t)|xi− 1
2

,

together with the following shorthands for the exterior scalar-products of functions v, w ∈ L2(T e
h )

and µ, ν ∈ L2(∂T e
h ):(

v, w
)
T e
h (t)

:=
∑

c(t)∈T e
h (t)

∫
c(t)

v(x, t)w(x, t)dx,
〈
µ, ν

〉
∂T e

h (t)
:=

∑
c(t)∈T e

h (t)

q
µν

y
∂c(t),

11



the extension to vector-valued functions being straightforward.

Discrete derivation and integration

In what follows, we need a consistent and accurate discrete counterpart of the first-order derivative,
which may be applied to the broken polynomial functions defined above, while accounting for the
domain partition PΩ(t) and the jumps of the functions at interfaces. This may be achieved in the
current setting by adapting the liftings and discrete gradient of [1] to the sub-domains partition. Let
define the element-by-element first-order derivative of a broken-polynomial belonging to Pk(T e

h (t)):

∂hx : Pk(T e
h (t)) ∋ ϕeh(·, t) 7→ ∂hxϕ

e
h(·, t) ∈ Pk−1

(
T e
h (t)

)
,

such that:
(∂hxϕ

e
h)|c(t) := ∂x(ϕ

e
c(t)), ∀c(t) ∈ T e

h (t).

Then, for any ϕeh(·, t) ∈ Pk(T e
h (t)), we introduce the following global lifting of the jumps on the

exterior mesh interfaces ∂T e
h , defined as follows:

Rk
h(Jϕ

e
h(·, t)K) :=

∑
x
i+1

2
∈∂T e

h

rk
i+ 1

2

(Jϕeh(·, t)K),

where, for all xi+ 1
2
(t) ∈ ∂T e

h (t), the local lifting operator rk
i+ 1

2

applied to the jumps of ϕeh(·, t) is

defined as the unique solution in Pk(T e
h (t)) of the following problem:(

rk
i+ 1

2

(Jϕeh(·, t)K), ψe
h(·, t)

)
T e
h (t)

= Jϕeh(·, t)Ki+ 1
2
{{ψe

h(·, t)}}i+ 1
2
, ∀ψe

h(·, t) ∈ Pk(T e
h (t)). (26)

In order to apply the definition (26) to the interfaces corresponding to the contact-points (which are
boundaries for E(t)), the definitions of the interface-centered jumps and averages on x±(t) have to
be provided. Denoting by i and i the respective mesh element labels such that x−(t) = ci(t) ∩ ci+1(t)
and x+(t) = ci(t) ∩ ci+1(t), we set:

Jϕeh(·, t)Kx9(t) := ϕeci(·, t)|x9 − ϕici+1
(·, t)|x9 ,

Jϕeh(·, t)Kx+(t) := ϕici(·, t)|x+ − ϕeci+1
(·, t)|x+ ,

{{ϕeh(·, t)}}x9(t) :=
1

2

(
ϕeci(·, t)|x9 + ϕici+1

(·, t)|x9
)
,

{{ϕeh(·, t)}}x+(t) :=
1

2

(
ϕici(·, t)|x+ + ϕeci+1

(·, t)|x+
)
.

Following [12], we define the discrete first-order derivative Gk
h : Pk(T e

h (t)) → Pk(T e
h (t)) such that,

for all ϕeh(·, t) ∈ Pk(T e
h (t)),

Gk
hϕ

e
h(·, t) := ∂hxϕ

e
h(·, t)−Rk

h(Jϕ
e
h(·, t)K). (27)

This operator has better consistency properties than the element-by-element derivative, as it ac-
counts for the jumps of its argument through the second contribution; see [12, Theorem 2.2] for
further insight into this point. In a similar way, a discrete derivative acting on functions of Pk(T i

h )
may be defined, and a discrete gradient globally defined on Pk(Th) is obtained by gathering both
contributions coming from the exterior and interior domains.
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Let also introduce a discrete counterpart for the integration of a regular-enough function ϕ(·, t) on
I(t) :

S
h,ng
I(t)[ϕ] :=

∑
c(t)∈T i

h (t)

∑
1≤r≤ng

αc
r(t)ϕ(x

c
r(t), t), (28)

where (αc
r(t))1≤r≤ng and (xc

r(t))1≤r≤ng respectively refer to some suitable positive Gauss quadrature
weights and nodes transported onto the transient mesh element c(t) ∈ T i

h (t), and the degree ng
may be adapted to the polynomial degree of the integrand (or estimated from the regularity of non-
polynomial integrands). From (28), we deduce a discrete counterpart of the I(t)-averaging operator
(7), as follows:

⟪v⟫h := S
h,ng
I(t)
[ 1

H i
h

]−1
S

h,ng
I(t)
[ v
H i
h

]
, v⋆h := v − ⟪v⟫h . (29)

FV on sub-cells: sub-partitions, sub-resolution basis and sub-mean values

For any mesh element ci(t) ∈ T e
h (t), we introduce a sub-partition Tci(t) into k + 1 open disjoint

sub-cells:

ci(t) =
k+1⋃
m=1

s̄ ci
m(t), (30)

where the sub-cell s ci
m(t) :=

(
x̃ci
m− 1

2

(t), x̃ci
m+ 1

2

(t)
)
is of size |s ci

m| =
∣∣x̃ci

m+ 1
2

− x̃ ci
m− 1

2

∣∣, with the convention

x̃ci
1
2

:= xi− 1
2
and x̃ci

k+ 3
2

:= xi+ 1
2
, see Fig. 3. When considering a sequence of neighboring mesh cells

ci−1, ci, ci+1, the convenient convention s ci
0 := s ci−1

k+1 and s ci
k+2 := s ci+1

1 may be used. For any regular
enough function v(·, t) defined on s ci

m, we introduce the following shorthand for the sub-cell centered
jump: q

v(·, t)
y
∂s ci

m
:= v(·, t)|x̃ci

m+1
2

− v(·, t)|x̃ci
m− 1

2

.

s  c

c c c c c

Figure 3: Partition of a mesh element ci in k + 1 sub-cells

Similarly to [40, 20], for ci(t) ∈ T e
h (t), the sub-cell indicator functions

{
1

ci
m(·, t), m ∈ J1, k+1K

}
are

defined as follows:

1
ci
m(x, t) :=

{
1 if x ∈ s ci

m(t)

0 if x ̸∈ s ci
m(t)

, ∀j ∈ J1, k + 1K,

and the sub-resolution basis functions
{
ϕci
m(·, t) ∈ Pk(ci(t)), m ∈ J1, k + 1K

}
as follows:

ϕci
m(·, t) := pkci (1

ci
m(·, t)) , ∀m ∈ J1, k + 1K. (31)
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For vc ∈ Pk(c(t)),
{
vc
m

}
m∈ J1, k+1K are the lowest-order piecewise constant components defined as

the mean-values of vc on the sub-cells belonging to Tc(t), called sub-mean values in the following,
and which may be conveniently gathered into vc ∈ Rk+1. Whenever a sequence of neighboring
mesh elements ci−1, ci, ci+1 and associated neighboring approximations is considered, the following
convenient convention may be used: vci

0 := v
ci−1

k+1 and v ci
k+2 := v

ci+1

1 .

Remark 7. As shown in [40], any polynomial function vc ∈ Pk(c) can be equivalently expressed as a
collection of degrees of freedom vc or a collection of sub-means values vc . Defining the set of piecewise
constant functions on the sub-grid:

P0(Tci(t)) :=
{
v(·, t) ∈ L2(ci(t)), v|s ci

m(t) ∈ P0(s ci
m(t)), ∀ s ci

m(t) ∈ Tci(t)
}
,

the (one-to-one) projector onto P0(Tci(t)) is denoted as follows:

πkTc
: Pk(c(t)) → P0(Tc(t))

vc 7→ πkTc
(vc) := vc .

(32)

3.2. ALE description

In this section, an ALE description for the problem (19) is introduced. Such a description relies on
the definition of a regular (continuously differentiable with respect to time, globally continuous and
piecewise continuously differentiable with respect to X) mapping which recasts the equations from
the initial domain Ω0 to the current moving one Ωt:

Ω0 × [0, Tmax] ∋ (X, t) 7→ x(X, t) ∈ Ωt, (33)

where X refers to the reference coordinate and x := x(X, t) the corresponding physical coordinate.
Denoting by vg(x, t) the frame’s velocity at x := x(X, t), we have:

∂tx(X, t) = vg(x(X, t), t). (34)

Introducing, for any regular-enough function v : Ωt × [0, Tmax] → R depending on (x, t), the corre-
sponding function ṽ : Ω0 × [0, Tmax] → R such that:

ṽ(X, t) := v (x(X, t), t) , (35)

the central ALE relation between the total time-derivative, the Eulerian time-derivative and the
spatial-derivative may be written as follows:

d

dt
v
(
x(X, t), t

)
:=
(
∂t + vg ∂x

)
v(x(X, t), t) =: ∂tṽ(X, t). (36)

Coordinate transformation and frame’s motion

In order to build such a mapping, for any given time value, the velocity of the contact-points may be
deduced from the current flow configuration, deriving the free-surface continuity condition (3c) with
respect to time, as follows:

d

dt
ηe =

d

dt
ηi on x±, (37)
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which gives, using the identity ∂tη
e = −∂xqe:

vg|x± =

(
∂xq

e + ∂tη
i

∂xηe − ∂xηi

)∣∣x± . (38)

Having such contact points velocity at hand, let consider the following smooth diffeomorphism χ(·, t) :
E0 → E(t), defined as:

χ(X, t) :=


X + φ

(
X−X−

0
ε

) (
x−(t)−X−

0

)
for X ∈ E−

0 ,

X + φ
(
X−X+

0
ε

) (
x+(t)−X+

0

)
for X ∈ E+

0 ,

(39)

where φ ∈ C∞
0 (R) is a cut-off function satisfying φ(x) = 1 for |x| ≤ 1 and ε := ε0ℓ (the reader is

referred to Appendix A for the practical definition of φ, ε0 and Remark 8 for additional considerations
regarding the value of ℓ). Then, for any moving grid’s interface xi+ 1

2
(t) := x

(
Xi+ 1

2
, t
)
, we define the

corresponding interface’s velocity as follows:

vg|i+1
2

(t) := ṽg(Xi+ 1
2
, t),

with:

ṽg(Xi+ 1
2
, t) :=



∂tχ(·, t)|X
i+1

2

=


φ

(
X

i+1
2
−X−

0

ε

)
vg|x9 if Xi+ 1

2
∈ E−

0 ,

φ

(
X

i+1
2
−X+

0

ε

)
vg|x+ if Xi+ 1

2
∈ E+

0 ,

(X+
0 −Xi+ 1

2
)

|I0|
vg|x9 +

(Xi+ 1
2
−X−

0 )

|I0|
vg|x+ if Xi+ 1

2
∈ I0.

(40)

The updated locations of the mesh interfaces of ∂Th(t) are deduced from the frame velocity as the
solutions of the following family of IVPs:

∂tx(Xi+ 1
2
, t) = vg|i+1

2

(t),

x(Xi+ 1
2
, 0) := Xi+ 1

2
.

(41)

As a result, one has available the following sets of discrete grid’s interfaces velocities
(

vg|i+1
2

(t)
)
0≤i≤nel

and locations
(
xi+ 1

2
(t)
)
0≤i≤nel

.

Remark 8. (39) allows to dispatch the mesh elements in the moving exterior sub-domain E(t),
preventing from elements collapsing and distorting to occur. It also enables to properly deal with the
possible occurrence of dry areas, provided that such areas are initially far enough from the object,
to prevent the water-height from vanishing at contact points. Indeed, assuming that the distance
between x±(t) and the nearest mesh interface where the water-height vanishes is greater than ℓ, then
(39) ensures that this mesh interface’s location does not vary over time.
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Mapping and geometric parameters

A suitable definition for the mapping (33) can now be provided and we consider

Ω0 × [0, Tmax] ∋ (X, t) 7→ x(X, t) ∈ Ωt,

such that, for any ci(0) :=
]
Xi− 1

2
, Xi+ 1

2

[
∈ Th(0), X ∈ ci(0) and t ∈ [0, Tmax]:

x|ci(0)(X, t) :=

(
Xi+ 1

2
−X

)
|ci(0)|

xi− 1
2
(t) +

(
X −Xi− 1

2

)
|ci(0)|

xi+ 1
2
(t). (42)

With this mapping at hand, the velocity of any physical points belonging to the moving frame can
be deduced as follows:

Proposition 9. The frame’s velocity is such that, for all t ∈ [0, Tmax] and all mesh element ci(t) =
(xi− 1

2
(t), xi+ 1

2
(t)) ∈ Th(t), we have:

∀x ∈ ci(t), vg|ci(t)
(
x, t
)
=

(
xi+ 1

2
(t)− x

)
|ci(t)|

vg|i− 1
2

(t) +

(
x− xi− 1

2
(t)
)

|ci(t)|
vg|i+1

2

(t). (43)

Proof. Deriving (42) with respect to time gives:

ṽg|ωi(0)(X, t) =
(Xi+ 1

2
−X)

|ci(0)|
vg|i− 1

2

(t) +
(X −Xi− 1

2
)

|ci(0)|
vg|i+1

2

(t).

The deformation gradient associated with the grid’s motion is obtained as the Jacobian of this
mapping. In particular, the following identities are satisfied:

∂Xx(X, t)|ci(t) =: Jci(t) =
|ci(t)|
|ci(0)|

,

∂kXx(X, t)|ci(t) = 0, ∀k ≥ 2,

so that the mapping is invertible and orientation-preserving. Also, for any (Xa, Xb) ∈ (ci(0))2, we
have:

x(Xb, t) = x(Xa, t) + (Xb −Xa)Jci(t),

and in particular, we deduce (43).

Remark 10. From (34), we observe that J := |J | satisfies the following fundamental relation,
generally referred to as Geometric Conservation Law (GCL):

∂t J (X, t) = J ∂xvg(x(X, t), t). (45)

allowing J = |J | to satisfy the fundamental relation:

∂tJ (X, t) = J∂xvg(x(X, t), t). (46)
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Remark 11. In [20], the reader should further find how this particular discretization of the frame
motion satisfies the Geometric Conservation Law (GCL), as well as the discrete GCL (DGCL) for
the fully discrete scheme. It has been also proved that the chosen basis function ψc

p as well as the
sub-resolution ones ϕc

p follow the trajectories, as

∀c(t) ∈ T e
h (t), ∀p ∈ J1, . . . , k + 1K,

d

dt
ψc
p(x(X, t), t) =

d

dt
ϕc
p(x(X, t), t) = 0. (47)

This latter property is required to establish the following local weak-formulation satisfied by the flow
variables in E(t):

Proposition 12. Let ve
h ∈ Pk(T e

h (t)) satisfying (3a). Then, for all φh(·, t) ∈ Pk(T e
h (t)) such that

d
dtφh(x(X, t), t) = 0, and all c(t) ∈ T e

h (t), the following identity holds:

d

dt

∫
c(t)

ve
hφhdx−

∫
c(t)

G(ve
h, bh, vg)∂xφh dx+

q
φhG(ve

h, bh, vg)
y
∂c(t) =

∫
c(t)

φhB(ve
h, b

′
h)dx, (48)

with G(ve
h, bh, vg) := F(ve

h, bh)− ve
hvg.

Proof. Multiplying (3a) by φh(·, t) ∈ Pk(T e
h (t)) and integrating over an arbitrary element c(t) ∈

T e
h (t) gives: ∫

c(t)
φh ∂tv

e
hdx+

∫
c(t)

φh ∂xF(v
e
h, b)dx =

∫
c(t)

φhB(ve
h, b

′
h)dx. (49)

Remarking that the use of property (47), as well as the GCL (see [20] for further details), leads to

d

dt

∫
c(t)

ve
hφhdx =

∫
c(t)

φh∂tv
e
hdx+

∫
c(t)

φh∂x(v
e
hvg)dx,

we may reformulate (49) as follows:

d

dt

∫
c(t)

ve
hφhdx+

∫
c(t)

φh∂xG(ve
h, bh, vg)dx =

∫
c(t)

φhB(ve
h, b

′
h)dx, (50)

where we have set G(ve
h, bh, vg) := F(ve

h, bh)− ve
hvg. Integrating by parts again gives (48).

3.3. A semi-discrete (non-stabilized) DG-ALE formulation

In this sub-section, we introduce a general semi-discrete in space DG formulation associated with
the free-boundary problem (19). The case of a prescribed-motion may be deduced by replacing the
discrete equations for the object’s motion (51e) by some prescribed data (22). The DG-ALE semi-
discrete formulation associated with (19) reads as follows:

for all t ≤ Tmax, find
(
ve
h(·, t),vi

h(·, t)
)
∈ Pk(T e

h (t))×Pk(T i
h (t)), (x−(t), x+(t)) ∈

]
xleft(t), xright(t)

[2
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and XG(t) ∈
]
x−(t), x+(t)

[
× R2, such that the following system holds:

d

dt

(
ve
h, φh

)
T e
h (t)

+
(
Ah(v

e
h), φh

)
T e
h (t)

= 0, ∀φh(·, t) ∈ Pk(T e
h (t)) s.t.

d

dt
φh(x(X, t), t) = 0,

ve
h(·, 0) := pk

T e,0
h

(ve
0),

ve
h|x± = vi

h|x± ,

ηih(·, t) := pkT i
h (t) ◦𭟋h(·, t,XG(t),XG(0), ηlid),

qih(·, t) := pkT i
h (t)

(
ϑG(t) · TG,h(·, t) + qi(t)

)
,

d

dt
qi(t) = −

(
⟪ f1,h⟫h + ⟪ f2,h⟫h + ⟪ f3,h⟫h

)
,

qi(0) := qi0,

vg|x± :=
(
Gk
h q

e
h|x± +

(
vG − ωr⊥G,h

)
· ni

h

)(
Gk
h η

e
h|x± −Gk

h η
i
h|x±

)−1
,

d

dt
x±(t) = ṽg(X±

0 , t),

x±(0) := X±
0 ,

bh(·, t) := ikTh(t)
(b),

d

dt
XG = ϑG,(

M0 +Ma,h

[
H i

h,TG,h

]) d

dt
ϑG =

(
−mogez

0

)
− ρ

∫
I(t)

(
f ⋆
1,h + f ⋆

3,h

) T ⋆
G,h

H i
h

dx,

XG(0) := (X0, Z0, 0),

ϑG(0) := (u0G, w
0
G, ω0),

(51a)

(51b)

(51c)

(51d)

(51e)

where:

(i) the discrete nonlinear operator Ah in (51a) is defined by(
Ah(v

e
h), φh

)
T e
h (t)

:=−
(
G(ve

h, bh, vg), ∂hxφh

)
T e
h (t)

+
〈
G⋆, φh

〉
∂T e

h (t)
−
(
B(ve

h, b
′
h), φh

)
T e
h (t)

, (52)

where G⋆ is an interface numerical flux which aims at approximating F(v, b) − vgv at an interior
element boundary, which is moving with velocity vg. This formulation is built upon the local formu-
lation shown in Proposition 12, by gathering the local contributions of the residuals, and introducing
G⋆ := F⋆ − vgv⋆ as an approximate interface numerical flux, where F⋆ and v⋆ are also interface
fluxes, respectively consistent with F and v, and computed with the Lax-Friedrichs formulae:

F⋆(vR,vL, bR, bL) :=
1

2
(F(vR, bR)− F(vL, bL)− σ(vR − vL)) ,

v⋆(vR,vL, bR, bL) :=
1

2

(
vR + vL − 1

σ
(F(vR, bR)− F(vL, bL))

)
,

(53)

(54)
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with σ := max
c∈T e

h

σc and

σc := max
m∈ J1, k+1K

(∣∣ue c
m − vg c

m

∣∣+√gHe c
m

)
. (55)

(ii) the first equation in (51b) offers a way to compute a high-order broken polynomial approxima-
tion of the specific part of the object’s underside, which projection along the horizontal line at time
t identifies to I(t). More precisely, 𭟋h(·, t,XG(t),XG(0), ηlid) is a discrete nonlinear operator such
that, for all x ∈ I(t):

𭟋h(x, t,XG(t),XG(0), ηlid) := �̃�(Xh, t,XG(t),XG(0), ηlid), (56)

where Xh is an approximation of the following nonlinear equation’s unique root, obtained by some
Newton’s iterations:

x− xG(t) + sin(θ(t))(ηlid(Xh)− ZG)

cos(θ(t))
+XG −Xh = 0. (57)

With ηih in hands, one can compute

H i
h := ηih − pkT i

h (t)(b), (58)

(iii) the second and third equations in (51b) allow to compute an approximation of the discharge
in the interior domain, through the evaluation of a purely geometrical term, together with a time-
dependent term obtained as the solution of a nonlinear ordinary differential equation. Specifically,
we set:

rG,h(·, t) :=
(

· − xG(t)
ηih(·, t)− zG(t)

)
, TG,h(·, t) :=

(
−r⊥G,h(·, t)

1
2 |rG,h(·, t)|2

)
, (59)

and the discrete versions of the right-hand sides are defined as follows

f1,h :=Gk
h ◦ pkT i

h (t)

(
uihq

i
h

)
+ gH i

h∂
h
xη

i
h,

f2,h :=
d

dt
ϑG · TG,h,

f3,h :=ϑT
GMG,hϑG,

(60)

where we use a discrete version of (9) to evaluate the term ∂tTG,h that appears in f3,h, with

MG,h :=

 ex · nlid 0 −r⊥G,h · nlid

1 0 0
−r⊥G,h · nlid 0 −(ez · rG,h)(r

⊥
G,h · nlid)

 .

We also recall that the discrete version of the I(t)-averaging operator is provided in (29),

(iv) the discrete contact-points velocity (51c) is obtained from (38), using the expression of the time-
derivative (18). Once this velocity is known, the updated computation domain’s macro-partition
Ωt = E(t) ∪ I(t) may be updated,
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(v) the discrete counterpart of the added-mass-inertia matrix, denoted by Ma,h

[
H i

h,TG,h

]
, is defined

as follows:

Ma,h

[
H i

h,TG,h

]
:= S

h,ng
I(t)

(T ⋆
G,h ⊗ T ⋆

G,h

H i
h

)
. (61)

This matrix may simply be denoted by Ma,h in what follows.

Remark 13. The boundary conditions on ∂Ωt are weakly enforced through the numerical fluxes
G⋆. In particular, one may enforce any usual boundary condition for the NSW equations, including
inflow and outflow conditions relying on local Riemann invariants, periodic conditions or solid-wall
conditions. The coupling condition ve

h|x± = vi
h|x± is also weakly enforced through the definition

of G⋆ at the contact points x±(t). It is worth emphasizing here that such a coupling between ve

and vi appears as straightforward and natural, thank’s to the discontinuous nature of the chosen
approximation spaces and the DG approximations.

Remark 14. In practice, the positivity of H i
h (defined in (58)) may be ensured thanks to the

sizing introduced in Remark 3, and to the assumptions that MG remains close to its initial position
and that Obj can not be entirely immersed. Indeed, considering a flat bottom for the sake of

simplicity, assuming that H i,0
h ≫ 0, together with do ≪ H0 and considering that the object can

not be completely immersed, with an object’s motion XG such that MG remains close to its initial
location, then we necessarily have H i

h(·, t) > 0 for t ∈ [0, Tmax]. According to (56), this entails that
𭟋h(·, t,XG(t),XG(0), ηlid) > 0. This can be also verified when the bathymetry is not flat by assuming
that do ≪ Hb.

3.4. Time-marching algorithms

For a given final computational time Tmax > 0, we consider a partition (tn)0≤n≤N of the time
interval [0, Tmax] with t

0 := 0, tN := Tmax and tn+1− tn =: ∆tn. For any sufficiently regular function
w depending on time , we set wn := w(tn) and in what follows, such a ”superscript n” notation may
be used with any time-varying entity, evaluated at discrete time tn. In particular, we note:

En := E(tn), In := I(tn), x n
− := x−(tn), x n

+ := x+(tn), T n
h := Th(t

n), T e,n
h := T e

h (tn),

and so on, together with similar notations for the main unknowns of the problem:

ve,n
h := ve

h(·, tn), vi,n
h := vi

h(·, tn), x n
± := x±(tn), X n

G := XG(t
n), ϑn

G := ϑG(t
n).

When fully-discrete formulations are considered, the time-stepping is carried out with explicit Strong-
Stability-Preserving Runge-Kutta (SSP-RK) schemes [18, 37].
Anticipating on the description of our stability-enforcement operator in the next section, which relies
on both DG approximations on mesh elements cn ∈ T e,n

h and FV schemes on the subcells s ci,n
m ∈ T n

c ,
the time step ∆tn is computed adaptively using the following CFL condition:

∆tn =

min
cn∈T e,n

h

(
hnc

2k + 1
, min

s ci,n
m ∈T n

c

|s ci,n
m |

)
σ

, (62)

where σ is defined in (55). The same SSP-RK method is used for the time discretization of the BVP
involved in (51).
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3.5. Stabilization of hyperbolic DG through a posteriori LSC method

It is well-known that the solutions of nonlinear hyperbolic equations may develop singularities in
finite time and high-order DG methods usually suffer from a lack of robustness, possibly inducing
some stability issues. For the problem under study, problems are generally observed in the vicinity
of the solution’s discontinuities or where the water-height vanishes. To alleviate such a limitation,
we equip ou DG scheme with the a posteriori Local Subcell Correction (LSC) method introduced in
[19], based on the general guidelines provided in [40]. As this stabilization process, adapted to the
DG-ALE framework, has been investigated very recently in [20], we only provide general guidelines:

♯ 1 starting from an admissible solution ve,n
h ∈ Pk(T e,n

h ) at discrete time tn, compute a candidate

solution ve,n+1
h ∈ Pk(T n+1

h ) using the uncorrected DG-ALE scheme (51a)-(52), together with
a SSP-RK time discretization,

♯ 2 for all cells cn+1
i ∈ T e,n+1

h , compute the sub-mean values:

P0(T e,n+1
ci ) ∋ ve,n+1

ci = πT e,n+1
ci

(ve,n+1
ci ),

and check their admissibility using the specified admissibility criteria,

♯ 3 for a given subcell s ci,n+1
m in need of stabilization, the related DG reconstructed interface fluxes

Ĝm± 1
2
defined in [19] (which are formally used to compute the predictor ve,n+1

h ), are replaced

by the FV corrected fluxes Gl/r

m± 1
2

into the update process. The whole set of substituting rules

is not recalled here,

♯ 4 for the cells ci(t) where some corrections occurred, new updated (and corrected) sub-mean
values are now available and used to produce a new high-order polynomial candidate solution,
still denoted by ve,n+1

h for the sake of convenience:

Pk(cni ) ∋ ve,n+1
ci = π−1

T n+1
ci

(ve,n+1
ci ).

The process may go further in time after checking that this new candidate is admissible.

Let us also recall that the definition of an admissible solution relies on two criteria: one for the Phys-
ical Admissibility Detection (PAD) and the other one to address the occurrence of spurious oscilla-
tions, called Subcell Numerical Admissibility Detection (SubNAD). The whole detection-correction-
projection iterative process may be conveniently summarized through the application of a global
reconstruction operator, denoted as follows:

Λk,n
h : Pk(T e,n

h ) → Pk(T e,n
h ),

ve,n
h 7→ Λk,n

h (ve,n
h ),

(63)

where the resulting broken-polynomial Λk,n
h (ve,n

h ) satisfies all the requested admissibility criteria.
When higher-order time-discretization schemes are used, this stabilization operator may be applied
at each sub-step, see [20] for further details. In what follows, the resulting stabilized DG-ALE method
is denoted by DG-ALE-LSC method.
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3.6. RK-DG-ALE-LSC fully-discrete formulation

Let us completely specify the fully-discrete formulation obtained by considering (51) together with
a first-order Euler time-marching algorithm for the sake of simplicity. Any higher-order in time RK-
DG-ALE-LSC formulation based on §3.4 may be straightforwardly deduced from this lowest-order
one by adapting accordingly the various time-stages. Assuming that all the needed quantities are
available at discrete-time tn, the first-order in time fully-discrete formulation associated with (19)
reads as follows:

find
(
ve,n+1
h ,vi,n+1

h

)
∈ Pk(T e,n+1

h )×Pk(T i,n+1
h ),X n+1

G ∈
]
x n+1
− , x n+1

+

[
×R2 and x n+1

± ∈
]
xn+1
left , x

n+1
right

[2
,

such that the following system holds:

x n+1
± − x n

± = ∆tnṽg
n(X±

0 ),

bn+1
h = ik

T n+1
h

(b),

X n+1
G −X n

G = ∆tn ϑn
G,

An
G =

(
M0 +Mn

a,h

)−1
{(

−mogez
0

)
− ρS

h,ng
In

(
( f ⋆,n

1,h + f ⋆,n
3,h )

T ⋆,n
G,h

H i,n
h

)}
,

ϑn+1
G − ϑn

G = ∆tnAn
G,

ηi,n+1
h = pk

T i,n+1
h

◦𭟋n+1
h (X n+1

G ;X 0
G, ηlid),

qi,n+1
h = pk

T i,n+1
h

(
ϑn+1
G · T n+1

G,h + qi,n+1
)
,

qi,n+1 − qi,n = −∆tn
(
⟪ f n

1,h⟫h + ⟪ f n
2,h⟫h + ⟪ f n

3,h⟫h
)
,

f n
1,h := Gk

h ◦ pk
T i,n
h

(
ui,nh qi,nh

)
+ gH i,n

h ∂hxη
i,n
h ,

f n
2,h := An

G · T n
G,h,

f n
3,h := (ϑn

G)
T Mn

G,hϑ
n
G,

ve,n+1
h = Λk,n+1

h

(
ve,n
h −∆tnAh(v

e,n
h )
)
,

ve,n+1
h|x± = vi,n+1

h|x± ,

vn+1
g|x± =

(
Gk
h q

e,n+1
h|x± +

(
vn+1
G − ωn+1r⊥,n+1

G,h

)
· ni,n+1

h

)(
Gk
h η

e,n+1
h|x± −Gk

h η
i,n+1
h|x±

)−1
,

(64a)

(64b)

(64c)

(64d)

(64e)

(64f)

where all the discrete-in-time quantities and operators are obtained from (51)-(52)-(60) at t = tn and
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with a first iteration initialized with:

ve,0
h := pk

T e,0
h

(ve
0), with ve

0 ∈ (Hs(E0))2,

X 0
G := XG(0),

ϑ0
G := ϑG(0),

x 0
± := X±

0 ,

qi,0 := qi0.

(65a)

(65b)

(65c)

(65d)

(65e)

Remark 15. The DG scheme (64e) is written in the operator form, for the sake of simplicity. In
practice, it may be convenient either to express the corresponding scalar-products at the initial time
on the reference configuration, or to use the equivalent FV formulation on the sub-cells. It is also
implicitly assumed that Gk

h η
e,n+1
h|x± −Gk

h η
i,n+1
h|x± ̸= 0, so that (64f) is defined.

3.7. Some properties

The global fully-discrete formulation (64) enjoys several properties, which are conveniently gathered
in this sub-section.

Invertibility of the discrete added-mass matrix

Proposition 16. The matrix Ma,h

[
H i

h,TG,h

]
is symmetric and non-negative.

Proof. The matrix T ⋆
G,h⊗T ⋆

G,h is obviously symmetric and of rank one, with non-negative eigenvalues.

From the implicit additional assumption that H i
h > 0 (see Remarks 3 and 14), and since we are using

quadrature rules with positive coefficients, it results that Ma,h is a symmetric and non-negative
matrix.

Well-balancing (for motionless steady-state)

A motionless steady-state for the system (19) may be defined as follows, for all t ≥ 0:

vg|x± = 0, ve(·, t) =
(
ηc

0

)
= vc, vi(·, t) =

(
ηlid
0

)
, ϑG(t) = 0, (66)

and 0 = −mo g + ρ

∫
I(t)

(
pi(x, t)− patm

)
dx. (67)

We emphasize that, in contrast with [20] where the case of a stationary obstacle is considered, the
formulation (64) accounts for the motion of the floating object and, as a consequence for objects
with a symmetric underside’s profile, the additional identity (67) is required to balance the action of
gravity with the Archimedean force and is enough, when combined to (66), to ensure that AG(t) = 0.
The reader is referred to Appendix D for additional details concerning (67). At the discrete level,
the preservation of (66)-(67) translates into the following result:

Proposition 17. The fully-discrete formulation (64) preserves the motionless steady-states (66)-
(67), provided that the integrals of (64) are exactly computed (at motionless steady-states). Precisely,
under this assumption, for all n ≥ 0,{

vn
g|x± = 0, ve,n

h = vc, qi,nh = 0, ϑn
G = 0, An

G = 0
}
⇒{

vn+1
g|x± = 0, ve,n+1

h = vc, qi,n+1
h = 0, ϑn+1

G = 0, An+1
G = 0

}
23



Proof. We first emphasize that, from a fully-discrete viewpoint, the identity An
G = 0 ensures the

balance between the action of gravity with the Archimedean force at time tn. The issue of how one
may enforce such equilibrium, for instance for the initial data, is detailed in Appendix D. We also
remark that, thanks to the weak coupling condition between E(t) and I(t) through the DG interface
fluxes, proving that (64) preserves steady-states boils down to prove that: (i) the DG-ALE scheme
(64e) is well-balanced on E(t) = E−(t)∪E+(t), (ii) the floating object preserves its initial equilibrium.
As such well-balancing property for the DG scheme in ALE description (64e) on E(t) = E−(t)∪E+(t)
has been established in [20] for the case of a fixed surface obstacle, we directly conclude here that
ve,n+1
h = vc and we only examine the propagation in discrete time of the object’s equilibrium.

From (64a) and vn
g|x± = 0, we get x n+1

± = x n
± (and In+1 = In), and from (64c) together with ϑn

G = 0

and An
G = 0, we get that X n+1

G = X n
G and ϑn+1

G = ϑn
G = 0: the object does not move, then

ηi,n+1
h = ηi,nh and as bn+1

h = ik
T i,n
h

(b), we also have H i,n+1
h = H i,n

h . Moreover, we have at time tn:

f n
1,h = gH i,n

h ∂hxη
i,n
h , f n

2,h = 0, f n
3,h = 0,

so that

⟪ f n
1,h⟫h = gH i

h

−1
∫
In

∂hxη
i,n
h dx,

= gH i
h

−1r
ηi,nh

z

In
= 0,

(68)

(69)

where the first and second equalities come from the facts that both ∂hxη
i,n
h and ηi,nh belong to Pk(T i,n

h )

and that the chosen quadrature rules and discrete gradient are exact for polynomials, and ηi,nh is

continuous; and the third one comes from ηi,nh,|x± = ηc at steady-state. As a consequence, from (64d),

we get qi,n+1 = qi,n and then qi,n+1
h = qi,nh = 0. Straightforward computations also show that

S
h,ng
In+1

(
( f ⋆,n+1

1,h + f ⋆,n+1
3,h )

T ⋆,n+1
G,h

H i,n+1
h

)
= S

h,ng
In

(
( f ⋆,n

1,h + f ⋆,n
3,h )

T ⋆,n
G,h

H i,n
h

)
,

which implies that An+1
G = An

G = 0, and (64f) shows that vn+1
g|x± = 0.

Remark 18. This well-balanced property can be extended to any higher-order time discretization
that can be expressed as a convex combination of first-order Euler schemes.

Water-height positivity

The a posteriori LSC method offers the ability to compute again, in a more robust way, the time
evolution of the flow variables only in the particular mesh elements (and even in the particular sub-
cell) for which a straightforward computation (with the uncorrected DG formulation) would generate
negative values for the water-height. It would be difficult to state and prove a general robustness
result without entering into the details of the substitution and correction rules, which are described
in [19]. However, the overall effect of the a posteriori LSC methodmay be summarized within the
following formal result:

Assuming that ∀ci ∈ T e,n
h , ∀s ci

m ∈ Tci , H
e ci,n
m ≥ 0, the fully-discrete formulation (64) ensures that

∀ci ∈ T e,n+1
h , ∀s ci

m ∈ Tci , H
e ci,n+1
m ≥ 0,
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under the CFL-like condition (62).

The proof of such a result would rely on the fact that in the worse scenario, all the interface recon-
structed fluxes would be replaced by a lowest-order FV interface flux, which proves to be robust.

4. Numerical validations

In this section, we provide several numerical assessments of the formulation (64), using fourth-order
local polynomials (k = 3) and with the third-order SSP-RK time-marching scheme instead of the
first-order one. Unless stated otherwise, we enforce homogeneous Neumann boundary conditions at
the right and left exterior boundaries xright and xleft.

Plotting options

In what follows, unless stated otherwise, we choose to display sub-mean values instead of point-wise
values of the polynomial approximations, as it allows to precisely illustrate the sub-cell resolution of
the scheme. Also, in order to minimize the total number of figures, we sometimes choose to display
both the free-surface η and the discharge q on the same graphics. As the magnitudes of these two flow
quantities are generally not similar, instead of directly plotting q, we choose to display the rescaled
and translated quantity q̃ := q

H0
+H0.

Body’s parameterization and initial balance

We choose to consider the same floating object with an elliptic underside’s profile for all the test-
cases. Such a choice is of course arbitrary and may be adapted to alternative shapes. In order
to avoid unnecessary repetitions, we refer the reader to the Appendix B of the companion paper
[20] for explicit formulae. Also, when a floating object is embedded into a motionless steady state-
equilibrium (for instance for the validation of the well-balancing property, or for the definition of
initial conditions), we rely on the strategy described in Appendix D to define the mass mo of Obj as
follows:

mo := ρ

∫
I(0)

(H0 − ik
T i,0
h

◦ ηlid) dx. (70)

Mass and energy

Whenever needed, the total mass and energy associated with the fluid in E(t) ∪ I(t) are defined as
follows:

m f(t) =

∫
Ω
H(·, t), e f(t) =

∫
Ω

H(·, t)u2(·, t)
2

+ g

∫
Ω
H(·, t)(b(·) + H(·, t)

2
),

and when these quantities are expected to be conserved over time, this may be checked through the
computation of the corresponding errors:

Em f
=

∣∣∣∣m f(t)− m f(0)

m f(0)

∣∣∣∣ and Ee f =

∣∣∣∣ e f(t)− e f(0)
e f(0)

∣∣∣∣ . (71)
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4.1. Well-balancing for motionless steady-state

In this first test-case, we assess the well-balancing property. Such property has already been proved
in the particular case of a stationary object in [20], which also encompass the particular case of a
prescribed motion with ϑG = 0. Hence, we only focus on the case of a freely floating object, which
is placed in a computational domain Ω = [−50, 200], and with a bathymetry defined as follows:

b(x) :=



A

(
sin

(
π (x− x1)

75

))2

, if x1 ≤ x ≤ x2,

1

β
(x− x3) , if x ≥ x3,

0, elsewhere,

(72)

where A = 1.5m, β = 11, x1 = 12.5m, x2 = 87.5m and x3 = 90m. The initial data is defined as

ηe0(x) := max (5, b(x)) , ηi0 := pk
T i,0
h

(ηlid), and qe0 = qi0 = 0.

We evolve this initial configuration up to Tmax = 50 s, with ne
el = 50 and n i

el = 10. The numerical
results are shown on Fig. 4 for the free-surface, with a zoom in the vicinity of the contact-points and
of the wet-dry transition, showing the corrected and uncorrected subcells on Fig. 5.
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Figure 4: Test 4.1 - Preservation of a motionless steady-state - Free-surface elevation at t = 50s for k = 3 and ne
el = 50,

ni
el = 10.

As expected, the steady-state is preserved for any arbitrary number of iterations, up to the machine
accuracy. This result is also obtained for alternate values of k and/or ne

el, n i
el.

4.2. Periodic elementary prescribed motions

This second test-case is dedicated to the individual validations of all three elementary prescribed
motions along the three geometrical freedom degrees allowed in a two-dimensional space. The
computational domain is Ω =

]
−100m, 200m

[
and the object is initially located at (XG, ZG) =
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Figure 5: Test 4.1 - Preservation of a motionless steady-state - Free-surface elevation at t = 50s, with a zoom near the
floating body (left) and near the wet-dry front (right), showing the corrected and the uncorrected subcells, for k = 3,
ne
el = 50 and ni

el = 10.

(50m,H0 + 2.5m), with H0 = 5m, in a motionless steady-state configuration. The initial data are
provided as follows:

ηe0 = H0, ηi0 = ik
T i,0
h

(ηlid) and qe0 = qi0 = 0.

For the following three different configurations, we set ne
el = 50 and n i

el = 10 and apply one of the
elementary prescribed motion and observe the impact on the flow. To this end, for each test, the
corresponding free-surface elevation and discharge are shown at various time-step (t = 3T+ T

4 , 3T+
T
2

and 3T + 3T
4 , on the left, for the chosen time-period T ), together a zoom showing the motion of the

mesh in the vicinity of the contact-points x± (on the right).

Pure heaving

A periodic purely vertical motion may be prescribed as follows:

XG(t) :=

(
xG(t) = 50, zG(t) = H0 + 3− 1

2
cos(

2πt

T
), θ(t) = 0

)
.

with T = 15 s and the corresponding results are shown shown in Fig. 6.
To complete the picture, we also investigate the conservation of mass and energy over time, by
computing the time evolution of their relative errors (using reflective boundary conditions for both
left and right exterior boundaries to close the domain). Time-series of these errors are displayed on
Fig. 7 and 8 for nel = 200 and we observe that the total mass and the total energy are preserved over
time, with respective magnitude of 10−10 and 10−8 respectively.

Pure surging

A periodic purely horizontal motion may be prescribed as follows:

XG(t) :=

(
xG(t) = 48 + 2 cos(

2πt

T
), zG(t) = H0 + 2.5, θ(t) = 0

)
,

with T = 10 s. The free-surface elevation and discharge are displayed on Fig. 9.
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Figure 6: Test 4.2 - Elementary prescribed motions: pure heaving - Free-surface elevation and discharge computed at
t = 3T + T

4
, 3T + T

2
and 3T + 3T

4
(left) with a zoom showing the displacement of the mesh nodes in the vicinity of

contact-points x± (right)

Pure pitching

A periodic purely rotational motion may be prescribed as follows:

XG(t) :=

(
xG(t) = 50, zG(t) = H0, θ(t) =

π

25
sin(

2πt

T
)

)
,

with T = 8 s. The related results are shown on Fig. 10.

4.3. Pure heaving with varying bathymetry and wet-dry transition

In this third test-case, we further investigate the ability of our model to handle a body’s prescribed
motion that generates the flow motion. To make the test-case more challenging, we also add a
varying bathymetry mimicking a plane sloping beach and the water-depth at rest is chosen such
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Figure 8: Test 4.2 - Elementary prescribed motions: pure heaving - Total energy and relative error, for k = 3, nel = 200
in the range [0 s, 100 s].

that a wet-dry transition occurs, modeling a shoreline. Depending on the underside’s shape, such
a configuration can be seen as an idealized model for the generation of unidirectional (regular or
irregular) waves by a wave-paddle and related issues may be the control problems associated with
the design of some specific shapes and motions in order to generate some targeted incoming waves in
a basin. The computational domain is set to Ω =]0, 140m[ and the bathymetry is defined as follows:

b(x) :=

{ 1
β (x− xβ) if x < xβ,

0 elsewhere,

with β = 11 and xβ = 65m. The object is placed at (XG, ZG) = (50m,H0 + 2.5m) with H0 = 5m
and the initial condition is defined as follows:

ηe0 = max(H0 − b, 0) + b, ηi0 = ik
T i,0
h

(ηlid) and qe0 = qi0 = 0.

A periodic purely vertical motion is prescribed as follows:

XG(t) :=

(
xG(t) = 50, zG(t) = H0 + 2.75− 1

2
cos(

2πt

T
), θ(t) = 0

)
,
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Figure 9: Test 4.2 - Elementary prescribed motions: pure surging - Free-surface elevation and discharge computed at
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(left) with a zoom showing the displacement of the mesh nodes near x± (right).
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Figure 10: Test 4.2 - Elementary prescribed motions: pure pitching - Free-surface elevation and discharge computed
for different values of time t = 3T + T

4
, 3T + T

2
and 3T + 3T

4
for k = 3, ne

el = 50 and ni
el = 10.

with T = 20 s and we compute the time-evolution of the global system with ne
el = 60 and n i

el = 10.
The corresponding solution is shown in Fig. 11, under the form of several snapshots of the free-surface
elevation at times t = 53 s, 60.5 s and 66 s respectively (left), with the corrected and uncorrected
subcells (respectively plotted with blue squares and green dots), and a zoom on the wet-dry front
(right). We observe that some surface waves are generated from the fluid near the moving object
and propagates towards the shoreline, inducing some run-up and the back-propagation of a reflected
wave. The computation is performed in a very stable way, even with this very low number of mesh
element and cubic local interpolation. We emphasize that thanks to the chosen smooth coordinate
transformation (see the diffeomorphism definition introduced in [20]), the mesh elements move around
the the floating body, while they remain stationary near the shoreline and in the dry area.

4.4. Nonlinear interactions with a single surface wave

In this fourth test-case, we focus on free-motions, and we model the object’s oscillations generated by
a single surface wave over a flat bathymetry. The computational domain is Ω = [−150m, 150m] and
MG is placed in equilibrium at (xG(0), zG(0)) = (50m,H0+2.5m), with H0 = 5m. The surface-wave
is defined as follows:

ηe0(x) = H0 +
Aw

cosh(γ(x− x0))
2 and qe0 = cq2

√
g(ηe0 −H0)

cq1
He

0 , (73)
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Figure 11: Test 4.3 - Pure heaving with a varying bathymetry and a wet-dry transition - Free-surface elevation computed
at t = 53 s, 60.5 s and 66 s (left) with corrected and uncorrected subcells respectively plotted with blue squares and
green dots, and a zoom on the wet-dry front (right)

with Aw = 0.92m, x0 = −80m cq1 = 0.1, cq2 = 0.05 and γ =
cq1√
4H0
3Aw

, see Fig. 12, and the initial

free-surface elevation and discharge beneath the floating body are defined as:

ηi0 = ik
T i,0
h

(ηlid) and qi0 = 0.

We observe that part of the wave energy is transmitted to the object as a rightward oriented pressure
force, inducing a global displacement which mobilizes all three possible types of motion, see Fig. 13.
In order to have a better idea of the global behavior of the body, we show the trajectory of MG on
Fig. 14, under the form of time-series of its spatial coordinates (xG, zG), together with the time-series
of the pitch angle θ. On this last curve, we observe an oscillating behavior associated with the return
to equilibrium (which is not entirely displayed) and this motivates the next test-case.
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Figure 12: Test 4.4 - Nonlinear interactions with a single surface wave - Free-surface elevation and discharge computed
at initial time for k = 3, ne

el = 50 and ni
el = 10.

4.5. Convergence towards equilibrium

In this fifth test case, we focus on the convergence towards a motionless steady state. The com-
putational domain is Ω = [−50m, 150m], the mean water-depth is H0 = 8m and we consider the
following bathymetry profile:

b(x) :=


A sin

(
(x− x1) · π

75

)
, if x1 ≤ x ≤ x2,

0, elsewhere,

(74)

with x1 = 12.5m, x2 = 87.5m and A = 2.5. For the chosen mass defined as follows

mo := 2.19×
∫
I(0)

ρ(H0 − ηi0(x)) dx, (75)

the equilibrium position would be XG(0) = (50m,H0 + 0.83 m, 0). However, we place the object
at XG(0) = (50m,H0 + 2.5 m, 0), such that it is not initially in equilibrium. As a consequence,
an oscillating heaving is induced, associated to the return towards equilibrium. The initial-data are
defined as follows:

ηe0 = H0, η
i
0 = ik

T i,0
h

(ηlid) and qe0 = qi0 = 0,

and we set ne
el = 60 and n i

el = 10. The free-surface elevation is shown in Fig. 15, for several times
in the range [0 s, 25 s]. We observe that the instantaneous release of the body generates two wave
fronts propagating in both directions. These discontinuities are well-captured by the DG scheme and
efficiently stabilized by the a posteriori LSC method . In Fig. 16, we display the oscillations of zG(t)
in the time-range [0 s, 25 s], highlighting the return to equilibrium (on the left), and a zoom on the
free-surface configuration at t = 25 s (on the right). On Fig. 17, we display the free-surface elevation
with the propagating waves at t = 4.9 s in order to highlight the resolution of the mesh and the
corrected subcells.
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Figure 13: Test 4.4 - Nonlinear interactions with a single surface wave - Free-surface elevation computed for different
values of time in the range [0 s, 35 s] for k = 3, ne

el = 50 and ni
el = 10.

4.6. Nonlinear interactions with a single surface-wave: varying bathymetry and wet-dry front

In this last test-case we consider the interactions of the floating object with a single surface-wave.
As in §4.3, we consider a varying bathymetry modeling a sloping beach and choose H0 such that a
wet-dry transition occurs. The computational domain is Ω = [−300m, 150m] and MG is placed in
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Figure 15: Test 4.5 - Convergence towards equilibrium - Free-surface elevation computed for different values of time in
the range [0 s, 25 s] for k = 3, ne

el = 60 and ni
el = 10.

equilibrium at (xG(0), zG(0)) = (50m,H0 + 2.5m), with H0 = 5m. The surface-wave is defined as
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Figure 17: Test 4.5 - Convergence towards equilibrium - Free-surface elevation computed at t = 4.9 s: corrected and
uncorrected subcells are respectively plotted with blue squares and green dots, with a zoom on the left wave, for k = 3
and ne
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el = 10.

follows:

ηe0(x) = H0 +
Aw

cosh(γ(x− x0))
and qe0 = cq2

√
g(ηe0 −H0)

cq1
He

0 , (76)

with Aw = 0.55m, x0 = −150m, cq1 = 0.1, cq2 = 0.05 and γ =
cq1√
4H0
3Aw

, see Fig. 18, and the initial

free-surface elevation and discharge beneath the floating body are defined as:

ηi0 = ik
T i,0
h

(ηlid) and qi0 = 0.

And in this test, the object is allowed to move according to the response to the mechanical action of
the incoming wave, and not according to a prescribed motion as in §4.3. we set ne

el = 70 and n i
el = 10.

We show on Fig. 19 the free-surface at several values in the time-range [16.78 s, 150 s]. In Fig. 20, we
show the trajectory of MG, under the form of time-series of its spatial coordinates (xG, zG) and the
pitch angle θ. On Fig. 21, the emphasize is put on the free-surface computed at at t = 28.61 s, with
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the corrected and uncorrected subcells respectively plotted with blue squares and green dots (left)
and a zoom on the shoreline (right). We observe that the body is pushed shoreward by the incoming
wave, which is almost entirely transmitted to the shore, generating a run-up, before being reflected
by the bathymetry and hit the object again, pushing it seaward. The computations are performed
in a very robust way, and we observe that as expected, the a posteriori LSC method only operate in
the vicinity of the shoreline.
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Figure 18: Test 4.6 - Nonlinear interactions with a single surface-wave: varying bathymetry and wet-dry front - Free-
surface elevation at initial time for ne

el = 70 and ni
el = 10.

5. Conclusion

In this paper, we investigate the construction of an efficient and robust coupled numerical strategy
for the simulation of surface waves and floating body interactions in shallow-water. In contrast with
[20] which put the emphasize on stationary objects, we consider in this work the case of freely floating
objects. We recall the main lines of the model derivation, starting from the NSW equations, and
accounting for the dynamics of the object as a response to the action of the surrounding water, or
to some external forces and torque. Next, we introduce a discrete setting involving DG discretiza-
tions, as well as FV discretization on subcells and the possible motion of the free-boundaries is
described through an ALE strategy. The FV discrete setting on subcells is used as a ground for an
a posteriori LSC methodwhich helps to stabilize the computations and enforce some nonlinear sta-
bility. The resulting global algorithm gather all these numerical ingredients and enjoys some welcome
properties: well-balancing for motionless steady states, DGCL, positivity of the water-height at the
subcell level, invertibility of the discrete added-mass matrix. Additionally, several test-cases assess a
good qualitative behavior, as well as the validity of some more quantitative markers, like the global
conservation of mass and energy, and an excellent robustness even when using high-order polyno-
mials and low-resolution meshes. We expect this work to be the second step, after [20], towards a
more general high-order accuracy nonlinear modeling system based on shallow-water equations in
the two-dimensional horizontal framework and possibly including some weakly dispersive effects.
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Figure 19: Test 4.6 - Nonlinear interactions with a single surface-wave: varying bathymetry and wet-dry front - Free-
surface elevation for different values of time in the range [16.78 s, 150 s], for ne

el = 70 and ni
el = 10.
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Figure 20: Test 4.6 - Nonlinear interactions with a single surface wave - Time-series for XG = (xG, zG, θ) (from left to
right) in the range of time [0 s, 150 s], for k = 3, ne

el = 70 and ni
el = 10.
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Figure 21: Test 4.6 - Nonlinear interactions with a single surface-wave: varying bathymetry and wet-dry front - Free-
surface elevation computed at t = 28.61 s for ne

el = 70 and ni
el = 10: corrected and uncorrected subcells are respectively

plotted with blue squares and green dots, with a zoom on the shoreline (right).

Appendix A. Cut-off function

The cut-off function φ ∈ D(R) used in (39) is defined as follows:

∀x ∈ R, φ(x) := eψe(ε0x),

where
∀x ∈ R, ψe(x) := ϕe(1− |x|2),

and

∀t ∈ R, ϕe(t) :=

 e−t−1
if t > 0

0 elsewhere,

Note that we have supp(ψe) ⊂ B(0, 1), supp(φ) ⊂ [− 1
ε0
, 1
ε0
] and ε0 chosen such that we have φ(x) =

1, ∀|x| ≤ 1.

Appendix B. Definition of the elliptic obstacle

In this work, we consider a partially immersed obstacle Obj, which center of mass is located at
(xG, zG) and which boundary is denoted by ∂Obj. Denoted respectively by a, b its major and minor

39



radius, we define ∂Obj as an ellipse, so that we have:

(x, y) ∈ ∂Obj ⇐⇒ (x− xG)
2

a2
+

(z − zG)
2

b2
= 1.

The underside of the obstacle may be locally parameterized as follows:

∀x ∈ Ilid := [xG − a, xG + a], ηlid(x) := zG − b

√
1− (x− xG)2

a2
.

Note that denoting zG = H0 + e0, we have:

X±
0 := xG ±

√
a2 − a2e02

b2
.

Appendix C. Newton’s second law and added-mass effect

The pressure pi satisfies:

∂xp
i = − ρ

Hi

(
f ⋆
1 + f ⋆

2 + f ⋆
3

)
. (C.1)

Using an integration by parts and the boundary condition pi = patm on x±, we can rewrite (8) as:

M0
d

dt
ϑG = −

(
mo g ez

0

)
+

∫
I(t)

(
∂xp

i
)
T ⋆
G ,

= −
(

mo g ez
0

)
− ρ

∫
I(t)

(
f ∗
1 + f ∗

2 + f ∗
3

) T ∗
G

Hi

(C.2)

(C.3)

and by using the definition of f2 in (15), (8) is finally reduced to the following ODE:(
M0 +Ma

(
H i,TG

)) d

dt
ϑG =

(
−mogez

0

)
− ρ

∫
I(t)

(
f ⋆
1 + f ⋆

3

) T ⋆
G

H i
. (C.4)

Appendix D. Object’s mass and inertia

When embedding a partly immersed object in a free-surface flow which is initially in a motionless
steady-state, one may desire to place the object in such a way that the whole system ”fluid-object”
is in equilibrium. In practice, for a given floating structure that comes with its own mechanical
properties (center of mass MG, boundary profile ηlid, mass mo and inertia coefficient io), this boils
down to accurately define the position XG(0) which ensures the balancing of Newton’s laws.
That being said, for our numerical studies, we consider the following ”inverse” strategy: for a given
object profile ηlid, and a given initial position XG(0), we carefully calibrate the mass and inertia mo

and io, such that the Newton’s laws are initially balanced, with AG(0) = 0. Specifically, for an elliptic
object with a symmetric profile as those considered in §4, MG may be placed at (XG, ZG = H0 + e0)
for some chosen e0, with θ(0) = 0, and ensuring the equilibrium boils down to the definition of mo,
such that:

−mogez +

∫
I(0)

(
pi − patm

)
ni = 0. (D.1)
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As pi satisfies the following BVP:
∂xp

i = −ρ
(

1

Hi
∂tq

i + ∂x
(1
2

( qi
H i

)2
+ gηi

))
in I(t),

pi = patm on E(t) ∩ I(t),

(D.2a)

(D.2b)

we have

pi(x, t)− patm = −ρ
{∫ x

x9(t)

∂tq
i(x′, t)

H i(x′, t)
dx′ +

1

2

( qi(x, t)2
H i(x, t)2

− qi(x−(t), t)2

H i(x−(t), t)2

)
+ g
(
ηi(x, t)− ηi(x−(t), t)

)}
,

and therefore at motionless steady-state:

pi(x, 0)− patm = −ρg
(
ηi(x, 0)− ηc

)
, (D.3)

so that (D.1) reduces to the following scalar identity, standing as the definition of the object’s mass:

mo := ρ

∫
I(0)

(ηc − ik
T i,0
h

(ηlid)) dx, (D.4)

and the corresponding inertia coefficient is defined:

io :=
mo(a

2 + b2)

5
,

for the elliptic profiles. At the discrete level, mo may be equivalently computed from (D.4) or from
the second equation of (64c), for n = 0 and AG(0) = 0, as soon as the corresponding integrals on
I(0) are exactly computed.
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