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1. Introduction
Subsurface hydraulic stimulations for geoenergy development aim to increase the reservoir permeability via 
hydro-fracturing and hydro-shearing processes. Examples of such applications include fluid injection for 
enhanced geothermal systems (Li & Zhang,  2023; Olasolo et  al.,  2016; Schoenball et  al.,  2020), as well as 
oil and shale gas exploitation (Das & Zoback, 2013; Kim & Moridis, 2015). Rock fractures provide preferen-
tial fluid pathways that can transport thermal energy and shale oil and gas. A wealth of evidence from labora-
tory and field experiments suggests that hydro-shearing, which involves injection-induced slip along fractures 
and faults, is the primary contributor to enhancing reservoir permeability even when no proppants or acids are 
used (Barton et al., 2009; Cappa, Guglielmi, & De Barros, 2022; Cappa, Guglielmi, Nussbaum, et al., 2022; 
Guglielmi et al., 2015; Ishibashi et al., 2018; Jalali et al., 2018), but this process may also lead to unintentional 
and undesired large-magnitude induced seismic events (Mw > 3) (Ji, Hofmann, Duan, & Zang, 2022; Keranen 
& Weingarten, 2018; Schultz et al., 2020; Zang et al., 2014). Thus, the ability to predict the transient permea-
bility evolution of individual fractures is the key to accurately estimating fluid flow and reservoir response with 
controlled seismicity during injection.

Permeability measurements in conventional displacement-driven shear experiments in the laboratory have shown 
that the fracture permeability evolution can be influenced by the surface roughness (Fang, Elsworth, Ishibashi, 
& Zhang, 2018; Wu et al., 2017), mineral composition (Fang, Elsworth, Wang, & Jia, 2018; Fang et al., 2017), 

Abstract We present a series of controlled fluid injection experiments in the laboratory on a pre-stressed 
natural rough fracture with a high initial permeability (∼10 −13 m 2) in granite using different fluid pressurization 
rates. Our results show that fluid injection on a fracture with a slight velocity-strengthening frictional 
behavior exhibits dilatant slow slip in association with a permeability increase up to ∼41 times attained at 
the maximum slip velocity of 0.085 mm/s for the highest-rate injection case. Under these conditions, the slip 
velocity-dependent change in hydraulic aperture is a dominant process to explain the transient evolution of 
fracture permeability, which is modulated by fluid pressurization rate and fracture surface asperities. This 
leads to the conclusion that permeability evolution can be engineered for subsurface geoenergy applications by 
controlling the fluid pressurization rate on slowly slipping fractures.

Plain Language Summary Understanding the evolution of fracture permeability during hydraulic 
stimulation of subsurface reservoirs is the key to characterizing fluid transport and formulating strategies to 
limit induced seismicity. Accordingly, there is a significant interest in deciphering how the fluid pressurization 
rate, a constitutive operational parameter during injection, influences the transient permeability change during 
fracture slip. We conducted a series of experiments in the laboratory using different fluid pressurization rates 
on a natural rough fracture in granite under a pre-stressed state. The fracture had a high initial permeability. Our 
findings show that when fluid is injected into a fracture with a slight velocity-strengthening frictional behavior, 
it causes slow slipping with significant permeability enhancement. The change in hydraulic aperture caused by 
slip velocity is the main reason for the temporary change in permeability, and this effect is modulated by fluid 
pressurization rate and fracture surface irregularities. Our results suggest that we can modulate the permeability 
of subsurface geoenergy reservoirs by controlling the fluid pressurization rate on slowly slipping fractures.
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stress state (Gutierrez et al., 2000; Rutter & Mecklenburgh, 2018), slip direction (Okazaki et al., 2013; Rutter 
& Mecklenburgh, 2017), slip velocity (Fang et al., 2017; Ishibashi et al., 2018), as well as slip mode (Almakari 
et al., 2020; Rutter & Mecklenburgh, 2018). Meanwhile, for injection-induced fracture permeability evolution, 
several experimental studies have shown that the fracture permeability increases with decreasing effective normal 
stress (i.e., increasing fluid pressure) and dilatant slip has been identified as the key mechanism responsible for 
permeability enhancement. Particularly, the fracture permeability in granite shows an irreversible enhancement 
by self-propping shear activated by fluid pressurization under typical deep geothermal stress conditions (Ye & 
Ghassemi, 2018), which is more pronounced at lower confining pressures (Almakari et al., 2020). More recently, 
the transient permeability enhancement of slowly slipping faults activated by fluid injection in underground 
galleries is found to be controlled by the changes in slip velocity (Cappa, Guglielmi, & De Barros, 2022) with 
increasing fluid pressure, congruent with the laboratory-derived semi-analytical model relating slip velocity 
and aperture change (Fang et al., 2017; Samuelson et al., 2009). However, although these previous experiments 
provide important insights into the physics of fluid flow and shear slip in fractures, the effects of fluid pressur-
ization rate and fracture surface asperities on transient permeability change during fracture slip remain poorly 
constrained.

Here, we performed a series of controlled laboratory fluid injection experiments on a pre-stressed natural rough 
fracture in granite to explore the effects of fluid pressurization rate and fracture surface asperities on transient 
fracture permeability change. Three fluid injection experiments with different fluid pressurization rates were 
conducted consecutively under the same initial stress conditions. Results give new insights into how the fluid 
pressurization rate and fracture surface asperities control the transient fracture permeability change during 
injection-induced fracture slip. To the best of our knowledge, this work is the first to link the fluid pressuri-
zation rate and fracture surface asperities with transient fracture permeability enhancement using controlled 
laboratory-sized experiments (cf., Ji, Hofmann, Duan, & Zang, 2022; Zhuang & Zang, 2021).

2. Materials and Methods
The fluid injection experiments were performed at room temperature (∼22°C) on a naturally formed rough frac-
ture in granite (Figure 1a) using the triaxial shear-flow setup (Figure 1b) in the MTS 815 rock mechanics test 
system (Text S1 in Supporting Information S1). The Bukit Timah granite sample was cored from a depth of 
approximately 10 m in central Singapore, Asia, which is a potential geothermal reservoir rock. The physical, 
mechanical, and hydraulic properties of the granite (Ji, 2020; Peng et al., 2017) are summarized in Table S1 of the 
Supporting Information S1. We selected a 50-mm-diameter core sample containing a pre-existing sealed natural 
fracture and cut it to ∼123.8 mm length. We then compressed the sample until it failed along the fracture plane at 
20 MPa confining pressure by advancing the axial piston at a velocity of 1 μm/s, producing a cylindrical sample 
containing a natural rough fracture inclined 27° to the core axis. The minor and major axes of the elliptical planar 
fracture measure 110 and 50 mm, respectively, resulting in a fracture area of 4,320 mm 2. Upon visual inspection 
of the fracture surface, it appears that the fracture is most likely a magma cooling-induced break of the surround-
ing granite without obvious mineral intrusion (Zhao, 1997). Moreover, the fracture is not filled with granular 
material. Analysis of the fracture surface topography using a structured light scanner (Model No.: DAVID SLS-3) 
indicates a joint roughness coefficient (JRC) of 12.5 (Table S2 in Supporting Information S1 and the accompany-
ing notes). This JRC value corresponds to a “rough” fracture, as classified by Barton and Choubey (1977). Two 
vertical boreholes with a diameter of ∼2 mm were drilled at the short edge of each sample half to facilitate the 
fluid communication between the endcap and the fracture surface. Filter paper with a pore size of 0.45 μm was 
inserted between endcaps and sample ends to inhibit the possible contamination of fluid pipes by the produced 
wear particles. The sample was secured on the endcaps by two layers of Teflon jacket to exclude confining 
oil. The favorable angle of 27° prevents the fracturing of the granite matrix during axial loading (Brady & 
Brown, 2013; Ji, 2020). The permeability contrast between rock matrix (∼1.3 × 10 −18 m 2, Table S1 in Supporting 
Information S1) and fracture (∼1.0 × 10 −13 m 2, Text S1 and Table S3 in Supporting Information S1) ensures that 
the fluid only flows through the fracture during the experiments.

The sample was vacuum-saturated with distilled water for ∼24  hr before the experiments. Afterward, the 
confining pressure was first repeatedly cycled between 2 and 11 MPa to stabilize the sample by eliminating any 
misalignment of the two rock blocks (cf., Kohli & Zoback, 2013; Ji, Kluge, et al., 2022). Then, under 2 MPa 
confining pressure, pressurized distilled water was injected directly into the fracture to reach a fluid pressure 
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of 1 MPa, and maintained constant until the full saturation of the sample, signified by negligible fluid volume 
intake. After full saturation, we first obtained the apparent steady-state friction coefficient (μ) of the fracture by 
conducting a multi-stage shear test under an effective normal stress (i.e., total normal stress σn minus fluid pres-
sure p, σ′n = σn − p) of 1, 2, 3, and 10 MPa (Figures 1c and 1d) each at a constant fluid pressure of 1 MPa and an 
axial displacement rate of 1 μm/s. We then reduced the shear stress to ∼85% peak shear strength under 11 MPa 
normal stress and 1 MPa fluid pressure on the fracture. Following that, we held the shear and normal stresses 
on the fracture constant (the five-pointed star in Figure 1d), and water was injected at a constant pressurization 
rate through the two boreholes, which were connected to the same fluid pump, to induce the opening and slip of 
the pre-stressed fracture. The schematic of the stress paths during mechanical loading and fluid injection shows 
how the stress state approaches the Mohr-Coulomb failure envelope (Figure S1 in Supporting Information S1). 

Figure 1. Experimental material, setup, loading procedure and failure envelope. (a) Natural rough fracture in Bikit Timah 
granite with a joint roughness coefficient of 12.5. (b) Triaxial shear-flow setup, where α = 27° is the fracture inclination angle 
with respect to the sample axis. (c) Multi-stage shear loading before fluid injection to obtain the peak shear strengths (τp, 
denoted by black open circles) under 1, 2, 3, and 10 MPa effective normal stresses (σ′n). At 10 MPa effective normal stress 
(constant fluid pressure = 1 MPa), the fluid volume change first increases dramatically due to shear dilation, and it remains 
unchanged after reaching the yield shear stress of ∼6.6 MPa, suggesting that the steady-state fracture aperture becomes 
relatively constant with increasing slip displacement beyond this point. (d) Mohr-coulomb failure envelope of the fracture 
in terms of shear stress as a function of effective normal stress obtained from the multi-stage shear test. The five-pointed 
star and red open circles represent the stress states of the fracture before fluid injection (∼85% τp and σ′n = 10 MPa) and at 
the onset of fracture activation, respectively. The apparent steady-state friction coefficient (μ) of the fracture is estimated 
as μ = 0.75 with zero cohesion. The stress states at the onset of fracture activation are generally compatible with the 
Mohr-coulomb failure envelope, indicating the near-uniform distribution of fluid pressure on the fracture surface.
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A sequence of three fluid injection experiments with different fluid pressurization rates of 0.0004, 0.002, and 
0.01 MPa/s were performed on the same fracture under the same initial stress conditions. The three pressuri-
zation rates were carefully chosen to achieve a balance: they were neither excessively high, ensuring a consist-
ently near-uniform fluid pressure distribution on the fracture (cf., Passelègue et al., 2018), nor excessively low, 
enabling the observation of fracture response to fluid injection within a reasonable testing time. The time interval 
between two successive experiments was ∼20 min to ensure that the fracture was in a stabilized hydromechanical 
state (i.e., equilibrium) before the subsequent fluid injection. In addition, prior to each fluid injection experiment, 
we measured the steady-state fracture permeability using the steady state flow technique by imposing a constant 
upstream fluid pressure of 1 MPa through the bottom borehole with the downstream opening to the atmosphere 
and measuring the resulting flow rate (Text S1 in Supporting Information S1).

3. Results
3.1. Frictional Strength and Fracture Deformation in the Experiments

The three peak shear strengths (τp) obtained from the multi-stage shear test were used to construct the 
Mohr-Coulomb failure envelope, yielding an apparent steady-state friction coefficient of 0.75 by setting a zero 
cohesion (Figure 1d), generally compatible with Byerlee’s rule of rock friction (Byerlee, 1978). In the subsequent 
three fluid injection experiments, the normal stress and shear stress were held constant at 11 and 6.41  MPa 
(∼85% τp), respectively (Figure 2). The fracture was activated and the slip was initiated once the fluid pressure 
approached a critical value. In our experiments, the critical activation fluid pressure pff is predicted as 3.42 MPa 
based on the Mohr-Coulomb failure criterion incorporating the effective stress law, which is roughly consistent 
with the laboratory measurements (Figure 1d; Table S3 and Text S2 in Supporting Information S1), indicative of 
a near-uniform fluid pressure distribution over the fracture surface (Ji et al., 2020; Passelègue et al., 2018; Rutter 
& Hackston, 2017). The near-homogeneous fluid pressure distribution on the fracture surface is also confirmed 
by the short characteristic diffusion time (Mavko et al., 2009) (Text S2 in Supporting Information S1).

In the fluid injection experiments, the normal stress and shear stress remain unchanged under servocontrol during 
fluid pressurization (Figure 2). The fluid pressure is elevated from 1 MPa in all the three fluid injection exper-
iments. Fluid pressurization of the fracture requires injection of fluid volume from the pump, according to the 

Figure 2. Temporal changes of hydromechanical parameters during fluid injection experiments. Time-dependent evolution 
of normal stress, shear stress, fluid pressure, slip displacement and injected fluid volume in the fluid injection experiments at 
a fluid pressurization rate of (a) 0.0004, (b) 0.002, and (c) 0.01 MPa/s. The initiation of fracture activation is signified by the 
increase of slip displacement along the fracture. The injected fluid volume first increases near linearly with time followed by 
abrupt increases. The time when the increase of injected fluid volume deviates from the linear trend is roughly the time at the 
onset of fracture activation (see black arrows and dashed lines). Note that the slip displacement is offset to zero at the start of 
fluid pressurization in each experiment.
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compression-induced pressurization principle of fluids (Ji, Kluge, et al., 2022; Kestin, 1979). Particularly, the 
elevation of fluid pressure is linearly correlated with the increase of injected fluid volume when the sample 
volume is constant, and thus any changes in sample volume result in variations of the injected fluid volume (cf., 
Ashman & Faulkner, 2023; Samuelson et al., 2009). The slip displacement starts to increase when the fluid pres-
sure reaches the critical activation fluid pressure. The injected fluid volume increases near linearly before fracture 
activation, suggesting that the injected fluid volume mainly serves to compensate for the compressed volume 
during the fluid pressure increase. Hence, the elastic normal opening of the fracture induced by the reducing 
effective normal stress is negligible as previously observed in other experimental studies (cf., Cappa, Guglielmi, 
& De Barros, 2022; Guglielmi et al., 2015). This may be due to the small increase of fluid pressure (<2.51 MPa) 
as the fracture is already primed close to failure, and the high normal stiffness of the fracture in granite (in the 
order of ∼100 MPa/mm for clean natural fractures in granite, Zangerl et al., 2008). In particular, the maximum 
volume increase associated with elastic fracture opening induced by reducing effective normal stress is estimated 
as small as ∼108 mm 3, which is smaller than 0.09 times the total injected fluid volume upon fracture activation 
(Table S3 in Supporting Information S1). Upon fracture activation, the increase of injected fluid volume starts 
to deviate from the linear trend at the time of 5,222.9, 1,162.5, and 260.7 s at the pressurization rate of 0.0004, 
0.002, and 0.01 MPa/s, respectively, and the excessive injected fluid volume is primarily accommodated by the 
fracture dilation associated with shear slip (Figure 2) (Ji et al., 2019; Li et al., 2021). At the termination of fluid 
injection, the fracture slips by 0.24, 1.34, and 1.25 mm in the fluid injection experiments at a pressurization rate 
of 0.0004, 0.002, and 0.01 MPa/s, respectively.

At the same amount of slip displacement change, the slip velocity generally increases with a higher fluid pres-
surization rate with some large fluctuations especially at larger slip displacement (Figure S2 in Supporting Infor-
mation S1). The peak slip velocity increases by ∼15 times at 0.24 mm slip displacement change by elevating 
the pressurization rate from 0.0004 to 0.01 MPa/s. The increased slip velocity at higher-rate fluid pressurization 
cases is ascribed to the larger strength deficit relative to the applied shear stress: the higher the fluid pressuriza-
tion rate, the faster rate of reduction in effective normal stress and thereby shear strength, and the larger the slip 
acceleration, resulting in a higher slip velocity. The fluctuation of slip velocity with increasing slip displacement 
could be attributed to various sizes and strengths of surface asperities (cf., Goebel et al., 2012; Xu et al., 2023; 
Ye & Ghassemi, 2020).

The maximum slip velocity in our fluid injection experiments is smaller than 0.1 mm/s (Table S3 in Supporting 
Information S1), suggesting that the injection-induced slow slip is mainly aseismic (Tinti et al., 2016). This is 
further confirmed by the evolution of the apparent friction coefficient (Figure S3 in Supporting Information S1), 
measured as the ratio of the shear stress to effective normal stress, as a function of the logarithm of the slip velocity 
(ln(v/v0), where v is the slip velocity and v0 is the background slip velocity before fracture activation) (Guglielmi 
et al., 2015; Marone, 1998) (Table S4 in Supporting Information S1). On average, the fracture exhibits a slight 
velocity-strengthening frictional behavior, marked by a positive slope in the friction coefficient-versus-ln(v/
v0) plots in the three injection experiments (Figure S3 in Supporting Information S1). This is congruent with 
previous laboratory results suggesting that rough fractures exhibit more positive velocity-strengthening frictional 
behavior than smooth fractures (Fang, Elsworth, Ishibashi, & Zhang, 2018), a condition facilitating aseismic slow 
slip upon activation.

3.2. Velocity Dependence of Transient Fracture Permeability

First, by assuming that the excessive injected fluid volume is primarily accommodated by the increased fracture 
volume due to shear-induced dilation, we can estimate the transient change of hydraulic aperture (Δb) accompa-
nying injection-induced fracture slip from the temporal evolution of the injected fluid volume as (Ji et al., 2019; 
Li et al., 2021),

Δ𝑏𝑏 =
Δ𝑉𝑉f

𝐴𝐴
 (1)

where ΔVf is the transient excessive increase of injected fluid volume during dilatant fracture slip relative to that 
before fracture activation (see Text S3 in Supporting Information S1 for detailed calculations); A is the area of 
the elliptical fracture. Thus, the result obtained by Equation 1 is volume-based hydraulic aperture change. Note 
that here we posit that the congruence between alterations in hydraulic aperture and mechanical aperture remains 
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steadfast, substantiated by prior investigations of permeable fractures within controlled laboratory settings (Fang 
et al., 2017; Li et al., 2021) and natural field conditions (Cappa, Guglielmi, & De Barros, 2022).

We then used the laboratory-derived semi-analytical model relating slip velocity (v) with aperture (b) (Fang 
et al., 2017; Samuelson et al., 2009) to model the volume-based aperture in our experiments,

Δ𝜀𝜀i = −Ψ ⋅ ln

[

𝑣𝑣i−1

𝑣𝑣i

(

1 +

(

𝑣𝑣i

𝑣𝑣i−1
− 1

)

⋅ 𝑒𝑒
−𝑣𝑣i⋅𝑡𝑡i∕𝐷𝐷c

)]

 (2)

𝑏𝑏
n

evo = 𝑏𝑏
n

slip

i=n
∏

i=0

(1 + Δ𝜀𝜀i) (3)

where i is the ith velocity step; Δε is the dilation parameter; Ψ is the dilation factor; ti is the time since the ith 
velocity step; Dc is the critical slip distance; 𝐴𝐴 𝐴𝐴

n

evo
 and 𝐴𝐴 𝐴𝐴

n

slip
 are the modeled aperture and slip-dependent aperture at 

the nth velocity step, respectively.

For the shear test conducted under 11 MPa normal stress and 1 MPa fluid pressure, the fluid volume change 
indicates that the fracture aperture gradually increases with increasing slip displacement initially because of 
shear dilation, but remains mostly stable after reaching the yield shear stress of ∼6.6 MPa (Figure 1c). Therefore, 
we assumed that the slip-dependent aperture (𝐴𝐴 𝐴𝐴

n

slip
 ) stays unchanged at the initial hydraulic aperture (b0) in each 

injection case. The validity of this assumption is bolstered by the fact that the steady-state fracture permeability, 
as measured prior to each injection experiment, remains almost unchanged (Table S3 in Supporting Informa-
tion S1). Further, because k = b 2/12 (Snow, 1969; Witherspoon et al., 1980), the transient permeability change (k/
k0) can be calculated as the square of the ratio between 𝐴𝐴 𝐴𝐴

n

evo
 and b0, where k denotes the transient permeability at 

the nth velocity step (kn) and k0 is the initial fracture permeability before activation.

This velocity-dependent fracture permeability model has been successfully used to reproduce the transient 
permeability change of fractures/faults in the field-scale fluid injection experiments (Cappa, Guglielmi, & 
De Barros, 2022) and in the lab-scale shear friction experiments (Fang et al., 2017). Based on Equations 2 and 3, 
the best-fit velocity-dependent aperture models to our experimental aperture data derived from injected fluid 
volume (Equation 1) were obtained by searching the optimal dilation factor (Ψ) in the range from 0 to 5, and 
critical slip distance (Dc) from 0.1 to 5,000 μm using the genetic algorithm (Holland, 1992; Zbigniew, 1996) 
(Text S4 in Supporting Information S1). The root mean square error (RMSE) has a global minimum value at 
(Ψ = 0.08, Dc = 0.4 μm), (Ψ = 0.93, Dc = 0.16 μm) and (Ψ = 0.84, Dc = 2.74 μm) in modeling the fluid injec-
tion experiments at a pressurization rate of 0.0004, 0.002 and 0.01 MPa/s, respectively (Figure S4 in Supporting 
Information S1). The dilation factors (Ψ) in our best-fit models are comparable to the values obtained in previous 
studies on laboratory fractures (Fang et al., 2017) and in-situ faults (Cappa, Guglielmi, & De Barros, 2022). 
Our modeling results seem less sensitive to the critical slip distance (Dc) within a range of less than one order of 
magnitude around the optimal value. This is presumably because the influence of each velocity step tends to reach 
the steady state at small optimal Dc (see Equation 2), and thus a small change of Dc around the optimal value may 
not change much the modeling results.

Figures 3a, 3c, and 3e show that the aperture change calculated using the velocity-dependent aperture model 
(Equations 2 and 3) demonstrates a satisfactory agreement with the measured aperture change determined from 
the injected fluid volume (Equation 1), signified by the small RMSE values. Note that the RMSE in the first 
fluid injection experiment at a rate of 0.0004 MPa/s is ∼3 times that of the other two higher-rate counterparts, 
which may be due to the relatively poor constraint on the model by the short slip displacement and noisy slip 
velocity data. The transient permeability change (k/k0) is always larger than unity (Figures 3b, 3d, and 3f) with 
the maximum value of ∼41 attained at the maximum slip velocity of 0.085 mm/s in the highest-rate injection case 
(Figure 3f), highlighting that the transient fracture permeability accompanying fracture slip is enhanced relative 
to the initial steady-state fracture permeability. The results indicate that the injection-induced slip can cause a 
substantial temporary increase in transient fracture permeability, which could considerably facilitate fluid flow. 
This transient permeability enhancement appears to be much more significant than the relatively minor changes 
(∼1.5 times) in steady-state fracture permeability before each injection experiment (Table S3 in Supporting Infor-
mation S1). The synchronicity of the changes in transient permeability and slip velocity, signified by the high 
correlation coefficient (Asuero et al., 1988, 2006), further suggests that the transient permeability enhancement 
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is dominantly regulated by the injection-induced slip velocity (Figures 3b, 3d, and 3f). In addition, the primary 
control of slip velocity on the change of transient permeability is reaffirmed by Figure S5 in Supporting Infor-
mation S1. This figure demonstrates a consistent rise in transient permeability enhancement corresponding to 
higher slip velocities, and the rate of increase is primarily controlled by the dilation factor (Ψ) and critical slip 
distance (Dc).

Figure 4 illustrates that the transient permeability enhancement is evidently not controlled by the slip displace-
ment change, in line with previous results on permeable in-situ faults (Cappa, Guglielmi, & De Barros, 2022). 

Figure 3. Transient evolution of normalized aperture change (measured and calculated), permeability change and slip velocity during fracture slip in the fluid 
injection experiments. Results of experiments performed at a pressurization rate of (a and b) 0.0004, (c and d) 0.002, and (e and f) 0.01 MPa/s. The aperture change is 
normalized with respect to the maximum value in each experiment. Ψ, Dc and root mean square error (RMSE) represent the dilation factor, critical slip distance and 
RMSE, respectively. The correlation coefficients (CC) between transient permeability change and slip velocity in the three experiments are all close to unity, suggesting 
the dominant control of slip velocity on the transient permeability change.
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In particular, the transient permeability enhancement in the first ∼0.24 mm 
slip displacement is larger at higher pressurization rates. However, the tran-
sient permeability enhancement in the case at 0.002 MPa/s starts to exceed 
that of the case at 0.01 MPa/s at ∼0.6 mm slip displacement before drop-
ping lower at ∼0.9 mm, followed by the increasing divergence of the tran-
sient permeability enhancement in the two cases. The evolution of transient 
permeability enhancement with slip displacement change shows a similar 
trend to slip velocity in the three cases (Figure S2 in Supporting Informa-
tion  S1), reconfirming that the rate of increase of transient permeability 
change with slip displacement is dictated by slip velocity. Since transient 
permeability enhancement is mainly regulated by slip velocity, its fluctu-
ations likely stem from variations in slip velocity, which can be linked to 
diverse asperity strengths and sizes (Goebel et al., 2012; Xu et al., 2023; Ye 
& Ghassemi, 2020). Particularly, the central roughness profile of the fracture 
surface is characterized by larger-sized waviness and smaller-sized uneven-
ness (Li et al., 2019; Zou et al., 2015; Text S5 and Figure S6 in Support-
ing Information  S1). As we observed an increase in slip displacement up 
to 1.34 mm within our experimental scope, the primary influencer of fric-
tional resistance alteration is the unevenness of asperities, characterized by 
an average wavelength of ∼1.36 mm (Text S5 and Figure S6 in Supporting 
Information S1). Previous studies suggest that the frictional resistance can 
change over a slip displacement of less than half the wavelength of uneven-
ness (approximately ∼0.68 mm in our case) due to surface wear effects (Li 
et  al.,  2015). In our experiments, indications of surface wear are apparent 

(Figure S7 in Supporting Information S1). This implies that a slip displacement of approximately ∼0.68 mm 
or beyond would be sufficient to initiate diverse fluctuations in frictional resistance, depending on sizes and 
strengths of unevenness of asperities. Consequently, these fluctuations would impact both slip velocity and 
transient permeability. Given the uncertainties involved in determining the average half wavelength of asperity 
unevenness, the close proximity of 0.68 mm to the observed slip displacement of ∼0.6 mm exhibiting a signif-
icant fluctuation further supports this interpretation. That is, our results demonstrate that increasing the fluid 
pressurization rate can enhance transient permeability in our experimental case, suggesting that fluid pressuri-
zation rate can promote the transient permeability enhancement by causing faster slip velocity, with concurrent 
modulations of surface asperities as the slip displacement increases.

4. Discussion
This study has demonstrated that increasing the rate of fluid pressurization can enhance the transient permeability 
increase, with fluctuations modulated by surface asperities, during fracture slip in triaxial shear-flow experiments 
with direct fluid injection to the fracture. Our results were obtained on a natural rough fracture without initial 
filling material in granite under a pre-stressed state. It is important to note that our experiments represent a case 
where the fracture has a high initial permeability and a slight velocity-strengthening frictional behavior favoring 
aseismic slip during the fluid injection. The presented results support the hypothesis that the fluid pressurization 
rate and fracture surface asperities have a significant influence on the transient permeability evolution in a single 
deformable natural fracture and confirm that the slip velocity dependency of transient fracture permeability 
previously observed in the laboratory (Fang et al., 2017) and in situ (Cappa, Guglielmi, & De Barros, 2022) is a 
key process for fluid transport in fractures and faults. Nevertheless, it is important to highlight that our findings 
are particularly relevant to shallow aseismic slip and the accompanying changes in transient permeability, even 
though they might not comprehensively encompass the entire steady-state range. These results could also offer 
valuable insights into the understanding of permeability evolution associated with tremors occurring at greater 
depths due to slow slip events (cf., Guglielmi et al., 2015).

The excellent agreement between the experimental data and the numerical solutions highlights that the velocity 
dependency of transient fracture permeability is a dominant process during injection. Although we obtained 
a good fit to data with the velocity-dependent aperture model, other mechanisms may also influence the frac-
ture's hydromechanical responses. In our experiments, the clogging and unclogging of fluid pathways associated 

Figure 4. Transient permeability change (k/k0) against slip displacement 
change during fracture slip in the fluid injection experiments. A higher fluid 
pressurization rate tends to promote the transient permeability enhancement 
at smaller slip displacement changes, while this trend is influenced by fracture 
surface asperities when the slip displacement change exceeds the average half 
wavelength of asperity unevenness (∼0.68 mm in this study).
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with flux-driven particle mobilization (Candela et al., 2014) may only have a minimal impact on the transient 
permeability changes. Indeed, we observed that the root mean square asperity height and peak-to-trough distance 
decrease by only 0.74 and 0.68 mm, respectively, after the experiments (Table S2 in Supporting Information S1). 
Given that the average grain size of the granite is approximately 2 mm (Li et al., 2020), we infer that the fracture 
surface primarily underwent surface wear (Figure S7 in Supporting Information S1), rather than significant grain 
detachments. This observation also guarantees that the results of the three consecutive fluid injection experiments 
on the same natural rough fracture can be reasonably used for comparison to explore the effects of pressuriza-
tion rate and surface asperities, which is also supported by the negligible reduction of JRC from 12.5 before the 
experiments to 12.4 after the experiments (see Table S2 in Supporting Information S1 and the notes below). The 
insignificant surface damage after the experiments could be due to the low effective normal stress (σ′n) relative to 
the uniaxial compressive strength of the host rock (i.e., σ′n < 0.1 UCS, Table S1 in Supporting Information S1), 
which prevents the occurrence of severe asperity breakages (cf., Ji et al., 2021; Li et al., 2022; Oh et al., 2016). 
Therefore, due to the trivial surface damage and the small amount of small-sized wear particles produced, it is 
likely that flux-driven particle mobilization did not exert a substantial effect on the transient permeability changes 
in our experiments. In addition, as opposed to injection-induced slow slip in our experiments, fast stick-slip events 
may further complicate the transient permeability evolution in the laboratory scale (Almakari et al., 2020; Rutter 
& Mecklenburgh, 2018). Similarly, in-situ fluid injection experiments on slowly slipping faults also demonstrated 
that the permeability evolution can be affected by slip modes (i.e., aseismic and seismic) (Cappa, Guglielmi, & 
De Barros, 2022; Cappa, Guglielmi, Nussbaum, et al., 2022; Guglielmi et al., 2015).

However, when the fracture slip occurs at higher effective pressures (cf., Goebel et al., 2012, 2017, 2023; Ji, 
Wang, et al., 2022; Ji, Hofmann, Rutter, et al., 2022; Ye & Ghassemi, 2018, 2020), the presence of wear parti-
cles and any associated colloidal seal are anticipated to have a notable impact on the transient fracture perme-
ability evolution during fluid injection, in addition to the velocity-dependent process (e.g., Cappa, Guglielmi, 
& De Barros,  2022). Specifically, the combination of pore throat expansion through shear dilation (cf., Im 
et al., 2018) and fluid pressure migration during injection (e.g., Ji et al., 2020; Passelègue et al., 2018) is likely 
to favor the flux-driven unclogging of the fracture, potentially leading to further transient permeability enhance-
ment. Meanwhile, the transition from slow slip to stick-slip failure of fractures could be promoted by elevating 
effective pressures (e.g., Dieterich, 1978; Scuderi et al., 2016) and reducing the friction rate parameter (e.g., Fang 
et al., 2017), possibly causing complex transient permeability evolution arising from the cycling between near-
zero slip velocity during the stick period and abrupt velocity jump during the dynamic slip period (cf., Almakari 
et al., 2020; Morad et al., 2022). Additionally, elevating both normal stress and shear stress have the tendency to 
decrease fracture permeability due to the obstruction of fluid pathways by the produced abrasive particles (Rutter 
& Mecklenburgh, 2018). Moreover, the ratio of shear stress to shear strength could impact the slip velocity during 
injection-induced slip (Passelègue et al., 2018), potentially promoting aperture changes facilitated by velocity 
augmentation. Nonetheless, the interaction between the flux-driven particle mobilization and the intricate perme-
ability evolution resulting from complex slip modes remains uncertain. Consequently, there is a need to explore 
the transient evolution of permeability during fluid injection at elevated effective pressures and diverse shear 
stress levels in fractures with different roughnesses and exhibiting a range of frictional properties and slip modes.

In terms of scales, laboratory fractures in this study represents a fracture of zero or low effective fracture tough-
ness and cohesion, which discounts the crack propagation-induced permeability change (Abe & Horne, 2023; 
Abe et al., 2021; Ye & Ghassemi, 2019), which are clearly idealizations of the complexity of natural fracture 
networks. Thus, at the reservoir-scale fracture network, the transient permeability change of individual fractures 
can be complicated by fracture surface topography and infilling, fracture interactions and connectivity, stress 
state, rock type, as well as the decoupling of fracture slip and opening in the case of initially low-permeability 
fractures (Cappa, Guglielmi, Nussbaum, et al., 2022; Rutter & Hackston, 2017). Clearly, fracture permeability 
during fluid injection is a fast-evolving property significantly affected by different processes that are difficult to 
compare across scales. To further bridge the scale gap, our results obtained from lab-scale single fracture experi-
ments with the centimeter scale need to be extended for mine- and reservoir- scale injection experiments, in which 
increasing pressure gradients can also alter the flow-through area of a heterogeneous fracture/fault.

Beyond improving the fundamental understanding of the process of fracture permeability enhancement controlled 
by pressurization rate and surface asperities, the mechanism observed in this lab-scale experiment can be useful 
for implementing permeability enhancement and seismicity mitigation in the reservoir scale. The transient perme-
ability increases in the pressurized zone upon local slip may accelerate fluid flow in mainly the fault-parallel 
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direction and the rapid transfer of high pressure at distance from the fluid source. Moreover, as shown in previ-
ous studies, high-rate fluid pressurization could enhance the seismic hazard (e.g., Goebel & Shirzaei, 2020; Ji, 
Wang, et al., 2022; Ji & Wu, 2020; Passelègue et al., 2018; Rudnicki & Zhan, 2020; Wang et al., 2020). Thus, 
the competition between pressurization and frictional processes in fracture/fault stability is a dominant factor in 
the trade-off between increasing reservoir permeability and the mitigative impact of slowing or ceasing injection 
on seismic hazard.

5. Conclusions
Our fluid injection experiments on a pre-stressed natural fracture with high initial permeability have demon-
strated that injecting fluid into fractures with a slightly velocity-strengthening frictional behavior leads to slow 
slipping and a significant transient increase in permeability. The permeability can reach up to approximately 
41 times its initial value when the maximum slip velocity of 0.085 mm/s is achieved through high-rate fluid 
injection. We have identified that the change in hydraulic aperture due to slip velocity is the primary factor 
driving  the  temporary evolution of fracture permeability, and this effect is modulated by fluid pressurization 
rate and fracture surface asperities. These findings highlight the potential to engineer permeability evolution 
for subsurface geoenergy applications by controlling the fluid pressurization rate specifically on slowly slipping 
fractures.

Notation
JRC joint roughness coefficient
RMS root mean square
RMSE root mean square error
UCS uniaxial compressive strength
A area of the elliptical fracture
b hydraulic aperture
b0 initial hydraulic aperture

𝐴𝐴 𝐴𝐴
n

evo
  modeled aperture at the nth velocity step

𝐴𝐴 𝐴𝐴
n

slip
  slip-dependent aperture at the nth velocity step

d slip displacement change
Dc critical slip distance
k fracture permeability
k0 initial fracture permeability
kn transient fracture permeability at the nth velocity step
p fluid pressure
v slip velocity
v0 background slip velocity
Δb transient change of hydraulic aperture
ΔVf additional injected fluid volume caused by fracture slip
Δε dilation parameter
μ friction coefficient
σn normal stress
σ′n effective normal stress
τp peak shear strength
Ψ dilation factor

Data Availability Statement
This manuscript is accompanied by Supporting Information S1. The experimental data generated in this study  
are available at https://figshare.com/s/2fa49f5a2240aff4785e, and the Python code for the numerical inversion is 
freely available via https://github.com/Ranger-boop/Inversion_of_aperture_changes_accompanying_injection-in-
duced_fracture_slip.
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