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Spatial resolution of diffusion tensor (DT) images is usually compromised to accelerate the acquisitions and the state-of-the-art (SOTA) image super-resolution (SR) reconstruction methods are commonly based on supervised learning models. Considering that the matched low-resolution (LR) and high-resolution (HR) diffusion weighted (DW) image pairs are not easily available, we propose a semi-supervised DW image SR reconstruction method based on multiple references (MRSR) extracted from other subjects. In MRSR, the prior information of multiple high-resolution (HR) reference images is migrated into a residual-like network to assist SR reconstruction of DW images, and a CycleGAN-based semi-supervised strategy is used to train the network with 30% matched and 70% unmatched LR-HR image pairs. We evaluate the performance of the MRSR by comparing against SOTA methods on HCP dataset in terms of the quality of reconstructed DW images and diffusion metrics. MRSR achieves the best performance, with the mean PSNR/SSIM of DW images being improved by at least 14.3%/28.8% and 1%/1.4% respectively relative to SOTA unsupervised and supervised learning methods, and with the fiber orientations deviating from the ground truth by about 6.28° on average, the RMSEs of fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD) being 3.0%, 4.6%, 5.7% and 4.5% respectively relative to the ground truth. We validate the effectiveness of the proposed network structure, multiple-reference and CycleGAN-based semi-supervised learning strategies for SR reconstruction of DT images through the ablation studies. The proposed method allows us to achieve SR reconstruction for DT images with limited matched image pairs.

Introduction

Magnetic resonance diffusion-weighted (DW) imaging has been widely used in the detection of diseases of central nervous system, which can reflect the early alternations of brain tissue microstructure in neurological diseases by measuring the diffusion displacement distribution of water molecules therein 1 . However, the acquisition time of DW imaging is too long since it usually collects data along multiple directions, such prolonged acquisition always leads to motion artefacts and patient discomfort. Clinically, to reduce the acquisition time, the spatial resolution of DW images is usually compromised. Lower spatial resolution, however, will affect the estimation accuracy of diffusion metrics in tissues. Therefore, it is of great clinical significance to investigate the high-resolution (HR) DW image reconstruction methods from the acquired low-resolution (LR) DW images.

With the development of deep learning in the field of computer vision, deep learning based super-resolution (SR) reconstruction methods have attracted attentions of a plenty of researchers 2 . These methods take SR reconstruction as a regression task, using a network to learn nonlinear mappings between LR and HR images. The earliest SR reconstruction method based on convolutional neural network (CNN) was SRCNN proposed by Dong et al. [START_REF] Dong | Image Super-Resolution Using Deep Convolutional Networks[END_REF] , which used a CNN with only three convolutional layers as the mapping function and achieved comparable results to the traditional iterative optimization SR algorithms, confirming the feasibility of using deep learning models to perform SR reconstruction. Subsequently, Kim et al. proposed VDSR [START_REF] Kim | Accurate Image Super-Resolution Using Very Deep Convolutional Networks[END_REF] and DRCN [START_REF] Kim | Deeply-Recursive Convolutional Network for Image Super-Resolution[END_REF] , which introduced residual learning into the SR reconstruction network to improve the model performance by increasing the depth of network. The residual block [START_REF] He | Deep Residual Learning for Image Recognition[END_REF] was further modified in EDSR [START_REF] Lim | Enhanced Deep Residual Networks for Single Image Super-Resolution[END_REF] , which removed the batch normalization (BN) layer that is not beneficial for SR task, therefore EDSR can stack deeper or wider networks to obtain more information within the same computational resources, improving accordingly the reconstruction quality. All the above-mentioned SR models were trained based on mean square error (MSE), although the reconstructed image demonstrated a high peak signal-to-noise ratio (PSNR), it was over-smoothed and got lost in texture detail information. To solve this problem, Ledig et al. proposed SRGAN [START_REF] Ledig | Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network[END_REF] which used generative adversarial network (GAN) to reconstruct SR images. SRGAN increased the visual quality with more texture details by introducing adversarial loss [START_REF] Wang | Transformation GAN for Unsupervised Image Synthesis and Representation Learning[END_REF] and perceptual loss [START_REF] Liu | Generic Perceptual Loss for Modeling Structured Output Dependencies[END_REF] . In addition, CNNs that simply stack layers ignore the difference between feature channels. Therefore, Zhang et al. proposed RCAN 11 , in which channel attention mechanism was introduced to further improve the reconstruction capability of SR model. Subsequently, based on RCAN, Niu et al. proposed the holistic attention network HAN [START_REF] Niu | Single Image Super-Resolution via a Holistic Attention Network[END_REF] , which computed the interrelationship between network layers, channels, and spatial locations to achieve a better SR reconstruction result. However, the above methods are all based on supervised learning that uses a large amount of matched LR and HR data to train a model. In practical clinical applications, paired LR and HR samples are difficult to obtain. A solution is to sample LR images from the corresponding available HR data by estimating degradation kernel [START_REF] Liang | Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution[END_REF][START_REF] Ji | Real-World Super-Resolution via Kernel Estimation and Noise Injection[END_REF][START_REF] Liang | Flow-based Kernel Prior with Application to Blind Super-Resolution[END_REF][START_REF] Tao | Spectrum-to-Kernel Translation for Accurate Blind Image Super-Resolution[END_REF] , the estimation accuracy of which severely affects the usability and reliability of the reconstruction results. To address this issue, unsupervised-learning based SR reconstruction methods have been proposed [START_REF] Smore | A Self-Supervised Anti-Aliasing and Super-Resolution Algorithm for MRI Using Deep Learning[END_REF][START_REF] Xu | STRESS: Super-Resolution for Dynamic Fetal MRI using Self-Supervised Learning[END_REF][START_REF] Lu | Two-Stage Self-Supervised Cycle-Consistency Network for Reconstruction of Thin-Slice MR Images[END_REF][START_REF] Chung | Simultaneous super-resolution and motion artifact removal in diffusion-weighted MRI using unsupervised deep learning[END_REF] . The most representative models were based on the idea of CycleGAN 21 and DualGAN 22 , which used a forward generator to transform data from domain X to domain Y, and a backward generator to transform data from domain Y back to domain X to achieve cyclic consistency. For instance, CinCGAN 23 achieved unsupervised SR by using four generators and two discriminators to construct two CycleGANs. Specifically, in the first cycle, the noisy LR was fed into a generator that is used to generate an image with the same distribution as the clean LR. Then the generated image was fed into another generator that is responsible for restoring the original noisy LR images. The second cycle was of a similar design except the mapping domains were clean LR and HR images. The lack of image degradation information makes CinCGAN difficult to perform well, especially for applications with complex scenes. Another representative unsupervised SR reconstruction model is ZSSR [START_REF] Shocher | Zero-Shot" Super-Resolution using Deep Internal Learning[END_REF] , which performed SR reconstruction with the internal structure and pattern information of a single LR image through multi-scale sampling, as well as the data augmentation strategies. Ulyanov et al. [START_REF] Ulyanov | Deep Image Prior[END_REF] verified that certain randomly initialized CNNs inherently represent a prior information to assist SR reconstruction, thus it is only required to optimize the network parameters by minimizing the loss between the downsampled SR image and the original LR image, and the converged network can be used directly for SR reconstruction. Although these models provide new ideas for SR reconstruction, they are still less effective for images with too much noise and complex texture.

To further improve the SR reconstruction quality for images with complex texture, strategies of migrating the prior information of the reference images to assist SR reconstruction have been proposed [START_REF] Dong | RRSGAN: Reference-Based Super-Resolution for Remote Sensing Image[END_REF][START_REF] Shim | Robust Reference-Based Super-Resolution With Similarity-Aware Deformable Convolution[END_REF][START_REF] Jiang | Robust Reference-based Super-Resolution via C2-Matching[END_REF] . To enhance the texture information, SRNTT [START_REF] Zhang | Image Super-Resolution by Neural Texture Transfer[END_REF] proposed to use a multi-scale migration method to find blocks in the reference image that are semantically relevant to the pixels to be reconstructed. Yang et al. proposed TTSR [START_REF] Yang | Learning Texture Transformer Network for Image Super-Resolution[END_REF] , which used an attention mechanism to enhance or suppress image textures during the migration of reference features. Lu et al. proposed MASA [START_REF] Lu | MASA-SR: Matching Acceleration and Spatial Adaptation for Reference-Based Image Super-Resolution[END_REF] that used a coarse-to-fine process to promote the matching efficiency between LR and reference images, and introduced the spatial adaptation module (SAM) in the SR network to map the features of the reference image to that of the LR images for improving SR image details. However, the methods mentioned above only refer to a single image, which will influence the reconstruction result if the reference is not well selected.

Considering that the DW images of different subjects acquired along the same diffusion direction may have similar anatomical structure, this work proposes a semi-supervised DW image SR reconstruction method based on multiple references (MRSR) extracted from other subjects. We incorporate prior information of multiple references into the proposed network to assist SR reconstruction. Meanwhile, to fully explore the information of unpaired dataset, a CycleGAN-based semi-supervised strategy is also used to train the model with both paired and unpaired data for further improving the SR reconstruction performance.

Proposed Method

The overall structure of the proposed MRSR network is illustrated in Fig. 1. It consists of two parts; one is the feature migration from multiple references and the other is super-resolution reconstruction network. In the following subsections, we will elaborate these two parts in detail. 

Feature Migration of Multiple References

Migrating features of reference samples precisely is crucial to the SR reconstruction of the target image [START_REF] Wang | Unsupervised Remoting Sensing Super-Resolution via Migration Image Prior[END_REF] . In this paper, we first extract the feature maps of the reference samples and the target image, and then migrate features of reference samples through similarity comparison. The LR image is ×2 upsampled and the multiple reference images (MutiRef) are firstly downsampled and then upsampled with bicubic interpolations to ensure the domain consistency, the results are denoted as LR↑ and MutiRef↓↑ respectively. Following that, LR↑, MutiRef↓↑ and original MutiRef images are input to a 2-layer CNN network to extract features, formulated as, ,

where FE represents the feature extraction network, 𝑃, Q i and R i denote the feature maps of LR↑, MutiRefs i ↓↑ and MutiRefs i , respectively, i indicates the subscript and n the number of the reference samples.

In order to migrate the information of reference samples efficiently to the SR reconstruction task, the feature maps P and the feature maps Q i are divided into m small blocks, and the similarity between each block of P and Q i are calculated with ,

where p j (j=1...m) and 𝑞 !,# (k=1...m) represent a block in P and Q i , respectively, <•> means the inner product and ∥•∥ indicates the modulus. Given i and j, the maximum 𝑟 $,!,# reflects that the j th block in image P is most similar to the k th block in reference image Q i , noting this maximum value as Sij, and the corresponding k th block location as Lij. For each reference image, we always can find a best match block of p j . We normalize the similarity values of all the best match blocks of p j in all reference images as the feature weights:

.

At the same time, the feature map R i of the original MutiRefs i is also divided into m small blocks. The features of small block located at position L ij are multiplied with the corresponding feature weight W ij , and then summed up for all the reference samples to get a migration feature block T j (j=1...m), .

The migrated features 𝑇 will be used as prior information to be incorporated into the SR reconstruction network, which can be useful for the recovery of high-frequency information of SR images. In this paper, to make full use of the feature information of the multiple reference samples, in addition to the original migrated feature maps T, we also use convolution and pooling operations to further extract similar semantic information of the reference samples from T. Since the size of ( )
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å feature maps 𝑇 is twice as large as the original LR image, it is defined as ×2 migration features, and the feature maps through pooling are defined as ×1 migration features in Fig. 1.

Super-resolution Reconstruction Network

The network consists of two branches. The LR image is input to the first branch and goes through 8 residual blocks to extract semantic features, which are then fused with ×1 scale migration features (T×1) through concatenation to yield the mixed feature F 1 ,

where RBs denotes residual blocks. F 1 passes through a convolutional layer and then inputs to 16

residual blocks to further extract the fusion semantic features F 1 ' . In the second branch, the LR image is firstly input to an upsampling module to expand the size by a factor of 2, then goes through 4 residual blocks to extract shallower semantic features which are then fused with ×2 scale migration features to obtain the mixed feature

F 2 . ( 8 
)
The fused semantic features F 2 are further extracted to form the features F 2 ' . Inspired by the ideas of previous studies [START_REF] Sun | High-Resolution Representations for Labeling Pixels and Regions[END_REF][START_REF] Zeng | Learning Pyramid-Context Encoder Network for High-Quality Image Inpainting[END_REF] , we use information exchange between multi-scale feature maps to enhance the feature representation ability. Specifically, F 1 ' are upsampled by a factor of 2 with

Pixelshuffle [START_REF] Shi | Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network[END_REF] and then fused with F 2 ' by concatenation to derive feature maps F 3 .

Similarly, F 2 ' are downsampled by a factor of 2 with PixelUnshuffle and then fused with

F 2 ' to generate feature maps F 4 . ( 10 
)
After the multi-scale information exchange, the feature size of the first branch is twice as the size of LR image, while the feature size of the second branch is the same as LR. Accordingly, the features of the first and second branches are further processed by a convolution and residual blocks respectively, the output of the second branch 𝐹 % ′ is upsampled with Piexelshuffle and fused with the output of the first branch 𝐹 & ′. Finally, the final super-resolution images are obtained by a series of convolutional layers on the fused features .

(11)

Semi-supervised Training Strategy

In this paper, in addition to use non-corresponding HR images as reference samples to assist semi-supervised learning, the idea of CycleGAN is also used to fully exploit matched and unmatched LR and HR images to achieve SR reconstruction. The specific idea is shown in Fig. 2, where MRSR represents the SR reconstruction network proposed in this work, G is the LR image generation network 23 used in CinCGAN. Since there is a significant difference between HR and LR images, two discriminators D1 and D2 with same structure for MRSR and G are used respectively to ensure the information learned from reconstruction and degradation do not interfere with each other. The detailed discriminator structure can be found in SRNTT [START_REF] Zhang | Image Super-Resolution by Neural Texture Transfer[END_REF] .
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. Scheme of semi-supervised strategy based on CycleGAN

For matched LR-HR image, the network is trained with reconstruction loss L rec , cycle consistency loss L cycle and adversarial loss L adv , and for unmatched LR-HR images, the network is trained with cycle consistency loss L cycle and adversarial loss L adv . The overall loss can be formulated as:

, ( 12 
)
where L rec consists of the MSE loss between SR and HR images, as well as the MSE loss between the LR image generated with G and true LR image, in both spatial and frequency domain, ,

in which I SR and I HR denote the SR result and the true HR image respectively, and ℱ denotes the Fourier transform, I LR' and I LR represent the LR image generated by G and the true LR image respectively. The cycle consistency loss guarantees that the degradation of HR image reconstructed from LR image should be consistent with the corresponding LR image, at the same time, the SR reconstruction result of the degraded HR image should be consistent with the original HR image. In this work, the cycle consistency loss L cycle is also composed by the spatial consistency loss L cycle-space and the frequency consistency loss L cycle-frequency , , 
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where 𝐼 '( and 𝐼 )( can be either matched or unmatched LR and HR image pairs, which allows our model training on unpaired samples.

To improve the visualization quality of SR image, the WGAN-GP loss with gradient penalty is used as the generative adversarial loss [START_REF] Gulrajani | Improved Training of Wasserstein GANs[END_REF] . The loss L adv can be interpreted as .

(

) 15 
The generative adversarial loss of D1 and MRSR can be respectively written as: , ( 16)

, ( 17 
)
where 𝑥 = 𝜀𝐼 )( + (1 -𝜀)𝐼 *( , representing the mixture of SR result and original HR image with a ratio of 1 -𝜀 to 𝜀. Similarly, the generative adversarial loss of D2 and G are formulated as:

, ( 18 
) , ( 19 
)
where 𝑥̅ = 𝜀′𝐼 '( + (1 -𝜀′)𝐼 '( ! . Note that 𝜀 and 𝜀′ are randomly selected from 0 to 1.

Experiments and Results

Dataset and experiments implementation details

The data used in this work is from the HCP public dataset named after "WU-Minn HCP Data-1200 Subjects". We select 65 DW images of healthy human brains from the project which can be download from the link of "https://db.humanconnectome.org/data/projects/HCP_1200". These DW images were acquired by a 7T Siemens MRI scanner, and a total of 26 b-values and 143 diffusion directions were collected. The spatial resolution of is 1.05 × 1.05 × 1.05 mm³. To obtain LR images, we downsapmple the original DW images with ×2 bicubic interpolation to reduce the spatial resolution to 2.1×2.1×2.1mm³.

In the experiment, we randomly select the DW images of 51 subjects as training set and DW images of 9 subjects as testing set. The DW images of the remaining 5 subjects are used as potential reference samples. To implement semi-supervised learning, in the training set, downsampled and original DW images of 9 subjects are used as matched LR and HR images for supervised learning, and randomly choosing the DW images of two different subjects among the resting training subjects to generate 21 unmatched high-resolution image pairs for unsupervised training, therefore, the proportion of paired data was about 30%. To obtain the appropriate multiple references to reconstruct a given LR image, we randomly select 3 DW image slices from the potential reference subjects, these reference DW image slices must have the same b-value, diffusion direction and slice index with the LR image.

The network is trained with Adam optimizer with learning rate = 1e-4 and ϵ = 1e-8. We set β 1 = 0.9 and β 2 = 0.999 for generative networks MRSR and G, and β 1 = 0.5 and β 2 = 0.9 for discriminative networks D 1 and D 2 . The weights of L rec , L cycle and L adv are 5, 20 and 1 respectively.

The weight for gradient penalty is 10. The batch size is 10 and a total of 100 epochs are iterated.
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Comparison with State-of-the-art Methods

SR reconstruction results for DW images

We compare our proposed model with state-of-the-art methods, including the unsupervised SR reconstruction method CinCGAN [16], the supervised SR reconstruction method SRGAN [5], EDSR [6], HAN [10], TTSR [22] and MASA [23]. All models are trained on the same training set and tested on the same testing set. The SR reconstruction scale factor in all experiment is 2.

In Fig. 3 shows the SR results for DW images with different b-values obtained with different methods. We notice that CinCGAN is less effective in reconstructing the details of DW images, the SR image reconstructed by EDSR and HAN are over-smoothed, leading to poor visualization with blurring effect. With the help of adversarial learning, SRGAN has improved the visual perception of SR images but with checkerboard artefacts. TTSR and MASA have the best visualization quality, but they are not as good as our model in terms of reconstruction accuracy in texture details, as shown in the zoom-in regions (yellow box), the SR results reconstructed with our method have the smallest residuals (comparing against ground-truth HR images) for DW images with both low and high bvalues. 

SR reconstruction results for diffusion tensor metrics

To Further verify the superiority of our model, we calculate the corresponding diffusion tensor (DT) images using the super-resolution DW images reconstructed by different methods and compared the fiber directions in terms of the deviation angles between the principal orientations of the reconstructed DT images and those of the ground-truth in white matter (WM) region. As illustrated in Fig. 5, we observe that the unsupervised-learning model CinCGAN has severe distortions in nerve fiber orientations with the largest mean deviation angle (about 10.82°). Our model shows a similar result to most of the supervised-learning models, with the deviation angle distributed between 0° and 10°. Among all the reconstruction methods, the proposed model yields the smallest mean deviation angle (about 6.28°), which means that the proposed SR reconstruction method for DW images allows to detect accurately the nerve fiber structures at a higher resolution. Fig. 5. Fiber orientations obtained with SR reconstruction results and the angles deviating from the ground-truth fibers as well as the angle distributions in white matter region.

In addition to fiber orientations, we also calculate fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD) from the reconstructed high-resolution DT images, they are the most important metrics to reflect the microstructural integrity of the white matter. We show FA, MD, AD and RD maps in Fig. 6, where the yellow number located at the lowerleft corner indicates the mean absolute error (MAE) between the reconstruction results and the ground-truth. As we can see, comparing against the ground-truth (GT), the FA, MD, AD and RD To further statistically validate that our method can obtain more accurate diffusion metrics, the error bars of the root mean square errors (RMSE) for FA, MD, RD, and AD maps were also given in Fig. 7. It can be seen that, the proposed method achieved the lowest RMSE for all the diffusion metrics, at the same time, the standard deviation of RMSE obtained with our method was the smallest, which means that the SR reconstruction performance of our method was more stable than the others. 

Ablation Study

In this section, we verify the effectiveness of different modules in our approach, including the number of reference samples and the reference selection methods, the semi-supervised learning strategies, and the network architecture.

Influence of the number of references and the reference selection methods

Fig. 8 shows the variations of PSNR and SSIM of the reconstructed high-resolution DW images with the number of references. We notice that the PSNR and SSIM are the lowest when no reference is used for SR reconstruction, as the number of references increases from 0 to 3, the PSNR and SSIM increase gradually, indicating that multiple references can further improve PSNR and SSIM comparing to using a single reference. However, when the number of references is greater than 3, PSNR continues to increase for DW images with b=0 and b=1000, but SSIM decreases. Besides the number of the references, the reference selection methods also influence the SR reconstruction results. Considering the properties of DW images, namely the DW images of one subject form a 4-dimensional (4D) volume, for a DW image of any given slice along one diffusion direction in such volume, its potential reference selection methods include selecting the DW images of its adjacent slices along the same diffusion direction, selecting the DW images of the same slice along other diffusion directions, and selecting the same slice along the same diffusion direction from other volumes (our reference selection method). To verify which reference selection method is the best, we use different references to implement SR reconstruction network, the results are given in Table . We observe that our method (last row) achieves the highest PSNR and SSIM for the SR reconstructed DW images. 

Influence of the semi-supervised learning strategies

To evaluate the effectiveness of the semi-supervised learning strategy proposed in this paper, we compare our results with the results reconstructed without CycleGAN-based semi-supervised learning strategy and with pseudo label based semi-supervised learning strategy, respectively. Fig. 9 shows the quantitative results of three methods in reconstructing DW images. It can be seen that the cycle consistency strategy is better than those without CycleGAN-based semi-supervised model and the pseudo-label strategy, achieving the highest SSIM in DW images with any b-values. Fig. 9. The impact of semi-supervised learning strategy

Effectiveness of network architecture

The SR reconstruction network proposed in this work includes two branches, one branch is used to migrating ×1 scale reference features, and the other branch is to migrate ×2 scale reference features. To further improve the SR reconstruction performance, the information of the two branches exchanges. To validate the effectiveness of such network structure, we performed several ablation studies, the corresponding results are given in the Table 2, where "Tx1 branch" indicates that migrating ×1 scale reference features into the SR reconstruction, "Tx1 branch + T×2 branch" means that migrating both ×1 and ×2 scale reference features, and "Tx1 branch + T×2 branch + InfoExchange" represents migrating both ×1 and ×2 scale reference features, at the same time, Tx1 branch and T×2 branch exchange the information during SR reconstruction. We found that, combining dual scale reference features can promote the SR reconstruction performance, especially when exchanging the information between Tx1 and T×2 branches, the PSNR and SSIM of B0 image can be increased by 2.0% and 0.9% respectively. 

Discussion

Super-resolution reconstruction of DW images is essential for measuring accurately the microstructure of fibrous tissues. In this work, a semi-supervised super-resolution reconstruction method based on multiple references is proposed, which exploits the prior information of multiple unmatched HR image references to assist super-resolution reconstruction, and uses a CycleGANbased semi-supervised strategy to train the network with both matched and unmatched LR-HR image pairs. By comparing with the state-of-the-art models, the high-resolution DW images reconstructed by our method have more texture details, fewer artifacts, and the corresponding diffusion tensor metrics can reflect the tissue microstructures more precisely.

For the DW images reconstructed with unsupervised learning-based model CinCGAN, the visualization quality and the corresponding quantitative metrics (PSNR/SSIM) are not pleasant since learning from the unpaired dataset does not allow the network to reconstruct the complex textures and details in DW images. As to the supervised learning-based SR reconstruction methods, such as SRGAN, EDSR and HAN, although they can achieve higher PSNR and SSIM, the DW images reconstructed by them have poor visual quality, as shown in Fig. 3. For instance, the DW images reconstructed by SRGAN have checkerboard artifacts, while the super-resolution DW images obtained by EDSR and HAN are too smooth to loss the texture details. This can be explained by the nature of supervised learning-based SR reconstruction methods, it means that HR images are learned from the down-sampled LR images with bicubic interpolation, the network cannot learn exactly the super-resolution part of the missing information caused by the sampling, accordingly, the image details cannot be reconstructed well. In contrast, when unmatched reference image is introduced into the supervised learning models, such as the TTSR method, the visual quality of the reconstructed DW images is improved with less over-smoothing phenomenon and a lot of texture details are recovered, which validates that incorporating the prior information of reference image features can help to restore the high-frequency texture details of the reconstructed image, this is why the SSIM of DW images obtained by TTSR model is improved. However, the high-frequency texture features provided by the prior information may be disturbed by the noise of the references, which will reduce therefore the PSNR of the DW image reconstructed by TTSR, especially when b-value = 2000 s/mm 2 , where the DW signals are more attenuated, resulting in a low signal-to-noise ratio (SNR) reference image and bringing therefore a large amount of noise in the prior information. As to the MASA model that also uses the reference to improve the SR reconstruction results, although the visualization results are better, the quantitative evaluation metrics PSNR and SSIM are both decreased, which indicates that the MASA generates more false textures during the reconstruction process. The method proposed in this work makes a compromise between the visualization quality of the reconstructed DW images and the quantitative evaluation metrics. Although the visualization quality of the reconstructed high-resolution DW image is a little smoother than that of TTSR and MASA models, we observe from the residual maps that, the texture details reconstructed by our model is more accurate and realistic than TTSR and MASA (Fig. 3), therefore our model can obtain the maximum PSNR and SSIM values (Fig. 4). By comparing with the state-of-the-arts models, we notice that the proposed method can not only ensure that the reconstructed DW image has a better visual quality, but also guarantee the accuracy of the reconstructed DW image details, which is more suitable for clinical use.

To further confirm this point, the diffusion tensor images, and diffusion metrics are calculated from the reconstructed high-resolution DW images. We notice that the proposed method is better than the comparative methods in terms of the qualitative and quantitative results, as shown in Fig. 5, Fig. 6, and Fig. 7. The comparative methods are not stable in reconstructing DW images with different diffusion gradient directions and different b-values. For instance, for the reference-based method TTSR, even though it achieves a smaller residual value in FA, MD, AD and RD maps than the models without using references, its mean deviation angle in fiber orientations is much larger. However, comparing with TTSR, our method can further improve the accuracy of diffusion metrics and achieves the smallest deviation in fiber orientations and the most similar FA, MD, AD and RD maps to the ground-truth. This is thanks to the use of multiple reference information of the DW images with same b-value from other volumes. Extracting semantic features from different references and fusing these semantic features can bring richer prior information and improve the reconstruction quality and stability of high-resolution DW images, accordingly, generating better diffusion metrics. The superiority of multiple references is also confirmed in our ablation experiments. As shown in Fig. 8, when the number of references increases from 0 to 3, the PSNR and SSIM of the reconstructed DW images increase gradually, which is in line with our expectation. However, when the number of reference samples is further increased, the SSIM decreases. This means that although more references bring richer prior information, they also bring more noisy interference information. As the effect of random noise and disturbance is greater than the effect of prior information, it will lead to the degraded performance, this is also the reason that the number of references is chosen as 3 in this work. In addition, from the ablation results, we also find that the references selection methods influence the SR reconstruction quality, especially when selecting the DW images along different diffusion directions as references (Table 1), the PSNR and SSIM decrease a lot. This can be explained by the principle of DW imaging, the signal attenuation along different directions is totally different, using the DW images along other directions as the references will lead to significant prior bias and therefore affect the SR reconstruction quality. Selecting the references from the adjacent slices is an alternative, but its performance is not better than ours since the anatomical structure contained in consecutive slices may be different, this will introduce the biased information for super-resolution reconstruction. Once the slice gap becomes big, the quality of SR reconstruction will degrade dramatically.

Although the proposed MRSR model has good performance in reconstructing the DW images and diffusion metrics, it still has some limitations. Firstly, as mentioned above, the number of references has a large impact on the results of SR reconstruction results, how to select the number of references adaptively according to the data characteristics instead of setting manually will be our future research interests. Secondly, we achieve the super-resolution reconstruction with only a scale of 2, how to design network structure to realize higher scale SR reconstruction is also a work to be studied. Finally, this work adopts the idea of cycle consistency constraint as a semi-supervised learning strategy, although this strategy is better than the existing pseudo label algorithm, how to design the other semi-supervised learning strategies to further improve the reconstruction results is still an interest direction for future works.

Conclusion

In this work, a semi-supervised super-resolution reconstruction method for DW images acquired at multiple shells is proposed, in which the multiscale prior information of the highresolution DW reference images is extracted through a subnetwork and then combined with the features of the other low-resolution DW image to assist the corresponding super-resolution reconstruction. To fully exploits the prior information from unmatched LR-HR image, a CycleGANbased semi-supervised strategy is also used to train the network with both matched and unmatched LR-HR image pairs. By comparing with state-of-the-art models, we demonstrate that the highresolution DW images reconstructed by our method have more texture details, fewer artifacts, and the corresponding diffusion tensor metrics can reflect the tissue microstructures more precisely. In addition, the ablation experiments validate the efficacy of the multiple references, dual-branchinformation-exchange-network structure, and CycleGAN-based semi-supervised learning strategies, which provides a useful means to achieve SR reconstruction with limited matched image pairs.
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 1 Fig. 1. Overall structure of the proposed network

Fig. 3 .

 3 Fig. 3. SR reconstruction results for DW images with different b-values. b0, b1 and b2 represent DW images with b-values of 0, 1000 and 2000 respectively, and the yellow number at the lowerleft corner indicates the mean absolute residual value.

  images with different b-values are given in Fig. 4. Our model has the best performance on both low and high b-value DW image reconstructions. Simultaneously, the standard deviation of PSNR and SSIM obtained by our model is the smallest, indicating that our model has better reconstruction stability for different samples. (a) Boxplots of PSNR of DW images reconstructed with different methods (b) Boxplots of SSIM of DW images reconstructed with different methods Fig. 4. Quantitative comparison among different SR reconstruction models for DW images with different b-values. The mean values are shown on the top of each plot.

Fig. 6 .

 6 Fig. 6. High-resolution FA, MD, AD and RD maps reconstructed with different methods and the corresponding residuals comparing against ground-truth. The number located at the lower-left corner indicates the mean absolute residual value of each plot.
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 7 Fig. 7. The error bars of root mean square error (RMSE) for FA, MD, AD and RD maps obtained with different methods.

Fig. 8 .

 8 Fig. 8. Variations of PSNR and SSIM of reconstructed DW images with the number of references
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Table 1

 1 The influence of the reference selection methods on the SR reconstruction quality

	References selection methods	b=0 PSNR / SSIM PSNR / SSIM PSNR / SSIM b=1000 b=2000
	Adjacent slices	35.89 / 0.973 32.74 / 0.933 30.42 / 0.904
	Different directions	35.94 / 0.967 32.78 / 0.926 30.42 / 0.897
	Different volumes	36.03 / 0.975 32.82 / 0.935 30.45 / 0.906

Table 2

 2 Effectiveness of the dual branch network structure and the information exchange T×2 branch + InfoExchange 36.03 / 0.975 32.82 / 0.935 30.45 / 0.906

	Network Structure	b=0 PSNR / SSIM PSNR / SSIM PSNR / SSIM b=1000 b=2000
	T×1 branch	35.34 / 0.966 32.64 / 0.928 30.32 / 0.900
	T×1 branch + T×2 branch	35.84 / 0.971 32.77 / 0.931 30.43 / 0.903
	T×1 branch +