
HAL Id: hal-04212352
https://hal.science/hal-04212352v1

Submitted on 20 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Rail Crack Propagation Forecasting Using
Multi-horizons RNNs

Sara Yasmine Ouerk, Olivier Vo Van, Mouadh Yagoubi

To cite this version:
Sara Yasmine Ouerk, Olivier Vo Van, Mouadh Yagoubi. Rail Crack Propagation Forecasting Using
Multi-horizons RNNs. Advanced Analytics and Learning on Temporal Data | Workshop and Tutorial
@ ECML-PKDD 2023, Sep 2023, Turin (Italie), Italy. �hal-04212352�

https://hal.science/hal-04212352v1
https://hal.archives-ouvertes.fr
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Abstract. The prediction of rail crack length propagation plays a cru-
cial role in the maintenance and safety assessment of materials and struc-
tures. Traditional methods rely on physical models and empirical equa-
tions such as Paris’ law, which often have limitations in capturing the
complex nature of crack growth. In recent years, machine learning tech-
niques, particularly Recurrent Neural Networks (RNNs), have emerged
as promising methods for time series forecasting. They allow to model
time series data, and to incorporate exogenous variables into the model.
The proposed approach involves collecting real data on the French rail
network that includes historical crack length measurements, along with
relevant exogenous factors that may influence crack growth. First, a pre-
processing phase was performed to prepare a consistent data set for learn-
ing. Then, a suitable Bayesian multi-horizons recurrent architecture was
designed to model the crack propagation phenomenon. Obtained results
show that the Multi-horizons model outperforms state-of-the-art models
such as LSTM and GRU.

Keywords: Crack propagation · Machine Learning · Time series.

1 Introduction

The French rail network has over 100,000 km of rail, including around 10,000
km for high-speed lines (LGV). The passage of rolling stock over these rails gen-
erates stresses in the rail, on the wheel-rail contact zone, which eventually leads
to rolling contact fatigue. Defects resulting from this fatigue are monitored, and
crack propagation is periodically checked, as a defect can propagate over several
decades or a few months. When the length or depth of the crack becomes critical,
it is imperative to correct the defect, otherwise there is a risk of rail break and
potential derailment. Rolling contact fatigue is thus separated into two distinct
phases, first the crack initiation, and then the crack propagation. In this paper,
we focus on the latter and propose to build a predictive model that allows to
evaluate the residual life of an already existing crack before reaching the critical
threshold. This phenomenon can be partially explained by physical models and
many studies have been led to understand the impact of various parameters.
Bonniot et al. showed that the crack propagation in the rail is complex and
follow mixed non proportional propagation modes [1]. Crack propagation speed
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depends on Stress Intensity Factor (SIF) identified from laboratory experiment,
plastic deformation, friction between crack lips, its wear and corrosion and many
other geometrical parameters such as initial crack width and direction, as shown
by Fang et al. [2]. Moreover, other parameters in-situ are known to have an
impact, such as track flexibility or acceleration and breaking and others still
not quantified such as material decay over time. To deal with the lack of rep-
resentativity of physical simulation in crack propagation modeling, we need to
consider other parameters and phenomena that can lead to a more and more
computationally expensive simulations, prohibiting thus their use to solve real
world problems. At the same time, the mass of real data collected on various
characteristics such as ”infrastructure” and ”traffic” makes it possible to inves-
tigate the potential of data-driven models. The problem can be seen as a time
series forecasting of the crack length. In this paper, we propose a multi-horizon
approach to predict the propagation of rail crack based on historical data that
we compare with state of the art time series machine learning methods. The re-
mainder of this paper is organized as follows. In section 2 we present some recent
related works. Section 3 describes the data processing analysis required to build
the different models that are presented in section 4. The comparative results are
discussed in Section 5 , and as usual Section 6 summarizes the contribution of
this work and suggests directions for future research.

2 Related work

Time series forecasting is a fundamental task in various domains, encompassing
finance, weather prediction, demand forecasting, and more. Over the years, tra-
ditional and deep learning models have played a pivotal role in advancing the
accuracy and effectiveness of time series forecasting.
Traditional approaches for time series forecasting have been widely used es-
pecially for univariate time series forecasting. Holt et al. introduced a method
commonly employed for time series forecasting, Exponential Smoothing (ES) [3].
They involve recursively updating the forecasted values by assigning exponen-
tially decreasing weights to past observations. Simple Exponential Smoothing
[4], Holt’s Linear Exponential Smoothing [5], and Holt-Winters’ Seasonal Expo-
nential Smoothing [6] are variations of this approach.
Autoregressive Integrated Moving Average (ARIMA) [7] is also a popular method
for time series forecasting. It models the time series as a combination of autore-
gressive (AR), differencing (I), and moving average (MA) components. ARIMA
models are widely used for stationary time series data.
These traditional approaches have been widely used in time series forecasting and
have provided valuable insights in various domains. However, they have certain
limitations that can impact their effectiveness and accuracy. In fact, many tra-
ditional time series forecasting methods assume that the underlying data follows
a stationary process, where the statistical properties remain constant over time.
However, real-world data often exhibits non-stationarity, such as trends, season-
ality, and changing statistical properties. Failing to account for non-stationarity
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can lead to inaccurate forecasts. Moreover, these methods primarily focus on
historical time series data and may not naturally incorporate external factors.
However, many forecasting problems benefit from including additional variables,
such as weather data.
While traditional time series forecasting approaches have their limitations, re-
cent advancements in machine learning, such as deep learning models aim to
address some of these challenges and provide more accurate and flexible fore-
casting capabilities.
Neural Networks (NN) have been widely used for time series forecasting and have
achieved state-of-the-art performance in many applications. Neural networks, es-
pecially recurrent neural networks (RNNs) and their variants, have proven to be
effective in capturing temporal dependencies and patterns in time series data.
Moreover, there have been efforts to incorporate external factors or exogenous
variables into time series forecasting models. These factors can include contex-
tual information or additional time series that may influence the target variable.
One of the most popular RNN architectures for time series forecasting is the
Long Short-Term Memory (LSTM) network [8]. LSTMs are designed to address
the vanishing gradient problem and are capable of learning long-term depen-
dencies in sequential data. They have been successfully applied to various time
series forecasting tasks, including stock market prediction, energy load forecast-
ing, and weather forecasting.
In recent years, other advanced variants of RNNs, such as Gated Recurrent Units
(GRUs) [9] and Transformers [10], have also shown promising results in time se-
ries forecasting. GRUs are similar to LSTMs but have a simpler architecture,
which makes them computationally more efficient.
Transformers, originally introduced for natural language processing tasks, have
been adapted for time series forecasting by leveraging self-attention mechanisms.
Transformers have the advantage of parallel processing and have shown compet-
itive performance in several domains.

3 Data description and processing

Collected real data can be divided in four different categories. Each time it was
possible, categorical data were converted to numerical data.

– Infrastructure data: These data correspond to the network description.
The interesting features to consider are all parameters that can change the
vehicle dynamic, namely the rail linear mass, to take into account rail profile
and vertical flexibility, sleeper type, rail grade, radius of curvature, cant,
slope and side of the rail (left or right);

– Traffic data: These data correspond to the use of network. The dynamic
impact of rolling stock is considered by maximal velocity allowed and quan-
tity and number of acceleration and breaking. The rail loading is considered
using annual tonnage (number of ton of vehicle seen by the rail) and number
and type of vehicle (passenger or goods);
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– Environment data: These are data not related to railway environment.
The only environment data used here are temperatures and rain classified
by type (low rain, strong storm, ice, snow, ...)

– Defect: These data correspond to the state of the network. Here, three dif-
ferent defects were selected, which represent most of rail defects in french
railway, namely squats (in three different parts of the rail). Each defect is dis-
covered at a recorded date and regularly visited to check its evolution. Each
time, parameters such as crack length and measurement date are recorded.

One last parameter is considered and called ”UIC Group”. It is strongly corre-
lated with speed limit and tonnage and defines maintenance conditions. Through
this parameter are thus included other unavailable data at the time of the study
such as grinding works. These data present a number of anomalies (inconsistent
format, missing values, etc.), which necessitated a data preprocessing phase to
obtain a consistent database to train the Machine Learning models.

Note that crack data was the most challenging to process for several reasons:

– Crack length values also present anomalies linked to database filling errors
(negative values, exceeding certain thresholds, or considerable falls in values);

– Discovery date happened between 2008 and 2018 and crack life before it is
removed can vary from several months to several years;

– Visit dates at which the crack length is measured are manually and empir-
ically planed, the duration between two visits can thus vary from one week
to a couple of years;

– The perceived high risk cracks are frequently visited and lead to sequence
length (the time series) longer than others;

– Abrupt propagation have been observed for some defects. This behavior may
be physically explained (caused by an extremely cold day) , or simply based
on a human judgement to merge two spatially close defects;

– Abrupt reduction of the crack length, which can be due to rail grinding;
– Measurement uncertainty, which is a known issue and led to approximate

the measured length to the closest multiple of 5.

Data processing
All the above information have been crossed to create a single training dataset
containing all the information. The anomalies mentioned above were also ad-
dressed based on experts knowledge on the data. To overcome the problem of
irregular time steps in the time series, an interpolation was performed. A fre-
quency of 3 months was chosen and a linear average was computed on all series,
resulting in 3-month time-step series with a maximum length of 59 time steps.
After this step, defects with a fall in values greater than 15mm were removed
from the database, to avoid introducing errors into the learning model. Drops
in values of less than 15mm are tolerated, as it is possible to have variations in
measurement conditions such as temperature variation that can lead to crack
closure and reduce the size measured as explained in [11]. The measurement is
also subject to operator interpretation of the observed signal and can thus vary
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with operators.

Feature extraction
In the collected data, defect discovery dates vary widely, with some defects being
more recent than others. To consider this information in the learning process,
we set up an input variable that calculates the elapsed time since the defect was
discovered.
The crack propagation speed was also calculated between time steps, which can
give an indication of how fast the crack length propagates in a given context
for the learning model. This information can only be used in the past horizon
(the notion of horizon will be introduced in section 4.2) and not in the future
horizon, to avoid giving information on the lengths to be predicted. This feature
extraction and selection resulted in 37 exogenous features for each time step in
the time series.

4 Modeling approaches

4.1 Feature based modeling

Initially, crack length values are considered unknown to the model. Only ex-
ogenous variables will be taken into account by the model to predict the corre-
sponding crack lengths. As mentioned in the previous section, several variables
are available. The time series are therefore multivariate, with several dynamic
(evolving over time) or static features for the different time steps. For this con-
figuration, sequences were created using a sliding window of size t.

The goal is to model the distribution of the crack length sequence, knowing
its current context X1:t, as

P (Y1:t|X1:t). (1)

Were X1:t represents the exogenous feature (static and dynamic) by time step,
and Y1:t their corresponding crack length values to be predicted.
Static features are encoded using Fully Connected (FC) layers, the dynamical
features are encoded also using Fully Connected (FC) layers and then passed to
one type of recurrent layers (RNN, LSTM or GRU) which can handle the time
dependency between time steps. These models are respectively called RNN-FC,
LSTM-FC and GRU-FC.

4.2 Considering the historical crack length values

For this new setup, a dataset containing crack length sequences was created using
a sliding window of length t+k over our time series. Each position of the sliding
window contains a sample in our dataset with the first t values of crack lengths
(the history), and their corresponding contextual features being the input of the
past horizon and the last k values (the forecasting horizon) being the output.
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The goal in this case is to model the distribution of the crack length sequence,
knowing its historical features X1:t and measurements Y1:t, as

P (Yt+1:t+k|Y1:t, X1:t). (2)

As mentioned above, interpolation is used to deal with the problem of irregular
time series. The interpolated values are calculated using a linear average. For
some time series, the past horizon may contain interpolated length values after
the last measured value. These values are calculated using crack length values
from the prediction horizon, as explained in figure 1. So, introducing them to the
learning model will give information about the future values that are supposed
to be unknown for the model, and thus may introduce a bias for the learning
process.
To avoid this problem, only interpolated values before the last measured value
are included. For time steps interpolated after this step, the last measured value
is used to replace the interpolated steps. As an example in table 1, we assume
that crack length values of the defect corresponding to the past horizon are the
values in the first row. The ”Last measured value” variable indicates the last
measured crack value (not an interpolated value), the ”Step is interpolated”
variable indicates whether the time step corresponds to an interpolated or non-
interpolated (measured) crack length value.
The fifth time step is interpolated, and is the last time step before the prediction
horizon, so its value can give information about the first value in the prediction
horizon. Consequently, this value is replaced by the last measured crack length
value. The model input for the ”historical crack length values” feature will then
be the ”model input” variable in the table.
It should be noted that the model will be less accurate with this modification,
but at least it will avoid biasing it with information it is not supposed to know.
Some variables have been added to indicate whether the time step is interpolated
and, if so, the number of time steps since the last measurement. This will reduce
the effect of this replacement on performance.

Fig. 1: Example of interpolation for the last step before the prediction horizon
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Table 1: Example of model input of crack length values in the past horizon with
last crack length value replacement

Crack length 30 32.5 35 35 38.125

Last measured value 30 30 35 35 35

Time step is interpolated No Yes No No Yes

Model input 30 32.5 35 35 35

Simple Recurrent model
For this model, only historical exogenous characteristics and corresponding crack
length values are considered. These variables are passed on to the recurrent
layer (LSTM/GRU), then their latent representation is passed on to some fully
connected layers in order to infer crack length values in the future. These models
are called LSTM-FC-LH and GRU-FC-LH, where LH refers to the historical
crack lengths.

Multi-horizons recurrent model
In a second step, a model was implemented to consider both historical context
X1:t and lengths Y1:t, as well as the current context Xt+1:t+k. The aim is to
model the distribution,

P (Yt+1:t+k|Y1:t, X1:t, Xt+1:t+k). (3)

This model is a recurrent neural network with multiple time horizons. It consists
of a past horizon which takes as input exogenous variables and historical crack
length measurements, and a future prediction horizon which takes as input the
encoded output from the past horizon as well as current contextual variables in
order to infer future crack length values, as described in Figure 2.
The general architecture of the multi-horizon model is shown in Figure 3.
For all the described models above, a customized Mean Squared Errors (MSE)
has been used for learning. This loss is an MSE loss that ignores the padded
time steps in order to avoid introducing bias to the model.

Bayesian Multi-horizons recurrent model
As mentioned above, crack length measurements are subject to uncertainty. This
uncertainty is related to the data quality that cannot be reduced by adding more
data, but it can be quantified. This type of uncertainty is called Aleatoric un-
certainty and captures inherent noise in the observations. The learning model
itself may be also uncertain regarding its predictions, due to a lack of learning
data for example. This is called epistemic uncertainty and can be reduced by
observing more data.
The multi-horizons model described above has been adapted, based on a Bayesian
approach suggested by Kendall et al. [12], to allow uncertainty estimation in
parallel with model prediction. This model is called the Bayesian Multi-horizons
model (B-MH).
The B-MH model output, is composed of predictive mean ŷ as well as predictive
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Fig. 2: Scheme of the prediction model

Fig. 3: Architecture of the multi-horizons recurrent model

variance σ̂2.
The general architecture of the model remains unchanged, with only the last
fully connected layers duplicated in order to output both ŷ and σ̂2. ŷ represents
the predictive mean crack length and σ̂2 its predictive variance.
A Gaussian likelihood is used to model the aleatoric uncertainty, as the available
crack length values follow a Gaussian distribution. This induces the minimiza-
tion loss function for a given sequence xi,

LB MH =
1

Ni

Ni∑
j=1

1

2σ̂(xij)2
||yij − ŷij ||2 +

1

2
log(σ̂(xij)

2), (4)

were σ̂(xij)
2 is the predictive variance for the the time step j of the sequence

xi, ŷij its predictive mean and Ni the number of time steps in the sequence xi.
The variance σ̂2 is implicitly learnt from the loss function. The division of the
residual loss ||yij − ŷij ||2 (which represent the MSE loss) by σ̂(xij)

2 makes the
model more robust to noisy data. In fact, data for which the model has learned
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to predict a high uncertainty will have lower effect on loss. The second regular-
ization term prevents the network from predicting infinite uncertainty.
For numerical stability, and to avoid dividing by zero or either predicting nega-
tive variance, the term σ̂(xij)

2 is replaced by the term sij = log(σ̂(xij)
2). The

weights of the two terms in the equation have been set to 2
3 and 1

3 respectively,
to give more weight to the MSE than to the regularization term, resulting in
the minimization function,

LB MH =
1

Ni

Ni∑
j=1

2

3
exp(−sij)||yij − ŷij ||2 +

1

3
sij . (5)

To quantify the uncertainty, a dropout approach [13] is used as Bayesian approx-
imation. The model is trained with dropout before every weight layer. Contrary
to what is usually done for a network trained with dropout layers, dropout re-
mains activated during inference to generate stochastic rather than deterministic
outputs. T stochastic prediction samples are performed using Dropout, allowing
to approximate the predictive uncertainty for one observation as

Var(y) ≈ (
1

T

T∑
t=1

ŷt − (
1

T

T∑
t=1

ŷt)
2) +

1

T

T∑
t=1

σ̂2
t , (6)

with {ŷt, σ̂2
t }Tt=1 the set of T sampled outputs after each forward pass.

The first term of this total variance corresponds to the epistemic uncertainty
and the second one corresponds to the aleatoric uncertainty.

5 Experiments

5.1 Data preparation for Learning

Whatever the model used for learning, the generated time series have been pre-
processed to ensure that the learning models function correctly.
By choosing a maximum size for the prediction horizon at a given value, not all
the series generated have the same length. As some are shorter than the max-
imum length, these series have been completed by adding zeros at the end, so
that they all have the same length. These completed time steps will be ignored
when calculating the cost functions by implementing custom functions that ig-
nore these time steps for backpropagation.
After this step, the dataset is divided into three parts: 60 % training set for the
learning procedure, 20 % validation set for hyperparameter optimization and
convergence control, and 20 % test set for performance evaluation. The division
strategy adopted ensures that the subsequences of a given defect series belong
to only one of the three previous sets.
The time series are then normalized using a custom time series standard scaler,
so that their mean is 0 and their standard deviation is 1. This makes the model
much more robust to outliers. Min-max normalization has also been tested, but
gives slightly poorer results.
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5.2 Settings

The work has been implemented in Python using Pytorch. All the experiments
are conducted using an NVIDIA A40 GPU.
Adam optimizer is used to perform the gradient descent minimization of the loss
function. The activation function used is the Tanh function for all hidden layers.
The convergence of the models is checked on learning rates from 10−1 to 10−4,
and on different batch sizes. The models perform best with the learning rate of
0.001 and batch size of 128. The models are also fitted over a variable number of
epochs, the classical recurrent models converge after about 25 epochs, and the
multi-horizons models converge after 10 epochs.
To benchmark the different models, many ML and physical metrics are used
to compare their performances. MAE and RMSE errors are used as machine
learning metrics. Other physical criteria are considered to avoid some physical
constraints violations such as the drop in the crack length, a phenomenon that
should not occur physically (the crack can either progress or remain constant).
These physical criteria are:

– MSQNS, for Mean SeQuence Negative Slope, is the percentage of sequences
that contains at least one fall in the predicted values;

– MSTNS, for Mean STeps Negative Slope, is the percentage of steps that
contains at least one fall in the predicted values.

– MLNS, for Mean Length Negative Slope, is the mean value of the fall in pre-
dicted length values. As a reminder, the observation time series themselves
contain drops in values of up to 15mm.

The computation of evaluation criteria for all reported experiments in this paper
is performed using the recently proposed LIPS Framework for benchmarking
learned physical systems [14].

5.3 Experiments with simple configuration (without historical crack
length values)

For this modeling, there is no notion of horizons in the generation of sequences.
Generated sequences are of size 4 (we need to anticipate crack lengths values
over a period of one year with a time step of 3 months). As previously stated,
only exogenous variables are considered for prediction. Recurrent models were
compared using the various ML and physical criteria defined above. This com-
parison is made in particular for the average score over the 4 time steps to be
predicted (mean MAE and mean RMSE), as well as for the scores linked to the
prediction of the first time step (MAE 1st and RMSE 1st) as shown in Table 2.
The results show that the GRU-FC model outperforms LSTM-FC and RNN-FC
in terms of machine learning criteria. The LSTM-FC and RNN-FC models have
quite similar ML results, but the LSTM-FC model gives the best results in terms
of physical criteria.
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Table 2: ML and Physical results for the recurrent models without using histor-
ical crack length values

Model
MAE
1st

Mean
MAE

RMSE
1st

Mean
RMSE

MLNS MSQNS MSTNS

RNN-FC 10.48 10.47 13.67 13.66 1.72 29% 8%

GRU-FC 9.65 9.45 12.60 12.38 2.59 24% 6%

LSTM-FC 10.54 10.53 13.75 13.72 1.18 3% 1%

5.4 Experiments considering historical crack length values

Experiments with recurrent models
For this modeling, time series were created using a sliding window of size 9: with
a past horizon of size 5 and a prediction horizon of size 4. The size of the past
horizon containing historical crack values was chosen at 5 time steps, inspired
by [15] which suggests that a past horizon of size 1.25 × k (k being the size of
the prediction horizon) gives the best prediction results.
Table 3 shows ML and physical criteria for the recurrent models that considers
historical crack length values. ML scores include the MAE for the different time
steps in the prediction horizon (from t+1 to t+4) and their average value, and
the RMSE score for the first time step in the the prediction horizon and the
average score over the entire prediction horizon. The LSTM-FC-LH model gives
slightly better results than the GRU-FC-LH. For the physical criteria, this time
it is the GRU-FC-LH model that gives slightly better results.

Table 3: ML and Physical results for the recurrent models considering historical
crack length values

Model
MAE
1

MAE
2

MAE
3

MAE
4

Mean
MAE

RMSE
1st

Mean
RMSE

MLNS MSQNS MSTNS

LSTM-FC-LH 2.37 3.05 3.85 4.51 3.45 4.72 6.01 1.16 mm 1% 0.15%

GRU-FC-LH 2.37 3.11 3.85 4.58 3.49 4.77 6.06 1.07 0.5% 0.13%

Experiments with the Multi-horizons and Bayesian Multi-horizons
models
For this modelling, a number of past horizon sizes were tested to see their effect
on the various criteria to be minimized.
Tables 4 and 5 show the results of the different ML and physical criteria of the
multi-horizons model and the Bayesian multi-horizons model with different past
horizon sizes. Good results can already be obtained from a single measurement
in the past horizon. The size of the training set decreases as the size of the past
horizon increases, due to the filtering of sequences to respect the minimum size.
The choice of the size of the past horizon is conditioned both by the criteria to
be minimized as far as possible and by industrial use. Indeed, information on
historical measurements is sometimes available for just 1 or 2 time steps, which
corresponds to three months or less, but we still want to predict crack lengths
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in the future because some cracks might have exceeded the security threshold
before 6 months. The model must therefore be able to make predictions even
with a limited past horizon size. Figure 4 and 5 show ML scores (MAE and

Table 4: ML and physical criteria results for the multi-horizons model considering
different past horizons lengths for prediction

dim hp
nb sequences

train
MAE
1st

Mean
MAE

RMSE
1st

Mean
RMSE

MSQNS
%

MSTNS
%

MLNS
mm

1 294018 1.22 2.41 2.50 4.38 2.95 0.79 1.14

2 265519 1.15 2.29 2.39 4.22 2.85 0.76 1.13

3 238222 1.51 2.58 2.82 4.54 4.58 1.20 1.18

4 216021 1.28 2.26 2.50 4.26 14.09 3.61 1.11

5 193901 1.54 2.64 2.62 4.33 2.87 0.74 1.13

6 173598 1.27 2.29 2.43 4.13 6.58 1.69 1.08

7 158040 1.39 2.31 2.58 4.13 4.80 1.22 1.17

8 141407 1.33 2.17 2.43 4.05 8.61 2.22 1.08

9 126847 1.33 2.10 2.39 3.91 6.78 1.74 1.16

10 113175 1.23 2.15 2.33 3.96 14.91 3.80 1.14

Table 5: ML and physical criteria results for the Bayesian multi-horizons model
(B-MH) considering different past horizons lengths for prediction

dim hp
nb sequences

train
MAE
1st

Mean
MAE

RMSE
1st

Mean
RMSE

MSQNS
%

MSTNS
%

MLNS
mm

1 294018 0.86 2.21 2.40 4.28 1.99 0.52 1.09

2 265519 0.94 2.26 2.32 4.22 1.51 0.39 1.14

3 238222 0.90 2.21 2.44 4.30 1.05 0.29 1.13

4 216021 1.20 2.23 2.63 4.29 3.56 0.91 1.05

5 193901 0.94 2.19 2.44 4.19 1.30 0.35 1.09

6 173598 0.98 2.13 2.37 4.06 2.87 0.73 1.04

7 158040 1.28 2.31 2.58 4.13 1.41 0.37 1.07

8 141407 1.13 2.15 2.38 4.00 9.83 2.49 1.04

9 126847 1.13 2.06 2.31 3.87 6.20 1.58 1.02

10 113175 1.02 1.96 2.34 3.93 2.94 0.78 1.09

RMSE) for both the multi-horizons and Bayesian multi-horizons models using
different past horizons lengths, these scores are presented in detail over the entire
prediction horizon. Models errors increase with distance from the past horizon.
The Bayesian multi-horizons model outperforms the multi-horizons model over
the entire forecast horizon.

Figure 6 shows the scatter plots for each time step in the prediction horizon.
The x-axis and the y-axis correspond to the measured and predicted values of
crack length respectively. There is a high density around the y = x line which
explains the good prediction scores. There are, however, some miss-predicted
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Fig. 4: MAE and RMSE scores for the prediction horizon using the multi-horizons
model with different past horizon lengths.

Fig. 5: MAE and RMSE scores for the prediction horizon using the Bayesian
multi-horizons model with different past horizon lengths

values, especially when crack lengths become large, where the model tends to
underestimate them. This result is mainly due to the small percentage of large
crack length values in the dataset.

Uncertainty quantification using the Bayesian multi-horizons model
As described above, uncertainty quantification is performed after the training
of the model using Monte Carlo dropout sampling. Dropout is set after each
layer (except the last one) and 50 Monte Carlo samples were generated for each
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(a) After 3 months (b) After 6 months

(c) After 9 months (d) After 1 year

Fig. 6: Actual vs predicted crack length values over the prediction horizon

time series. Then, the sum of the two types of uncertainty is calculated using
equation 6. The dropout rate was varied from 10% to 50%. Aleatoric uncertainty
does not vary widely, as it is linked to the inherent noise of the data. Epistemic
uncertainty, on the other hand, increases as the dropout rate is increased, since
it is linked to the learning model. As a result, total uncertainty increases, as
does the size of the confidence interval, resulting in higher coverage. For the rest
of this study, a dropout rate of 10% is set after each layer, and an approximate
95%-level prediction confidence interval is constructed. Results show that only
48% of time steps are covered by this confidence interval. Indeed, as mentioned
above, all the measured length values were approximated to the closest multiple
of 5, which led us to add threshold of 5 to the confidence interval. This time,
about 93% of time steps are covered by the new confidence interval.
Figure 7 shows some example of crack length propagation, the corresponding pre-
dicted values and uncertainty estimated values. Example 1 is a case of a crack
whose final value becomes significant (around 80mm). The predicted values are
very close to the measurements but the corresponding epistemic uncertainty is
quite high. This can be explained by the fact that the training set contains less
than 3% of measurements ≥ 80mm.
Example 2 is an example of propagation with decreasing values. The model un-
derestimates crack lengths for the first few predicted values, then converges to
the measured values at the end. However, falling values can be considered as in-
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herent data noise or measurement errors, resulting in a high aleatoric uncertainty
for this example.

(a) Example 1 (b) Example 2

Fig. 7: Crack length propagation example with corresponding uncertainty esti-
mation using the Bayesian Multi-horizons model

6 Conclusion and future works

Predicting the propagation of cracks in rails is a critical issue for optimizing the
maintenance operations across the rail network. This task is intrinsically com-
plex, and cannot be handled simply with physical simulations. In this paper,
we proposed a deep learning approach based on real data collected on the rail.
Obtained results show that the multi-horizons model outperforms conventional
recurrent models such as GRU. The Bayesian multi-horizons model performs
even better, and allows to quantify both aleatoric and epistemic uncertainties.
Several avenues of improvement can be investigated in future work, in particular
the calibration of models to predict more accurate uncertainties, as proposed in
[16]. We aim also at combining recurrent layers with attention layers that assign
different weights to the hidden states based on their significance for forecasting
the crack lengths. Finally, the hybridization of ML methods and physical simu-
lations is also part of the work in progress. Indeed, information provided from
physical simulation can contribute in enriching the variables of the learned model
such as the wheel load of the vehicle rolling on the rail, and thus improving the
prediction performance.
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