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Invariant Smoothing for Localization: Including the IMU Biases

In this article we investigate smoothing (i.e., optimisation-based) estimation techniques for robot localization using an IMU aided by other localization sensors. We more particularly focus on Invariant Smoothing (IS), a variant based on the use of nontrivial Lie groups from robotics. We study the recently introduced Two Frames Group (TFG), and prove it can fit into the framework of Invariant Smoothing in order to better take into account the IMU biases, as compared to the state-of-the-art in robotics. Experiments based on the KITTI dataset show the proposed framework compares favorably to the state-of-the-art smoothing methods in terms of robustness in some challenging situations.

I. INTRODUCTION

Lie group embeddings have become standard tools in navigation and mobile robotics over the last decade, see e.g., [START_REF] Barfoot | State Estimation for Robotics[END_REF][START_REF] Gregory S Chirikjian | Stochastic Models, Information Theory, and Lie Groups[END_REF][START_REF] Sola | A micro lie theory for state estimation in robotics[END_REF]. The use of SE [START_REF] Barrau | Non-linear state error based extended Kalman filters with applications to navigation[END_REF] and SE(2) was pioneered by several authors in robotics, notably [START_REF] Barfoot | Associating Uncertainty with Three-Dimensional Poses for Use in Estimation Problems[END_REF][START_REF] Long | The banana distribution is gaussian: A localization study with exponential coordinates[END_REF][START_REF] Park | Kinematic state estimation and motion planning for stochastic nonholonomic systems using the exponential map[END_REF][START_REF] Wolfe | Bayesian fusion on Lie groups[END_REF] and shown to gracefully fit unicycle-like models for wheeled robots moving in 2D. Extended Kalman filters based on those classical groups have been introduced and successfully used, see [START_REF] Bourmaud | Discrete extended Kalman filter on Lie groups[END_REF][START_REF] Hua | Implementation of a nonlinear attitude estimator for aerial robotic vehicles[END_REF]Novel Lie groups have been introduced and proved to come with similar properties when using more complex motion models based on the (3D) IMU equations, namely SE 2 (3) introduced in [START_REF] Barrau | Non-linear state error based extended Kalman filters with applications to navigation[END_REF][START_REF] Barrau | The invariant extended kalman filter as a stable observer[END_REF], as well as the general group SE K (d) which was shown to resolve the consistency issues of the Extended Kalman filter in SLAM, see [START_REF] Barrau | Non-linear state error based extended Kalman filters with applications to navigation[END_REF][START_REF] Barrau | An EKF-SLAM algorithm with consistency properties[END_REF].

Those novel Lie groups came with a new class of estimators, under the name of Invariant Extended Kalman Filter (IEKF) [START_REF] Barrau | The invariant extended kalman filter as a stable observer[END_REF][START_REF] Barrau | Invariant kalman filtering[END_REF]. The theoretical properties include convergence guarantees [START_REF] Barrau | The invariant extended kalman filter as a stable observer[END_REF], consistency properties for SLAM [START_REF] Barrau | An EKF-SLAM algorithm with consistency properties[END_REF][START_REF] Brossard | Exploiting symmetries to design ekfs with consistency properties for navigation and slam[END_REF], and have led to applications in various fields, notably robotics [START_REF] Barrau | Invariant kalman filtering[END_REF][START_REF] Caruso | Magneto-visual-inertial dead-reckoning: Improving estimation consistency by invariance[END_REF][START_REF] Hartley | Contact-aided invariant extended kalman filtering for robot state estimation[END_REF]]- [START_REF] Heo | Consistent ekf-based visual-inertial odometry on matrix lie group[END_REF][START_REF] Mahony | A geometric nonlinear observer for simultaneous localisation and mapping[END_REF][START_REF] Pavlasek | Invariant extended kalman filtering using two position receivers for extended pose estimation[END_REF][START_REF] Van Der Laan | The invariant rauch-tung-striebel smoother[END_REF][START_REF] Wu | An invariantekf vins algorithm for improving consistency[END_REF] and in the industry [START_REF] Barrau | Invariant kalman filtering[END_REF].

The success of the IEKF for models based on the IMU relies on the introduction of the Lie group of double spatial direct isometries SE 2 (3), or extended poses, in [START_REF] Barrau | Non-linear state error based extended Kalman filters with applications to navigation[END_REF][START_REF] Barrau | The invariant extended kalman filter as a stable observer[END_REF]. A thorough description of this group and its ability to capture uncertainty can be found in the recent paper [START_REF] Brossard | Associating uncertainty to extended poses for on Lie group IMU preintegration with rotating Earth[END_REF]. However, IMU biases could not be properly included into this Lie group structure, and were treated as additional parameters leading to an "imperfect" invariant framework [START_REF] Barrau | Non-linear state error based extended Kalman filters with applications to navigation[END_REF][START_REF] Van Der Laan | The invariant rauch-tung-striebel smoother[END_REF]. This limitation was greatly relieved by the introduction of the first systematic way of designing systems which fit the invariant framework, relying on the Two Frame Group (TFG) structure [START_REF] Barrau | The geometry of navigation problems[END_REF]. It encompasses the previously published groups, including SE 2 (3) and allows including the accelerometer bias.

Smoothing is now one of the most popular state estimation methods in robotics for simultaneous localisation and mapping (SLAM) and visual odometry, thanks to its reducing the consequences of linearisation errors [START_REF] Dellaert | Factor graphs for robot perception[END_REF][START_REF] Forster | On-manifold preintegration for real-time visual-inertial odometry[END_REF][START_REF] Liu | Ice-ba: Incremental, consistent and efficient bundle adjustment for visual-inertial slam[END_REF]. This success broadened its application domains, and it is now often used in inertial navigation [START_REF] Indelman | Information fusion in navigation systems via factor graph based incremental smoothing[END_REF][START_REF] Kim | Legged robot state estimation with dynamic contact event information[END_REF][START_REF] Walsh | Invariant sliding window filtering for attitude and bias estimation[END_REF][START_REF] Zhao | Differential gps aided inertial navigation: a contemplative realtime approach[END_REF]. Leveraging the framework of Invariant filtering for smoothing, a new estimation algorithm was recently proposed, namely Invariant Smoothing (IS) [START_REF] Chauchat | Invariant Smoothing on Lie Groups[END_REF], see also [START_REF] Walsh | Invariant sliding window filtering for attitude and bias estimation[END_REF]. Similar to the IEKF [START_REF] Barrau | Extended kalman filtering with nonlinear equality constraints: A geometric approach[END_REF][START_REF] Chauchat | Kalman filtering with a class of geometric state equality constraints[END_REF], IS delivers "physically consistent" estimates [START_REF] Chauchat | Invariant smoothing with low process noise[END_REF].

This paper provides all the tools required to use the TFG structure in the smoothing framework, in order to tackle biased localization using biased IMUs. To evaluate the proposed framework, experiments were conducted based on data from the KITTI dataset [START_REF] Geiger | Vision meets robotics: The kitti dataset[END_REF], focusing in particular on the difficult problem of "robot kidnapping" [START_REF] Thrun | Probabilistic robotics[END_REF], that is, localization with no prior information, known as "inflight alignment" problem in inertial navigation when the sensors used are the IMU and GNSS [START_REF] Cui | In-motion alignment for low-cost sins/gps under random misalignment angles[END_REF][START_REF] Ouyang | Optimization-based strapdown attitude alignment for high-accuracy systems: Covariance analysis with applications[END_REF][START_REF] Wu | Velocity/position integration formula part i: Application to in-flight coarse alignment[END_REF]. Results show that, for this problem, using the KITTI dataset, IS based on the TFG favorably compares to state-of-the-art smoothing schemes [START_REF] Dellaert | Factor graphs and GTSAM: A hands-on introduction[END_REF][START_REF] Forster | On-manifold preintegration for real-time visual-inertial odometry[END_REF], and to the former "imperfect" IS based on SE 2 (3), by proving more robust.

The main principles of Invariant Filtering and Smoothing are recalled in Section II. The considered application to localization is presented in Section III, as well as the presentation of the TFG and its properties for the considered problem. The proposed invariant smoother is detailed in Section IV, and the differences to the existing state-of-the-art smoothers are explained. Experimental results and comparisons are presented in Section V.

II. SMOOTHING ON LIE GROUPS

We first briefly recall the invariant filtering framework [START_REF] Barrau | The invariant extended kalman filter as a stable observer[END_REF][START_REF] Barrau | Invariant kalman filtering[END_REF]. The reader is referred to [START_REF] Barfoot | State Estimation for Robotics[END_REF][START_REF] Sola | A micro lie theory for state estimation in robotics[END_REF] for a general presentation. We consider a state χ ∈ G, with G a Lie group of dimension q. Its Lie algebra g is identified with R q . Thus we consider its exponential map to be defined as exp : R q → G. We denote its local inverse by log. We recall the notion of adjoint operator matrix of χ ∈ G, Ad χ , which satisfies

∀χ ∈ G, ξ ∈ R q , χ -1 exp(ξ )χ = exp(Ad χ ξ ) (1) 
Automorphisms are bijective maps φ : G → G satisfying

φ (χη) = φ (χ)φ (η) for χ, η ∈ G. (2) 
The Lie group Lie algebra correspondance, see [START_REF] Barrau | Linear observed systems on groups[END_REF], ensures for any automorphism φ there is M ∈ R q×q so that

∀(χ, ξ ) ∈ G × R q , φ (χ exp(ξ )) = φ (χ) exp(Mξ ), (3) 
which is closely related to the log-linearity property of [START_REF] Barrau | The invariant extended kalman filter as a stable observer[END_REF].

The operator ν → χ -1 ν χ is easily checked to be a group automorphism, and we see indeed from (1) that M = Ad χ . We define random variables on Lie groups through the exponential, following [START_REF] Barfoot | State Estimation for Robotics[END_REF][START_REF] Barrau | Invariant kalman filtering[END_REF][START_REF] Bourmaud | Discrete extended Kalman filter on Lie groups[END_REF][START_REF] Brossard | Associating uncertainty to extended poses for on Lie group IMU preintegration with rotating Earth[END_REF][START_REF] Gregory S Chirikjian | Stochastic Models, Information Theory, and Lie Groups[END_REF]. The probability distribution χ ∼ N L ( χ, P) for the random variable χ ∈ G is defined as

χ = χ exp (ξ ) , ξ ∼ N (0, P) , (4) 
In the following, we consider a discrete-time trajectory denoted as (χ i ) i of the following system

χ 0 ∼ N L ( χ, P 0 ), χ i+1 = f i (χ i ) exp(w i ), y k = h k (χ I k ) + n k (5
) where f i is the dynamics function, P 0 ∈ R q×q the initial state error covariance, w i , n k are white noises of covariance Q i and N k the observation noise covariance, and χ I k denotes a subset of the states which are involved in the measurements at t k .

A. Smoothing on Lie groups

We first briefly recall the Invariant Smoothing (IS) framework introduced in [START_REF] Chauchat | Invariant Smoothing on Lie Groups[END_REF]. Departing from a system of the form (5), the goal of smoothing is to find

(χ i ) * i = argmax (χ i ) 1≤i≤n P((χ i ) i |y 0 , . . . , y n ) (6) 
i.e., the maximum a posteriori (MAP) estimate of the trajectory. It is usually found through Gauss-Newton or Levenberg-Marquardt algorithms. First we devise a cost function associated to Problem (6) as the negative log likelihood C =log P((χ i ) 1≤i≤n |y 0 , . . . , y n ) that we seek to minimize. Given a current guess of the trajectory's states, ( χi ) i , the cost function C is linearised and then the resulting linear problem is solved exactly, yielding a novel estimate, and so on until convergence. Since χ i belongs to a Lie group, linearisation in IS is carried out as

∀1 ≤ i ≤ n χ i = χi exp(ξ i ). (7) 
where (ξ i ) i are the searched parameters that minimize the linearized cost. IS linearises the cost C as [START_REF] Chauchat | Invariant Smoothing on Lie Groups[END_REF] C = p 0 + ξ 0 2 P 0 (8)

+ ∑ i ûi -F i ξ i + ξ i+1 2 
Q i + ∑ k nk + H k Ξ 2 N k
where we used the notation Z 2 P = Z P -1 Z, and where Ξ is the concatenation of (ξ i ) i . (8) relies on the Baker-Campbell-Haussdorff formula [START_REF] Barfoot | State Estimation for Robotics[END_REF] log(exp(a) exp(b)) = BCH(a, b). P 0 = J -1 0 P 0 J -T 0 , where J 0 is the left Jacobian of the Lie group G [START_REF] Barfoot | State Estimation for Robotics[END_REF][START_REF] Gregory S Chirikjian | Stochastic Models, Information Theory, and Lie Groups[END_REF], satisfying BCH(p 0 , ξ ) = p 0 + J 0 ξ + o( ξ 2 ), p 0 = log( χ-1 0 χ0 ) with a prior χ0 , ûi = log( f i ( χi ) -1 χi+1 ), nk = y kh k ( χI k ), and F i , H k are the (Lie group) Jacobians of f i and h k respectively. H k was padded with zero blocks for the indices not contained in I k . The principle of smoothing algorithms is to solve the linearized problem [START_REF] Barrau | Linear observed systems on groups[END_REF] in closed form, and to update the trajectory substituting the optimal ξ i in [START_REF] Barrau | The geometry of navigation problems[END_REF]. The problem is then relinearised at this new estimate until convergence.

B. Group-affine Dynamics and Invariant Smoothing

In the invariant framework, f i is assumed to be group affine. These dynamics were introduced in continuous time in [START_REF] Barrau | The invariant extended kalman filter as a stable observer[END_REF], and in discrete time in [START_REF] Barrau | Linear observed systems on groups[END_REF]. The main idea is that they extend the notion of linear dynamics (i.e. defined by affine maps) from vector spaces to Lie groups. Definition 1. Group affine dynamics are defined as

χ i+1 = f i (χ i ) = Λ i φ (χ i )ϒ i . ( 9 
)
with Λ i , ϒ i ∈ G, and φ an automorphism, i.e., satisfies (2).

Group affine dynamics include a large class of systems of engineering interest revolving around navigation and robotics, as shown in e.g. [START_REF] Barrau | The invariant extended kalman filter as a stable observer[END_REF][START_REF] Barrau | Linear observed systems on groups[END_REF][START_REF] Mahony | A geometric nonlinear observer for simultaneous localisation and mapping[END_REF][START_REF] Walsh | Invariant sliding window filtering for attitude and bias estimation[END_REF]. They come with the log-linear property, originally introduced and proved in [START_REF] Barrau | The invariant extended kalman filter as a stable observer[END_REF].

Proposition 1 (from [START_REF] Barrau | Linear observed systems on groups[END_REF], discrete-time log-linear property). For group affine dynamics (9), we have

f i (χ i exp(ξ )) = χ i+1 exp(F i ξ ) (10) 
with

F i = Ad ϒ -1 i
M a linear operator, and M from (3), and where χ i+1 := f i (χ i ).

Log-linearity comes with strong properties of invariant filtering [START_REF] Barrau | Extended kalman filtering with nonlinear equality constraints: A geometric approach[END_REF][START_REF] Chauchat | Kalman filtering with a class of geometric state equality constraints[END_REF] and invariant smoothing [START_REF] Chauchat | Invariant smoothing with low process noise[END_REF], since dynamics' linearized approximation in (8) becomes exact. Moreover, they are easily shown to possess a general preintegration property, see [START_REF] Barrau | Linear observed systems on groups[END_REF][START_REF] Brossard | Associating uncertainty to extended poses for on Lie group IMU preintegration with rotating Earth[END_REF], extending that of [START_REF] Forster | On-manifold preintegration for real-time visual-inertial odometry[END_REF][START_REF] Fourmy | Contact forces preintegration for estimation in legged robotics using factor graphs[END_REF][START_REF] Lupton | Visual-inertial-aided navigation for highdynamic motion in built environments without initial conditions[END_REF]. However the IMU equations are group affine only where sensor biases are neglected, relying on the Lie group SE 2 (3) [START_REF] Barrau | Non-linear state error based extended Kalman filters with applications to navigation[END_REF][START_REF] Barrau | The invariant extended kalman filter as a stable observer[END_REF][START_REF] Walsh | Invariant sliding window filtering for attitude and bias estimation[END_REF]. The recently introduced two-frames group (TFG) structure partially overcame this limitation, and suggested a new way to account for IMU biases in a principled manner, while unifying most group-affine systems discovered so far.

III. LOCALIZATION WITH AN IMU USING THE TFG

This section introduces the localization problem to which we want to apply invariant smoothing using the TFG. We start by considering the accelerometer biases only.

A. Considered simplified problem

Consider a mobile body equipped with an inertial measurement unit (IMU) providing gyroscope and accelerometer measurements, and a GNSS (e.g., GPS) receiver providing position measurements Y i . We neglect, for now, the gyroscope bias. A simple discretization of the continuous-time equations [START_REF] Forster | On-manifold preintegration for real-time visual-inertial odometry[END_REF] yields the discrete-time dynamics:

         R i+1 = R i exp m [∆t(ω i ) × ] v i+1 = v i + ∆t (g + R i (a i -b a i )) p i+1 = p i + ∆t v i b a i+1 = b a i , (11) 
with observation Y i = p i . In the above ∆t is a time step, R i ∈ G = SO(3) denotes the transformation at time step i that maps the frame attached to the IMU (body) to the earthfixed frame, p i ∈ R 3 denotes the position of the body in space, v i ∈ R 3 denotes its velocity, g is the earth gravity vector, a i , ω i ∈ R 3 the accelerometer and gyroscope signals, b a i the accelerometer bias, exp m denotes the matrix exponential, and for any vector β ∈ R 3 , the quantity (β ) × denotes the skewsymmetric matrix such that (β ) × γ = β × γ for any γ ∈ R 3 .

B. Making the system group affine

To fall into the formalism of Section II, one needs to endow the state variables with a Lie group structure. Previously to the TFG theory, it was known that in the absence of IMU biases, inertial navigation is group affine [START_REF] Barrau | The invariant extended kalman filter as a stable observer[END_REF], but how to deal with the biases was unclear. Almost all works implementing the invariant framework for inertial navigation -including the authors' -have treated IMU biases linearly, that is, completed the group structure of SE 2 (3), introduced in [START_REF] Barrau | The invariant extended kalman filter as a stable observer[END_REF], with a linear structure regarding body variables (biases). The considered group composition law thus writes

    R 1 v 1 p 1 b a 1     •     R 2 v 2 p 2 b a 2     =     R 1 R 2 v 1 + R 1 v 2 p 1 + R 1 p 2 b a 1 + b a 2     (Imperfect IEKF law) (12) 
This group law gave rise to the "Imperfect IEKF", see [START_REF] Barrau | Non-linear state error based extended Kalman filters with applications to navigation[END_REF], leading to "imperfect invariant smoothing (IS)" [START_REF] Chauchat | Smoothing algorithms for navigation, localisation and mapping based on high-grade inertial sensors[END_REF][START_REF] Walsh | Invariant sliding window filtering for attitude and bias estimation[END_REF], and led to practical successes [START_REF] Barrau | Invariant kalman filtering[END_REF][START_REF] Mitchell R Cohen | Navigation and control of unconventional vtol uavs in forward-flight with explicit wind velocity estimation[END_REF][START_REF] Hartley | Contact-aided invariant extended kalman filtering for robot state estimation[END_REF]- [START_REF] Heo | Consistent ekf-based visual-inertial odometry on matrix lie group[END_REF][START_REF] Wang | Hybrid nonlinear observers for inertial navigation using landmark measurements[END_REF][START_REF] Wu | An invariantekf vins algorithm for improving consistency[END_REF]. Another possibility was also recently suggested in [START_REF] Fornasier | Equivariant filter design for inertial navigation systems with input measurement biases[END_REF]. However, none of these approaches allowed the biased IMU equations to be group affine.

In this regard, the two-frames group structure proposed in [START_REF] Barrau | The geometry of navigation problems[END_REF] was a leap forward. Indeed, it turns out that this structure, which unifies a large number of estimation problems related to navigation, can be cast into the invariant filtering framework using the TFG group law. Following [START_REF] Barrau | The geometry of navigation problems[END_REF], the state space can be cast as a two-frame group (TFG). The TFG group composition law defines a way to combine the state variables which is defined as follows

    R 1 v 1 p 1 b a 1     •     R 2 v 2 p 2 b a 2     =     R 1 R 2 v 1 + R 1 v 2 p 1 + R 1 p 2 b a 2 + R 2 b a 1     (TFG law) (13) 
This defines the alternative two-frames group (TFG) law. Its identity element is (I, 0, 0, 0) and the inverse is given by:

    R v p b a     -1 =     R R v -R p -Rb a     (14) 

C. Theoretical results

The TFG structure enables a more principled treatment of sensors' biases, since it leads to group affine properties.

Proposition 2 ( [START_REF] Barrau | The geometry of navigation problems[END_REF]). The IMU equations in 3D with accelerometer bias are group affine, in the sense of the TFG group structure, whenever ω i = 0, that is, the orientation of the robot remains unchanged (but it may be arbitrary), while changes in acceleration and velocity are allowed.

Planar motions bear an even more powerful result.

Proposition 3 ( [7]

). The IMU equations in 3D with accelerometer bias are group affine, in the sense of the TFG group structure, when facing a planar vehicle, that is, all vectors are 2-dimensional and R ∈ SO(2).

D. Further details

We now propose a simple proof of Proposition 2, which has the merit to draw a clear connection between the present paper and the formalism recently used in robotics in [START_REF] Brossard | Associating uncertainty to extended poses for on Lie group IMU preintegration with rotating Earth[END_REF].

Let us denote by χ the state variable, that is,

χ i :=     R i v i p i b a i    
To establish a link between the dynamics [START_REF] Brossard | Exploiting symmetries to design ekfs with consistency properties for navigation and slam[END_REF] and the TFG group law [START_REF] Caruso | Magneto-visual-inertial dead-reckoning: Improving estimation consistency by invariance[END_REF], one may write

χ i+1 =     I ∆tg 0 0     :=Λ i •     R i v i + ∆tR i b a i p i + ∆tv i Ω i b i     :=φ Ω i (χ i ) •     Ω i ∆ta i 0 0     :=ϒ i (15) 
which may be proved to be strictly equivalent to [START_REF] Brossard | Exploiting symmetries to design ekfs with consistency properties for navigation and slam[END_REF], letting

Ω i := exp m [∆t(ω i ) × ].
What the theory of invariant filtering says, is that, provided φ Ω i is an automorphism, i.e., satisfies (2), the dynamics χ i+1 = Λ i φ Ω i (χ i )ϒ i , which coincides with [START_REF] Chauchat | Smoothing algorithms for navigation, localisation and mapping based on high-grade inertial sensors[END_REF], is group affine, see Definition 1. It then inherits the desirable property of being linear in the exponential coordinates, see [START_REF] Bourmaud | Discrete extended Kalman filter on Lie groups[END_REF], that comes with convergence properties. We have all is needed to then verify Proposition 2. Indeed, letting Ω i = I, which corresponds indeed to ω i = 0, as Ω i := exp m [∆t(ω i ) × ], we see that φ I is an automorphism for the TFG law [START_REF] Caruso | Magneto-visual-inertial dead-reckoning: Improving estimation consistency by invariance[END_REF]. Indeed, we have on the one hand

φ I     R 1 v 1 p 1 b a 1     •     R 2 v 2 p 2 b a 2     =     R 1 R 2 v 1 + R 1 v 2 + ∆tR 1 R 2 (b a 2 + R 2 b a 1 ) p 1 + R 1 p 2 + ∆t(v 1 + R 1 v 2 ) b a 2 + R 2 b a 1     ,
and on the other

φ I     R 1 v 1 p 1 b a 1     •φ I     R 2 v 2 p 2 b a 2     =     R 1 R 2 v 1 + ∆tR 1 b a 1 + R 1 (v 2 + ∆tR 2 b a 2 ) p 1 + ∆tv 1 + R 1 (p 2 + ∆tv 2 ) b a 2 + R 2 b a 1    
We see both expressions coincide indeed, so that φ I is an automorphism, thus proving Proposition 2.

IV. APPLICATION TO BIASED IMU BASED LOCALIZATION

Now that we have recalled the TFG structure, we would like to leverage it for smoothing based localization, which has never been done before. In practice, another bias needs to be considered when using an IMU, that of the gyroscope. By accounting for it explicitly, (11) then becomes

         R i+1 = R i exp m [∆t(ω i -b ω i ) × ] v i+1 = v i + ∆t (g + R i (a i -b a i )) p i+1 = p i + ∆t v i b a i+1 = b a i , b ω i+1 = b ω i , (16) 
with b ω i the gyroscope bias.

A. Computing the Jacobians

The Jacobian of ( 11) can be directly retrieved from [START_REF] Barrau | The geometry of navigation problems[END_REF] when ω i = 0 and there is no gyro bias. It can be extended to the more difficult present setting as follows. Let

D i = D exp m (∆t(ω i -b ω i ))
with D exp m the differential of exp m . Then we have:

F i =       Ω i -∆t D i (b ω i ) × -∆t D i -Ω i (∆t a i ) × Ω i -∆t Ω i ∆t Ω i Ω i (b a i ) × I -Ω i + ∆tD i (b ω i ) × I (b ω i ) × I -Ω i + ∆tD i (b ω i ) × I       (17) 
It coincides with the Jacobian of "imperfect IS" which relies on SE 2 (3) × R 3 × R 3 (see [START_REF] Brossard | Associating uncertainty to extended poses for on Lie group IMU preintegration with rotating Earth[END_REF][START_REF] Chauchat | Smoothing algorithms for navigation, localisation and mapping based on high-grade inertial sensors[END_REF]), except for the first block column, whose computation is detailed in Appendix A.

B. Differences with other parametrisations

Let us summarise the differences between IS based on the TFG structure, imperfect IS which relies on SE 2 (3) × R 3 , and the smoothing method implemented for NavState in GTSAM [START_REF] Dellaert | Factor graphs and GTSAM: A hands-on introduction[END_REF], which is a refinement of [START_REF] Forster | On-manifold preintegration for real-time visual-inertial odometry[END_REF]. Although the considered residuals and their covariances are essentially the same, the main difference lies in the parametrisation of the state (i.e. the retraction) used to update the state variables at each optimization descent step. Obviously, the treatment of the bias b = (b a , b ω ) is a key difference, since all other parametrisations consider it linearly. As concerns the navigational part (attitude, velocity, position), only imperfect IS coincides with IS. More precisely, the retractions used in GTSAM [START_REF] Dellaert | Factor graphs and GTSAM: A hands-on introduction[END_REF] and imperfect IS are respectively

( R, v, x, b) ← ( Rδ R , v + Rδ v , x + Rδ x , b + δ b ). ( 18 
) ( R, v, x, b) ← (( R, v, x) exp SE 2 (3) (δ R , δ v , δ x ), b + δ b ). ( 19 
)
(18) is linear by nature whereas imperfect IS [START_REF] Mitchell R Cohen | Navigation and control of unconventional vtol uavs in forward-flight with explicit wind velocity estimation[END_REF] uses the exponential map of SE 2 (3), which offers a more appropriate nonlinear map. Note that ( 18) is a first-order approximation of [START_REF] Mitchell R Cohen | Navigation and control of unconventional vtol uavs in forward-flight with explicit wind velocity estimation[END_REF]. By constrast, the method proposed herein proposed the full exponential of the TFG, see [START_REF] Fornasier | Equivariant filter design for inertial navigation systems with input measurement biases[END_REF] below.

The Jacobian for GTSAM [START_REF] Gregory S Chirikjian | Stochastic Models, Information Theory, and Lie Groups[END_REF] is similar to the one of imperfect IS, replacing Ω i and a i with their estimated counterparts: Ω

i = R i+1 Ri and ∆t âi = R i (v i+1 -vi -∆t g) -ba i .
Though, it differs more starkly with that proposed herein.

V. EXPERIMENTAL RESULTS

We evaluate the proposed smoothing method, based on the TFG, on the KITTI dataset [START_REF] Geiger | Vision meets robotics: The kitti dataset[END_REF], which contains raw and synchronised IMU data, and a ground-truth. Smoothing estimates are implemented using sliding windows, where the oldest state is marginalised once a given size is reached. TFG is compared with the two other parametrisations ( 18), ( 19), based on a common smoothing implementation to ensure fair comparison.

When a robot is started, typically a terrestrial wheeled vehicle, it may have no information about its position and its orientation. However, in outdoors applications, GNSS provides a quick coarse estimate of the position, and the accelerometers that of the vertical direction. The yaw, on the other hand, is much harder to estimate, as no coarse estimate is directly available (magnetometers may be very unreliable due to metallic masses in vehicles and robots). To highlight the differences between the various smoothing methods, we consider the difficult and relevant localization problem where initial orientation is unknown and thus orientation error may be large (100 • standard deviation), and we focus on the transitory phase during which orientation is recovered (this is called the alignment problem in aerospace engineering, see e.g., [START_REF] Cui | In-motion alignment for low-cost sins/gps under random misalignment angles[END_REF][START_REF] Ouyang | Optimization-based strapdown attitude alignment for high-accuracy systems: Covariance analysis with applications[END_REF][START_REF] Wu | Velocity/position integration formula part i: Application to in-flight coarse alignment[END_REF]).

A. Implementation details

The IMU data is sampled at 100Hz. We simulate noisy position measurements at 1 Hz by adding white noise to the ground truth with σ y = 1m, which is typically the accuracy of a GNSS sensor.

The estimators are compared using three different window sizes of 5, 10 and 15 instants for the state. The initial position is based on the ground truth, roll, pitch, velocity and biases are initialised at zero, and the yaw is randomly sampled. The initial uncertainty is given by σ 0 p = 1m, σ 0 v = 10m/s, σ 0 R = 100 • , σ 0 b a = 0.06m/s 2 , σ 0 b ω = 0.07rad/s. The process uncertainty uses σ a = 0.05m/s 2 , σ ω = 0.01rad/s, σ b a = 0.002m/s 2 , σ b ω = 3.10 -5 rad/s. For each experiment, 50 Monte Carlo runs are carried out.

B. Results

The kind of considered "robot kidnapping" problem, where the robot has no initial prior information, is difficult. Indeed, the original heading error may be large, so that the estimate can fall into a wrong local minima, and be slow or even fail to converge. Therefore, we compare the estimators in terms of consistency: We consider the estimator to be consistent if its yaw error stays inside its believed 3σ envelope. Consistency is thus defined as the ability to convey a consisent (or conservative) estimate of the extent of uncertainty associated with the predictions. For collision avoidance and online motion planning, it is important indeed to be able to correctly (or conservatively) assess the errors.

Figure 1 shows the yaw errors over time for the three smoothing methods, highlighting trajectories which yield inconsistent estimates for each of the 50 random initializations, over a typical KITTI trajectory example. We observe a much larger ratio of orientation errors fail to stay inside the 3σ envelope when using alternative methods to the TFG-based one proposed in the present paper. Moreover, we see that, when using the TFG, the envelopes are less dispersed over the Monte Carlo runs, indicating a reduced dependency of [START_REF] Chauchat | Invariant smoothing with low process noise[END_REF], and NavState (GTSAM [START_REF] Dellaert | Factor graphs and GTSAM: A hands-on introduction[END_REF]), with a window size of 5. For 50 Monte Carlo runs over the KITTI trajectory 01, during the transitory phase after an initialization with random yaw, the yaw error and the 3σ envelope obtained from the estimated covariance are plotted over time. Consistent trajectories are in blue, inconsistent ones in red. We see that the proposed method provides a greater ratio of consistent estimates. Besides, we note the 3σ envelopes are less dispersed over Monte-Carlo runs when using the TFG, which is consistent with them having less dependency on the estimates, see [START_REF] Barrau | The geometry of navigation problems[END_REF].

the covariance matrix on the estimated trajectory, which is the main goal of the TFG theory indeed [START_REF] Barrau | The geometry of navigation problems[END_REF].

To assess the method over a larger number of experiments, Table I reports, for the various KITTI trajectories, window sizes and methods, the ratio of Monte Carlo runs which are consistent. As expected, larger windows ensure better convergence (but require more onboard computation capabilities) except when the ratio is already close to one. Moreover, smoothing based on the TFG proves much more robust, in that it systematically outperforms other methods when using the smallest window size (and hence being computationally efficient). It indicates a special ability to avoid local minima.

VI. CONCLUSION

In this paper we proposed to leverage the recently introduced Two-Frames Group structure in an Invariant Smoothing framework for localization, in a difficult setting where the window size is relatively low, and the inital error may be large. The necessary derivations, notably to retrieve the Jacobians, helped understanding the properties of the TFG. The proposed method showed increased robustness over the state-of-the-art in terms of convergence on real data. [START_REF] Chauchat | Invariant smoothing with low process noise[END_REF] Let χ = (R, v, p, b a , b ω ) be the state. For readability, we denote exp(θ

) = exp m [(θ ) × ] on SO(3), i.e. for θ ∈ R 3 . Con- sider an update δ χ = δ R 0 0 0 0 , with δ R = exp(ξ R ). Then we have χ • δ χ = (Rδ R , v, p, δ R b a , δ R b ω ), and 
f i χ • δ χ =       Rδ R exp (∆t(ω i -δ R b ω )) v + ∆t (g + Rδ R (a i -b a )) p + ∆t v δ R b a δ R b ω       (20) 
Let

Ω i = exp (∆t(ω i -b ω )). Since δ R ≈ I -(ξ R ) × , we can approximate exp (∆t(ω i -δ R b ω )) ≈ Ω i exp (-∆tD i (ξ R ) × b ω ) with D i = D exp (∆t(ω i -b ω )) and D exp the differential of exp on SO(3). We know that Rδ R Ω i = RΩ i exp (Ω i ξ R ), so Rδ R exp (∆t(ω i -δ R b ω )) ≈ RΩ i exp (Ω i ξ R -∆tD i (b ω ) × ξ R ).
Therefore, given (13), we can write

f i χ • δ χ ≈ f i (χ) •       exp (Ω i ξ R -∆tD i (b ω ) × ξ R ) -∆tΩ i (ξ R ) × a i 0 δ R b a -exp (-Ω i ξ R + ∆tD i (b ω ) × ξ R )b a δ R b ω -exp (-Ω i ξ R + ∆tD i (b ω ) × ξ R )b ω       (21)
The last terms usually do not appear when considering other parametrisations. Linearising the exponential, we get δ Rexp (-

Ω i ξ R + ∆tD i (b ω ) × ξ R ) b a ≈ -(ξ R ) × + (Ω ξ R ) × -∆t(D i (b ω ) × ξ R ) × b a = (b a ) × I -Ω + ∆tD i (b ω ) × ξ R (22) 
and similarly for b ω , thus recovering the first block column of [START_REF] Chauchat | Invariant smoothing with low process noise[END_REF]. In particular, this highlights why Ω i = Id breaks the group affine property of [START_REF] Brossard | Exploiting symmetries to design ekfs with consistency properties for navigation and slam[END_REF] in the 3D case (and without the gyro bias).

APPENDIX B USEFUL FORMULAS FOR THE TFG

We recall the results of [START_REF] Barrau | The geometry of navigation problems[END_REF] being useful herein.

A. Exponential and Logarithm

The exponential on the considered TFG is given by the following formula:

exp T FG       ξ R ξ v ξ p ξ b a ξ b ω       =       exp(ξ R ) ν(ξ R )ξ v ν(ξ R )ξ p ν(-ξ R )ξ b a ν(-ξ R )ξ b ω       (23)
Where ν is given by:

ν(ξ ) = I + 1 -cos(||ξ ||) ||ξ || 2 (ξ ) × + ||ξ || -sin(||ξ ||) ||ξ || 3 (ξ ) 2 ×
Its inverse, the logarithm, writes:

log T FG       R v p b a b ω       =       ξ R ν(ξ R ) -1 v ν(ξ R ) -1 p ν(-ξ R ) -1 b a ν(-ξ R ) -1 b ω       (24) 

B. Adjoint Matrices and left Jacobian

In order to apply [START_REF] Barrau | Linear observed systems on groups[END_REF] to the TFG, one needs to compute P 0 = J -1 0 P 0 J -T 0 , where J 0 is the left Jacobian of the group computed at p 0 , which is given by the following sum J 0 = ∑ j≥0 1 (n+1)! (ad p 0 ) j [START_REF] Barfoot | State Estimation for Robotics[END_REF]. Moreover ad p 0 can be determined through identification, thanks to the fact that exp m ad p 0 = Ad exp T FG p 0 . Thus, what is left to do is compute Ad χ for an element of the TFG. In general it is given by the differential of g → χ • g • χ -1 around the identity. Let χ = (R, v, p, b a , b ω ) be a state. Then, following [START_REF] Barrau | The geometry of navigation problems[END_REF], we get

Ad χ =       R (v) × R R (p) × R R R(b a ) × R R(b ω ) × R       (25) 
Now, let χ = exp T FG (ξ ), with ξ = (ξ R , ξ p , ξ p , ξ b a , ξ b ω ). Using [START_REF] Fornasier | Equivariant filter design for inertial navigation systems with input measurement biases[END_REF], and the facts that Rν(-ξ R ) = ν(ξ R ), and R(x) × = (Rx) × R, we get

Ad exp T FG (ξ ) =       R (ν(ξ R )ξ v ) × R R (ν(ξ R )ξ p ) × R R (ν(ξ R )ξ b a ) × R R (ν(ξ R )ξ b ω ) × R R       (26) 
Therefore, we can directly identify

ad ξ =       (ξ R ) × (ξ v ) × (ξ R ) × (ξ p ) × (ξ R ) × (ξ b a ) × (ξ R ) × (ξ b ω ) × (ξ R ) ×       (27) 

Fig. 1 :

 1 Fig.1: Convergence and consistency comparison of smoothing based on three parametrisations: using the TFG (ours), SE 2 (3)[START_REF] Chauchat | Invariant smoothing with low process noise[END_REF], and NavState (GTSAM[START_REF] Dellaert | Factor graphs and GTSAM: A hands-on introduction[END_REF]), with a window size of 5. For 50 Monte Carlo runs over the KITTI trajectory 01, during the transitory phase after an initialization with random yaw, the yaw error and the 3σ envelope obtained from the estimated covariance are plotted over time. Consistent trajectories are in blue, inconsistent ones in red. We see that the proposed method provides a greater ratio of consistent estimates. Besides, we note the 3σ envelopes are less dispersed over Monte-Carlo runs when using the TFG, which is consistent with them having less dependency on the estimates, see[START_REF] Barrau | The geometry of navigation problems[END_REF].

TABLE I :

 I Ratio of consistent trajectories, out of 50 random Monte Carlo initialization, for various smoothing methods on the KITTI dataset. Consistency is defined as the yaw error staying inside the 3-σ envelope.

	seq.	window TFG SE 2 (3) (18) (GTSAM)
		5	0.98	0.78	0.86
	01	10	0.98	0.98	0.96
		15	0.98	0.98	0.84
		5	0.94	0.7	0.7
	05	10	0.96	0.92	0.92
		15	0.96	0.98	0.96
		5	0.96	0.68	0.66
	06	10	0.94	0.96	1
		15	0.94	0.98	1
		5	0.96	0.94	0.96
	07	10	0.98	0.98	0.98
		15	0.98	1	1
		5	0.98	0.84	0.86
	08	10	0.98	0.98	0.98
		15	1	0.98	0.94
		5	0.84	0.68	0.7
	09	10	0.94	0.86	0.88
		15	0.96	1	0.96
		5	0.96	0.88	0.88
	10	10	1	0.96	0.98
		15	1	0.96	0.94
	This supports the relevance of the TFG for more complex
	navigation problems, which opens up for a wide range of
	future work directions. It may be interesting in the future
	to investigate notbaly whether one could use the framework
	of GTSAM combined with this new kind of Lie-group
	based parameterization instead of the current on-manifold
	parametrization, as to date only improvements have been
	observed. Further investigations are thus desirable.
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