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Invariant Smoothing for Localization: Including the
IMU Biases

Paul Chauchat1, Silvère Bonnabel2 and Axel Barrau2,3

Abstract—In this article we investigate smoothing (i.e.,
optimisation-based) estimation techniques for robot localization
using an IMU aided by other localization sensors. We more
particularly focus on Invariant Smoothing (IS), a variant based
on the use of nontrivial Lie groups from robotics. We study
the recently introduced Two Frames Group (TFG), and prove
it can fit into the framework of Invariant Smoothing in order
to better take into account the IMU biases, as compared to the
state-of-the-art in robotics. Experiments based on the KITTI
dataset show the proposed framework compares favorably to
the state-of-the-art smoothing methods in terms of robustness
in some challenging situations.

I. INTRODUCTION

Lie group embeddings have become standard tools in
navigation and mobile robotics over the last decade, see e.g.,
[1,18,40]. The use of SE(3) and SE(2) was pioneered by
several authors in robotics, notably [2,34,38,45] and shown
to gracefully fit unicycle-like models for wheeled robots
moving in 2D. Extended Kalman filters based on those
classical groups have been introduced and successfully used,
see [10,30]Novel Lie groups have been introduced and proved
to come with similar properties when using more complex
motion models based on the (3D) IMU equations, namely
SE2(3) introduced in [3,5], as well as the general group
SEK(d) which was shown to resolve the consistency issues
of the Extended Kalman filter in SLAM, see [3,4].

Those novel Lie groups came with a new class of esti-
mators, under the name of Invariant Extended Kalman Filter
(IEKF) [5,6]. The theoretical properties include convergence
guarantees [5], consistency properties for SLAM [4,11], and
have led to applications in various fields, notably robotics
[6,13,27]–[29,36,39,42,46] and in the industry [6].

The success of the IEKF for models based on the IMU
relies on the introduction of the Lie group of double spatial
direct isometries SE2(3), or extended poses, in [3,5]. A
thorough description of this group and its ability to capture
uncertainty can be found in the recent paper [12]. However,
IMU biases could not be properly included into this Lie
group structure, and were treated as additional parameters
leading to an “imperfect” invariant framework [3,42]. This
limitation was greatly relieved by the introduction of the
first systematic way of designing systems which fit the
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invariant framework, relying on the Two Frame Group (TFG)
structure [7]. It encompasses the previously published groups,
including SE2(3) and allows including the accelerometer bias.

Smoothing is now one of the most popular state esti-
mation methods in robotics for simultaneous localisation
and mapping (SLAM) and visual odometry, thanks to its
reducing the consequences of linearisation errors [22,24,33].
This success broadened its application domains, and it is now
often used in inertial navigation [31,32,43,48]. Leveraging
the framework of Invariant filtering for smoothing, a new
estimation algorithm was recently proposed, namely Invariant
Smoothing (IS) [16], see also [43]. Similar to the IEKF
[9,14], IS delivers “physically consistent” estimates [17].

This paper provides all the tools required to use the
TFG structure in the smoothing framework, in order to
tackle biased localization using biased IMUs. To evaluate
the proposed framework, experiments were conducted based
on data from the KITTI dataset [26], focusing in particular
on the difficult problem of “robot kidnapping” [41], that
is, localization with no prior information, known as “in-
flight alignment” problem in inertial navigation when the
sensors used are the IMU and GNSS [20,37,47]. Results
show that, for this problem, using the KITTI dataset, IS based
on the TFG favorably compares to state-of-the-art smoothing
schemes [21,24], and to the former “imperfect” IS based on
SE2(3), by proving more robust.

The main principles of Invariant Filtering and Smoothing
are recalled in Section II. The considered application to local-
ization is presented in Section III, as well as the presentation
of the TFG and its properties for the considered problem.
The proposed invariant smoother is detailed in Section IV,
and the differences to the existing state-of-the-art smoothers
are explained. Experimental results and comparisons are
presented in Section V.

II. SMOOTHING ON LIE GROUPS

We first briefly recall the invariant filtering framework [5,
6]. The reader is referred to [1,40] for a general presentation.
We consider a state χ ∈G, with G a Lie group of dimension
q. Its Lie algebra g is identified with Rq. Thus we consider its
exponential map to be defined as exp : Rq→G. We denote its
local inverse by log. We recall the notion of adjoint operator
matrix of χ ∈ G, Adχ , which satisfies

∀χ ∈ G,ξ ∈ Rq, χ
−1 exp(ξ )χ = exp(Adχ ξ ) (1)

Automorphisms are bijective maps φ : G→ G satisfying

φ(χη) = φ(χ)φ(η) for χ,η ∈ G. (2)



The Lie group Lie algebra correspondance, see [8], ensures
for any automorphism φ there is M ∈ Rq×q so that

∀(χ,ξ ) ∈ G×Rq, φ(χ exp(ξ )) = φ(χ)exp(Mξ ), (3)

which is closely related to the log-linearity property of [5].
The operator ν 7→ χ−1νχ is easily checked to be a group
automorphism, and we see indeed from (1) that M = Adχ .
We define random variables on Lie groups through the expo-
nential, following [1,6,10,12,18]. The probability distribution
χ ∼NL(χ̄,P) for the random variable χ ∈ G is defined as

χ = χ̄ exp(ξ ) , ξ ∼N (0,P) , (4)

In the following, we consider a discrete-time trajectory de-
noted as (χi)i of the following system

χ0 ∼NL(χ̄,P0), χi+1 = fi(χi)exp(wi), yk = hk(χIk)+nk
(5)

where fi is the dynamics function, P0 ∈ Rq×q the initial state
error covariance, wi,nk are white noises of covariance Qi and
Nk the observation noise covariance, and χIk denotes a subset
of the states which are involved in the measurements at tk.

A. Smoothing on Lie groups

We first briefly recall the Invariant Smoothing (IS) frame-
work introduced in [16]. Departing from a system of the form
(5), the goal of smoothing is to find

(χi)
∗
i = argmax

(χi)1≤i≤n

P((χi)i|y0, . . . ,yn) (6)

i.e., the maximum a posteriori (MAP) estimate of the trajec-
tory. It is usually found through Gauss-Newton or Levenberg-
Marquardt algorithms. First we devise a cost function asso-
ciated to Problem (6) as the negative log likelihood

C =− log
(
P((χi)1≤i≤n|y0, . . . ,yn)

)
that we seek to minimize. Given a current guess of the
trajectory’s states, (χ̂i)i, the cost function C is linearised and
then the resulting linear problem is solved exactly, yielding a
novel estimate, and so on until convergence. Since χi belongs
to a Lie group, linearisation in IS is carried out as

∀1≤ i≤ n χi = χ̂i exp(ξi). (7)

where (ξi)i are the searched parameters that minimize the
linearized cost. IS linearises the cost C as [16]

C̃ =∥p0 +ξ0∥2
P̃0

(8)

+∑
i
∥ûi−Fiξi +ξi+1∥2

Qi
+∑

k
∥n̂k +HkΞ∥2

Nk

where we used the notation ∥Z∥2
P =Z⊤P−1Z, and where Ξ is

the concatenation of (ξi)i. (8) relies on the Baker-Campbell-
Haussdorff formula [1] log(exp(a)exp(b)) = BCH(a,b).
P̃0 = J−1

0 P0J−T
0 , where J0 is the left Jacobian of the Lie

group G [1,18], satisfying BCH(p0,ξ ) = p0+J0ξ +o(∥ξ∥2),
p0 = log(χ̄−1

0 χ̂0) with a prior χ̄0, ûi = log( fi(χ̂i)
−1χ̂i+1),

n̂k = yk−hk(χ̂Ik), and Fi,Hk are the (Lie group) Jacobians of
fi and hk respectively. Hk was padded with zero blocks for
the indices not contained in Ik. The principle of smoothing

algorithms is to solve the linearized problem (8) in closed
form, and to update the trajectory substituting the optimal ξi
in (7). The problem is then relinearised at this new estimate
until convergence.

B. Group-affine Dynamics and Invariant Smoothing

In the invariant framework, fi is assumed to be group
affine. These dynamics were introduced in continuous time
in [5], and in discrete time in [8]. The main idea is that they
extend the notion of linear dynamics (i.e. defined by affine
maps) from vector spaces to Lie groups.

Definition 1. Group affine dynamics are defined as

χi+1 = fi(χi) = Λiφ(χi)ϒi. (9)

with Λi,ϒi ∈ G, and φ an automorphism, i.e., satisfies (2).

Group affine dynamics include a large class of systems
of engineering interest revolving around navigation and
robotics, as shown in e.g. [5,8,36,43]. They come with the
log-linear property, originally introduced and proved in [5].

Proposition 1 (from [8], discrete-time log-linear property).
For group affine dynamics (9), we have

fi(χi exp(ξ )) = χi+1 exp(Fiξ ) (10)

with Fi = Ad
ϒ
−1
i

M a linear operator, and M from (3), and
where χi+1 := fi(χi).

Log-linearity comes with strong properties of invariant
filtering [9,14] and invariant smoothing [17], since dynamics’
linearized approximation in (8) becomes exact. Moreover,
they are easily shown to possess a general preintegration
property, see [8,12], extending that of [24,25,35]. However
the IMU equations are group affine only where sensor biases
are neglected, relying on the Lie group SE2(3) [3,5,43].
The recently introduced two-frames group (TFG) structure
partially overcame this limitation, and suggested a new way
to account for IMU biases in a principled manner, while
unifying most group-affine systems discovered so far.

III. LOCALIZATION WITH AN IMU USING THE TFG

This section introduces the localization problem to which
we want to apply invariant smoothing using the TFG. We
start by considering the accelerometer biases only.

A. Considered simplified problem

Consider a mobile body equipped with an inertial mea-
surement unit (IMU) providing gyroscope and accelerometer
measurements, and a GNSS (e.g., GPS) receiver providing
position measurements Yi. We neglect, for now, the gyro-
scope bias. A simple discretization of the continuous-time
equations [24] yields the discrete-time dynamics:

Ri+1 = Ri expm [∆t(ωi)×]

vi+1 = vi +∆t (g+Ri (ai−ba
i ))

pi+1 = pi +∆t vi

ba
i+1 = ba

i

, (11)



with observation Yi = pi. In the above ∆t is a time step,
Ri ∈ G = SO(3) denotes the transformation at time step i
that maps the frame attached to the IMU (body) to the earth-
fixed frame, pi ∈R3 denotes the position of the body in space,
vi ∈ R3 denotes its velocity, g is the earth gravity vector,
ai,ωi ∈ R3 the accelerometer and gyroscope signals, ba

i the
accelerometer bias, expm denotes the matrix exponential, and
for any vector β ∈ R3, the quantity (β )× denotes the skew-
symmetric matrix such that (β )×γ = β × γ for any γ ∈ R3.

B. Making the system group affine

To fall into the formalism of Section II, one needs to endow
the state variables with a Lie group structure. Previously to
the TFG theory, it was known that in the absence of IMU
biases, inertial navigation is group affine [5], but how to deal
with the biases was unclear. Almost all works implementing
the invariant framework for inertial navigation - including the
authors’ - have treated IMU biases linearly, that is, completed
the group structure of SE2(3), introduced in [5], with a linear
structure regarding body variables (biases). The considered
group composition law thus writes

R1
v1
p1
ba

1

•


R2
v2
p2
ba

2

=


R1R2

v1 +R1v2
p1 +R1p2

ba
1 +ba

2

 (Imperfect IEKF law)

(12)

This group law gave rise to the “Imperfect IEKF”, see
[3], leading to “imperfect invariant smoothing (IS)” [15,43],
and led to practical successes [6,19,27]–[29,44,46]. Another
possibility was also recently suggested in [23]. However,
none of these approaches allowed the biased IMU equations
to be group affine.

In this regard, the two-frames group structure proposed in
[7] was a leap forward. Indeed, it turns out that this struc-
ture, which unifies a large number of estimation problems
related to navigation, can be cast into the invariant filtering
framework using the TFG group law. Following [7], the state
space can be cast as a two-frame group (TFG). The TFG
group composition law defines a way to combine the state
variables which is defined as follows

R1
v1
p1
ba

1

•


R2
v2
p2
ba

2

=


R1R2

v1 +R1v2
p1 +R1p2
ba

2 +R⊤2 ba
1

 (TFG law) (13)

This defines the alternative two-frames group (TFG) law. Its
identity element is (I,0,0,0) and the inverse is given by:

R
v
p
ba


−1

=


R⊤
R⊤v
−R⊤p
−Rba

 (14)

C. Theoretical results

The TFG structure enables a more principled treatment of
sensors’ biases, since it leads to group affine properties.

Proposition 2 ( [7]). The IMU equations in 3D with ac-
celerometer bias are group affine, in the sense of the TFG
group structure, whenever ωi = 0, that is, the orientation of
the robot remains unchanged (but it may be arbitrary), while
changes in acceleration and velocity are allowed.

Planar motions bear an even more powerful result.

Proposition 3 ( [7]). The IMU equations in 3D with ac-
celerometer bias are group affine, in the sense of the TFG
group structure, when facing a planar vehicle, that is, all
vectors are 2-dimensional and R ∈ SO(2).

D. Further details

We now propose a simple proof of Proposition 2, which
has the merit to draw a clear connection between the present
paper and the formalism recently used in robotics in [12].

Let us denote by χ the state variable, that is,

χi :=


Ri
vi
pi
ba

i


To establish a link between the dynamics (11) and the TFG
group law (13), one may write

χi+1 =


I

∆tg
0
0


︸ ︷︷ ︸

:=Λi

•


Ri

vi +∆tRiba
i

pi +∆tvi
Ωibi


︸ ︷︷ ︸

:=φΩi (χi)

•


Ωi

∆tai
0
0


︸ ︷︷ ︸

:=ϒi

(15)

which may be proved to be strictly equivalent to (11), letting
Ωi := expm [∆t(ωi)×]. What the theory of invariant filtering
says, is that, provided φΩi is an automorphism, i.e., satisfies
(2), the dynamics χi+1 = ΛiφΩi(χi)ϒi, which coincides with
(15), is group affine, see Definition 1. It then inherits the
desirable property of being linear in the exponential coordi-
nates, see (10), that comes with convergence properties.

We have all is needed to then verify Proposition 2. Indeed,
letting Ωi = I, which corresponds indeed to ωi = 0, as Ωi :=
expm [∆t(ωi)×], we see that φI is an automorphism for the
TFG law (13). Indeed, we have on the one hand

φI
(

R1
v1
p1
ba

1

•


R2
v2
p2
ba

2

)
=


R1R2

v1 +R1v2 +∆tR1R2(ba
2 +R⊤2 ba

1)
p1 +R1p2 +∆t(v1 +R1v2)

ba
2 +R⊤2 ba

1

 ,

and on the other

φI
(

R1
v1
p1
ba

1

)
•φI

(
R2
v2
p2
ba

2

)
=


R1R2

v1 +∆tR1ba
1 +R1(v2 +∆tR2ba

2)
p1 +∆tv1 +R1(p2 +∆tv2)

ba
2 +R⊤2 ba

1


We see both expressions coincide indeed, so that φI is an
automorphism, thus proving Proposition 2.

IV. APPLICATION TO BIASED IMU BASED LOCALIZATION

Now that we have recalled the TFG structure, we would
like to leverage it for smoothing based localization, which



has never been done before. In practice, another bias needs
to be considered when using an IMU, that of the gyroscope.
By accounting for it explicitly, (11) then becomes

Ri+1 = Ri expm [∆t(ωi−bω
i )×]

vi+1 = vi +∆t (g+Ri (ai−ba
i ))

pi+1 = pi +∆t vi

ba
i+1 = ba

i , bω
i+1 = bω

i

, (16)

with bω
i the gyroscope bias.

A. Computing the Jacobians

The Jacobian of (11) can be directly retrieved from [7]
when ωi = 0 and there is no gyro bias. It can be extended
to the more difficult present setting as follows. Let Di =
Dexpm(∆t(ωi−bω

i )) with Dexpm the differential of expm. Then
we have:

Fi =


Ω⊤i −∆t Di(bω

i )× −∆t Di
−Ω⊤i (∆t ai)× Ω⊤i −∆t Ω⊤i

∆t Ω⊤i Ω⊤i
(ba

i )×
(
I−Ω⊤i +∆tDi(bω

i )×
)

I
(bω

i )×
(
I−Ω⊤i +∆tDi(bω

i )×
)

I


(17)

It coincides with the Jacobian of “imperfect IS” which relies
on SE2(3)×R3×R3 (see [12,15]), except for the first block
column, whose computation is detailed in Appendix A.

B. Differences with other parametrisations

Let us summarise the differences between IS based on the
TFG structure, imperfect IS which relies on SE2(3)×R3,
and the smoothing method implemented for NavState in
GTSAM [21], which is a refinement of [24]. Although the
considered residuals and their covariances are essentially
the same, the main difference lies in the parametrisation
of the state (i.e. the retraction) used to update the state
variables at each optimization descent step. Obviously, the
treatment of the bias b = (ba,bω) is a key difference, since
all other parametrisations consider it linearly. As concerns the
navigational part (attitude, velocity, position), only imperfect
IS coincides with IS. More precisely, the retractions used in
GTSAM [21] and imperfect IS are respectively

(R̂, v̂, x̂,b)← (R̂δR, v̂+ R̂δv, x̂+ R̂δx,b+δb). (18)

(R̂, v̂, x̂,b)← ((R̂, v̂, x̂)expSE2(3)(δR,δv,δx),b+δb). (19)

(18) is linear by nature whereas imperfect IS (19) uses the
exponential map of SE2(3), which offers a more appropriate
nonlinear map. Note that (18) is a first-order approximation
of (19). By constrast, the method proposed herein proposed
the full exponential of the TFG, see (23) below.

The Jacobian for GTSAM (18) is similar to the one of
imperfect IS, replacing Ω⊤i and ai with their estimated coun-
terparts: Ω̂⊤i = R̂⊤i+1R̂i and ∆t âi = R̂⊤i (v̂i+1− v̂i−∆t g)− b̂a

i .
Though, it differs more starkly with that proposed herein.

V. EXPERIMENTAL RESULTS

We evaluate the proposed smoothing method, based on
the TFG, on the KITTI dataset [26], which contains raw
and synchronised IMU data, and a ground-truth. Smoothing
estimates are implemented using sliding windows, where the

oldest state is marginalised once a given size is reached. TFG
is compared with the two other parametrisations (18), (19),
based on a common smoothing implementation to ensure fair
comparison.

When a robot is started, typically a terrestrial wheeled
vehicle, it may have no information about its position and
its orientation. However, in outdoors applications, GNSS
provides a quick coarse estimate of the position, and the
accelerometers that of the vertical direction. The yaw, on the
other hand, is much harder to estimate, as no coarse estimate
is directly available (magnetometers may be very unreliable
due to metallic masses in vehicles and robots). To highlight
the differences between the various smoothing methods, we
consider the difficult and relevant localization problem where
initial orientation is unknown and thus orientation error may
be large (100 ◦ standard deviation), and we focus on the
transitory phase during which orientation is recovered (this
is called the alignment problem in aerospace engineering, see
e.g., [20,37,47]).

A. Implementation details

The IMU data is sampled at 100Hz. We simulate noisy
position measurements at 1 Hz by adding white noise to the
ground truth with σy = 1m, which is typically the accuracy
of a GNSS sensor.

The estimators are compared using three different window
sizes of 5, 10 and 15 instants for the state. The initial
position is based on the ground truth, roll, pitch, velocity
and biases are initialised at zero, and the yaw is randomly
sampled. The initial uncertainty is given by σ0

p = 1m, σ0
v =

10m/s, σ0
R = 100 ◦,σ0

ba = 0.06m/s2, σ0
bω = 0.07rad/s. The

process uncertainty uses σa = 0.05m/s2, σω = 0.01rad/s,
σba = 0.002m/s2, σbω = 3.10−5rad/s. For each experiment,
50 Monte Carlo runs are carried out.

B. Results

The kind of considered “robot kidnapping” problem, where
the robot has no initial prior information, is difficult. Indeed,
the original heading error may be large, so that the estimate
can fall into a wrong local minima, and be slow or even fail to
converge. Therefore, we compare the estimators in terms of
consistency: We consider the estimator to be consistent if its
yaw error stays inside its believed 3σ envelope. Consistency
is thus defined as the ability to convey a consisent (or
conservative) estimate of the extent of uncertainty associated
with the predictions. For collision avoidance and online
motion planning, it is important indeed to be able to correctly
(or conservatively) assess the errors.

Figure 1 shows the yaw errors over time for the three
smoothing methods, highlighting trajectories which yield in-
consistent estimates for each of the 50 random initializations,
over a typical KITTI trajectory example. We observe a much
larger ratio of orientation errors fail to stay inside the 3σ

envelope when using alternative methods to the TFG-based
one proposed in the present paper. Moreover, we see that,
when using the TFG, the envelopes are less dispersed over
the Monte Carlo runs, indicating a reduced dependency of
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Fig. 1: Convergence and consistency comparison of smooth-
ing based on three parametrisations: using the TFG (ours),
SE2(3) [17], and NavState (GTSAM [21]), with a window
size of 5. For 50 Monte Carlo runs over the KITTI trajectory
01, during the transitory phase after an initialization with
random yaw, the yaw error and the 3σ envelope obtained
from the estimated covariance are plotted over time. Con-
sistent trajectories are in blue, inconsistent ones in red. We
see that the proposed method provides a greater ratio of
consistent estimates. Besides, we note the 3σ envelopes are
less dispersed over Monte-Carlo runs when using the TFG,
which is consistent with them having less dependency on the
estimates, see [7].

the covariance matrix on the estimated trajectory, which is
the main goal of the TFG theory indeed [7].

To assess the method over a larger number of experiments,
Table I reports, for the various KITTI trajectories, window
sizes and methods, the ratio of Monte Carlo runs which are
consistent. As expected, larger windows ensure better conver-
gence (but require more onboard computation capabilities)
except when the ratio is already close to one. Moreover,
smoothing based on the TFG proves much more robust, in
that it systematically outperforms other methods when using
the smallest window size (and hence being computationally
efficient). It indicates a special ability to avoid local minima.

VI. CONCLUSION

In this paper we proposed to leverage the recently intro-
duced Two-Frames Group structure in an Invariant Smooth-
ing framework for localization, in a difficult setting where
the window size is relatively low, and the inital error may
be large. The necessary derivations, notably to retrieve the
Jacobians, helped understanding the properties of the TFG.
The proposed method showed increased robustness over
the state-of-the-art in terms of convergence on real data.

seq. window TFG SE2(3) (18) (GTSAM)

01
5 0.98 0.78 0.86

10 0.98 0.98 0.96
15 0.98 0.98 0.84

05
5 0.94 0.7 0.7

10 0.96 0.92 0.92
15 0.96 0.98 0.96

06
5 0.96 0.68 0.66

10 0.94 0.96 1
15 0.94 0.98 1

07
5 0.96 0.94 0.96

10 0.98 0.98 0.98
15 0.98 1 1

08
5 0.98 0.84 0.86

10 0.98 0.98 0.98
15 1 0.98 0.94

09
5 0.84 0.68 0.7

10 0.94 0.86 0.88
15 0.96 1 0.96

10
5 0.96 0.88 0.88

10 1 0.96 0.98
15 1 0.96 0.94

TABLE I: Ratio of consistent trajectories, out of 50 random
Monte Carlo initialization, for various smoothing methods on
the KITTI dataset. Consistency is defined as the yaw error
staying inside the 3-σ envelope.

This supports the relevance of the TFG for more complex
navigation problems, which opens up for a wide range of
future work directions. It may be interesting in the future
to investigate notbaly whether one could use the framework
of GTSAM combined with this new kind of Lie-group
based parameterization instead of the current on-manifold
parametrization, as to date only improvements have been
observed. Further investigations are thus desirable.

APPENDIX A
COMPUTATION OF (17)

Let χ = (R,v,p,ba,bω) be the state. For readability, we
denote exp(θ) = expm [(θ)×] on SO(3), i.e. for θ ∈ R3. Con-
sider an update δχ =

(
δR 0 0 0 0

)
, with δR = exp(ξ R).

Then we have χ •δχ = (RδR,v,p,δ⊤R ba,δ⊤R bω), and

fi
(
χ •δχ

)
=


RδR exp(∆t(ωi−δ⊤R bω))
v+∆t (g+RδR(ai−ba))

p+∆t v
δ⊤R ba

δ⊤R bω

 (20)

Let Ωi = exp(∆t(ωi−bω)). Since δ⊤R ≈ I − (ξ R)×,
we can approximate exp(∆t(ωi−δ⊤R bω)) ≈
Ωi exp(−∆tDi(ξ

R)×bω) with Di = Dexp(∆t(ωi − bω))
and Dexp the differential of exp on SO(3). We know that
RδRΩi = RΩi exp(Ω⊤i ξ R), so RδR exp(∆t(ωi−δ⊤R bω)) ≈
RΩi exp(Ω⊤i ξ R−∆tDi(bω)×ξ R). Therefore, given (13), we



can write

fi
(
χ •δχ

)
≈ fi(χ)•


exp(Ω⊤i ξ R−∆tDi(bω )×ξ R)

−∆tΩ⊤i (ξ
R)×ai

0
δ⊤R ba− exp(−Ω⊤i ξ R +∆tDi(bω )×ξ R)ba

δ⊤R bω − exp(−Ω⊤i ξ R +∆tDi(bω )×ξ R)bω


(21)

The last terms usually do not appear when considering other
parametrisations. Linearising the exponential, we get(

δ
⊤
R − exp(−Ω

⊤
i ξ

R +∆tDi(bω)×ξ
R)
)

ba

≈
(
−(ξ R)×+(Ω⊤ξ

R)×−∆t(Di(bω)×ξ
R)×

)
ba

= (ba)×
(

I−Ω
⊤+∆tDi(bω)×

)
ξ

R (22)

and similarly for bω , thus recovering the first block column
of (17). In particular, this highlights why Ωi ̸= Id breaks the
group affine property of (11) in the 3D case (and without the
gyro bias).

APPENDIX B
USEFUL FORMULAS FOR THE TFG

We recall the results of [7] being useful herein.

A. Exponential and Logarithm

The exponential on the considered TFG is given by the
following formula:

expT FG


ξ R

ξ v

ξ p

ξ ba

ξ bω

=


exp(ξ R)
ν(ξ R)ξ v

ν(ξ R)ξ p

ν(−ξ R)ξ ba

ν(−ξ R)ξ bω

 (23)

Where ν is given by:

ν(ξ ) = I+
1− cos(||ξ ||)
||ξ ||2

(ξ )×+
||ξ ||− sin(||ξ ||)

||ξ ||3
(ξ )2
×

Its inverse, the logarithm, writes:

logT FG


R
v
p
ba

bω

=


ξ R

ν(ξ R)−1v
ν(ξ R)−1p

ν(−ξ R)−1ba

ν(−ξ R)−1bω

 (24)

B. Adjoint Matrices and left Jacobian

In order to apply (8) to the TFG, one needs to com-
pute P̃0 = J−1

0 P0J−T
0 , where J0 is the left Jacobian of the

group computed at p0, which is given by the following
sum J0 = ∑ j≥0

1
(n+1)! (adp0)

j [1]. Moreover adp0 can be
determined through identification, thanks to the fact that
expm adp0 = AdexpT FG p0 . Thus, what is left to do is compute
Adχ for an element of the TFG. In general it is given by

the differential of g 7→ χ • g • χ−1 around the identity. Let
χ = (R,v,p,ba,bω) be a state. Then, following [7], we get

Adχ =


R

(v)×R R
(p)×R R
R(ba)× R
R(bω)× R

 (25)

Now, let χ = expT FG(ξ ), with ξ = (ξ R,ξ p,ξ p,ξ ba
,ξ bω

).
Using (23), and the facts that Rν(−ξ R) = ν(ξ R), and
R(x)× = (Rx)×R, we get

AdexpT FG(ξ )
=


R

(ν(ξ R)ξ v)×R R
(ν(ξ R)ξ p)×R R
(ν(ξ R)ξ ba

)×R R
(ν(ξ R)ξ bω

)×R R

 (26)

Therefore, we can directly identify

adξ =


(ξ R)×
(ξ v)× (ξ R)×
(ξ p)× (ξ R)×
(ξ ba

)× (ξ R)×
(ξ bω

)× (ξ R)×

 (27)
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sciences et lettres, February 2020.

[16] Paul Chauchat, Axel Barrau, and Silvere Bonnabel. Invariant Smooth-
ing on Lie Groups. In IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, IROS 2018, Madrid, Spain, October 2018.
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