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THE SUPERSINGULAR ENDOMORPHISM RING PROBLEM

GIVEN ONE ENDOMORPHISM

ARTHUR HERLÉDAN LE MERDY AND BENJAMIN WESOLOWSKI

Abstract. Given a supersingular elliptic curve E and a non-scalar endomorphism α of E, we
prove that the endomorphism ring of E can be computed in classical time about disc(Z[α])1/4,
and in quantum subexponential time, assuming the generalised Riemann hypothesis. Previous
results either had higher complexities, or relied on heuristic assumptions.

Along the way, we prove that the Primitivisation problem can be solved in polynomial time
(a problem previously believed to be hard), and we prove that the action of smooth ideals
on oriented elliptic curves can be computed in polynomial time (previous results of this form
required the ideal to be powersmooth, i.e., not divisible by any large prime power). Following
the attacks on SIDH, isogenies in high dimension are a central ingredient of our results.

1. Introduction

Isogeny-based cryptography is an active and promising branch of post-quantum cryptography.
Isogenies are certain kinds of maps between elliptic curves. The security of cryptosystems in
this family relies mainly on the algorithmic hardness of constructing an isogeny between two
supersingular elliptic curves: the supersingular isogeny path problem.

Endomorphisms of an elliptic curve E are isogenies from E to itself, and their collection forms
the endomorphism ring End(E). The endomorphism ring problem, denoted EndRing, consists in
computing the endomorphism ring of a supersingular elliptic curve. Under the generalised Riemann
hypothesis, the isogeny problem is equivalent to EndRing [EHL+18,Wes21]. This equivalence has
placed EndRing at the heart of isogeny-based cryptography, and its hardness has been proved
to relate to the security of the CGL hash function [CGL06, EHL+18], the CSIDH key exchange
protocol [CD20,CPV20,Wes22] or the SQISign signature scheme [DFKL+20].

In certain cryptosystems, the elliptic curves involved are equipped with one public endomor-
phism. For instance, in CSIDH [CD20], all elliptic curves are defined over Fp, and anyone knows
the Frobenius endomorphism. The situation is similar in [CS21,FFK+23]. The endomorphism ring
problem then consists in finding all the other endomorphisms. This yields the following question:

• How much does knowing one endomorphism simplify the computation of the endomor-
phism ring of a supersingular elliptic curve?

A closely related question was studied in [ACL+22b]: given two curves E and E′, together with
two endomorphisms α ∈ End(E) and β ∈ End(E′), how hard is it to find an isogeny between
them. Under several heuristic assumptions, they provide a classical exponential algorithm and
a quantum subexponential algorithm solving this problem. With the equivalence between the
isogeny path problem and EndRing, their work provides a first answer to the above question.
Yet that answer has limitations: first, as stated, it is only heuristic. Second, the output of the
algorithm of [ACL+22b] may have exponential size, which could considerably increase the cost of
applying the equivalence.

The schemes of [CD20,CS21,FFK+23] have in common the notion of orientation, introduced
by Colò and Kohel [CK20]. Given an order O in a quadratic number field, an O-orientation of
a curve E is a subring of End(E) isomorphic to O. The interest in this notion lies in the fact
that the set of O-oriented curves comes with an action of the class group of O. The problem of
inverting this group action is known as the Vectorisation problem. The presumed hardness of
this problem was already at the heart of the security of the CRS protocol [Cou06,RS06] where
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the action of ideal class groups came from the complex multiplication theory of ordinary elliptic
curves. Today, it is behind the security of CSIDH [CD20] and its variants [CS21,FFK+23].

Any endomorphism α ∈ End(E) \ Z gives rise to a Z[α]-orientation, hinting at the connection
between the EndRing problem given one endomorphism, and problems involving orientations.
The link between Vectorisation and EndRing has first been studied in the particular case
of CSIDH in [CPV20]. That article proves that there is a subexponential-time reduction from
breaking CSIDH to computing the endomorphism rings. Then it has been improved and extended
to a polynomial-time equivalence between Vectorisation and EndRing in [Wes22]. However,
these results necessitate the orientations to be primitive: the quadratic suborder must be maximal
in the endomorphism ring. Obtaining a primitive orientation from a given orientation is not trivial
— this problem is called the Primitivisation problem. This leads us to this second question:

• How hard is it to get a primitive orientation from an orientation?

The Primitivisation problem was first introduced in [ACL+22b] as a presumably hard pro-
blem, and they gave a quantum subexponential algorithm solving it.

1.1. Orientations and variants of EndRing. We now give an informal insight into orienta-
tions and related hard problems. For formal definitions, we refer the reader to Section 2 about
orientations and general notations, to Section 3 about the different hard problems and to [Sil13]
for a detailed reference about elliptic curves and isogenies.

We fix a prime integer p and we denote E a supersingular elliptic curve defined over F̄p. An
isogeny of elliptic curves is a morphism between elliptic curves seen as abelian varieties. We denote
by End(E) the ring formed by isogenies from E to itself, i.e. the endomorphisms of E. We consider
the following supposedly hard problem EndRing.

• EndRing: Given a supersingular elliptic curve E, compute End(E).

The current best classical algorithms to solve EndRing run in expected time Õ(p1/2), see for

instance [EHL+20], and the best quantum algorithms have complexity in Õ(p1/4), see for exam-
ple [BJS14].

Let O be an order of a quadratic number field. An orientation ι is an embedding from O into
End(E). This is mainly equivalent to knowing an endomorphism in End(E)\Z. If this embedding
cannot be extended to any superorder of O, we say that ι is a primitive orientation. When a (pri-
mitive) orientation ι exists, we say that E is (primitively) O-orientable and that the pair (E, ι) is
a (primitively) O-oriented elliptic curve.

This notion of orientation comes together with variants of EndRing where partial information
on the endomorphism ring is given. Let α be an element of the quadratic order O.

• α-EndRing: Given a supersingular elliptic curve E and an orientation ι : Z[α] →֒ End(E),
compute End(E).

• O-EndRing: Given a primitively O-oriented supersingular elliptic curve (E, ι), compute
End(E).

These two problems are tightly related. On the one hand, there is a direct reduction from
O-EndRing to α-EndRing as the inputs of the former are also inputs of the latter. On the other
hand, the reduction from α-EndRing to O-EndRing is not trivial as it requires to compute
a primitive orientation from any given orientation. This computation has been introduced in
[ACL+22b] as a hard problem together with a quantum algorithm for solving it in subexponential
time under some heuristics.

• Primitivisation: Given a supersingular elliptic curve E and a orientation ι : Z[α] →֒
End(E), find the primitive orientation ι′ : O →֒ End(E) such that Z[α] ⊆ O.

To get a classical reduction from α-EndRing to O-EndRing, an idea is to extend the given
orientation to larger quadratic orders until it is no longer possible. The bottleneck of this method
is that it requires performing divisions of endomorphisms by integers to check if the orientation
can be extended to superorders. Namely, if this division can be done efficiently as many times
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as needed, one will get a classical subexponential algorithm and a quantum polynomial algorithm
solving Primitivisation as the only remaining costly step is to factor the discriminant of the
order.

The O-EndRing problem is not only interesting to investigate the complexity of EndRing
given some additional information, it also has an important place in isogeny-based cryptography.
To see that, we first need to consider the Vectorisation problem induced by primitive orienta-
tions. From a primitive orientation, one can construct a free action of the class group Cl(O) over
the set of primitively O-oriented elliptic curves. We denote this group action as

Cl(O)× SSO(p)→ SSO(p)

([a], (E, ι)) 7→ a ⋆ (E, ι) := (Ea, ιa),

where SSO(p) is the set of primitively O-oriented supersingular elliptic curves defined over F̄p up
to isomorphism. This group action allows to define a Vectorisation problem giving a framework
to study security of CSIDH-like protocols.

• O-Vectorisation: Given (E, ι) and (E′, ι′) in SSO(p) find an O-ideal a such that Ea ≃
E′.

Under the generalised Riemann hypothesis and given the factorisation of disc(O), the O-
EndRing problem is equivalent toO-Vectorisation in probabilistic polynomial time, see [Wes22].
Therefore, the security of many protocols, such as CSIDH [CD20], CSI-FiSh [BKV19] and CSURF
[CD20], reduces to O-EndRing see [Wes22].

In the current state of the art, using l to denote the length of the input, the O-Vectorisation
problem can heuristically be solved in expected classical time lO(1)| disc(O)|1/4, using for in-
stance approaches close to the ones in [DG16]. Quantumly, it can heuristically be solved in
time lO(1)L|disc(O)[1/2], see [Wes22, Proposition 4].

1.2. Contributions. We prove rigorously, removing all the previous heuristics, the following list
of algorithms which are at least as good, regarding their complexity, as previous results in the
literature and better for some them. In this list of contributions, we suppose that the input and
output of the algorithms are always in efficient representation, we refer the reader to Section 2.3
for more information about representation and encoding.

• In Section 4, we develop the first ingredient for the rest of the paper: an algorithm to
divide endomorphisms by integers in polynomial time such that the output is efficiently
represented. It is a straightforward generalisation of the division of Frobenius endomor-
phisms by integers used in the algorithm of Robert to compute the endomorphism ring
of an ordinary elliptic curve, [Rob22b, Theorem 4.2]. Before the attacks of SIDH, it was
only possible to divide endomorphisms by integers either in superpolynomial time, or by
degrading the quality of the representation (getting exponentially worse with each appli-
cation), it is not the case here.
• In Section 5 and 6, we give three applications of this division algorithm:

– We adapt Robert’s algorithm for computing in polynomial time the endomorphism
ring of ordinary elliptic curves [Rob22b] to one of its supersingular counterparts: the
resolution of the Primitivisation problem. We prove that, when the factorisation of
disc(O) is known, there is a classical polynomial algorithm solving Primitivisation.

– We provide a polynomial algorithm computing the action of smooth ideals. Previous
polynomial-time algorithms for this task required the norm of the input ideal to be
powersmooth. We expect these techniques to improve the practicality of cryptosys-
tems exploiting this group action, such as [FFK+23].

– We give an algorithm, with an rigorous analysis under the generalised Riemann hy-
pothesis, to compute the action of any ideal in supexponential time. The previous
subexponential algorithms were based on heuristic assumptions.

We now use l to denote the length of the input, and use the standard L-notation (Definition 2.3).

• In Section 7, under the generalised Riemann hypothesis, we prove
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– a classical algorithm solving O-Vectorisation in expected time lO(1)| disc(O)|1/4.
– a quantum algorithm solvingO-Vectorisation in expected time lO(1)L| disc(O)|[1/2].

This directly leads to
– a classical algorithm solving O-EndRing in expected time lO(1)| disc(O)|1/4.
– a quantum algorithm solving O-EndRing in expected time lO(1)L| disc(O)|[1/2].

Combined with our resolution of Primitivisation, we obtain the following theorems on
solving the endomorphism ring problem knowing an endomorphism, rigorously.

Theorem I (GRH). There is a classical algorithm that given a supersingular curve E,
and an endomorphism α ∈ End(E) \Z, computes the endomorphism ring of E in expected
time lO(1)| disc(Z[α])|1/4 where l is the length of the input.

Theorem II (GRH). There is a quantum algorithm that given a supersingular curve E,
and an endomorphism α ∈ End(E) \Z, computes the endomorphism ring of E in expected
time lO(1)L| disc(Z[α])|[1/2] where l is the length of the input.

In addition, we detail how the algorithmic improvements of Section 5 allow one to
navigate efficiently in the volcano of oriented isogenies. In the previous literature, the
number of steps that one could efficiently take in a volcano was limited because of the
degrading quality of representations.

As a direct application, we present an optimisation of the resolution of O-EndRing
through the following reduction:

– Under the generalised Riemann hypothesis, there is a probabilistic reduction from
(Z + cO)-EndRing to O-EndRing taking a time polynomial in the length of the
input and in the largest prime factor of c.

This last result improves the probabilistic polynomial reduction given by [Wes22, Theorem
5] by relaxing the powersmoothness constraint on c. It also leads to a classical algorithm
solving (Z + cO)-EndRing in expected time polynomial in the length of the input, in
disc(O) and in the largest prime factor of c. This mainly removes the heuristics of [Wes22,
Corollary 6.].

Acknowledgements. The authors were supported by the CHARM ANR-NSF grant (ANR-21-
CE94-0003) and by the PEPR quantique France 2030 programme (ANR-22-PETQ-0008).

2. Definitions and notations

In this article, some results will be proved assuming the generalised Riemann Hypothesis. They
will be marked by GRH, see for instance Theorem I and II.

We denote by Fq the finite field with q elements and by F̄q its algebraic closure. The cardinality
of a set S is denoted by #S. For any order O, disc(O) is the notation of its discriminant. We use

the standard O-notation together with the Õ-notation which removes the logarithmic factors of
the O-notation, i.e. O(f(x) logk(x)) = Õ(f(x)) for any positive integer k.

Definition 2.1 ((Power)Smoothness bound). Let n be an integer of prime decomposition ℓe11 . . . ℓerr .
We say that an integer B is a smoothness bound on n and n is said to be B-smooth if

B ≥ max
i∈J1,rK

ℓi;

if further

B ≥ max
i∈J1,rK

ℓeii

then B is a powersmoothness bound on n and n is B-powersmooth. We denote by P+(n)
the integer max

i∈J1,rK
ℓi and by P ∗(n) the integer max

i∈J1,rK
ℓeii .

Definition 2.2 (Extension degree). For any elliptic curve E defined over a finite field Fpk and
integer n of prime decomposition ℓe11 . . . ℓerr , we use the following notations

• ∆E(n) := max
i∈J1,rK

[Fpk(E[ℓeii ]) : Fpk ],



COMPUTING ENDOMORPHISM RINGS FROM ONE ENDOMORPHISM 5

• ∆E,2(n) := max
(i,j)∈J1,rK2,i6=j

[Fpk(E[ℓeii ℓ
ej
j ]) : Fpk ],

where, for any integer m, Fpk(E[m]) stands for the smallest field extension of Fpk where the
coordinates of the points of E[m] live.

Definition 2.3 (L-notation). Let a, b, x be three real numbers. To handle subexponential comple-
xities, we define the following standard L-notation

Lx[a, b] := exp(b(log x)a(log log x)(1−a)),

as well as this L-notation for unknown constants

Lx[a] := exp(O((log x)a(log log x)(1−a))).

2.1. Cayley graph.

Definition 2.4 (Cayley graph). Let G be a finite group and let S ⊆ G be a generating subset of
G. The Cayley graph Cay (G,S) is the graph whose vertices are the elements of G and such
that there exists an edge between two vertices g1, g2 if and only there exists an s ∈ S such that
g2 = sg1.

We shall use the following result of Childs, Jao and Soukkharev regarding random walks over
Cayley graphs of class groups.

Proposition 2.5 ((GRH,) Theorem 2.1 in [CJS14]). Let O be an imaginary quadratic order of
discriminant ∆ and conductor fO. Let ε > 0 and x be a real number such that x ≥ (log |∆|)2+ε.
Let Sx be the set

{[p] ∈ Cl(O) such that gcd(fO, p) = 1 and N(p) ≤ x prime, and their inverse}.
Then there exists a positive constant C > 1, depending only on ε, such that for all ∆ sufficiently
large, a random walk of length

t ≥ C log#Cl(O)

log log |∆|
in the Cayley graph Cay(Cl(O), Sx) from any starting vertex lands in any fixed subset H ⊂ Cl(O)
with probability P such that

1

2

#H

#Cl(O)
≤ P.

2.2. Elliptic curves and orientations. In this section, we recall some basic definitions and
notations about elliptic curves before to introduce the recent notions of orientations [CK20]. For
more details about elliptic curves theory, we refer the reader to Silverman’s book [Sil13].

An elliptic curve is an abelian variety of dimension 1. Isogenies of elliptic curves are non-
trivial homomorphisms between them. Isogenies from an elliptic curve to itself is called an en-
domorphism. The set of all endomorphisms of an elliptic curve E together with the trivial map
form the endomorphism ring (End(E),+, ◦) where + is the point-wise addition and ◦ is the
composition of maps. For any integer n and elliptic curve E, we denote by [n] the multiplication-
by-n map over E and by E[n] its kernel, called the n-torsion subgroup of E. An elliptic curve
E defined over a finite field of characteristic p is said to be supersingular if E[p] ≃ {0}. The
degree of an isogeny ϕ from an elliptic curve E to an elliptic curve E′ is the smallest integer n
such that there exists an isogeny ψ from E′ to E verifying ϕ ◦ ψ = [n]. We then call such isogeny
ψ the dual isogeny of ϕ and denote it ϕ̂. An isogeny is said to be separable when its degree is
equal to the cardinality of its kernel. In this paper, we only work with supersingular elliptic curves
defined over a field of characteristic p, where p is a fixed prime number. For any prime ℓ 6= p, we
call ℓ-isogenies the separable isogenies of degree ℓ.

An important property of supersingular elliptic curves is that their endomorphism ring is iso-
morphic to a maximal order of the quaternion algebra over Q ramified only in p and at infinity.
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This quaternion algebra is unique up to isomorphism and we denote it by Bp,∞. More explicitly,
we have the isomorphism of Q-algebras

Bp,∞ ≃ Q+Qi+Qj +Qij such that i2 = −p, j2 = −qp and ij = −ji
where qp is a positive integer depending only on p. We refer the reader to [Voi21] for more
information about quaternion algebras.

In a way, quaternion algebras can be seen as two imaginary quadratic number fields combined
to get a non commutative 4-dimensional Q-algebra. It is in fact possible to embed an infinite
number of imaginary quadratic number fields into a given Q-algebra Bp,∞. Naturally, one can
then study how orders of imaginary quadratic number fields embed into a given endomorphism
ring of supersingular elliptic curves. The recent notion of orientations [CK20] describes such
embeddings.

Let K be a quadratic number field.

Definition 2.6 (Orientation). An elliptic curve E is said to be K-orientable if there exists an
embedding ι : K →֒ End(E)⊗Z Q. Then the embedding ι is a K-orientation and the pair (E, ι)
is a K-oriented elliptic curve.

For any order O of K, we say that ι is an O-orientation and (E, ι) is an O-oriented elliptic
curve if ι(O) ⊆ End(E). In this case, ι will often be considered as the embedding O →֒ End(E).
An O-orientation ι is primitive if ι(O) = End(E) ∩ ι(K), then (E, ι) is said to be primitively
O-oriented.

Definition 2.7 (Oriented isogeny). Let (E, ι) and (E′, ι′) be two K-oriented elliptic curves, and
let ϕ : E → E′ be an isogeny. We say that ϕ is K-oriented if the K-orientation on E′ induced
by ϕ, denoted by ϕ∗(ι), is equal to ι′. Explicitly, this orientation is given by

ϕ∗(ι)(κ) = (ϕ ◦ ι(κ) ◦ ϕ̂)⊗ 1

deg(ϕ)
, ∀κ ∈ K.

In particular, a K-oriented isogeny of degree 1 is called a K-oriented isomorphism.

For any order O in K, let SSO(p) be the set of primitively O-oriented supersingular elliptic
curves over Fp, up to K-oriented isomorphism. One can then define a free action of the class group
Cl(O) on the set of curves SSO(p). This is analogous to the well-known action of Cl(O) on the
set of ordinary elliptic curves with their endomorphism ring isomorphic to O.

Let us describe precisely how Cl(O) acts on SSO(p).

We consider the action of an invertible O-ideal a prime to p on an oriented elliptic curve
(E, ι) ∈ SSO(p). First, we consider the finite subgroup E[a] of E, called the a-torsion of E,
given by

E[a] :=
⋂

α∈a

ker ι(α).

It induces a separable isogeny ϕa : E → E/E[a] of kernel E[a]. We call this isogeny ϕa the a-
multiplication and its image curve E/E[a], also denoted Ea, the a-transform. Then the action
of a on (E, ι) is the O-oriented supersingular elliptic curve (Ea, (ϕa)∗(ι)) up to K-isomorphism.
By factorisation, we get the whole action of Cl(O) on SSO(p).

Proposition 2.8 ( [Onu21]). The class group Cl(O) acts over SSO(p) freely and has at most two
orbits. We denote this action as

Cl(O)× SSO(p)→ SSO(p)

([a], (E, ι)) 7→ a ⋆ (E, ι) := (Ea, (ϕa)∗(ι)).

In addition, for any given orbit O and any given O-oriented supersingular elliptic curve (E, ι),
either (E, ι) or its O-twist (E, ῑ), where ῑ(α) = ι(ᾱ), is in O.

Proof. This proposition is obtained from [Onu21, Theorem 3.4] and from [Onu21, Proposition 3.3].
In particular, inside the proof of [Onu21, Proposition 3.3], it is shown that either (E, ι) or (E, ῑ)
is in a given orbit. �
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2.3. Encoding and representation of isogenies.

Definition 2.9 (Algorithm of evaluation of isogenies). An algorithm of evaluation of isoge-
nies is an algorithm which takes as input an encoding of an isogeny and an encoding of a point
and returns the evaluation of the isogeny at this point. We shall refer to those algorithms simply
by algorithm of evaluation.

Definition 2.10 (Representation of an isogeny). A representation of an isogeny ϕ is a specific
encoding of ϕ associated to an algorithm of evaluation.

Definition 2.11 (Efficient representation of an isogeny). Let E be an elliptic curve over a finite
field of characteristic p. A representation of an isogeny ϕ of E is efficient if its associated
algorithm of evaluation returns ϕ(P ) in time polynomial in k log p and in the length of the encoding
of ϕ for any P ∈ E(Fpk). Moreover, it is assumed that an efficient representation of an isogeny
ϕ has length Ω(log(deg(ϕ))).

Definition 2.12 (Efficient representation of orientation). Let E be an elliptic curve. A repre-
sentation of an orientation ι : O →֒ End(E) is given by a generator ω of the order O together
with a representation of the isogeny ι(ω). It is said to be an efficient representation if the
representation of ι(ω) is efficient. By extension, the oriented elliptic curve (E, ι) is said to be
efficiently represented if ι is.

We now define a function enc, introduced in [Wes22], which returns a unique encoding of the
K−isomorphism class of a O-oriented elliptic curve. It takes as input a representation of an
oriented elliptic curve (E, ι) ∈ SSO(p) and returns a unique triple (E,P,Q) assuming that we
have fixed in advance:

• A canonical form for elliptic curves given by their j-invariant,
For instance, E : y2+xy = x3−(36x+1)/(j(E)−1728) if j(E) 6∈ {0, 1728}, see [Sil13, page
47],
• A generator ω of O, typically one with the smallest possible norm,
• A deterministic procedure that takes as input an elliptic curve E/F(q) in canonical form
and returns a point P ∈ E(Fq) of order greater than 4N(ω).

Then the map enc : (E, ι) 7→ (E,P,Q) is given by constructing the point P of order greater
than 4N(ω) using the deterministic procedure and setting Q to be ι(ω)(P ). As shown in [Wes22],
this encoding is an unique encoding of the K-isomorphism class of (E, ι). Moreover, when ι is effi-
ciently represented, the encoding enc((E, ι)) can be computed in polynomial time. Thus checking
if two O-oriented elliptic curves are K-isomorphic is done in polynomial time using enc.

When the j-invariant of the oriented curve is 0 or 1728, one needs to use another canonical
form, see [Sil13, page 47], for instance

E : y2 + y = x3, if j = 0

and
E : y2 = x3 + x, if j = 1728.

In this cases, one also needs to consider the non-trivial automorphisms of the elliptic curve and
thus to replace Q by the set {(σ∗ι)(ω)(P )|σ ∈ Aut(E)}.

Finally, we define the image of any set S of oriented supersingular elliptic curves by enc as the
set of their unique encoding by enc, denoted enc(S).

In this paper, unless otherwise specified, when an algorithm takes as input an isogeny, we mean
that the isogeny is given with an efficient representation. It is also the case for orientations taken
as input.

3. The endomorphism ring problem and its friends

One of the central problems in isogeny-based cryptography using supersingular elliptic curves
is the following ℓ-IsogenyPath problem, where ℓ is a prime number. Notice that in this paper,
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we shall not talk about ordinary elliptic curves since, nowadays, almost all isogeny-based schemes
use supersingular elliptic curves.

Problem 3.1 (ℓ-IsogenyPath). Given two supersingular elliptic curves E and E′ over Fp2 and
a prime ℓ 6= p, find a chain of ℓ-isogenies from E to E′.

The ℓ-IsogenyPath problem is considered to be the fundamental problem at the heart of the
isogeny-based cryptography. This problem has been shown to be equivalent, under GRH, to the
problem of finding the structure of the endomorphism ring of a supersingular elliptic curve [Wes21].
This second problem is called the endomorphism ring problem or the EndRing problem. Since
for any supersingular elliptic curve E defined over a finite field of characteristic p, End(E) is
isomorphic to a maximal order of the quaternion algebra Bp,∞, the EndRing problem comes
in two flavors. One can either look for four isogenies generating End(E) as a lattice or for four
quaternions generating a maximal order which is isomorphic to End(E). The notion of ε-basis
unifies those approaches under GRH, see [Wes21].

Definition 3.2 (ε-basis). Let ε : Bp,∞ → End(E) ⊗Z Q be an isomorphism and L ⊆ Bp,∞ be a
lattice. We call a pair (α, θ), where (αi)

rankL
i=1 is a basis of L and θi = ε(αi), an ε-basis of L. The

pair (α, θ) will be called an ε-basis of ε(L) as well.

Problem 3.3 (EndRing). Given a supersingular elliptic curve E over Fp2 , find an ε-basis of
End(E).

The current best classical algorithms to solve EndRing run in expected time Õ(p1/2), see

for instance [EHL+20], and the best quantum algorithms have complexity in Õ(p1/4), see for
example [BJS14].

The recent notion of orientation, introduced by Colò and Kohel in [CK20], see Section 2.2,
comes together with a variant of EndRing where partial information on the endomorphism ring
is given.

Problem 3.4 (O-EndRing). Given a primitively O-oriented supersingular elliptic curve (E, ι)
over a finite field of characteristic p, find an ε-basis of End(E).

The study of this problem is not only important to see how the complexity of EndRing is
impacted by the knowledge of a single non-trivial endomorphism but also because it is in fact
equivalent, under GRH, to the O-Vectorisation problem [Wes22].

Problem 3.5 (O-Vectorisation). Given (E, ι), (E′, ι′) ∈ SSO(p) two oriented supersingular
elliptic curves, find an O-ideal a such that Ea ≃ E′.

This hardness of the problem O-Vectorisation measures whether or not an action induced by
a primitive orientation is a one-way function. Hence, recovering the keys of CSIDH-like protocols,
such as [CD20,CS21,FFK+23], reduces to O-Vectorisation.

In this paper, we only need the following reduction between the two problems.

Proposition 3.6 (GRH, Proposition 7 in [Wes22]). Given the factorisation of disc(O), the
O-EndRing problem reduces to O-Vectorisation in probabilistic polynomial time in the length
of the instance.

In the current state of the art, the O-Vectorisation problem can heuristically be solved in
expected classical time lO(1)| disc(O)|1/4, with l the length of the input, using for instance a meet-
in-middle approach in a similar way as presented in [DG16]. Quantumly, O-Vectorisation
can heuristically be solved in subexponential time in the length of the discriminant of O, see
[Wes22, Proposition 4]. Hence, knowing an orientation seems to make a significant difference in
the expected runtime to solve EndRing.

However, those resolutions and reductions need the orientation to be primitive and assume sev-
eral heuristics. When the orientation is not primitive, this is equivalent to knowing one non-trivial
endomorphism of the curve. Obviously, knowing an orientation also gives the knowledge of a non-
trivial endomorphism. In the other direction, given a non-trivial endomorphism, one can compute
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in polynomial time its degree and trace [Wes22, Lemma 1] and deduce a quadratic number α such
that Z[α] →֒ End(E) is an orientation.

We introduce a stronger variant of O-EndRing where the given orientation is not required to
be primitive.

Problem 3.7 (α-EndRing). Given a supersingular elliptic curve E over Fp2 and an orientation
ι : Z[α] →֒ End(E), find an ε-basis of End(E).

The following Primitivisation problem has been introduced in [ACL+22b] as a hard problem.
It reduces the α-EndRing problem to the O-EndRing problem.

Problem 3.8 (Primitivisation). Given a supersingular elliptic curve E over Fp2 and an orien-
tation ι : Z[α] →֒ End(E), find a primitive orientation ι′ : O →֒ End(E) such that the order Z[α]
is contained in the order O.

In [ACL+22b] the authors also give a quantum algorithm for solving it in subexponential time
under some heuristics, and conjecture that it is hard to solve in general. Moreover, they give a
quantum algorithm to solve the ℓ-IsogenyPath problem given non-primitive orientation that uses
their Primitivisation algorithm as a subprocedure. Inevitably, their algorithm inherits the need for
heuristics of the subprocedure. We prove in Section 5 that, using tools involving higher dimensional
isogenies, see Section 4, there is an algorithm solving Primitivisation for an orientation ι :
Z[α] →֒ End(E) in classical polynomial time given the factorisation of disc(Z[α]). It directly yields
a classical subexponential and a quantum polynomial reduction of α-EndRing to O-EndRing.

This implies, together with Proposition 3.6, reductions of α-EndRing to O-Vectorisation.
This reasoning is formalized in Section 7 together with a rigorous analysis of the complexity of
O-Vectorisation.

4. Efficient division of endomorphisms

In this section, we discuss higher dimensional isogenies and how they can be used to efficiently
divide endomorphisms by integers. The goal of this section is to prove Theorem 4.1 below (and
its more precise formulation Theorem 4.16).

Theorem 4.1. Algorithm 1 takes as input

• A supersingular elliptic curve E/Fp2 such that p > 3,
• An endomorphism ϕ of E,
• An integer n < degϕ,

and returns in time polynomial in log p and log deg(ϕ) a representation of ϕ/n if it is an endo-
morphism; otherwise it returns False.

This representation of ϕ/n is of size O(log(p) log3(degϕ)) and allows one to evaluate it at any

point in Õ(log11(degϕ)) operations over its field of definition.

The machinery of higher dimensional isogenies is only used in this section, and the reader may
admit the main theorem and skip the rest of the section without impairing global understanding.
Some definitions require notions of algebraic geometry which will not be recalled here. If neces-
sary, the reader may refer to [Mil86]. Let us emphasise that the ideas underlying Theorem 4.1
and its proof originate from [Rob22b]. Theorem 4.1 and its proof are simply expressed in higher
generality and greater detail than [Rob22b] provides.

Initially, the idea of exploiting higher dimensional isogenies for efficient computation of isogenies
between elliptic curves was introduced by Castrick and Decru to attack SIDH, see [CD23]. Among
other ingredients, this attack relies on the generalization of Vélu’s formulae by Lubicz and Robert,
see [LR12]. The attack of Castrick and Decru has since been developed further, notably by Robert
who generalised the attack [Rob23] and found other applications to elliptic curves, see [Rob22a]
and [Rob22b].
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We now turn to a presentation of principally polarised abelian varieties — which constitute,
see e.g. [Mil86], the suitable generalisation of elliptic curves to higher dimensions.

For any abelian varieties A and A′ and any isogeny ϕ : A→ A′, the dual variety of A is denoted
by Â and the dual isogeny of ϕ is denoted by ϕ̂ : Â′ → Â.

Definition 4.2 ((Principally) Polarised abelian varieties). Let A be an abelian variety. One can

derive from an ample divisor of A an isogeny λ : A → Â, such isogeny is called a polarisation
of A. It is a principal polarisation if λ is an isomorphism. For any (principal) polarisation λ
of A, the pair (A, λ) is a (principally) polarised abelian variety.

Remark 4.3. Elliptic curves are principally polarised abelian varieties having a unique principal
polarisation, simply denoted by λE for a given elliptic curve E. Hence, there exists a natural
principal polarisation over products of elliptic curves induced by the product of the polarisations.
We call this polarisation the product polarisation and denote it λE1×···×En

for the product
of elliptic curve E1 × · · · × En. When we consider a product of elliptic curves as a principally
polarised abelian variety without specifying the polarisation, it means that it is polarised by the
product polarisation.

In this section, we shall mostly focus on isogenies between products of elliptic curves.
Let E1, . . . , En, E

′
1, . . . , E

′
m be elliptic curves and ϕi,j : Ej → E′

i be isogenies of elliptic cuvres
where i ∈ J1,mK, j ∈ J1, nK. From this set of isogenies, we naturally get the following map between
products of elliptic curves

E1 × · · · × En → E′
1 × · · · × E′

m

(P1, . . . , Pn) 7→ (

n∑

j=1

ϕ1,j(Pj), . . . ,

n∑

j=1

ϕm,j(Pj)).

This map can be represented by the matrix (ϕi,j)i∈J1,mK,j∈J1,nK called the matrix form. If the

map has a finite kernel and n = m then it is an isogeny.
Given a unique isogeny ϕ : E → E′, one can construct an isogeny ϕ : En → En by setting

ϕ(P ) = (ϕ(P1), . . . , ϕ(Pn)), ∀P = (P1, . . . , Pn) ∈ En. The matrix form of ϕ is then the identity
matrix of dimension n multiplied by ϕ.

Any isogeny F : E1× · · · ×En → E′
1 · · · × . . . E′

n between two products of elliptic curves can be
written using a matrix form with the following injection map

τj : Ej → E1 × · · · × En
P 7→ (0, . . . , 0︸ ︷︷ ︸

i−1

, P, 0, . . . , 0︸ ︷︷ ︸
n−i

)

and projection map

πi : E′
1 × · · · × E′

n → E′
i

(P1, . . . , Pn) 7→ Pi

with i, j ∈ J1, nK. Indeed, by defining the isogeny Fi,j : Ej → E′
1 as πi ◦ F ◦ τj , for all i, j ∈ J1, nK,

we get

F (P1, . . . , Pn) =
( n∑

j=1

Fi,j(Pj)
)
1≤i≤n

,

for any (P1, . . . , Pn) ∈ E1 × · · · × En. We thus define the matrix form of the isogeny F as
M(F ) = (Fi,j)i,j∈J1,nK.

Thanks to the previous notations, we can provide a formal definition of what we mean by
embedding an isogeny in higher dimensions.

Definition 4.4 (Embedding representation). Let ϕ : E → E′ be an isogeny of elliptic curves and n
be an integer. An embedding representation of ϕ in dimension n is a triplet (F, i, j) associated
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to an algorithm to evaluate F , where F : En → E′n, i, j ∈ J1, nK and such that ϕ(P ) = πj ◦ F ◦ τi
for any P ∈ E.

We now introduce a notion of duality with respect to the principal polarisations allowing us
to define a notion of isogenies between principally polarised abelian varieties behaving in a very
similar way to elliptic curve isogenies.

Definition 4.5 (N -Isogenies). Let (A, λ) and (A′, λ′) be two principally polarised abelian varieties.
Let ϕ : A→ A′ be an isogeny. We define the dual isogeny of ϕ with respect to the principal
polarisations as the isogeny ϕ̃ := λ−1 ◦ ϕ̂ ◦ λ′ : A′ → A. We say that ϕ : (A, λ)→ (A′, λ′) is an
N-isogeny of principally polarised abelian varities if ϕ̃ ◦ ϕ = [N ].

Let M be the matrix form of an isogeny between products of elliptic curves. The adjoint
matrix of M is M̃ := (M̂j,i)i,j∈J1,nK which is the transpose of the matrix whose entries are the
dual entries of M . The dual isogeny, with respect to the product polarisations, of the isogeny
given by M has for matrix form the adjoint matrix of M .

We extend the notions of algorithms of evaluation of isogenies and representations of
an isogeny to N -isogenies. Notice that each N -isogeny is associated to some principal polarisa-
tions and thus algorithms of evaluation of N -isogenies also return the principal polarisation of the
codomains.

Separable isogenies between elliptic curves can be identified to their kernel, up to isomorphisms,
and then be handled using Vélu’s formulae, see [Vé71]. We have similar results for N -isogenies
with N prime to the characteristic of the field of definition. Indeed, such isogenies can be identified
to their kernel, which is maximal isotropic, and there exists an analogue to Vélu’s formulae for
them. This notion of maximal isotropy is central and requires to introduce the Weil pairing for
principally polarised abelian varieties.

Definition 4.6 (Polarised Weil pairing). Let (A, λ) be a polarised abelian variety over a field and
N be prime to the characteristic of this field. There exists a canonical nondegenerate pairing
eN : A[N ]×Â[N ]→ µN (F̄), where µN (F̄) is the group of N th roots of 1 in F̄. This pairing is called
the Weil N -pairing. The polarised Weil N-pairing eN,λ is then the canonical nondegenerate
pairing A[N ]×A[N ]→ µN (F̄), (P,Q) 7→ eN (P, λ(Q)).

Definition 4.7 (Maximal isotropic subgroup). With the same notations as in Definition 4.6. Let
H be a proper subgroup of A[N ]. The subgroup H is maximal isotropic in A[N ] if the polarised
Weil pairing eN,λ is trivial over H but is not over any proper supergroup of H. For an isogeny of
A having a maximal isotropic kernel in A[N ] is equivalent to be an N -isogeny.

Lemma 4.8 (Proposition 1.1 in [Kan97]). Let (A, λ), (A′, λ′) and (A′′, λ′′) be principally polarised
abelian varieties such that there exist ϕ′ : (A, λ) → (A′, λ′) and ϕ′′ : (A, λ) → (A′′, λ′′) two N -
isogenies with kerϕ′ = kerϕ′′, where N is coprime to the characteristic of the abelian varieties’
field of definition. Then there is an isomorphism γ between A′ and A′′ such that ϕ′′ = γ ◦ ϕ′ and
λ′ = γ̂ ◦ λ′′ ◦ γ, i.e. γ : (A′, λ′)→ (A′′, λ′′) is a 1-isogeny. We say that γ is an isomorphism of
principally polarised abelian varieties.

In further results of this section, we shall need to recover endomorphisms of a given product
of elliptic curves En from its kernel. Thus, it is important to have a description of the group of
automorphisms of En as, by Lemma 4.8, endomorphisms with the same kernel differ only by an
automorphism.

Lemma 4.9. Let E be an elliptic curve and n be an integer. Let Aut(En, λEn) be the group
of automorphisms of the principally polarised abelian variety (En, λEn). Then the elements of
Aut(En, λEn) in matrix form are the matrices of dimension n with entries in Aut(E) ∪ {0} con-
taining only one non-zero entry per column and per row.

Proof. Let ψ ∈ Aut(En, λEn). As ψ is an automorphism of a principally polarised abelian variety,

we have ψ̂ ◦λ ◦ψ = λ thus ψψ̃ = [1], which, in matrix form, gives M(ψ)M̃(ψ) = In. Then for any
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i ∈ J1, nK,
n∑

j=1

ψi,j ◦ ψ̂i,j = [1].

Thus
n∑

j=1

[degree(ψi,j)] = [1],

which implies that exactly one ψi,j is non-zero and has degree one, hence it is an automorphism.

The identity ψ̃ψ = [1] yields the same results for columns. �

As presented by Robert in [Rob22b], isogenies between abelian varieties can be embedded into
isogenies of higher dimensions. Namely, given an isogeny ϕ between abelian varieties, one can
construct a higher dimensional isogeny such that one of its matrix form coefficients is equal to f ,
up to isomorphisms. This result is a generalisation of a construction in dimension 1 given by Kani
in [Kan97].

Lemma 4.10 (Lemma 3.4. in [Rob23]). Let A and B be two principally polarised abelian varieties
of dimension g over a base field of characteristic p. Let ϕ1, ϕ

′
2 be two d1-isogenies and ϕ2, ϕ

′
1 be

two d2-isogenies such that (d1 + d2, p) = 1 and ϕ′
1 ◦ ϕ1 = ϕ′

2 ◦ ϕ2 is a d1d2-isogeny from A onto
B, i.e.

A ϕ1(A)

ϕ2(A) B

ϕ1

ϕ2 ϕ′

1

ϕ′

2

.

Then Ç
ϕ1 ϕ̃′

1

−ϕ2 ϕ̃′
2

å

is a (d1 + d2)-isogeny F : A × B → ϕ1(A) × ϕ2(A). Moreover, if gcd(d1, d2) = 1 then the kernel

of F is ‹F (ϕ1(A)[d1 + d2]× {0}) and is of rank 2g.

We state Lemma 4.11 which describes how an endomorphism of degreeN between elliptic curves
can be embedded into an N ′-endomorphism in dimension 8 knowing its image over the N ′-torsion
group when N ′ > N . In particular, it allows to get algorithms to efficiently divide endomorphisms
by integers as their image over torsion subgroup can easily be computed.

Lemma 4.11. Let E be an elliptic curve over a finite field Fpk and ϕ be an endomorphism of
degree N of E. Let N ′ > N be an integer such that (N ′, Np) = 1. Let m1,m2,m3 m4 be integers
such that m2

1 +m2
2 +m2

3 +m2
4 = N ′ − N and let α be the endomorphism over E4 given by the

matrix Ü
m1 −m2 −m3 −m4

m2 m1 m4 −m3

m3 −m4 m1 m2

m4 m3 −m2 m1

ê

.

Let H := {(α̃(P ),ϕ(P ))|P ∈ E4[N ′]}; then there exists an N ′-isogeny of E8 of kernel H.
Furthermore, the following holds for any N ′-isogeny G of E8 of kernel H.

• The image of G is isomorphic to E8 as principally polarised abelian varieties.
• For any isomorphism γ : G(E8, λE8)→ (E8, λE8), there exist an integer i ∈ J1, 8K and an

automorphism ψ of E such that the following diagram commutes

E G(E8)

E E

G◦τ1

ϕ πi◦γ
ψ
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i.e. πi(γ(G(τ1(P )))) = ψ(ϕ(P )), for all P ∈ E, and thus (γ ◦ G, 1, i) is an embedding
representation of ψ ◦ ϕ.

Proof. We use the same notations as above. By Lemma 4.10, there exists an N ′-endomorphism
F of E8 with kernel {(α̃(P ),ϕ(P ))|P ∈ E4[N ′]} given by the matrix

Å
M(α) M(ϕ̃)
−M(ϕ) M(α̃)

ã
.

For any P ∈ E, F (τ1(P )) = (m1P,m2P,m3P,m4P,−ϕ(P ), 0, 0, 0).
Let G be an N ′-isogeny of E8 with kerG = kerF . Then by Lemma 4.8, G(E8, λE8) and

(E8, λE8) are isomorphic and for any isomorphism γ from G(E8, λE8) to (E8, λE8) there exists
an automorphism ψ of E8 such that γ ◦ G = ψ ◦ F . Moreover by Lemma 4.9, there exist 8
automorphisms ψ1, . . . ψ8 of E and a map σ permuting coordinates of the points of E8 such that
for any point (P1, . . . , P8) of E8, ψ(P1, . . . , P8) is equal to σ(ψ1(P1), . . . , ψ8(P8)). Let i be the
integer such that πi(σ(P1, . . . , P8)) = P5 for any (P1, . . . , P8) ∈ E8. Then, for any P ∈ E,

πi(γ(G(τ1(P )))) = πi(ψ(F (τ1(P )))) = πi(σ((ψ1(m1P ), . . . , ψ4(m4P ), ψ5(−ϕ(P )), 0, 0, 0))) = ψ′(ϕ(P )),

where ψ′ is the automorphism [−1] ◦ ψ5. �

This embedding can be evaluated efficiently using the analogue of Vélu’s formulae in higher
dimension introduced by Lubicz and Robert, [LR12]. It is even possible to compute embeddings

of endomorphisms of degree N knowing only their image on the N ′-torsion group when N ′2 > N .

Remark 4.12. A crucial ingredient used by Lubicz and Robert to get the generalisation of Vélu’s
formulae to principally polarised abelian varieties is the algebraic theta functions. In this paper, we
do not introduce this notion. Instead, we consider the algorithm presented in [LR12] as a black-
box taking as input a principally polarised abelian variety A together with one of its maximal
isotropic subgroups H and returning the principally polarised quotient abelian variety A/H and
a representation of the isogeny from A to A/H . Nevertheless, we emphasize that this algorithm
returns in fact the isomorphism class of A/H by providing the theta null point associated to
A/H . Since theta null points are coordinates on the moduli space of the principally polarised
abelian varieties, they play a similar role to j-invariants for elliptic curves. Meaning that two
principally polarised abelian varieties that share the same theta null point are isomorphic. For
more information about theta functions, theta null points and moduli spaces, we refer the reader
to [Rob21].

Lemma 4.13. With the same notations and conditions as in Lemma 4.11, if there is an integer

N ′′ such that N ′′2 = N ′ then any N ′-endomorphism F of E8 of kernel

kerF = {(α̃(P ),ϕ(P ))|P ∈ E4[N ′]}

can be decomposed as F = F2 ◦ F1 where

• F1 is an N ′′-isogeny of kernel given by the points (α̃(Pi),ϕ(Pi)) for i ∈ J1, 8K,

• F̃2 is an N ′′-isogeny of kernel given by the points (α(Pi),−ϕ(Pi)) for i ∈ J1, 8K,

with (P1, . . . , P8) a basis of E4[N ′′].
In addition, given bounds B ≥ P ∗(N ′′),M ≥ ∆E(N

′′), D ≥ ∆E,2(N
′′) and the prime factori-

sation
∏
i=1 ℓ

ei
i of N ′′, one can compute a representation of F1 or F̃2 as a product of O(logN ′′)

ℓeii -isogenies such that

• it takes O(B8D log2(N ′′) log(B)) arithmetic operations over Fpk plus O(logN ′′) evalua-
tions of ϕ on the bases of E[ℓeii ] to get the representation,

• the representation has size O(kM log(N ′′) log(p)) bits,
• the representation allows to evaluate the isogeny on a point in O(B8M log(N ′′) log(B))

operations over its field of definition.
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Proof. The decomposition of F as two N ′′-isogenies F1, F2 and the description of the kernels come
from [Rob22b, Lemma 2.4]. The proof of the different complexities is totally analogous to the
algorithm described in [Rob22a, 4. The Algorithm]. �

Remark 4.14. In this section, we always assume that the isogenies are embedded into dimension
8. Lemma 4.13, and so all the results derived from it, could be more efficient if the isogenies were
embedded into dimensions 2 or 4, unfortunately, it is not always possible. Indeed, for dimension
8, we decompose N ′ −N as a sum of four squares to construct an endomorphism of E4 using the
Zarhin’s trick, see [Zar74]. For dimension 2 (resp. 4), N ′ −N needs to be a square (resp. a sum
of two squares) to construct easily an endomorphism of E (resp. E2) and to embed the isogenies
into dimension 2 (resp. 4). It is possible to relax these conditions, under some heuristics and when
the endomorphism ring is known. Here, we neither want to rely on heuristics, nor presume that
we know the endomorphism ring, so we only consider the case of dimension 8.

Finally, Lemma 4.15 assures that one can also embed an endomorphism divided by an integer
using Lemma 4.11 and 4.13.

Lemma 4.15. Let E be an elliptic curve over a finite field Fpk and ϕ be an endomorphism of E.

Let n2 be a divisor of deg(ϕ) and N = deg(ϕ)/n2. Let N ′ > N such that (N ′, p deg (ϕ)) = 1 and
s = n−1 mod N ′. Let α be an m-endomorphism of E4 with m = N ′ −N .
Then H := {(α̃(P ), sϕ(P ))|P ∈ E4[N ′]} is a maximal isotropic subgroup of E8[N ′].

Moreover, let us assume there exists an integer N ′′ such that N ′′2 = N ′ and denote r = n−1

mod N ′′, then H1 := {(α̃(P ), rϕ(P ))|P ∈ E4[N ′′]} and H2 := {(α(P ),−rϕ(P ))|P ∈ E4[N ′′]} are
maximal isotropic subgroups of E8[N ′′].

Proof. The subgroup structure of H comes immediately by construction. We claim that H is
maximal isotropic. Indeed, let λ be the polarisation over E. Let (α̃(P ), sϕ(P )) and (α̃(Q), sϕ(Q))
with P = (P1, P2, P3, P4) and Q = (Q1, Q2, Q3, Q4) in E

4[N ′]. Then,

eN ′,λ8((α̃(P ), sϕ(P )), (α̃(Q), sϕ(Q))) = eN ′,λ4(α̃(P ), α̃(Q)) · eN ′,λ4(sϕ(P ), sϕ(Q)),

= eN ′,λ4(P,Q)m · eN ′,λ4(P,Q)s
2 deg(ϕ) = eN ′,λ4(P,Q)(m+s2n2N),

= eN ′,λ4(P,Q)0 = 1, as m+ s2n2N ≡ N ′ ≡ 0 mod N ′.

Thus H is isotropic with respect to the product polarisation. Finally, it is also maximal since it
has order N ′8. To prove that H1 and H2 are maximal isotropic subgroups of E8[N ′′] we use similar
computations and the fact that N ′′ divides N ′ thus m+ r2n2N ≡ m+N ≡ N ′ ≡ 0 mod N ′′. �

It is now possible to provide Algorithm 1 which efficiently divides endomorphisms by integers.
This algorithm is similar to those presented by Robert in [Rob22a, 4. The algorithm] and the
section 4 of [Rob22b].

Theorem 4.16. Algorithm 1 is correct and runs in

• O(max(M2, D)B8 log2(N ′′) log(B)) operations over Fp2 ,
• plus the cost of the factorisation of N ′′,
• plus the cost of the computation of the bases of E[ℓe] for each powerprime divisor ℓe of
N ′′,

• plus the cost of O(logN ′′) evaluations of ϕ over these bases,

where B,M,D give the following bounds B ≥ P ∗(N ′′),M ≥ ∆E(N
′′) and D ≥ ∆E,2(N

′′). More-
over, if ϕ/n is indeed an endomorphism, the output representation of ϕ/n has the following prop-
erties:

• It has size O(M log(N ′′) log(p)).
• It allows to evaluate ϕ/n in O(B8M log(N ′′) log(B)) operations over the field of definition

of the input.

Proof. Let us prove the correctness of Algorithm 1.

First, by Lemma 4.15, kerF1 and ker F̃2 are always maximal isotropic subgroups of E8[N ′′] and

thus the isogenies F1 : E8 → E8/ kerF1 and F̃2 : E8 → E8/ ker F̃2 are well defined.
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Algorithm 1 Endomorphism division

Input : E/Fp2 a supersingular elliptic curve such that p > 3, ϕ ∈ End(E), two integers n

and N ′′2 > 4 deg(ϕ) such that (N ′′, p deg(ϕ)) = 1.
Output : A representation of ϕ/n if it is an endomorphism, False otherwise.

1: Set N ← deg(ϕ)/n2.
2: if N 6∈ N then
3: return False

4: Set m← N ′′2 −N .
5: Decompose m as m2

1 +m2
2 +m2

3 +m2
4.

6: Set M ←

Ü
m1 −m2 −m3 −m4

m2 m1 m4 −m3

m3 −m4 m1 m2

m4 m3 −m2 m1

ê

.

7: Let α be the m-endomorphism over E4 given by the matrix M .
8: Let α̃ be the dual isogeny of α with respect to the product polarisation.
9: s← n−1 mod N ′′.

10: Compute a factorisation ℓe11 . . . ℓerr of N ′′. .
11: Compute bases (P1,i, P2,i) of E[ℓeii ] for i ∈ J1, rK.
12: Set formally (P1, P2)← (

∑r
i=1 P1,i,

∑r
i=1 P2,i) a basis of E[N ′′].

13: Compute a representation of an N ′′-isogeny F1 of E8 of kernel

kerF1 = {(α̃(τi(Pj)), sϕ(τi(Pj)))|∀i ∈ J1, 4K, ∀j ∈ {1, 2}}.

14: Compute a representation of an N ′′-isogeny F2 of E8 such that

ker F̃2 = {(α(τi(Pj)),−sϕ(τi(Pj)))|∀i ∈ J1, 4K, ∀j ∈ {1, 2}}.
15: if E8/ kerF1 6≃ E8/ ker F̃2 then
16: return False.
17: Compute a representation of F2 the dual isogeny of F̃2.
18: Set the isogeny F := F2 ◦ F1 represented by the composition of representations.
19: Set γ : F (E8, λE8)→ (E8, λE8) be an isomorphism of principally polarised abelian varieties.
20: Compute the group Aut(E).
21: for t ∈ J1, 8K do
22: for ψ ∈ Aut(E) do
23: if n(ψ−1 ◦ πt ◦ γ ◦ F ◦ τ1(Pi,j)) = ϕ(Pi,j), ∀i ∈ {1, 2}, ∀j ∈ J1, rK then
24: return The representation of ϕ/n induced by ψ−1 ◦ πt ◦ γ ◦ F ◦ τ1.
25: return False

When ϕ/n is an endomorphism of E, we have that (ϕ/n)|E[N ′′2] = (sϕ)|E[N ′′2]. Hence, by

Lemma 4.13 and Lemma 4.11, F := F2 ◦ F1 is isomorphic to an N ′′2-isogeny that embeds ϕ/n.
More precisely, F (E8, λE8) ≃ (E8, λE8) as principally polarised abelian varieties and for any

isomorphism ψ : F (E8, λE8)→ (E8, λE8), the N ′′2-isogeny ψ ◦F is an endomorphism of (E8, λE8)
such that there exist an automorphism γ of E and an integer t ∈ J1, 8K such that

πt(ψ(F (τ1(P )))) = γ(ϕ/n)(P ), ∀P ∈ E,(1)

where πt : E
8 → E, (P1, ..., P8) 7→ Pt.

We check at line 16 if F is an endomorphism by checking if E8/ kerF1 ≃ E8/ ker F̃2. If not,
neither is ϕ/n by Lemma 4.11. Otherwise, we look for an automorphism ψ and an integer t
verifying Equality (1).

In the for loop, we search for a solution (ψ, t) of Equality (1) over the bases of E[ℓeii ], ∀i ∈ J1, rK.
It is equivalent to checking Equality (1) over E[N ′′] as (ℓi, ℓj) = 1, ∀i 6= j ∈ J1, rK. Moreover as
(N ′′)2 > 4 degϕ, a solution of (1) over E[N ′′] is a solution over the entire elliptic curve E. Indeed,
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as noticed in [Rob22b, Section 4.], when two endomorphisms of degree d are equal over E[M ] with
M2 > 4d, they are equal everywhere.

Since we are doing an exhaustive search at line 21, if ϕ/n is an endomorphism, the algorithm
will find an embedding representation (F, 1, t) of ϕ/n up to an isomorphim and an automorphism.
If no such coefficient of F is found, Lemma 4.11 implies that ϕ/n is not an endomorphism.
The output representation of ϕ/n is then given by the composition of the representation of γ−1

with the embedding representation (γ ◦ F, 1, t).

Let us now turn to the complexity analysis of the different steps. We consider the following
bounds B ≥ P ∗(N ′′),M ≥ ∆E(N

′′), D ≥ ∆E,2(N
′′).

[1-9] The computational cost of these lines is negligible compared to the rest of the algorithm.

In particular, the decomposition of m at the line 5 can be done in O(log2N ′′), see [PT18].
[10 - 11] We do not estimate the complexity of these steps now, we simply acknowledge them in

the overall analysis.
[12-16] At line 12, we denote a basis of E[N ′′] by (P1, P2) only formally to get simple notations.

The computation are always done with the (P1,i, P2,i), with i ∈ J1, rK.

By Lemma 4.13, getting a representation of the N ′′-isogenies F1 and F̃2 and checking

if E8/ kerF1 ≃ E8/ ker F̃2, see Remark 4.12 for more precision about this verification,
takes :

– O(B8D log2(N ′′) log(B)) arithmetic operations over Fp2 ,
– O(logN ′′) evaluations of ϕ over the bases of E[ℓeii ], for i ∈ J1, rK.

[17-18] The representation of F2 is computed from the dual isogenies of every isogeny composing

the representation of F̃2. Thanks to Lemma 4.13 used to get the representation of F̃2, we

know that F̃2 : E8 → E8/ ker F̃2 is given as

F̃2 = F2,r ◦ · · · ◦ F2,1

where F2,i is a isogeny of degree ℓeii , for i ∈ J1, rK. We have

F2 =fiF2,1 ◦ · · · ◦fiF2,r.

The kernels of each dual isogeny are computable, since we have

kerfiF2,1 = F2,1(E
8[ℓe11 ]),

kerfiF2,2 = F2,2(F2,1(E
8[ℓe22 ])),

. . .

kerfiF2,r = F2,r ◦ F2,r−1 ◦ · · · ◦ F2,1(E
8[ℓert ]),

and we already know bases E8[ℓeii ] and representations of F2,i, for all i ∈ J1, rK. Then
computing these kernels takes O(logN ′′) evaluations of the ℓeii -isogenies F2,i over the
groups E[ℓ

ej
j ], for i, j ∈ J1, rK. Using the Lubicz-Robert algorithm generalising Vélu’s

formulae [LR23], each composition takes O(B8 log(B)) operations over extension fields of
degree at most D. Thus it takes O(B8D log2(N ′′) log(B)) operations over Fp2 . They
constitute a representation of the isogeny F2, associated to the algorithm of evaluation
given by the generalisation of Vélu’s formulae in higher dimensions. Moreover, the

representation of F2 has the same properties as F1 and F̃2, i.e. this representation of F2

has size O(kM log(N ′′) log(p)) and allows to evaluate a point in O(B8M log(N ′′) log(B))
operations over its field of definition. For more information about this type of
computations, the reader is referred, once again, to [Rob22a, 4. The algorithm].

[19] The isomorphism γ at line 19 is directly given by the product polarisation.
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[ 20 - 25] The group of automorphisms of E, for p > 3, is easy to compute since it is generated by




{(x, y) 7→ (x,−y), (x, y) 7→ (−x, iy)} if j(E) = 0, with i a primitive 2-nd root of unity in F̄p,

{(x, y) 7→ (x,−y), (x, y) 7→ (ζ3x, y)} if j(E) = 1728, with ζ3 a primitive 3-rd root of unity in F̄p,

{(x, y) 7→ (x,−y)} otherwise.

The loop at line 21 has O(logN ′′) iterations where the evaluations of τ1, γ, πt, ψ
−1 are

negligeable. Thus it takes in total O(logN ′′) evaluations of ϕ over E[ℓeii ], ∀i ∈ J1, rK plus

O(B8M log2(N ′′) log(B)) operations over extension of degree at most M .

We get the claimed complexity by summing all those steps. In addition, the size of the ouput repre-
sentation of ϕ/n is mainly the size of the kernels given F1 and F2 thus it has sizeO(M log(N ′′) log p).
Finally, it allows to evaluate ϕ/n at a point in O(B8M log(N ′′) log(B)) operations over its field of
definition because all the computations are negligeable in comparison to the evaluation of F . �

When the input of Algorithm 1 is efficiently represented, it leads to Theorem 4.1 which concludes
this section about efficient division of endomorphisms.

Proof of Theorem 4.1. To get this result, one only need to find a suitable powersmooth integer
N ′′ and to take advantage of the efficient representation of ϕ. One can use the approach proposed
in [Rob22b] to get such N ′′:

We compute it by multiplying successive primes, coprime to p deg(ϕ), until their product is

greater than 2
√
(deg(ϕ)). It takes O(log deg(ϕ)) arithmetic operations and gives an integer

N ′′ such that N ′′2 > 4 deg(ϕ), coprime to p deg(ϕ), O(log deg(ϕ))-powersmooth and such that
logN ′′ = O(log deg(ϕ)). Then, with the same notations as in Theorem 4.16, we haveM = B2 and
D = B4 which directly gives the claimed size of the representation of ϕ/n and also the complexity
to evaluate it.

Finally, by construction of N ′′, we already know its factorisation and, because ϕ is efficiently
represented, all the remaining costs of Algorithm 1 are polynomial in log p, log deg(ϕ). �

5. Solving Primitivisation

The Primitivisation problem has been introduced very recently in [ACL+22b] together with
a quantum subexponential algorithm solving it. However, it can be seen as a generalisation of the
important problem of computing the endomorphism ring of an ordinary elliptic curve. Indeed, for
ordinary elliptic curves, the Frobenius endomorphism π is non-scalar, hence we always have an
orientation by Z[π], and the endomorphism ring is a quandratic order containing Z[π]. Therefore
computing the endomorphism ring of an ordinary curve really is a case of the Primitivisation
problem.

One initial idea to solve Primitivisation is to adapt the best algorithms solving the ordinary
version of EndRing. Before the introduction of higher dimensions for computations over elliptic
curves, the most efficient approach was subexponential under GRH and mainly based on the
theory of complex multiplication [Bis12]. Hence, using the theory of primitive orientations, which
is very similar to complex multiplication, to solve Primitivisation in subexponential time is
conceivable. The bottleneck of this approach is that we need to compute efficiently action of ideals
which required, in the previous literature, considering only powersmooth ideals and compelled the
presence of heuristics. We show in Section 6, thank to the algorithm dividing endomorphisms
by integers presented in Section 4, that we can now compute efficiently the action of smooth
ideals without heuristics. Though it gives us a possible classical subexponential algorithm to
solve Primitivisation, higher dimensional isogenies actually provide a more efficient and direct
approach. Indeed, in [Rob22b, Section 4], it is shown how efficient division of endomorphisms
allows on to efficiently compute the endomorphism ring of ordinary elliptic curves.

In this section, we describe how Robert’s method can be adapted to solve Primitivisation.
In the first place, Theorem 5.1 and its proof describe the algorithm and its complexity without

assuming anything on the representation of the input endomorphism. Notice that it requires
computations only over a large enough torsion subgroup. Hence, the complexity depends on the
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degree of the extension where this torsion lives and on the difficulty to evaluate the endomorphism
on it. Then, Corollary 5.2 specifies this theorem to the case where the endomorphism is given in
efficient representation. The two results assume that the factorisation of the discriminant of the
order generated by the endomorphism is known.

Theorem 5.1 (Primitivisation). There exists an algorithm that takes as input:

• A supersingular elliptic curve E defined over a finite field Fp2 ,
• An endomorphism θ ∈ End(E)\Z of degree N together with the factorisation of disc(Z[θ]),

• An integer N ′′2 > 4N such that (N ′′, pN) = 1 with three bounds B ≥ P ∗(N ′′), M ≥
∆E(N

′′) and D ≥ ∆E,2(N
′′),

and returns a primitive orientation ι : O →֒ End(E) with O ⊇ Z[θ] such that

• The orientation ι takes O(M log(N ′′) log(p)) bits to store,
• The endomorphism ι(ω) can be evaluated at a point in O(B8M log(N ′′) log(B)) operations

over its field of definition.

This algorithm runs in O(max(M2, D)B8 log2(N ′′) log(N) log(B)) operations over Fp2 , plus the
cost of the computation of the bases E[ℓe] for each powerprime divisor ℓe of N ′′ plus the cost of
the computation of O(logN ′′) evaluations of θ over these bases.

Proof. Let α ∈ Q̄ be a root of the minimal polynomial of θ and ι : Z[α] →֒ End(E) be the
orientation defined by ι(α) = θ. Let K = Q(α), fα be the conductor of the order Z[α] and OK
be the integer ring of K. The factorisation of the conductor fα can be deduced from the known
factorisation of disc(Z[θ]). Indeed, let ∆K be the discriminant of K which is given by

∆K =

®
d, if d ≡ 1 mod 4

4d, otherwise,

where d is the squarefree part of disc(Z[α]). The integer d is easy to compute since we have
the factorisation of disc(Z[θ]) = disc(Z[α]). As f2

α = disc(Z[α])/∆K one can directly deduce the
factorisation of fα.

Let O ⊆ OK be the largest order such that ι extends to an embedding O →֒ End(E). That
embedding is the primitivisation of ι, so the algorithm aims at determining O. The inclusions
Z[α] ⊆ O ⊆ OK suggest that O can be determined by starting from Z[α], and testing if the
orientation can be extended locally at each prime factor of the conductor, as in the computation of
the endomorphism ring of ordinary elliptic curves (see [Rob22b]). This is described in Algorithm 2.

Algorithm 2 Primitivisation

Input : E a supersingular elliptic curve, ι : Z[α] →֒ End(E) an orientation such that

ι(α) = θ is a non scalar endomorphism of degree N , an integer N ′′ such that N ′′2 > 4N and
(N ′′, pN) = 1 and the factorisation of fα the conductor of Z[α].

Output : A pair (α′, θ′) describing the primitivisation of ι.

1: t← ᾱ+ α.
2: α′ ← 2α− t. ⊲ Z[α′] = Z[2α].
3: θ′ ← 2θ − [t].
4: (ℓi)

n
i=1 ← the list of distinct prime factors of 2fα.

5: for i ∈ J1, nK do
6: while θ′/ℓi ∈ End(E) do ⊲ using Algorithm 1 with the input (E, θ′, ℓi, N ′′).
7: α′ ← α′/ℓi.
8: θ′ ← θ′/ℓi.

9: if (θ′ + 1)/2 ∈ End(E) then ⊲ using Algorithm 1 with the input (E, θ′ + 1, 2, N ′′).
10: (α′, θ′)← ((α′ + 1)/2, (θ′ + 1)/2).

11: return (α′, θ′).
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Let us prove that Algorithm 2 is correct. Write t = α+ ᾱ. Since disc(Z[α]) = t2−4αα, we have

α′ := 2α− t = ±
»
disc(Z[α]) = ±fα

√
∆K , where ∆K is the discriminant of K.

Also define θ′ := 2θ − [t]. Note that for any divisor m | fα, we have Z[(fα/m)
√
∆K ] ⊆ O if and

only if α′/[m] ∈ End(E). The for-loop of Algorithm 2 finds the largest such integer m, hence the
resulting pair (α′/m, θ′/m) satisfies Z[α′/m] = O ∩ Z[

√
∆K ].

The case ℓi = 2 and the final if-statement account for the fact that Z[
√
∆K ] is not the maximal

order: it has conductor 2 (we have OK = Z[
√
∆K/2] if ∆K ≡ 0 mod 4 and OK = Z[(

√
∆K +1)/2]

if ∆K ≡ 1 mod 4). That final correction accounted for, we actually obtain Z[α′] = O.

Let us now describe the complexity of Algorithm 2.
Since fα ≤ 4N(α) = 4N , there are O(log(N)) divisions using Algorithm 1. By Theorem 4.16,

both checking if θ′/pi ∈ End(E) and getting a representation of the new endomorphism can be
done in O(max(D,M2)B8 log2(N ′′) log(B)) operations over Fp2 plus the cost of the computation of
the bases E[ℓe] for each powerprime divisor ℓe of N ′′ plus the cost of the computation of O(logN ′′)
evaluations of θ′ over these bases.

After each update of the generating endomorphism using this theorem, the length of the repre-
sentation will be inO(M log(N ′′) log(p)) bits and will allow to evaluate a point inO(B8M log(N ′′) log(B))
operations over the field of definition of the input. Hence, all the divisions after the first one will
run in O(max(M2, D)B8 log2(N ′′) log(B)) operations over Fp2 and the final output will have the
claimed properties.

It leads to a global complexity in O(max(M2, D)B8 log2(N ′) log(N) log(B)) operations over Fp2
plus the cost of the computation of the torsion group bases and the O(logN ′′) evaluations of θ
over them.

�

Corollary 5.2 demonstrates that Primitivisation can be solved in polynomial time when the
input is efficiently represented by applying Theorem 5.1.

Corollary 5.2. There exists an algorithm that takes as input:

• A supersingular elliptic curve E defined over a finite field Fp2 ,
• An endomorphism θ ∈ End(E)\Z of degree N together with the factorisation of disc(Z[θ]),

and returns a primitive orientation ι : O →֒ End(E) with O ⊇ Z[θ] such that

• The orientation ι takes O(log3(N) log(p)) bits to store,

• The endomorphism ι(ω) can be evaluated at a point in Õ(log11(N)) operations over its
field of definition.

This algorithm runs in time polynomial in logN and log p.

Proof. As for Theorem 4.1, this corollary is obtained by computing a suitable powersmooth N ′′

and by taking M = B2 and D = B4. One also needs to use the fact that we are dealing with
efficiently represented isogenies. �

6. Computing the actions of ideals

The class group action over SSO(p) is a key notion of the orientation’s theory and is a crucial
ingredient of the algorithms presented in Section 7 to solve the O-Vectorisation problem.

In this section, we describe how the higher dimensional tools, introduced in Section 4, bring
significant improvements in the computation of theses actions. Indeed, using Algorithm 1, it is
possible to relax most of the contraints of the previous literature’s algorithms computing these
actions.

To begin with, we show how we can now compute actions of smooth ideals efficiently together
with the isogenies they induce. This is done in polynomial time and can be applied as many
times as wished without impairing the quality of the representation. Before, such algorithms
were restricted to powersmooth ideals, and they degraded the quality of the representation of the
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orientation (so applying the action of several powersmooth ideal iteratively would actually take
an exponential time).

To get an algorithm which efficiently compute actions of smooth ideals, we begin by introducing
Algorithm 3 which computes actions of prime ideal.

Algorithm 3 Action of a prime ideal

Input : (E, ι) ∈ SSO(p) an oriented supersingular elliptic curve with O = Z[ω] and
l =< ℓ, β > an invertible ideal of O of prime norm ℓ 6= p.

Output : [l] ⋆ (E, ι) and P ∈ E such that 〈P 〉 = E[l] and a representation of ϕl.

1: Compute {R,Q} a basis of E[ℓ].
2: θ ← ι(β).
3: Compute θ(R) and θ(Q).
4: if θ(R) (resp. θ(Q)) is equal to zero then
5: P ← R (resp. Q).
6: else
7: Find x ∈ J1, ℓJ such that xθ(Q) = θ(R).
8: Compute the generating point P := R− xQ of the subgroup E[l].

9: Get an efficient representation of the isogeny ϕl : E → El.
10: Get an efficient representation of the composition of isogenies ϕ := ϕl ◦ ι(ω) ◦ ϕ̂l.
11: Divide ϕ by deg(ϕl) using Theorem 4.1.
12: Set ι′ : Z[ω] →֒ End(E), ω 7→ ϕ/ deg(ϕl).
13: return (El, ι′) and P .

Lemma 6.1 (Action of prime ideals). Algorithm 3 is correct and runs in time polynomial in
ℓ, log p and in the length of the representation of ι. The output representation of the orientation
verifies

• It has size O(log3(ℓ2 deg(ι(ω))) log p) bits,

• For any P ∈ E′, one can compute ι′(ω)(P ) in Õ(log11(ℓ2 deg(ι(ω))) operations over the
field of definition of P .

The representation of the isogeny ϕl is given by a generating point of its kernel living in an
extension of degree at most O(ℓ2).

Proof. Most steps of the following algorithm are standard, see for instance [GPS20], the contribu-
tion here is to use Algorithm 1 to avoid degrading the quality of the representation after several
action computations.

[1 - 3 ] The first line takes a runtime polynomial in log p and ℓ to return a basis living in an
extension of degree at most O(ℓ2). Then to evaluate θ(R) and θ(Q), we use the fact that
ι is given in efficient representation thus line 3 can be computed in time polynomial in the
length of the representation of ι, in ℓ and in log p.

[4 - 8] The discrete logarithm problem of line 7 can be solved in O(
√
ℓ) operations over E[l].

Once a solution x is found, we also get the point R−xQ that generates E[l] = E[ℓ]∩ker θ
since it has order ℓ and it is in the kernel of θ. The same arguments hold to ensure that
R or Q is a generator of E[l] if θ(R) = 0 or θ(Q) = 0.

[9 - 10] The computation of an efficient representation of ϕl is done using Vélu’s formulae in
O(ℓ) [Vé71]. To have an efficient representation of the orientation ι′ it is enough to have
an efficient algorithm to evaluate ι′(ω), i.e. to have an efficient representation of

ϕl ◦ ι(ω) ◦ ϕ̂l

deg(ϕl)
.

Thanks to line 9 and the hypothesis on the inputs, an efficient representation of ϕ :=
ϕl ◦ ι(ω) ◦ ϕ̂l is given by the composition of the representations. It only remains to divide
ϕ by deg(ϕl) using Theorem 4.1.
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[11 - 13] Let N be the degree of ϕ. By Theorem 4.1, it takes a runtime polynomial in log p and
logN to give a representation of the endomorphism ι′(ω) in O(log3N log p) bits such that

ι′(ω) can be evaluated at a point in Õ(log11N) operations over the field of definition of
the point.

By summing the complexities of the different steps and as N = ℓ2(deg(ι(ω))), this algorithm runs
in time polynomial in ℓ, log p and in the length of the representation of ι. �

Theorem 6.2 proves the efficiency of the algorithm which uses Algorithm 3 as a subprocedure
to compute action of smooth ideals.

Theorem 6.2 (Action of smooth ideals). For any imaginary quadratic order O = Z[ω], there
exists an algorithm that takes as input:

• An oriented elliptic curve (E, ι) ∈ SSO(p) with an efficient representation of ι,
• An invertible O-ideal a of B-smooth norm coprime to p,

and returns (E′, ι′) := [a]⋆(E, ι) together with a representation of ϕa in time polynomial in B, log p
and in the length of the representation of ι. The output orientation representation verifies that

• It has size Õ(log3(B2 deg(ι(ω))) log p) bits,

• For any P ∈ E, one can compute ι′(ω)(P ) in Õ(log11(B2 deg(ι(ω)))) operations over the
field of definition of P .

The representation of ϕa is given as a formal composition of O(logN(a)) isogenies of prime degree
each of them represented by a point, living in an extension of degree at most O(B2), generating
their respective kernel.

Proof. The prime factorisation ℓe11 . . . ℓemm of the norm of a can be computed in time polynomial
in B. Then one can deduce the decomposition of a as a product of e1 prime ideals of norm ℓ1
with e2 prime ideals of norm ℓ2 and so on. Then, using Lemma 6.1 and the compatibility of the
group action, the action of a over (E, ι) can be computed as successive actions of all its prime ideal
factors in time polynomial in B, log p and in the length of the representation of ι. Simultaneously,
using the same lemma, one can store each isogeny representation induced by the successive prime
ideals to get a representation of ϕa. The claimed properties of the orientation representation are
again given by Lemma 6.1. �

At last, we present an algorithm to compute the action of any given ideal in subexponential time.
In prior literature, achieving such results necessitated to compute a powersmooth representative
of the input ideal, and then to apply standard algorithms to compute its action. Yet, it was
mandatory to use heuristics about the distribution of powersmooth ideal. Thanks to Theorem
6.2, we can now search for a smooth representative of the input and replace previous heuristics
with rigorous results.

Theorem 6.3 (GRH, Action of ideals). Let (E, ι) ∈ SSO(p) be an oriented elliptic curve and a

be an invertible O-ideal of norm coprime to p. There exists an algorithm that computes [a] ⋆ (E, ι)
together with an representation of ϕa in time lO(1)L|disc(O)|[1/2] where l is the length of the input.

The representation of ϕa has size (log3N(a) log p) and allows us to evaluate it on a point in

Õ(log11N(a)) arithmetic operations over its field of definition.

Proof. Let z > 0 and B be an integer greater than L| disc(O)|[
1
2 , z]. First, we compute a rep-

resentative ideal of [a] in Cl(O) of B-smooth norm using the standard algorithm 4, see for in-
stance [CJS14, Algorithm 1].

This algorithm returns a representative B-smooth ideal of the class [a] in expected time

L| disc(O)|

[
1

2
, z + o(1)

]
+ L|disc(O)|

[
1

2
,
1√
2
+

1

4z
+ o(1)

]
.

Indeed, the complexity of the different steps is as following:
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Algorithm 4 Smooth representative ideal

Input : a an O-ideal, z > 0 and B > L| disc(O)|[
1
2 , z].

Output : b an O-ideal of B-smooth norm such that [a] ∼ [b] in Cl(O).

1: Set SB := {[p] ∈ Cl(O) such that gcd(fO, p) = 1 and N(p) ≤ B prime, and their inverse}.
2: smooth ← false.
3: while smooth is false do
4: y ← Unif{y ∈ N#SB such that ||y||1 = ⌈log | disc(O)|⌉}.
5: Compute c the reduced ideal in the class of a ·

∏
[p]∈SB

pyp .

6: if there exists x ∈ N#SB such that c =
∏

[p]∈SB
pxp then

7: w ← x− y.
8: b←∏

[p]∈SB
p(x−y)p .

9: smooth ← true.
10: return b.

• At line 1, computing the set SB takes time Õ(B) and, at line 5, computing the reduced
ideal takes time polynomial in log | disc(O)|. For instance, both can be done using the
well-known bijection between class group of an imaginary quadratic order of discriminant
D and the group of primitive positive definite forms of discriminant D, as described
in [BV07].

• At line 6, one can check if c factors over SB by checking the B-smoothness of its norm,
hence it has an excepted running time L|disc(O)|[

1
2 ,

1√
2
+o(1)] using Schnorr-Seysen-Lenstra

probabilistic algorithm for instance.

Finally, under GRH, thanks to Proposition 2.5 and [Sey87, Proposition 4.4], the probability
to draw a vector y such that the reduced ideal of its associated class is B-smooth is at least

L| disc(O)|[
1
2 ,− 1

4z + o(1)]. This complexity can be optimised by taking z =
√
2+

√
6

4 , the representa-

tive ideal is then computed in expected time L| disc(O)|[
1
2 ,

√
2+

√
6

4 + o(1)].

This algorithm outputs a product of O(log | disc(O)|) prime ideals of norm lower than B. Then,
by Theorem 6.2, the action a ⋆ (E, ι) can be computed in time polynomial in B, log p and in the
length of the representation of ι.

It only remains to compute a better representation of ϕa. Dividing ϕa by 1 with Algorithm 1
provides an efficient representation of the isogeny ϕa. To this end, one needs first to evaluate ϕa

over the peii -torsion subgroups of E for some powerprimes peii , i ∈ J1, sK, such that pe11 . . . pess >
4 degϕa with (pi, p degϕa) = 1. One can simply multiply the successive prime integers, coprime
to p degϕa, until their product is greater than deg 4ϕa. Then the evaluation of ϕa, using the
representation given by Theorem 6.2, over the torsion subgroups, including the computation of
the basis of the torsion subgroups, takes a time polynomial in B, log p and in the length of the
representation of ϕa, which is here O(log p log3(degϕa)) bits. Thus, by Theorem 4.16, applying
Algorithm 1 to divide ϕa by 1 using the N ′′ previously computed takes a time polynomial in B, log p
and in log degϕa and provide an efficient representation of ϕa with the claimed properties. �

7. Resolution of O-Vectorisation and α-EndRing

In this section, we prove, under GRH only, the complexity of a classical and a quantum resolu-
tions of O-Vectorisation which are as good as the current best algorithms based on heuristics.
We then use these rigorous solutions to solve the α-EndRing problem. Finally, we present how
algorithms of Section 4 can be used to naviguate efficiently in the oriented volcano of isogenies
and how it can improve the resolution of O-Vectorisation.

7.1. Classical algorithm. Currently, the best complexity we can expect for a classical algorithm
solving O-Vectorisation is lO(1)| disc(O)|1/4, with l the length of the input, for instance with a
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meet-in-middle approach as in [DG16]. Preceding the results presented in this paper, such com-
plexity analyses were based on heuristics. Indeed, one needs to compute multiple actions of ideals
to solve O-Vectorisation and without using higher dimensional isogenies to compute efficiently
smooth ideal actions, one could only handle powersmooth ideals. Thus, one had to assume some
heuristics about the distribution of powersmooth ideals where similar results are in fact proven
for smooth ideals. Thanks to Theorem 6.2, it is now possible to get rid of the constraint on pow-
ersmoothness and to rigorously prove this complexity.

To solve O-Vectorisation, we first study the Effective O-Vectorisation problem where
one also asks the O-ideal to send the orientation of the first O-oriented elliptic curve to the
orientation of the second one. Moreover, we want to be able to evaluate the isogeny induced
by this ideal on another given O-orientable elliptic curve. Notice that O-Vectorisation and
Effective O-Vectorisation are in fact both equivalent to O-EndRing, see [Wes22].

Problem 7.1 (Effective O-Vectorisation). Given (E, ι), (E′, ι′), (F, ) in SSO(p), find an
O-ideal a such that a ⋆ (E, ι) ≃ (E′, ι′), and an efficient representation of ϕa : (F, )→ a ⋆ (F, ).

Algorithm 5 almost solves Effective O-Vectorisation — it does not give an efficient rep-
resentation and it only handles the case where (E, ι) and (E′, ι′) are in the same orbit, i.e. when
there exists an O-ideal a such that a⋆(E, ι) = (E′, ι′). This algorithm follows a meet-in-the-middle
approach, namely successive actions of O-ideals are computed on (E, ι) and (E′, ι′) until a collision
is found.

Algorithm 5 Almost Effective O-Vectorisation

Input : (E, ι), (E′, ι′) ∈ SSO(p) two efficiently represented oriented elliptic curves in the
same orbit and a real ε > 0.

Output : A ⌈log2+ε | disc(O)|⌉-smooth O-ideal with at most 2⌈log | discO|⌉ prime factors
which sends (E, ι) to (E′, ι′).

1: x← ⌈log2+ε | disc(O)|⌉.
2: Sx ← {[p] ∈ Cl(O), such that gcd(fO, p) = 1 and N(p) ≤ x prime, and their inverse}.
3: T [enc((E, ι))] ← (1).

4: while #T <
√
#Cl(O) do

5: y ← Unif{y ∈ N#Sx such that ||y||1 = ⌈log | discO|⌉}.
6: a← Syx .
7: if T [enc(a ⋆ (E, ι))] is empty then
8: T [enc(a ⋆ (E, ι))] ← a.

9: a← (1).
10: while T [enc(a ⋆ (E′, ι′))] is empty do
11: y ← Unif{y ∈ N#Sx such that ||y||1 = ⌈log | discO|⌉}.
12: a← Syx .

13: return āT [enc(a ⋆ (E′, ι′))].

Lemma 7.2 (GRH). Algorithm 5 runs in expected time lOε(1)| disc(O)|1/4 where l is the length
of the input, and is correct.

Proof. First of all, notice that using a dictionnary structure for the table T , one can add and search
for elements in time O(log#T ). Using the standard result #Cl(O) = O(log(| disc(O)|)

√
| disc(O)|),

insertion and search in the table T can be done in O(log | disc(O)|). Moreover, we use the enc

function, see Section 2.3, to have a unique encoding of oriented elliptic curves.

[1-3] Those steps are polynomial in log2+ε disc(O).

[4-8] It is expected that this first while loop will end after O(
√

#Cl(O)) iterations. Indeed, by
Proposition 2.5, one can expect to add a new element to the table T after at most 2 draws
of random smooth ideals.
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By Theorem 6.2, computing the action of a ⋆ (E, ι) is done in polynomial time in
the length of the representation of ι, in log p and in log2+ε | disc(O)|. In particular, the

length of the representation is in Õ((l1 log
2 x)3 log p) bits, where l1 is the length of the

representation of ι. Thus, it is done in time polynomial in l1, log p and log2+ε | disc(O)|.
[10-12] This while loop is also expected to end after O(

√
#Cl((O)) iterations, since, thanks again

to Proposition 2.5, each iteration has a probability of success greater than 1

2
√

#Cl(O)
.

Moreover, as in the first loop, using Theorem 6.2, one can compute the action of a in time
polynomial in l2, log p and log2+ε | disc(O)|, where l2 is the length of the representation of
ι′.

This leads to a global runtime in (l log p log2+ε | disc(O)|)O(1)
√
#Cl(O), where l := max{l1, l2}.

Thanks again to the estimate #Cl(O) = O(log(| disc(O)|)
√
| disc(O)|), we get the claimed com-

plexity.

The correctness of the algorithm is given by a short computation. By construction, the output
O-ideal a verifies

T [enc(a ⋆ (E′, ι′))] ⋆ (E, ι) ≃ a ⋆ (E′, ι′).

Hence,

(āT [enc(a ⋆ (E′, ι′))]) ⋆ (E, ι) = ā ⋆ (T [enc(a ⋆ (E′, ι′))] ⋆ (E, ι))

≃ ā ⋆ (a ⋆ (E′, ι′)) = (āa) ⋆ (E′, ι′) = (E′, ι).

Finally, the output ideal is a product of two ⌈log2+ε | disc(O)|⌉-smooth O-ideals with at most

⌈log | disc(O)|⌉ prime factors thus it is a ⌈log2+ε | disc(O)|⌉-smoothO-ideal with at most 2⌈log | disc(O)|⌉
prime factors. �

Remark 7.3. Algorithm 5 needs space exponential in the length of the input. A space-efficient
algorithm is conceivable using a Pollard-ρ approach, as it is used to find isogenies betwen ordinary
elliptic curves in [BS12]. This is not detailed here, since we focus on rigorously proven complexities
and it might be difficult to avoid heuristics in the analysis of such algorithms.

Algorithm 5 is a central subprocedure in our classical resolution of O-Vectorisation and so of
α-EndRing too. Furthermore, it is central in the complete resolution ofEffectiveO-Vectorisation.
These applications of Algorithm 5 require to move from one orbit to the other one using the O-
twists.

Theorem 7.4 (GRH, Effective O-Vectorisation). There is a classical algorithm taking as
input three oriented elliptic curves (E, ι), (E′, ι′) and (F, ) in SSO(p) and a real number ε > 0

which returns an a-ideal ⌈log2+ε⌉-smooth such that Ea ∼ E′ together with a representation of
ϕa : (F, ) → a ⋆ (F, ) in expected time lOε(1)| disc(O)|1/4 where l is the length of the input.
The returned representation of ϕa is given by O(log | disc(O)|) isogeny kernels of order at most

⌈log2+ε | disc(O)|⌉.
Proof. Suppose we are given some positive real ε and two oriented supersingular elliptic curves
(E, ι) 6≃ (E′, ι′) ∈ SSO(p), where O is an order of some quadratic field K. First, we check
if p is inert or ramified in K, notice that p does not split over K otherwise SSO(p) would be
empty [Onu21, Proposition 3.2].

By [ACL+22a, Theorem 4.4], if p is inert in K, then the action of Cl(O) has only one orbit.
Thus by running Algorithm 5 with the inputs (E, ι), (E′, ι′) and ε, we get an O-ideal a such that
a ⋆ (E, ι) ≃ (E′, ι′).

Otherwise, if p is ramified in K, again by [ACL+22a, Theorem 4.4], the action of Cl(O) has
two orbits. We then run two instances of Algorithm 5 in parallel, the first one with the inputs
(E, ι), (E′, ι′) and ε and the second one with the inputs (E, ῑ), (E′, ι′) and ε. We know that (E, ι)
and its O-twist (E, ῑ) are not in the same orbit, see [Onu21], thus only one procedure will stop.
If it is the instance having (E, ι) as input, that means that we find an O-ideal a sending (E, ι) to
(E′, ι′). Else, it means that (E, ῑ) and (E′, ι′) are in the same orbit. Hence (E, ι) is not on the
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same orbit as (E′, ι′) and there is no solution to the Effective O-Vectorisation problem. In
this case, we return False.

Now we have an ideal a solving our Effective O-Vectorisation instance, it remains to
compute an efficient representation of the isogeny ϕa. Since a has been returned by Algorithm
5 it is a ⌈log2+ε | disc(O)|⌉-smooth O-ideal with at most 2 log | disc(O)| prime factors. Then us-
ing Theorem 6.2 an efficient representation of ϕa can be computed in time polynomial in log p,
⌈log2+ε | disc(O)|⌉ and in the length of the representation of ι. �

Theorem 7.5 (GRH, Classical O-Vectorisation). There is a classical algorithm taking as
input two oriented elliptic curves (E, ι) and (E′, ι′) in SSO(p) and a real number ε > 0 which

returns an O-ideal a of ⌈log2+ε | disc(O)|⌉-smooth norm such that Ea ∼ E′ in expected time
lOε(1)| disc(O)|1/4 where l is the length of the input.

Proof. We know that the action of Cl(O) on SSO(p) has at most 2 orbits, see Proposition 2.8.
Let O be the orbit of (E′, ι′). From the proof of [Onu21, Proposition 3.3], we know that (E, ι)
or its O-twist (E, ῑ) is in O. Thus, by running two instances of Algorithm 5 until one ends, the
first taking as input the oriented elliptic curves (E, ι) and (E′, ι′) and the second taking (E, ῑ) and
(E′, ι′), we make sure that we find a suitable ideal in an expected time given by Lemma 7.2. �

Proof of Theorem I. Let E ∈ SS:O(p) be a primitively O-orientable elliptic curve and ι : Z[α] →֒
End(E) be an orientation of E such that Z[α] ⊆ O. Let us prove that the computation of the
endomorphism ring End(E) can be done in probabilistic time lO(1)| disc(Z[α])|1/4, where l is the
length of the input.

First we compute the factorisation of disc(Z[α]) in time subexponential in ln | disc(Z[α])|. Then,
by Corollary 5.2, we can compute, in probabilistic time polynomial in the length of the input, the
primitive orientation  such that (E, ) ∈ SSO(p). This reduces the computation of End(E)
to the instance of O-EndRing given by (E, ) which, in turn, reduces in probabilistic polyno-
mial time to an instance of O-Vectorisation by Proposition 3.6. Finally, by Theorem 7.4
and since | disc(Z[α])| is greater than | disc(O)|, the O-Vectorisation problem can be solved in
lO(1)| disc(Z[α])|1/4. �

7.2. Quantum algorithm. The subexponential quantum resolution of the O-Vectorisation
proven in this section is based on the work of Childs, Jao and Soukharev to construct an isogeny
between two given isogenous ordinary elliptic curves, [CJS14]. In particular, we use the fact that
given two oriented elliptic curves (E0, ι0), (E1, ι1) ∈ SSO(p) in the same orbit, finding an O-ideal
a such that a ⋆ (E0, ι0) = (E1, ι1) can be viewed as an instance of the Hidden Shift problem.

Problem 7.6 (Hidden Shift). Given a finite abelian group (A,+), a finite set S ⊂ {0, 1}m of
encoding length m and two black-box functions f0, f1 : A→ S where f0 is injective and such that
there exists an element s ∈ S verifying f1(x) = f0(s+ x) for any x ∈ S, find the element s called
the shift hidden by f0 and f1.

In this paper, we assume that the abelian group A of any instance of Hidden shift is always
given as Z/n1Z × · · · × Z/nkZ for some integers k, n1, . . . nk. Notice that the Hidden Shift
problem can also be considered when A is not abelian. Nevertheless the above formulation of
the problem allows us to use the Kuperber’s quantum algorithm to solve it in an subexponential
number of queries of the black-box functions f0 and f1.

Theorem 7.7 (Theorem 7.1. [Kup05]). There is a quantum algorithm such that the Hidden Shift

problem for abelian groups can be solved with time and query complexity 2O(
√
logn), where n is the

size of the abelian group, uniformly for all finitely generated abelian groups.

To solve quantumly O-Vectorisation, we first prove the correctness and the expected subex-
ponential runtime of Algorithm 6 which solves O-Vectorisation assuming that the two input
curves are in the same orbit. This algorithm is analogous to [CJS14, Algorithm 3].

Lemma 7.8 (GRH). The Algorithm 6 is correct and runs in expected time lO(1)L| disc(O)|[1/2]
where l is the length of the input.
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Algorithm 6 Quantum O-Vectorisation in the same orbit

Input : (E0, ι0), (E1, ι1) ∈ SSO(p) two oriented elliptic curves in the same orbit.
Output : a reduced O-ideal a ∈ Cl(O) such that a ⋆ (E0, ι0) = (E1, ι1) and the isogeny

ϕa : (E0, ι0)→ (E1, ι1).

1: Compute Cl(O) as a decomposition 〈[b1]〉 ⊕ · · · ⊕ 〈[bk]〉.
2: Denote by nj the order of 〈[bj]〉, for j ∈ J1, . . . , kK.
3: Solve the Hidden Shift problem instance given with the black-box functions, for j ∈ {0, 1},
fj : Z/n1Z × · · · × Z/nkZ → enc(SSO(p)), (x1, . . . , xk) 7→ enc((bx1

1 . . . bxk

k ) ⋆ (Ej , ιj)) where
s = (s1, . . . , sk) denoted the hidden shift.

4: Compute a the reduced representative of the ideal class [bs11 . . . bskk ].
5: Compute the isogeny ϕa induced by the ideal a.
6: return a and ϕa.

Proof. Let us prove the complexity of Algorithm 6:

[1] Under GRH, one can quantumly compute the group structure of Cl(O) in time polynomial
in log | disc(O)|, using for instance [BS16, Theorem 1.2].

[3] By Kuperber’s algorithm, Theorem 7.7, one can solve the instance of the Hidden Shift

problem in Ldisc(O)[1/2] queries on the black-box functions, all of which are computed in

lO(1)Ldisc(O)[1/2] by Theorem 6.3, where l is the length of the input. Thus this step in

done in lO(1)L|disc(O)[1/2].
[4] To compute the reduced representative of the ideal class [bs11 . . . bskk ], we use a square-

and-multiply approach where the ideal computed at each step is reduced. With this
method, ∀i ∈ J1, kK, [bsii ] can be reduced in O(⌈log#Cl(O)⌉) squarings, multiplications
and reductions which all can be done in polynomial time in log | discO|. Then it only
remains to compute the reduced representative of [bs11 . . . bskk ] from the reduced represen-
tatives of [bs11 ],. . . ,[bskk ] in time polynomial in log | discO|. Hence, using the standard

result #Cl(O) = O(ln(| disc(O))
√
disc(O)), this whole step is done in time polynomial in

log | disc(O)|.
[5] Finally with Theorem 6.3, we can compute the isogeny ϕa : (E0, ι0) → (E1, ι1) in

lO(1)L|disc(O)|[1/2].

A short computation proves that the shift s = (s1, . . . , sk) hidden by f0 and f1 gives the ideal
class [a] = [bs11 . . . bskk ] such that a ⋆ (E0, ι0) = (E1, ι1). Indeed, for every [b] ∈ Cl(O), there is a

vector b = (b1, . . . , bk) ∈ Z/n1Z× · · · × Z/nkZ such that [b] = [bb11 . . . bbkk ]. Then,

f1(b) = enc((bb11 . . . bbkk ) ⋆ (E1, ι1)) = enc(b ⋆ (E1, ι1))

= enc((ba) ⋆ (E0, ι0)) = enc((ba1+b11 . . . bak+bkk ) ⋆ (E0, ι0))

= f0(a+ b).

Finally, the Hidden Shift problem is well defined as f0 is injective because the action of Cl(O)
over SSO(p) is free.

�

Theorem 7.9 (GRH, Quantum O-Vectorisation). There is a quantum algorithm taking as
input two oriented elliptic curves (E0, ι0) and (E1, ι1) in SSO(p) which returns an O-ideal a such
that Ea

0 ∼ E1 together with the associated isogeny ϕa : E0 → E1. This algorithm runs in expected
time lO(1)L|disc(O)|[1/2] where l is the length of the input.

Proof. As for the classical resolution of O-Vectorisation, it is sufficient to run two instances
of Algorithm 6. The first one with the inputs (E0, ι0) and (E1, ι1) and the second one with the
inputs (E0, ῑ0) and (E1, ι1). Then the complexity in the Theorem 7.9 directly comes from Lemma
7.8. �

This leads us to the following proof of Theorem II.
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Proof of Theorem II. By Corollary 5.2 and because the factorisation of disc(Z[α]) can be computed
in quantum polynomial time, the α-EndRing problem reduces to O-EndRing in time polyno-
mial in the length of the instance. Notice that the discriminant of the order returned by this
primitivisation step can only decrease in absolute value. Then, by Proposition 3.6, α-EndRing
reduces to O-Vectorisation in probabilistic time polynomial in the length of the input. Hence,
by Theorem 7.9, α-EndRing can be solved in expected time lO(1)L| discZ[α]|[1/2]. �

7.3. Optimising by climbing the volcano. We fix K to be a quadratic number field and we
consider supersingular elliptic curves over the finite field Fp2 . Let ℓ 6= p be a prime number.

Adding K-orientations to a ℓ-isogeny graph of supersingular elliptic curves gives a structure of
volcano to each of its connected component which is analogous to the structure of isogeny graphs
of ordinary elliptic curves. We now introduce formally this notion before to show how results of
Section 6 can be used to naviguate efficiently in this volcano and to optimise previous results of
this section.

We define the K-oriented ℓ-isogeny graphs as the graph having for set of vertices the K-
oriented supersingular elliptic curves up to K-isomorphism and for edges the K-oriented isogenies
of degree ℓ between them.

Let (E, ι), (E′, ι′) be two K-oriented supersingular elliptic curves, where ι is a primitive O-
orientation and ι′ is a primite O′-orientation. For any K-oriented isogeny ϕ : (E, ι) → (E′, ι′) of
degree ℓ, we say that ϕ is

ր ascending if O  O′,
→ horizontal if O = O′,
ց descending if O ! O′.

From [CK20], where
(disc(O)

ℓ

)
is the Legendre Symbol, we know that (E, ι) always has ℓ −(disc(O)

ℓ

)
descending isogenies from it. Moreover, there are in addition

•
(disc(O)

ℓ

)
+ 1 horizontal isogenies, if O is maximal at ℓ,

• one ascending isogeny, otherwise.

Moreover, an isogeny between K-oriented elliptic curves of non-prime degree is said to be ascend-
ing, horizontal or descending if its factorisation into prime-degree isogenies is only composed of
ascending, horizontal or descending isogenies.

Then, we say that each component of the K-oriented ℓ-isogeny graph has a volcano structure
as its shape recalls one. Indeed, it has a finite cycle of horizontal isogenies, called the crater,
the surface or the rim, such that from each vertex starts an infite tree of vertical isogenies. In
particular, an oriented elliptic curve (E, ι) ∈ SSO(p) is at the crater of the K-oriented ℓ-isogeny
graph if and only if O is maximal at ℓ. Otherwise, we say that (E, ι) is at depth m if the valuation
at ℓ of [OK : O] is m, where OK is the maximal order of K. This means that one can walk from
(E, ι) to the crater of the K-oriented ℓ-isogeny graph by taking m ascending steps.

We provide an algorithm to walk to the crater of the volcano as an example of efficient navigation
made possible thanks to Section 6.

Lemma 7.10 (Walking to the crater). Let (E, ι) ∈ SSO(p) be a O-oriented elliptic curve and
ℓ 6= p a prime number. If (E, ι) is at depth at least m in the K-oriented ℓ-isogeny volcano, then
one can compute the unique ascending isogeny ϕ : (E, ι)→ (E′, ι′) of degree ℓm in time polynomial
in ℓ,m, log p and in the length of the representation of ι.

In particular, one can give the representation of ϕ as m kernels of successive isogenies all
defined over extension of degree O(ℓ2).

Proof. Let (E, ι) ∈ SSO(p) be an O-oriented elliptic curve at depth m in the K-oriented ℓ-isogeny
volcano and ϕ : (E, ι) → (E′, ι′) be the unique ascending K-isogeny of degree ℓm. We compute
the isogeny ϕ by composing the m successive ascending isogenies of degree ℓ from (E, ι).
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Let ϕ1 : (E, ι) → (E1, ι1) be the unique ascending isogeny of degree ℓ from (E, ι). We denote
by O1 the order such that (E1, ι1) is O1-primitively oriented and O is a suborder of O1. Let ω1

be a generator of O1. We assume, without loss of generality, that O is given by a generator ω
of the form ω = ℓω1. Then as shown in [Wes22, Lemma 11], kerϕ = ker(ι(ω)) ∩ E[ℓ]. As ι(ω)
is efficiently represented, kerϕ can be computed in time polynomial in ℓ, log p and l0, where l0
is the length of the representation of ι. (This computation is similar to the steps from 1 to 9 of
Algorithm 3 except that θ = ι(ω).) It provides a representation of ϕ given by its kernel generated
by a point living in an extension of degree O(ℓ2). Thus, it is possible to compute the elliptic curve
E1 = E/ kerϕ and its orientation ι1 induced by ϕ1 in time polynomial in ℓ, log p and in l0.

On the one hand, to recover E1 we use Vélu’s formula [Vé71]. On the other hand, for the
computation of the induced orientation, we have

ι1(ω1) = ϕ1∗(ι(ω1)) =
ϕ ◦ ι(ω1) ◦ ϕ̂

ℓ
=
ϕ ◦ ι(ℓω1) ◦ ϕ̂

ℓ2
=
ϕ ◦ ι(ω) ◦ ϕ̂

ℓ2
.

Thus, from the known representations of ϕ and ι(ω), we get an efficient representation of ϕ◦ι(ω)◦ϕ̂
and we just need to divide it by ℓ2 using Algorithm 1. By Theorem 4.1, this computation is poly-
nomial in l, log p and in l0 and returns a representation of ι1 of size O(log(p) log3(ℓ2l0)) such that

one can evaluate it on a point in Õ(log11(ℓ2l0)) operations over its field of definition.

We do the same computation to get a representation of the unique ascending isogeny ϕ2 :
(E1, ι1) → (E2, ι2) of degree ℓ. First, we compute the kernel kerϕ2 = ker(ι1(ω1)) ∩ E1[ℓ] and
deduce the curve E2 = E1/ kerϕ2 together with a representation of ϕ2 in time polynomial in
ℓ, log p and in l0. Then we recover in time polynomial in ℓ, log p and l0 a representation of the
induced orientation ι2, with the same properties as the one of ι1.

After such m steps, one can provide efficient representations for the totality of the ϕi, for
i ∈ J1,mK, in polynomial time in ℓ, log p, l0 and m. The representation ϕ : (E, ι)→ (E′, ι′) is then
given by the composition of the representations of ϕi, for i ∈ J1,mK. Hence, this representation is
provided by the kernels of the m successive isogenies, namely by m points living in extension of
degree O(ℓ2). �

Theorem 7.11 (GRH). Let c be a positive integer and O a quadratic order. Then (Z + cO)-
EndRing reduces to O-EndRing in probabilistic polynomial time in the length of the input and
in the largest prime factor of c.

Proof. Let (E, ι) ∈ SSZ+cO(p) be an instance of (Z + cO)-EndRing. Let us solve it using an
O-EndRing oracle.

Here, the main objective is to compute a representation of the unique isogeny ϕ : E → E′ of
degree c such that ϕ∗(ι) is an O-orientation. Indeed, using the O-EndRing oracle on the instance
(E′, ϕ∗(ι)) gives an ε-basis of End(E′). Then, from the ε-basis of End(E′) and ϕ̂, an ε-basis
of End(E) can be computed, under GRH, in probabilistic polynomial time in the length of the
input, [Wes22, Lemma 12]. Notice that to use directly [Wes22, Lemma 12], the isogeny ϕ̂ needs
to be represented by its kernel. It is not an issue for this proof.

First, we compute the prime factorisation of c and denote it
∏r
i=1 ℓ

ei
i . This factorisation can

be done in polynomial time in P+(c). Using Lemma 7.10, we can successively take ei steps to
the crater of the oriented ℓi-isogeny volcanoes, for i ∈ J1, rK, to reach (E′, ϕ∗(ι)) in polynomial
time in the length of the input and in P+(c). Let us denote by (Ei, ιi) the oriented elliptic curve
obtained by walking e1 steps from (E0, ι0) := (E, ι) to the crater of the oriented ℓ1-isogeny volcano
then e2 steps to the crater of the oriented ℓ2-isogeny volcano and so on until walking ei steps to
the crater of the oriented ℓi-isogeny volcano. We denote by ϕi the isogeny of degree ℓeii that
maps (Ei−1, ιi−1) to (Ei, ιi). By Lemma 7.10, every ϕi is given by log(c) successive kernels of

ℓi-isogenies living in extension of degree O(P+(c)
2
). We then denote this decomposition of ϕi into

ℓi isogenies by ϕi = φi,mi
◦ · · · ◦ φi,1. Finally, using the decomposition of every ϕi into isogenies
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of prime degree, we have the following decomposition of ϕ̂ : (E′, ι′)→ (E, ι)

ϕ̂ = φ̂1,1 ◦ · · · ◦ φ̂1,m1
◦ φ̂2,m2

◦ . . . φ̂2,1 ◦ · · · ◦ φ̂r,1 ◦ · · · ◦ φ̂r,mr
,

where all the kernels of the φ̂i,j are recoverable in time polynomial in P+(c) and in log p.
Finally, End(E) is computable in probabilistic polynomial time in the length of the input and

in P+(c) by propagating the knowledge of the endomorphism ring from (E′, ι′) to (E, ι) using the
O(log c) dual isogenies of prime degree between them, thanks to [Wes22, Lemma 12]. �

Corollary 7.12 (GRH). Let c be a positive integer and O a quadratic order. Then (Z + cO)-
EndRing can be solved in probabilistic polynomial time in (l · P+(c))O(1)| disc(O)|1/4 where l is
the length of the input and P+(c) is the largest prime factor of c.

Proof. This is a direct consequence of the reduction of (Z+ cO)-EndRing to O-EndRing given
by Theorem 7.11 together with the complexity result on O-EndRing given by Theorem I. �
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