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Abstract 
Hypothesis: Measuring rotational and translational Brownian motion of single spherical 
particles reveals dissipations due to the interaction between the particle and the environment. 
Experiments: In this article, we show experiments where the in-plane translational and two 
rotational drag coefficients of a single spherical Brownian particle can be measured. These 
particle drags are functions of the particle size and the particle-wall distance, and of the viscous 
dissipations at play. We measure drag coefficients for Janus particles close to a solid wall and 
close to a lipid bilayer membrane. 
Findings: For a particle close to wall, we show that according to hydrodynamic models, particle-
wall distance and particle size can be determined. For a particle partially wrapped by lipid 
membranes, in absence of strong binding interactions, translational and rotational drags are 
significantly larger than the ones of non-wrapped particles. Beside the effect of the membrane 
viscosity, we show that dissipations in the deformed membrane cap region strongly contribute 
to the drag coefficients.    

 
Keywords: Translational drag, rotational drag, Janus particle, Brownian motion, diffusion, 

lipid membranes, viscous dissipations, particle tracking 
 
 
1 Introduction 

Increase of the particle drag in fluid confinement occurs for many systems ranging from 
surfactant molecules inside porous materials to colloidal particles close to a solid-liquid 
interface or a membrane. The presence of an interface impacts the hydrodynamic flow around 
a translating or rotating particle, and the interaction between a particle and a surface implies 
boundary conditions for the fluid flow at the interface and emerging dissipations contributing to 
the drag [1].  
Hydrodynamic calculations by Faxén addressed the translational and rotational drags of a 
spherical particle as a function of the particle distance to a solid wall [2]. Goldman and Brenner 
[3] extended the description for the particle drag and many other hydrodynamic models can be 
found in the literature for the drag of a particle close to liquid-liquid and liquid-gas interfaces 
[4,5][6][7]. Of particular interest in membrane biophysics, the Saffman-Delbruck model 
describes the dissipation of a disk particle embedded in a flat viscous membrane between two 
unbounded fluids [8]. Studies related to this model also addressed the rotational drag of a disk 
in a membrane [9] and the effect of a solid wall close to the membrane [10]. Membrane shear 
and dilatational viscosities together with the related adimensional Boussinesq numbers are 
used to describe the competition between the viscous surface and bulk dissipations. Surface 
flow compressibility conditions must be also carefully taken into account when dealing with 
lipid membranes or surfactant monolayers. 
To verify theoretical models and to evaluate the dissipations at play, experimental 
investigations using colloidal particles close to solid interfaces or membranes have been 
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reported [11][12]. Experiments are very challenging in particular when the gap distances 
between the particle and the wall decrease to the nanometric scale [13]. Experimental reports 
on particles interacting with lipid membranes reveal that, beyond viscous dissipations, an 
hydrodynamic coupling exists between the particle and the fluctuating elastic membrane [14] 
[15][16][17][18,19]. 
We have recently reported on the motion of active and passive Janus colloids close to giant 
unilamellar vesicle (GUV) membranes and we have shown two preliminary experiments on the 
out-of-plane rotational dynamics of Janus particles partially wrapped by lipid membranes 
[20][21]. In reference [21] we focussed our attention on the preferential orientations of Janus 
particles with respect to the membrane surface, which were discussed in terms of interfacial 
energies. Here, we report experiments on the translational, in-plane and out-of-plane rotational 
drags, which are simultaneously measured for single Janus colloids. In the first part of the 
Results section, we describe experiments for single particles close to a solid wall, and show a 
good agreement with the Faxén predictions. Then, we present experimental results for Janus 
particles that are also partially wrapped by a lipid membrane and discuss the origin of the 
dissipations contributing to each particle drag coefficient.  

 
2 Materials and Methods 

2.1 Janus Colloids  

We used bare fluorescent Melamine Formaldehyde Resin (MF) microspheres of 1.245 µm 
nominal radius and nominal standard deviation of 0.05 µm (microParticle GmbH, Berlin, 
Germany). To fabricate Janus colloids we followed the method proposed by Love et al.[22]. 
First, a monolayer of MF beads was deposited on a thoroughly cleaned silica wafer by drop 
casting (particle concentration of 0.2% by volume). After completely drying, a thin layer of 
platinum was deposited on the colloidal monolayer using metal sputtering (Auto 306 
Evaporator, BOC Edwards, West Sussex, UK). Due to the spherical geometry, the sputtering 
process yields particles that are half coated with a thin platinum layer with a thickness of 6 ± 1 
nm, measured by light reflectivity on the corresponding planar surfaces. For these Janus 
particles, we performed scanning electron microscopy and measured an average radius RP = 
1.29 µm and a standard deviation of 0.06 µm. The Janus colloids are released from the wafer 
by simple agitation using a pipet tip[20][21]. 

Zeta potential of the MF and MF-Pt Janus particles was measured using a Malvern Zetasizer 

Nano ZS: MF+25±6 mV for MF particles and MF-Pt47±10 mV for MF-Pt Janus particles. 

2.3 GUV formation 

GUV’s are prepared using PVA (polyvinyl alcohol) gel assisted formation method, which 
enables high-yield vesicle growth [23]. In this method, we first start with preparing PVA gel by 
dissolving dry PVA in PBS (phosphate-buffered saline, 10gL-1) solution at 5% concentration. 
The PVA gel is then spread inside the chambers of a homemade PTFE (polytetrapolyethylene) 
plate and oven dried at 80°C for 30 min. Following the drying process, a 99:1 (molar) mixture 
of POPC-NBD (1-palmitoyl-2-oleoylphosphatidylcholine fluorescently labelled with 
nitrobenzoxadiazole) in chloroform (1 gL-1) is spread on the dried PVA gel and then vacuum 
dried for 15 min in a desiccator. The lipids are next hydrated with 200 mL of 0.15 M sucrose 
and let to grow for at least 2-3 hours. After growing, the vesicle suspension is collected and 
sedimented in 1 mL of 0.15 M glucose solution. Because of the small density mismatch 
between the solutions inside the vesicle and outside in the aqueous media, the vesicles settle 
to the bottom of the collection tube. The average GUV radius measured after gel assisted 
formation method was found to be RGUV = 11 ± 6 µm. 

2.4 Microscopy and tracking 

Janus colloids and GUVs in aqueous solution were observed using fluorescent microscopy. 
The sample cell is filled with 10 µL of Janus particle and GUV solution, along with 120 µL of 
glucose. The microscopy setup consisted of Nikon (Tokyo, Japan) Eclipse TE2000 microscope 
(x60 objective) equipped with a CMOS camera (Orca Flash 4.0, Hamamatsu, Japan). Videos 
were recorded at different frame rates ranging from 100 to 1000 frames per second (fps). Using 



3 
 

the open-source software Blender v2.8 (Blender Foundation, Amsterdam, The Netherlands), 
tracking the center of mass of the particle was achieved. To track the orientation of the colloids 
a thresholding technique using ImageJ (NIH, Bethesda, MD, USA) was used [21]. The analysis 
of partially coated MF-Pt colloids yields a brighter area AMF, which corresponds to the MF part 
of the Janus colloid observed in reflection mode of florescence microscopy. The area AMF 

provides the orientation angle : 𝐴MF = π/2(1 − cos⁡(π − 𝛽))𝑅P
2 (See Figure 1A and 1B right) 

[21]. Moreover by fitting the perimeter of this area with an ellipse, the in-plane orientation  
can be evaluated (See Figure 1B left).  

 

3 Results and Discussion 

3.1 Translational and Rotational drags of single particles close to a wall  

We started investigating the Brownian motion of single MF-Pt Janus colloids in thermal 
equilibrium close to the solid-liquid interface, where particles sediment because of gravity but 
do not adsorb on the substrate (given the overall negative potential of the particle and the wall, 
see 2.1 section). Very low particle concentrations allow to study the motion of single isolated 
particles. For each particle, we were able to measure the center of mass position and the 
orientation of the Pt region of the particle. By performing high speed imaging we focused our 

attention on relatively small variation of  and - theparticle orientation angles - to measure 

dynamics related to Brownian diffusions Di = kBT/i, where kBT is the thermal agitation energy 

and i is the drag coefficient [24]. 

Fig. 1A and 1B sketches the geometry of our experimental system composed of a Janus 
particle close to a wall together with the xyz laboratory axis and the XYZ particle axis. In Fig. 
1C, typical images recorded in fluorescence microscopy used to measure the in-plane and out-

of-plane particle orientations,  and are shown. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(C) 
 
 
 
 
 
 
 
Fig. 1. (A) 3D Sketches of a Janus particle in the xyz lab frame and XYZ particle frame and 

definition of the Euler angles  . (B) 2D sketches of a top view (xy-plane) and side view (xz-

plane) of a colloid close to a solid wall, and definition of the particle orientation angle and. 
(C) Florescence images at given times of a RP = 1.29 ± 0.16 µm Janus particle (xy-plane).  
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A translational trajectory and variations of the in-plane and out-of-plane orientation angles as 
a function of time are shown in Fig. 2A.  
Time averaged mean squared translational displacement MSD and mean squared angular 

displacements MSADs (< ∆𝜑2 > and < ∆𝛽2 >) of the corresponding trajectories are plotted in 

Fig. 2B as a function of the lag time t [25]. 
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Fig. 2. (A) In plane (left axis) and out of plane (right axis) particle orientations as a function of 
time. Inset shows the center of mass trajectory. (B) Mean squared angular displacement 
corresponding to the orientation angles shown in (A) as a function of the lag time. Inset shows 
the mean squared displacement for the center of mass trajectory. Lines correspond to the fits 
of equation 1 to the data in the short lag time limits. 
 
 
In the short lag time limit, mean squared values allow measuring the translational drag parallel 

to the wall tr,‖ and the in-plane ro,‖ and out of plane ro, rotational drags close to a wall (Di = 

kBT/i). For the translational motion, the vertical motion (in the z-axis) is strongly confined by 
the potential energy of the particle, which can be modelled as the sum of gravity and electrical 
double layer repulsion terms [26]. In these conditions, only few tens of nm can be explored by 
the Brownian particle in the z-axis. In the horizontal plane, instead, the particle experiences 
free Brownian motion. Hence, only the motion parallel to the wall in the xy plane is considered 
here: 
 

𝑀𝑆𝐷 =⁡< ∆𝑥𝑃
2 > +< ∆𝑦𝑃

2 >=< ∆𝐿2 >0+ ⁡4(𝑘𝐵𝑇/𝜁tr,∥)∆𝑡     (1A) 
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For the rotational dynamics, three particle rotations about three independent axis related to the 
Euler angles in our geometry must be taken into account (see Fig. 1A) [27]. Considering the 

particle orientation  and  measured in our experiments, mean squared angular 
displacements read (see Supplementary Material, S1):    
 

< ∆𝛽2 >=< ∆𝛽2 >0+ ⁡2(𝑘𝐵𝑇/𝜁ro,⊥)∆𝑡      (1B) 

 

< ∆𝜑2 >=< ∆𝜑2 >0+ ⁡2𝑘𝐵𝑇(1/𝜁ro,∥ + cotan2 < 𝛽 >/𝜁ro,⊥)∆𝑡   (1C) 

 

where an offset (< ∆𝐿2 >0 or < ∆𝜑2 >0 or < ∆𝛽2 >0) due to experimental errors (e.g. noises 
in image acquisition, image analysis or mechanical vibrations) is always taken into account 

[28]. In equation 1C, note that for < 𝛽 >  /2 both rotational friction coefficients should be 
taken into account as explained in our theoretical analysis (see Supplementary Material, S1).  
The in-plane rotational drags are very close to bulk values calculated with a particle radius RP= 
1.29 ± 0.16 µm (see later in the text, Figure 6), which agree with the hydrodynamic predictions 
[13].  
 

𝜁ro,‖ ⁡≅ 𝜁ro,b = ⁡8𝜋𝑅P
3𝜂         (2) 

 
On the contrary, translational and the out-of-plane rotational drags are significantly smaller 
than the calculated bulk values [13].  

Hydrodynamic calculations by Goldman et al. provide translational tr,‖.and rotational ro, 
particle drags as a function of the particle-wall distance [13][3]. Here, we compare our 

experimental data with these predictions in Fig. 3 where ro, is plotted as a function of tr,‖. 
In Fig. 3 our data agree with the hydrodynamic predictions for RP = 1.29 ± 0.16 µm and gap 
distance h in between 0.1RP and 1RP. This large distribution of h could be discussed by 
considering the Janus geometry of the particles and the heterogeneous surface potential due 

to the native positive value of MF (MF +25 mV) and the negative value of the Pt coating (Pt 

80 mV [29]) leading to a negative potential of the Janus colloids: MF-Pt47 ± 10 mV.  
Note that the range of the particle radius used in this comparison (± 0.16 µm, Fig. 3) is larger 
than the one by SEM measurements (± 0.06 µm). The difference between the measurements 
of the hydrodynamic radius by particle tracking and particle radius by electron microscopy can 
be related to the Janus particle geometry, heterogeneous particle surface properties and 
distribution of electrolytes close to the particle surface [30].  

It is important to remark that by measuring both tr,‖ and ro, for the same particle we can in 
principle evaluate both the size and the particle distance to the wall, if the particle drags are 
only due to hydrodynamics [1]. Significant errors can be made when the particle distance to 

the wall is evaluated by measuring only tr,‖ since the size of the particle must be assumed and 
even a small size distribution affects strongly the evaluation of h, see Fig. 3.  
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Fig. 3. Out of plane rotational drag as a function of the parallel translational drag: experimental 
points (square) are compared to the hydrodynamic predictions (lines) for different radii and 
relative distances to the wall h/RP. 
 
3.2 Translational and Rotational drags of partially wrapped particles by lipid 
membranes  

As reported recently, we were able to drive the wrapping of giant vesicle lipid membranes on 
Janus particles by applying external forces of the order of 10 pN (see Supplementary Material, 
S2) [21][14]. In fluorescence microscopy, many MF-Pt Janus colloids show preferential 
orientations with the fluorescent MF region facing the bottom of the cell as described in 
reference [21], but some show averaged orientations comparable to the ones of non-wrapped 
particles (see Supplementary Material, S2). We sketched this geometry in Fig. 4A, where d is 
the gap distance between the particle and the membrane and dw is the gap distance between 
the membrane and the glass substrate [31–34].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Sketches of a Janus colloid partially wrapped by a lipid membrane. (A) The membrane-
particle gap distance is d, membrane-substrate gap distance is dw. (B) Sketches of the particle 

rotational dynamics related to the parallel (||) and perpendicular () rotational drag coefficients. 
 

(A) 

(B) 
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As before, we were able to monitor the particle position and orientations and calculate mean 
squared angular displacements and translational mean squared displacement as a function of 
the lag time, which are shown in Fig. 5. 
To assess the precision of our analysis, we also plot data for a Janus particles stuck on the 
solid substrate and show that MSAD and MSD do not significantly vary with the lag time (x 
points). 
For partially wrapped Janus colloids we performed the same analysis as before to evaluate 
the translational drag and the in-plane rotational and out-of-plane rotational drags. The effect 

of confinement was taken into account when <Δ𝛽2 > shows a non linear behaviour at short 
lag times (see filled circles in Fig. 5B). In this case, the mean squared angular displacement 
data were fitted by [29]:  
 

<Δ𝛽2 >=< ∆𝛽2 >0+
𝑘𝐵𝑇/𝜁ro,⊥

Γ
[1 − exp(−2Γ⁡Δ𝑡)]      (3) 

 

Where  acts as an effective elastic constant, which in this case, tends to restore the particle 

orientation  to a value corresponding to the minimum interaction energy between the 
membrane and MF-Pt particle [21].
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Fig.5. For two particles partially wrapped by a membrane (empty and filled squares) and for a 
particle stuck on the solid substrate (x): (A) Mean squared in-plane angular displacements, (B) 
mean squared out-of-plane angular displacements, and (C) mean squared translational 
displacement MSD as a function of the lag time (not all points are shown for clarity). Lines 
correspond to the fits of equation 1 and 3 to the data in the short lag time limits. 
 
 

In Fig. 6 we plot ro, as a function of ro,|| for “free” (non-wrapped) Janus particles close to a 
wall and for Janus particles partially wrapped by a giant vesicle membrane. For “free” particles 

ro, is slightly higher than ro,|| but their values are comparable to the bulk values (blue cross 
points for RP = 1.13, 1.29 and 1.45 µm).  

For “wrapped” particles ro, is significantly higher than ro,|| and the two rotational drags show 

a clear correlation that can be approximately described by ro,   g ro,|| , with 1 < g < 3. Note 
that for wrapped particles, rotational drags can be 1 or 2 orders of magnitude higher than for 
non-wrapped particles.  
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Fig.6. Out of plane rotational drag as a function of the in plane rotational drag: experimental 
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comparison. 
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Now, we discuss the origin of the dissipations contributing to each particle drag coefficient.  
Rotational drag 𝜁ro,‖⁡ experienced by a Janus particle partially engulfed by a membrane and 

rotating about an axis parallel to the surface normal (as sketched in Fig. 4B) can be described 
as the combination of several contributions. 
Contribution of membrane viscosity can be compared to the one of a rotating disk embedded 
in a flat membrane and close to a solid wall [10]: 
 

𝜁ro,D ⁡≅ ⁡4𝜋𝑅P
2𝜂m          

The contribution of the fluid viscosity for the unwrapped region of the particle can be 

approximated as a fraction of the bulk contribution 𝜁ro,b for a spherical particle considering the 

degree of wrapping. The remaining contribution to 𝜁ro,‖ concerns the dissipation occurring in 

the membrane cap region of the particle. This region includes both the area wrapped by the 

membrane, which is not in direct contact with the particle but separated by a water gap, and 

the deformed membrane region close to the particle [35][36]. Hence, the membrane cap 

contribution 𝜁ro,cap takes into account all the dissipations beyond the assumption of a flat 

membrane and a particle inclusion. 

Total drag 𝜁ro,‖ may be written as a function of these contributions:  

𝜁ro,‖ ⁡≅ ⁡ℱ(⁡𝜁ro,D, 𝜁ro,b, 𝜁ro,cap,∥)        



Similarly, for the out-of-plane rotational drag ( as sketched in Fig. 4B) we can write: 
 

𝜁ro,⊥ ⁡≅ ⁡ℱ(𝜁ro,b, 𝜁ro,cap,⊥)          

 

Given the correlation ro,   g ro,|| shown in Fig. 6 and considering typical literature values of  

m = 2 109 Pa.s.m [14], we can deduce that for our particle size (RP106 m) the contribution 

𝜁ro,D is comparable to the bulk contribution (4𝜋𝑅P
2𝜂m vs 8𝜋𝑅P

3𝜂). These contributions are small 

compared to the dissipations measured for particles wrapped by the membranes, see Fig. 6. 

Hence, both ro,  and ro,|| mainly reflect the contributions arising from the dissipations in the 
deformed membrane region close to the particle, which are not described in the existing 
models assuming a flat membrane and a particle inclusion.  

ro,  > ro,|| can be explained in terms of a wall effect as it is true for “free” (non-wrapped) 
particles close to a wall, which also points to a very small particle-wall distance h in our 
experiments. 
To the best of our knowledge, no models exist in the literature to describe 𝜁ro,cap in our system. 

In the membrane cap region, shear stresses are acting on the water gap, the membrane and 
also in the bulk water on the other side of the membrane. For the particle rotational dynamics, 
it is important to realize that the relevant lipid bilayer membrane shear viscosity may be 
different far from the cap and in the cap region. For the parallel rotational drag, far from the 
cap the gradient of the velocity is along a direction that lays in the membrane plane; whereas 
in the cap region at the particle equator the gradient of the velocity is normal to the membrane 
plane (Fig. 4B). In the latter case an inter-leaflet viscosity could also play a role, which 
describes an additional dissipation due to the sliding between the two monolayers of the lipid 
bilayers [1].  
For the sake of comparison, we could refer to some limiting scenarios to describe our data. 
First, we consider the case of an immobile membrane and refer to the hydrodynamic result for 
a spherical Couette geometry. Dissipation is due to the slow motion of the fluid contained (in 
the small gap) between two concentric hard spheres by assuming that the inner sphere rotates 
while the outer sphere stays at rest. Hence, we can assume that the radius of the inner sphere 
is RP and the radius of the outer sphere is RP + d (Fig. 4B). Note that the lipid membrane is 
assumed to act as a solid-liquid interface, and no dissipation due to the membrane viscosity 
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can be described within this assumption. In this case, the rotational drag felt by the inner 
sphere can be written as [37]: 
 

𝜁ro,S =
𝜁ro,b

[1−(
RP

𝑅P+𝑑
)3]

=
8𝜋𝜂𝑅P

3

[1−(
RP

𝑅P+𝑑
)3]

         (7) 

 
Hence, plotting 𝜁ro,S as a function of d in Fig. 7A we note that a variation of the gap distance d 

from 10 nm to 600 nm results into frictions that agree with the 𝜁ro,‖ experimental results. The 

distance d between the spherical microparticle and the membrane can be compared to the 
equilibrium distances dw measured between planar solid substrates and vesicle membranes in 
the absence of strong binding interactions, which usually lay in the range between 20 and 60 
nm [31–34]. 
Alternatively, for a flat viscous membrane we can discuss the limiting case 𝜁ro,‖ ⁡≅ ⁡ 𝜁ro,D + 𝜁ro,b 

where no internal dissipation due to the flow in the gap between the particle and the membrane 

occurs. Fig. 7B shows that our experiments agree to the calculations for a sphere with an 

effective radius Reff ranging from 1.29 µm (= RP) to 4.3 µm. The latter large effective radius 

may describe the contribution of the deformed membrane area close to the particles. A typical 

length scale that defines this area is the bendocapillary length 𝜆 = √𝜅𝐵/𝜎 of the membrane. In 

our experiments, the bending rigidity is 𝜅𝐵  1019 J; and the membrane tension 𝜎 may vary 

from 108 to 106 N/m [38][39]. These values lead to 𝜆 between 0.3 and 3 µm range, which 

agree with the determination of Reff shown in Fig. 7B as the sum of RP and 𝜆.  

Note that the degree of wrapping, local membrane deformation close to the particle, 
fluctuations of the equilibrium distance d and weak pinning of the line at the cap edges may 
also play a role to explain of our experimental results [35][36].  
 

 
Fig. 7. Determination of d (A) and Reff (B) by superimposing experimental data on models 
describing: (A) the rotational drag due to the dissipation occurring in the water gap d between 
two concentric spheres with the outer sphere at rest; (B) rotational drag due to the dissipation 
of a spherical inclusion in a flat membrane with an effective radius Reff close to a solid wall.  
 

Finally, we show the results of the particle translational drag parallel to the surface tr,||, which 

is plotted as a function of ro,|| in Figure 8. For two measurements of wrapped particles, tr,|| is 

about 3-4 times larger than for “free” particles. For the other measurements, tr,|| of wrapped 
particles is on average larger than for non-wrapped particles but it can be compared to the 
value of the translational drag measured for the particles closest to the wall (see Figure 3).  
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As for the rotational drag, also for the translational drag we are not aware of any models 
describing the dissipations of a particle partially wrapped by a deformed membrane and 
moving parallel to it, as sketched in Fig. 4A. However, it is important to notice that for the 
translational motion, the cap region of the particle wrapped by the membrane is not subjected 
to the same strong shear flows as in the rotational particle motion.  
Considering the model by Evans and Sackmann for the translational drag of a disk embedded 
in a flat membrane close to a wall [10] and the drag of the particle close to the wall, we can 
write [6]: 
 
𝜁tr,∥ ⁡≅ ⁡ 𝑓w⁡6𝜋𝜂𝑅P + 4𝜋𝜂m         (9) 

 
Note that in equation 9 no specific dissipation of the membrane cap region is taken into 

account. In Fig. 8, we plot two calculations of equation 9 with m = 2 109 Pa.s.m [14] for two 
different values of the particle radius (dashed line: RP = 1.29 µm, and dotted line: Reff = 4 µm) 
and assuming fw = 1.7, which takes into account both the effects of the vicinity to a solid wall 
and the particle penetration inside an inviscid interface [6]. Experimental data agree with the 

value of membrane surface viscosity reported in the literature [14]. Distribution of tr,|| 
experimental values can be discussed (as before in Fig. 7B) as an effective particle radius 
taking into account the membrane deformation close to the particle. As for the rotational 

friction, the largest translational drags (1.5 107 Pa.s.m) agree with the calculation of equation 

9 with Reff  4 µm. The latter Reff value is in agreement with the sum of the particle radius and 

expected bendocapillary length in our system. Note that 4m in equation 9 describes the 
dissipation due to the viscosity of a flat membrane when the probe particle is in molecular 
contact with the membrane. Here, dissipations occur both in the membrane that shows local 
shape deformations close to the particle and in the water gap between the membrane and the 
particle [35][40].  
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Fig. 8. Particle translational drag parallel to the bottom wall as a function of the parallel 
rotational drag for wrapped (circles) and “free” (squares) particles. Calculated translational 

drag for a sphere close to a solid wall (solid line: tr,b = 6RP, RP = 1.29 µm), and translational 
drags (equation 9) for two given particle radii (dashed line: RP = 1.29 µm; and dotted line: Reff 

= 4 µm), with fw = 1.7 and m = 2 109 Pa.s.m. 
 

 
4 Conclusions 
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We have shown an experimental and theoretical study to measure rotational and translational 
drags of single microparticles. The only experimental requirements are the use of fluorescence 
microscopy and Janus particles, which present clear advantages with respect to other state-
of-the-art setups [41][42]. A theoretical analysis for the rotational dynamics is described, which 
includes a correction (Eq. 1C) that can be also applied to previously published results [36]. For 
an isolated particle diffusing close to a solid wall, we are able to measure the in-plane, out-of-
plane rotational drags and the translational drag parallel to the wall. If the particle drags are 
only due to hydrodynamics, the size and the particle-wall distance can be evaluated for each 
particle without the need of any assumptions. Janus particles partially wrapped by lipid 
membranes experience rotational drags that can be 1 or 2 orders of magnitude larger than for 
non-wrapped particles, while the translational drag may increase up to 4 times (comparing with 
non-wrapped particles). In absence of strong binding interactions, the equilibrium distance 
between the membrane and the particle lies in the 1 to 100 nm range, which strongly affects 
the dissipations occurring in the particle rotational and translational dynamics. No such a 
distance and related geometry was taken into consideration in the existing models, which 
describe the probe particle in molecular contact with a flat lipid membrane. Hence, new 
theoretical development is demanded in this area to describe dissipations occurring in the 
different layers of particle-membrane systems. For sake of comparison, we evaluated the 
dissipations taking place in two limiting cases: (i) for an immobile membrane, we consider the 
dissipation of the water gap between the particle and membrane as the one occurring in the 
fluid between two concentric spheres, and (ii) by assuming a spherical inclusion with a 
relatively large effective radius to take into account the membrane deformation close to the 
particle. Other dissipation mechanisms may occur in the membrane cap region due to weak 
pinning of the contact line delimiting the wrapped and unwrapped membrane regions. For lipid 
bilayers, the contribution of the interleaflet friction must be also taken into consideration. 
Finally, we are currently performing experiments tuning the properties of the probe particle and 
membrane to control the equilibrium distances with the membrane and the wall and the 
wrapping degree. 
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