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Figure 1: Saliency maps generated with 𝐻2𝑂 for images sampled from the PASCAL VOC2007 [7] dataset. The first row shows
input images while the second row displays the superimposition with the corresponding saliency map.

ABSTRACT
The rise of Deep Learning (DL) has led to a breakthrough in the
research field of content-based multimedia indexing. Newly de-
veloped systems based on complex models outperform classic ma-
chine learning algorithms in object detection, image segmentation
or classification tasks. However, despite their high performance,
these systems still make mistakes. To be used in industrial condi-
tions, these systems must be able to provide trustworthy decisions
with guarantees or justifications. Therefore, it is crucial to provide
means to analyze and comprehend the decision process that leads
a model to its decision. Image classification implies tracking and
understanding which input features the model relies on to make its
prediction. This paper focuses on features attribution techniques
and proposes Heatmaps by Hierarchical Occlusion (𝐻2𝑂), a novel
method for detecting pattern-relevant features in an image. We also
propose two new pairs of metrics that overcome some evaluation
issues: (a) Insertion and Deletion Spearman correlation coefficients
which both estimate a correlation between the computed scores in
a saliency map and the importance for the model of the associated
pixels in the image. (b) Insertion Positive and Deletion Negative
Gradient Sums both estimate the coherence of the scores in the
saliency maps. Both visual inspection and evaluation on 7 metrics
show that 𝐻2𝑂 is competitive against state-of-the-art methods.
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1 INTRODUCTION
Content-based multimedia indexing is used in our daily life activi-
ties [6]. Such systems strongly rely on various machine learning
tasks, especially classification techniques [13]. As these systems
are not infallible, designers need to evaluate them [8] to assess
their actual performance. However, the commonly used metrics
only enable to compare models or to have a general idea of their
efficiency. Some metrics and approaches are able to measure the
failures and successes [18] but do not enable understanding why
they fail or succeed. This is especially problematic when using deep
learning models [15] that are commonly considered to be black
boxes [12, 22] due to their internal complexity and number of pa-
rameters. This is where eXplainable Artificial Intelligence (XAI)
comes into play. This field aims at providing explanations of mod-
els with still images or interactive applications [14]. Among the
possible categories of explanation methods, we are interested in
features attribution methods that aim at explaining which input
features influenced the decision process of an image classifier.

The literature proposes several methods (see next section) to
produce features attribution of image classifiers. The most popular
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ones are either gradient-based methods [21, 23] or occlusion meth-
ods [17, 19]. In this paper, we focus on some of the problems of
existing occlusion methods. Occlusion methods usually produce an
explanation of a single class per input sample, regardless the pre-
dicted class(es) for that instance. Such an explanation is not entirely
representative of a model’s prediction. This can be problematic
for single-label classification tasks, where models are built with
a softmax function. Because of this function, a model can predict
a specific class because the other classes are less likely, and not
because the sample belongs to a class. This can also be problematic
for multi-label tasks where each sample may belong to multiple
classes. Currently, there is no consensus to determine whether the
ground truth class(es) or the predicted class(es) should be explained.
In both cases, it is not reasonable to display a heatmap for every sin-
gle class, due to their number, but existing methods do not provide
any way to aggregate the heatmaps of the target classes.

Moreover, existing occlusion methods strongly depend on the
strategy used to replace the masked zones (usually a single color).
Depending on the chosen color(s) the image features can be either
masked or enhanced, which may alter the quality of the explanation.

In this paper, we focus on these two problems. We propose a
novel class-agnostic method to generate an explanation for the
whole prediction vector of an image classifier. It relies on a hierar-
chical superpixel segmentation of the image and a new masking
color strategy to increase the quality and stability of the explanation.
We suggest alternative metrics to evaluate their quality alongside a
strategy to compare class-agnostic and class-specific explanations.

The paper is organized as follows.We first present a brief state-of-
the-art of existingmethods that generate an explanation in Section 2.
In Section 3, we then describe our method. Then, we establish
the evaluation protocol of our study (Sec. 4) and proceed with
quantitative and qualitative results (Sec. 5). We also discuss the
strengths, the weaknesses and the future improvements on this
work (Sec. 6), and draw conclusions in Sec. 7.

2 PREVIOUS WORK
Among the possible families of explanations, we are interested in
feature explanations. Feature explanations aim at highlighting input
features of interest: those strongly correlated with the final decision
of the classifier. For the classification of RGB images represented by
tensors of shape (𝑤,ℎ, 3), the explanation corresponds to a saliency
map (also named explanability map or feature attribution map) of
shape (𝑤,ℎ) containing high values for pixels of interest and low
values for the others. This saliency map is usually presented to
the user with a heatmap overlaid on the input image. This section
overviews the main concepts behind existing methods as well as
various evaluation methods.

2.1 Features Attribution for Image Classifiers
Several methods [10, 17, 19, 21] have been proposed in the literature
to generate features explanations that can be used in the context
of image classification. As shown in the summary in Table 2 in
the Appendix, key contributions fall into four main categories.
Gradient-based [21] and Activation-based [3, 10] methods are both
model-specific methods. They either use the weights gradients of a
differentiable model [21] or aggregate the outputs [3, 10] produced

when feeding a model with samples, to explain individual classes.
In the former category, Deconvnet [24] or back-propagation-based
methods [24, 25] try to reverse the operations processed in a neu-
ral network to highlight the input features detected by the model.
Alteration-based methods [20] modify an input image to deter-
mine which input features impact the most a model’s prediction.
Occlusion-based methods [17, 19] can be seen as a special case of
alterationmethods when the input images are masked to deteriorate
the prediction. While the first two categories are model-specific, the
last two are model-agnostic as they work with any model. Another
distinction can be made between class-specific methods that fix
a class to explain (e.g. GradCAM [21], LIME [19], RISE [17]), and
class-agnostic methods (e.g. FEM [10], MLFEM [3]) that have the
advantage of explaining all the prediction components at once.

For occlusion-based methods, which are the focus of this paper,
evaluating precisely the impact of each feature of an image in the
model’s prediction would require to consider every possible subset
of pixels, which is too costly to consider. To tackle this problem,
LIME [19] groups similar pixels into clusters (superpixels), and
only masks a subset of the possible combinations of superpixels.
A model then estimates the importance of each superpixel based
on the deterioration induced in the prediction vectors. RISE [17]
randomly mask an input image with 𝑁 masks. The saliency scores
are computed from the deterioration scores of each masked image.

Inspired by theseworks, we propose a hierarchical,model-agnostic,
class-agnostic, and occlusion-based method.

2.2 Evaluation of Features Explanations
Evaluating explanations is one of the key problems the XAI com-
munity has to face. To the best of our knowledge, there is not yet a
consensus on the evaluation procedure: most methods are evalu-
ated in different ways and new protocols are not broadly adopted
(see Table 2). Still, two categories of metrics can be established from
the literature: human-centered and automatic metrics.

Human-centered metrics measure how close an explanation pro-
vided by an algorithm is to a ground truth explanation provided by
humans. In this category, the Pointing Game (PG) [25] measures
whether or not the maximum value of class-specific explanations
falls into one of the human-labeled bounding boxes of that class,
in the whole dataset. Though, this metric only measures the accu-
racy of the highest score in an explanation, and does not take into
account the entire distribution of scores. In MLFEM [3], the explana-
tions are compared to Gaze Fixation Density Maps (GFDM) using a
Similarity (SIM) metric and a Pearson Correlation Coefficient (PCC).
These maps represent the zones of interest that humans used when
asked to look at an image and classify it. Both of these approaches
evaluate an interpretability criterion [21], but Adebayo et al. [2]
identified that features attribution methods cannot be evaluated
only on visual assessments. These metrics do not measure the faith-
fulness to the model, which is the ability to accurately represent
the features selected by the model to make its decision [21].

On the contrary, automatic metrics evaluate specific properties
that measure how faithful the explanation is to the model deci-
sion. Deletion Area Under Curve (DAUC) and Insertion Area Under
Curve (IAUC) are two complementary metrics that estimate the
quality of the distribution of the scores in an explanation. The
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Figure 2: Overview of 𝐻2𝑂 , a model and class-agnostic occlusion-based explanation method. (1) An input image is hierarchically
segmented into superpixels. (2) In each level of the hierarchy, all superpixels combinations form a set of masks, applied on the
input image. (2), (3) The masked pixels are replaced with one color at a time. (4) All altered images are predicted, leading to a
potential deterioration that is used to compute the importance scores of each pixel in the input image.

DAUC metric iteratively removes pixels from an image in decreas-
ing order of importance (w.r.t to the saliency map), while computing
a class-wise prediction for target classes. DAUC is the area under
the curve of the deterioration according to the number of pixels. Its
IAUC counterpart starts from a blurred image and iteratively adds
the pixels of the original image in decreasing order of importance
(w.r.t to the saliency map), before computing the area under the
curve.

However, these two metrics only consider the ranking of the
scores and not their values. To tackle this problem, Gomez et al. [11]
propose the Deletion and Insertion Correlation metrics to measure
a correlation between the explanation scores and the class-wise
deterioration or improvement.

3 H2O: HEATMAP BY HIERARCHICAL
OCCLUSION

This section details how 𝐻2𝑂 computes the saliency map1.

3.1 Process Overview
𝐻2𝑂 (see Fig. 2) is a method that explains the output prediction
vector of an image classifier (i.e. what the network has globally
detected in the image). The method is (a) model agnostic as it con-
siders the model as a black box, and (b) class agnostic as it aims at
explaining all values of a prediction vector at once and not how
the model may have seen a specific class in an image, which can be
beneficial in both single-label and multi-label task scenarios. 𝐻2𝑂
belongs to the occlusion family as the importance of the pixels
in the image to explain is computed by altering the image in dif-
ferent ways and measuring the variation (usually a deterioration)

1𝐻 2𝑂 ’s implementation is available at https://github.com/labribkb/h2o.

induced in the prediction vector. The method leverages a hierar-
chical segmentation algorithm to measure different levels of pixels
relevance to the model.𝐻2𝑂 uses a colorset strategy to alleviate the
problems of masked features enhancement while masking pixels
in the image with an arbitrary color (see Sec. 1). The deterioration
scores obtained in all levels of the hierarchical segmentation are
then aggregated to compute the final saliency map.

3.2 Hierarchical Segmentation
To compute any deterioration, some portions of an image must
be occluded first. To determine the portions to mask, the initial
image is segmented into 𝑘 superpixels (see Sec. 2.1). When 𝑘 is large,
the number of combinations of superpixels grows exponentially to
𝑛𝑖, 𝑗 =

∑𝑘−1
𝑖=1

(𝑘
𝑖

)
. This leads state-of-the-art methods to only gener-

ate a random subset of the possible altered images (e.g LIME [19]).
In comparison, we aim to generate the 𝑛𝑖, 𝑗 combinations of su-
perpixels, which is achievable with a small 𝑘 . However, a small 𝑘
produces large superpixels. To enable a fine-grained segmentation,
𝐻2𝑂 hierarchically segments an input image with an algorithm that
guarantees that any segmentation produces at most 𝑘 superpixels
at each level. The segmentation process can be represented as a
𝑘−way tree (see Fig. 2(1)) where the root node 𝑆0,1 is the segmen-
tation applied on the whole image. Each superpixel from a parent
node 𝑆𝑑𝑖 ,𝑤𝑗

is re-segmented into 𝑘 superpixels at most, if its size
exceeds 𝑇 pixels, 𝑇 modeling an ideal and fixed minimum number
of pixels an important object could occupy in an image.

3.3 Segmented Masked Images creation
Each tree node 𝑆𝑑𝑖 ,𝑤𝑗

represents the𝑘 or fewer superpixels resulting
from a segmentation step on a portion of the initial image. As
our method aims at generating all possible combinations of input
features, for each node, a generator exhaustively enumerates the

https://github.com/labribkb/h2o
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𝑛𝑖, 𝑗 combinations of the 𝑘 or fewer superpixels obtained for that
node (see Fig. 2(2)). For every combination of superpixels of a node
𝑆𝑑𝑖 ,𝑤𝑗

, a boolean mask, noted 𝑀𝑢
𝑑𝑖 ,𝑤𝑗

is built, where 𝑢 is the 𝑢𝑡ℎ

combination of that node. This mask contains a 1 for each pixel
that belongs to one of the superpixels selected in the combination,
and 0 elsewhere. Each mask is individually applied to the input to
only alter the pixels corresponding to a 1. Ideally, when predicting
an altered image, its masked pixels should not be involved in the
decision-making process at all. To simulate this alteration without
changing the model, existing methods replace the masked pixels
with an alternative color (either black [17] or the superpixels color
mean [19]). However, input images may already contain such colors
for important objects. It is then unclear whether the model would
be interpreting the masked pixels as important parts of the objects
or not. In other words, it is probable that some colors enhance the
presence of an object while some others reduce it. To try to reduce
the impact of the replacement color, we suggest increasing their
number from 1 to𝑚. Thus, for each mask 𝑀 , the input image is
altered𝑚 times with all replacement colors 𝐶𝑐 ,∀𝑐 ∈ [1,𝑚].

3.4 Colorset Strategy
We describe here one strategy to choose this set of replacement col-
ors [𝐶1,𝐶𝑚]. This strategy consists in linearly subsampling the RGB
cube (see Fig. 2 (3)) restricted to the colors of the considered image.
To achieve that, the minimum and maximum values of all pixels
along each axis (red, green, blue) are individually computed. This
minimum and maximum values define a potentially smaller color
cube. This restricted color cube is split into a three-dimensional
grid of 𝑧 − 1 regular intervals. Each intersection point in the grid
defines one of the𝑚 colors that replace the masked pixels.

3.5 Importance score computation
All previously masked images are fed to the model to determine
how much the masked pixels impact the prediction vector of the
input image. Commonly in the literature, a set of pixels is consid-
ered important if removing them induce a high deterioration in
the prediction vector. For each altered image’s prediction vector
𝑝𝑑𝑖 ,𝑤𝑗 ,𝑢,𝑐 , a distance to the prediction vector 𝑝𝐼 of the input image
𝐼 is computed. As our approach is class-agnostic, this distance ap-
plies to the whole prediction vectors of 𝑁 classes, instead of on a
unique class. For simplification purpose, in the following equation
of the distance, the prediction vector 𝑝𝑑𝑖 ,𝑤𝑗 ,𝑢,𝑐 is noted 𝑝𝐼 ′ , where
𝐼 ′ denotes the image 𝐼 altered with the mask𝑀′:

𝑑𝑝𝑟𝑒𝑑 (𝑝𝐼 , 𝑝𝐼 ′ ) =
𝑁∑︁
𝑟=0

max (0, (𝑝𝐼 [𝑟 ] − 𝑝𝐼 ′ [𝑟 ])) · 𝑝𝐼 [𝑟 ] (1)

This distance can be seen as a Manhattan distance where only de-
teriorations are measured (max function). Weighting this distance
with the scores of the initial prediction vector gives more impor-
tance to classes with high probability scores without completely
ignoring the classes with a low probability score.

For a pixel 𝜌 , we define 𝑀 as the set of all masks of all nodes
𝑆𝑑𝑖 ,𝑤𝑗

. Then, we define 𝑀1 (𝜌) = {𝑀 ∈ 𝑀,𝑀 [𝜌] = 1}, the set of
masks𝑀 that contain 1 on position 𝜌 . Given �̃� , the set of all altered
images for all nodes, we compute the final saliency map 𝐻 of image

𝐼 as follows:

𝐻 [𝜌] = 1��𝑀1 (𝜌)
�� ∑︁
𝑀 ′∈𝑀1 (𝜌 )

𝑑𝑝𝑟𝑒𝑑 (𝑝𝐼 , 𝑝𝐼 ′ )
|{𝜌′ ∈ 𝑀′, 𝑀′ [𝜌′] = 1}| (2)

To highlight themost important features and improve the locality
of the explanations, the saliency maps are finally normalized with
a min-max normalization and thresholded up to 𝜇 + 𝑠 · 𝜎 .

4 EXPERIMENTS
This section presents the protocol to evaluate the quality of the
generated saliency maps by 𝐻2𝑂 , with the following parameters.
We used Slic [1] to hierarchically segment the initial images into
𝑘 = 4 superpixels. For an image 𝐼 of size𝑊 = 𝐻 = 224, we fixed
𝑇 =

√
𝑊 × 𝐻 = 224, the number of pixels below which to stop

segmenting a superpixel in the hierarchy. Overall, the number of
combinations of superpixels per image is between 2 400 and 2 600.
For the chosen colorset strategy (see Sec. 3.4), we fixed the number
of linear splits in the rgb cube to 𝑧 = 3. The final saliency maps 𝐻
are thresholded with 𝑠 = 1.

4.1 Dataset, network, baseline methods
We used the PASCAL VOC 2007 [7] test subset to evaluate our
method, as it is widely used in the literature. All images are resized
to 224 × 224 pixels. An instance of Resnet50 was fine-tuned on the
train subset, from the pretrained Imagenet weights available with
the Keras framework [4].

We compare 𝐻2𝑂 to four methods from the literature. We se-
lected the commonly used GradCAM [21] method to represent the
Gradient family and FEM [10] to represent the Activation family.
TheOcclusion family is represented by both LIME [19] and RISE [17],
the former leveraging a superpixel approach as 𝐻2𝑂 and the lat-
ter using a random masking technique. Thus, we compare 𝐻2𝑂 to
model-specific, model-agnostic, class-specific and class-agnostic
approaches. The implementation of each method follows the default
authors’ recommendations. GradCAM and FEM are computed on
the Activation of the last Convolution layer. We generated 1 000
altered samples for LIME masking superpixels with their color av-
erage. We generated 8 000 masks of size 7 × 7 for RISE, with a
probability of 0.5 that each pixel in the mask is deleted.

4.2 Class-agnostic Saliency Maps Computation
For the class-specific methods, a saliency map can be computed
either for the predicted class to reveal the features that have led the
model to predict a class or the ground truth class to show the fea-
tures that resemble the most the ground truth class, regardless the
prediction. However, the multi-label property of common datasets
makes it difficult to choose which class to explain. To tackle this
problem, we choose to compute a linear combination of all class-
specific saliency maps to create a class-agnostic one for a given
method. The coefficients of such combination are the prediction
scores of each class, so the saliency maps of the classes that have
a high (resp. low) probability score have high (resp. low) impact
on the final map. Such a saliency map is then used to compare
class-specific methods to 𝐻2𝑂 .
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Table 1: Comparative evaluation relatively to seven metrics
averaged over the whole dataset. Bold values (resp. under-
lined values) denote the best (resp. the second-best) method.

H2O GradCAM FEM LIME RISE
IAUC [↓] 0.418 0.556 0.569 0.649 0.527
DAUC [↑] 0.801 0.917 0.909 0.817 0.905
IS [↓] -0.760 -0.620 -0.648 -0.675 -0.592
DS [↑] 0.638 0.549 0.545 0.652 0.515
IPGS [↓] 0.852 1.057 1.047 1.111 1.123
DNGS [↓] 1.476 0.990 1.051 1.036 1.095
Sparsity [↑] 12.793 6.049 6.736 6.474 3.227

4.3 Evaluation metrics
The following metrics are computed on the class-agnostic saliency
maps of all methods. Even though the PG cannot be adapted to
class-agnostic methods without any knowledge on the explained
classes, the Insertion and Deletion metrics can, since they measure
a variation in the prediction scores. Class-specific approaches mea-
sure a score difference on the prediction of a class while we suggest
measuring a distance on the entire prediction vector. We argue that
altering classes with high prediction scores is more critical than
altering other classes, so we compute both IAUC and DAUC with
Eq. 1. As the deterioration score is a distance, the lower IAUC and
the higher DAUC, the better.

Intuitively, the saliency map of a perfect explanation should
produce monotonic Insertion and Deletion curves. To measure
this property, we consider two complementary pairs of metrics:
Insertion/Deletion Spearman correlation (IS, DS), Insertion Posi-
tive Gradients Sum (IPGS) and Deletion Negative Gradients Sum
(DNGS). The first two metrics calculate a Spearman rank-order
correlation coefficient of the monotonic relationship between the
improvement (resp. deterioration) in the prediction scores and the
cumulative scores of the saliencymap (ordered by decreasing impor-
tance). IPGS (resp. DNGS) computes the absolute sum of the strictly
positive (resp. negative) gradients in the Insertion (resp. Deletion)
curve. As the Insertion (resp. Deletion) curve should be monotonic
and decreasing (resp. increasing), this pair of metrics penalize an
explanation when adding (resp. removing) pixels increases (resp.
reduces) the distance 𝑑𝑝𝑟𝑒𝑑 (𝑝𝐼 , 𝑝𝐼 ′ ).

We also evaluate the interpretability of all explanations with the
Sparsity metric [11] that measures how local an explanation is with
a ratio between its maximum and its mean values.

5 RESULTS
The quantitative results on the chosen metrics are summarized in
Table. 1. In this table, bold and underlined numbers respectively
emphasize the best and the second-best method according to each
metric. A down (resp. up) arrow next to a metric name means that
the lower (resp. higher), the better. IS and DS are correlation metrics
so their scores vary between −1 and 1, 0 meaning no correlation.
A positive (resp. negative) score indicates that as one variable in-
creases the other increases (resp. decreases).

𝐻2𝑂 gives the best results according to all insertion-based met-
rics (IAUC, IS and IPGS). Though,𝐻2𝑂 does not give the best results
according to bothDAUC andDNGS. According to DS,𝐻2𝑂 gives the

Figure 3: Examples of class-agnostic saliencymaps generated
through five methods. H2O produces more localized expla-
nations than any other method, regardless of the size and
number of objects or classes in an image.

second-best ranking-order correlation between the distances in the
prediction vectors and the cumulative scores of the saliency maps.
According to DAUC, GradCAM outperforms the other methods,
closely followed by FEM and RISE, while according to DNGS, LIME,
FEM and RISE follow GradCAM with a relatively small gap. The
Sparsity metric shows that 𝐻2𝑂 produces an explanation almost
twice as localized as the second-best method.

From a quantitative point of view, 𝐻2𝑂 performs best on four
out of seven metrics, and second best on one additional metric.

On a qualitative point of view, 𝐻2𝑂 explanations are displayed
alongside GradCAM, FEM, LIME and RISE class-agnostic explana-
tions on four images of the PASCAL VOC dataset [7], in Fig. 3. This
figure displays correctly classified samples with high probability.
Globally, there is no strict consensus on the explanations, despite
the fact that GradCAM and FEM (and RISE on the last row) tend to
produce similar heatmaps. In the first row, all methods find value
in some of the pixels of the horse. However, while 𝐻2𝑂 precisely
highlight the horse’s neck and tail, the horseman’s trousers and
the right background pillar, other methods imprecisely highlight a
large portion of the horse and the background grass. In the second
row, almost the whole body of the bird is crucial to the model ac-
cording to 𝐻2𝑂 . Comparatively, LIME and RISE mostly highlight
the water, while GradCAM and FEM produce a circular shape cov-
ering parts of the bird and the water. For the airplane and the cows
(rows 3-4), all methods but 𝐻2𝑂 highlight a relatively large part
of the important objects with many background pixels. Only 𝐻2𝑂
precisely highlights the objects that correspond to existing classes
in the dataset. In the third row, few pixels are highlighted outside of
the plane for 𝐻2𝑂 , while in the fourth row, 𝐻2𝑂 finds some value
in the background tree to predict cows (and not a potted plant).

6 DISCUSSION AND LIMITATIONS
As shown with the sparsity metric and the image examples, 𝐻2𝑂
produces more localized explanations than other methods consid-
ered in this experiment. Globally, 𝐻2𝑂 produces better results for
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Figure 4: Examples of saliency maps generated on samples
with incorrect or uncertain prediction.

Insertion-based metrics and worse results for Deletion-based met-
rics, except DS. Intuitively, insertion-based metrics rely on the most
important pixels as these are iteratively inserted in the blurred input
image while deletion-based metrics rely on the least important pix-
els as they are iteratively replaced with black. The greater results of
𝐻2𝑂 tend to indicate that 𝐻2𝑂 designated important pixels are suf-
ficient to make a consistent prediction that is relatively unaffected
by the less important pixels. However, once the most important
pixels are masked out for deletion-based metrics, the prediction
relies either on the remaining pixels or on the strong gradients
created by black-masked pixels. For that reason, since a threshold
is applied on the least important pixels of 𝐻2𝑂 saliency maps, we
argue that different pixel orders may produce different results. As
other methods do not apply any threshold to the heatmap, their
better results according to both DAUC and DNGS are not surprising.
On the opposite, IAUC and IPGS may not be as much affected by
the thresholds if the important pixels are sufficient for the model
to make the same prediction as on the input image. Moreover, the
removed (resp. restored) pixels in DAUC (resp. IAUC) tend to better
follow the objects’ shape in 𝐻2𝑂 than in GradCAM or FEM, where
objects borders are reached faster, on average (e.g. the bird in Fig. 3).
Then, for deletion-based metrics with 𝐻2𝑂 , it is possible that the
strong gradients created by black masks preserve the shape of key
objects, detected by the model. This could also explain the worse
results for DAUC and DNGS compared to other methods. This phe-
nomenon would not occur for IAUC and IPGS because the masked
pixels are the blurred ones from the input image, and the gradients
between masked pixels and input pixels are smoother than with
black.

The large gap between 𝐻2𝑂 and other methods on the sparsity
metric may be explained by the threshold we apply on the heatmaps.
We argue that no threshold should obtain lower sparsity scores,
but better scores for the other metrics. We leave as future work the
comparison of different threshold values. An in-depth study of the
impact of the segmentation algorithm, the input image sizes, the
objects’ structures and color variability of the images, the corre-
lation between the quality of the explanation and the confidence
level of the model is also left as future work.

Lastly, key images are shown in Fig. 4 to illustrate𝐻2𝑂 heatmaps
when the model is uncertain of its predictions or makes mistakes.
For example, the first row shows a dogs race, where only the dogs

are highlighted (𝐻2𝑂). These dogs are quite similar to most of the
racehorses in the dataset, which could explain the horse prediction.
We also noticed that 79% of the images containing a horse in the
dataset also contain a person. This statistical fact may be enough
to explain the prediction on the class person, along with the dog
in the background that could be seen as a horseman. Though, it
seems harder to interpret the prediction on Person with methods
such as GradCAM or FEM since only the two foreground dogs are
roughly highlighted. The model predicts a boat in the second image,
with a probability of 0.61. All methods either highlight pixels of
the sea or of the sky and clouds in their explanations. However,
looking at GradCAM, FEM and RISE heatmaps, the large red zones
seem to indicate the model is certain of its prediction, which is not
the case. In comparison, both 𝐻2𝑂 and LIME produce heatmaps
with almost no red shades. This may indicate a correlation between
the heatmaps’ scores and the predicted vector (IS, DS) that would
need further statistical investigation to determine whether or not
sea pixels only exist in the boat class. The last image contains
small cars and buses. However, the model predicts a train with a
probability of 0.99. We believe GradCAM and FEM explanations
are less convincing than 𝐻2𝑂 , RISE or even LIME. Indeed, RISE
seems to indicate that the model confuses the central building with
a station platform, a concept related to trains. Except the strong
pixels of LIME in the sky that are hard to interpret, the road pixels
may have been confused with a railroad, and the central building
as a locomotive. Meanwhile, the strongest pixels of the building in
𝐻2𝑂 may have been confused with the locomotive wheels and side.

Despite its convincing visual results, 𝐻2𝑂 is computationally
expensive because of the number of colors to replace the masked
pixels which augment the number of images to predict. Our color
strategy fixes to 𝑧 = 3 the number of linear splits in each axis of
the rgb cube, determining 33 = 27 colors. Even if the predictions
are batched, around 27 ∗ 2500 = 67500 altered images per image 𝐼
are processed through the model. On average, an explanation on a
224×224 image is computed in 55s of wall clock time, on a machine
equipped with a 3.2 GHz processor, an NVIDIA GeForce RTX 3090
with a capacity of 24 GB, and 64 GB of RAM. We experimentally ob-
served that choosing only a few colors randomly, drastically alters
the quality of the output saliency maps. We leave as future work
the search of a better color strategy to improve the explanations
quality while reducing the number of colors.

7 CONCLUSION
This paper considers the problem of explainingwhich input features
influence the decision process in an image classifier. To address
this problem, we propose 𝐻2𝑂 , an occlusion method to explain
the prediction vector of an image classifier through a model and
class-agnostic saliency map. Quantitatively, 𝐻2𝑂 outperforms ex-
isting techniques on most of the existing metrics. Qualitatively,
𝐻2𝑂 heatmaps are more localized than heatmaps of other methods.
As future work, we could compare different colorset strategies to
improve even more the quality of the saliency maps, or reduce
their computation time. It may also be interesting to investigate
the impact of the image segmentation algorithm on the resulting
saliency maps. We finally plan to investigate the evaluation metrics
to reduce the potential bias the masking color may have on them.
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A RELATEDWORK SUMMARY
Table 2 summarizes the methods of the state-of-the-art.
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Table 2: Summary of the key methods listed in Section 2.1, sorted by the family. Only MLFEM requires a training phase with an
explanation ground truth. Only FEM and MLFEM generate explanations that do not depend on a class of interest.

Explainer Evaluation
Paper Fam. MA CA GT Hie. Classifier Dataset Metric

GradCAM [21] Grad. VGG16 Imagenet
Guided back-
propaga-
tion. [23]

Grad.

Deconvnet [24] Grad. Adhoc. network Imagenet, VOC 2012,
Caltech

Manual Occlusion

MWP [26] Grad. GoogLeNet, VGG16 MSCOCO, VOC 2007,
Imagenet

PG

FEM [10] Act. ✓ Adhoc. network TTStroke-21 SIM, PCC (against Grad-
CAM)

MLFEM [3] Act. ✓ ✓ ResNet50 MexCulture, Salicon,
Cat2000

SIM, PCC (against
GFDM)

ANCHORS [20] Alt. ✓ MLP, Logistic Regres-
sion, Gradient boosted
trees, Inception V3,
Visual7W open-ended
VQA system

Adult, Rcdv, lending,
Imagenet, Visual7W
Dataset

Precision, Coverage

LIME [19] Occ. ✓ Decision Tree, Logistic
Regression, MLP, SVM,
Random Forest

Books, DVDs, 20 news-
groups, Adhoc image
dataset

Trustworthiness

RISE [17] Occ. ✓ ResNet50, VGG16 MSCOCO, VOC 2007,
Imagenet

PG, IAUC, DAUC

SHAP [16] Occ. ✓ Adhoc. network MNIST
HiPe [5] Occ. ✓ ✓ ResNet50 MSCOCO 2014, VOC

2007
PG, IAUC, DAUC

ExtP [9] Occ. ✓ GoogLeNet MSCOCO, Imagenet PG, Advers. SM detec-
tion

Fam.: Method family (Occ.: Occlusion; Grad.: Gradient; Act.: Activation; Alt.: Alteration), MA: Model-Agnostic, CA: Class-Agnostic, GT :
Ground Truth required to train the explainer, Hie.: Hierarchical method, SIM : Similarity, PCC: Pearson Correlation Coefficient, PG: Pointing
Game, GFDM: Gaze Fixation Density Maps, IAUC: Insertion Area Under Curve, DAUC: Deletion Area Under Curve,
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