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aQuartz Laboratory, EA7393, ISAE-Supméca, 3 rue Fernand
Hainaut, Saint-Ouen, 93400, France

Abstract

Advocating for a sustainable, resilient and human-centric industry, the
three pillars of Industry 5.0 call for an increased understanding of industrial
processes and manufacturing systems, as well as their energy sustainability.
One of the most fundamental elements of comprehension is knowing when the
systems are operated, as this is key to locating energy intensive subsystems
and operations. Such knowledge is often lacking in practice. Activation sta-
tuses can be recovered from sensor data though. Some non-intrusive sensors
(accelerometers, current sensors, etc.) acquire mixed signals containing in-
formation about multiple actuators at once. Despite their low cost as regards
the fleet of systems they monitor, additional signal processing is required to
extract the individual activation sequences. To that end, sparse regression
techniques can extract leading dynamics in sequential data. Notorious dic-
tionary learning algorithms have proven effective in this regard. This paper
considers different industrial settings in which the identification of binary
sub-system activation sequences is sought. In this context, it is assumed
that each sensor measures an extensive physical property, source signals are
periodic, quasi-stationary and independent, albeit these signals may be cor-
related and their noise distribution is arbitrary. Existing methods either
restrict these assumptions, e.g., by imposing orthogonality or noise charac-
teristics, or lift them using additional assumptions, typically using nonlinear
transforms.

This paper addresses these limitations, and introduces the unsupervised
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complex semi-binary matrix factorization (CSBMF) as its main contribu-
tion. In particular, we show that the exact recovery of source activation
sequences from non-intrusive sensor data is intrinsically tied to the presence
of problematic phase shifts, the causes of which are detailed. A greedy al-
gorithm is proposed, iteratively resynchronizing sources to converge towards
the maximum decomposition of each operation despite these phase shifts.
The CSBMF is verified and compared to existing techniques on synthetic
use cases, then validated on experimental data with signals of different na-
ture. To that occasion, the CAFFEINE dataset for unsupervised time series
multi-label classification is introduced.
Keywords: Underdetermined blind source separation, Semi-binary matrix
decomposition, Unsupervised time series multi-label clustering, Energy
disaggregation, Sparse dictionary learning, Inverse problems

1. Introduction

The manufacturing industry is inherently energy-intensive, accounting for
around 37% of global final energy consumption in 2022 [1]. Amid the recent
energy crisis, some factory pilots are looking to increase the efficiency of their
machines and processes, aiming for substantial reductions in energy use and
associated carbon emissions. Among the many solutions sought to achieve
this objective, digital twins stand out, a popular cross-industry concept that
has seen a rapid rise in recent years. A digital twin is “a set of adaptive mod-
els that emulate the behavior of a physical system in a virtual system getting
real time data to update itself along its life cycle. The digital twin replicates
the physical system to predict failures and opportunities for changing, to pre-
scribe real time actions for optimizing and/or mitigating unexpected events
observing and evaluating the operating profile system” [2]. In particular, this
enables a number of enhancements, from predicting energy consumption, lo-
cating energy drifts induced by faulty components, misuse or environmental
changes, to optimizing machine control, component replacement, and process
scheduling.

These improvements come at a cost though. A manufacturing plant is
characterized by the many cyber-physical systems (CPS) it contains and the
similarities they may present. If scalability is sought as regards production,
monitoring is no exception. That is, in number of cases, few sensors must
monitor a large fleet of machines. Not only are they able to monitor multiple
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systems at once, but their implementation does not require direct interven-
tion on these systems’ hardware or software. Placing sensors inside a ma-
chine, provided that a suitable location can be found without tampering with
the production system, often requires to stop the said machine during the
intervention. Intrusive sensors may also require rewiring, reprogramming or
accessing data from a CPS’s dedicated programmable logic controller (PLC).
Actuator-specific operating statuses may also be programmed in a low-level
language without being returned to the user interface. Overall, the activa-
tion sequences are difficult to retrieve. Manually labeling data as a post-
processing layer is expensive at plant scale, and so is the development of a
physical model for each actuator. As an alternative, with a view to learn
energy consumption models, estimate and predict actuator-specific perfor-
mance indicators, the activation sequences can be extracted from sensor data
instead. Hence, in order to unlock the above-mentioned applications, this pa-
per focuses on fully unsupervised non-intrusive load monitoring (NILM), and
more specifically on the recovery of actuator activation sequences in sensor
data. Moreover, the elements presented here are not limited to current load,
but to piecewise mixed quasi-stationary periodic signals in the broadest sense.

Unsupervised NILM, or energy disaggregation, aims to discover the active
appliances in energy consumption data [3]. In these methods, the activation
sequences are often the result of CPSs entering successive states. Although
this problem appears very close to the one at hand, many techniques in this
community rely on dedicated features, active and reactive power or peak
current to name but a few, and problem-specific methods such as change
or event detection [3, 4]. Popular techniques include most notably hidden
Markov models (HMM) [5], where the states of a Markov model are not ob-
served directly but are implicitly defined by a probability density function
(pdf). Deep learning architectures have also proven successful either using
denoising autoencoders in a sequence-to-sequence fashion [6] or convolutional
neural networks [7]. Overall, energy disaggregation rather focuses on pattern
recognition such as device-specific power distribution or state transitions,
putting the emphasis on the process and the machines instead of the under-
lying actuators. This can be problematic in presence of flexible processes or
event-based control, where the process changes and the actuator’s activation
sequences are not well separated.

A more general approach to this problem is through blind source separa-
tion (BSS), the action of retrieving a set of S source signals from M mixed
signals. BSS has received great attention over the years in multiple domains,
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from audio source separation [8, 9], energy disaggregation [10] to fault de-
tection and diagnosis [11, 12, 13]. The BSS problem is underdetermined if
M < S. This problem is often dealt with as a matrix factorization which
consists in reconstructing data as the composition of two matrices. Two
mathematical formulations stand out. On the one hand, clustering can be
used to separate operating phases in which sources are mixed, the two matri-
ces then correspond to a mixing matrix and source signals different in each
phase [14, 15, 16]. On the other hand, data can be reconstructed as a sparse
representation on a dictionary [10, 17].

Early Line Spectra Estimators (LSE), inspired by Prony’s method in the
1980s, exploit the fact that amplitude and phase estimation becomes least
squares solvable when the frequencies are known [18]. This led to the popular
subspace methods decomposing discrete data into signal and noise subspaces,
among which figure the MUSIC [19] and ESPRIT [20] algorithms, and vari-
ants thereof either on-grid [21, 22, 23], or off-grid with a parameterized sparse
Fourier representation [24]. Statistical decomposition can also be achieved
through underdetermined independent component analysis (ICA) [25, 26],
although this technique is limited to sub-Gaussian signals and does not per-
form well in presence of discrete events. Alternatively, sparse component
analysis (SCA) [27, 28] first applies a sparsifying transform on data such as
the short time Fourier transform (STFT) or wavelet transform (WT), the
rationale being that sources are easier to separate in a lifted space where
they exhibit noticeable differences. Spectral decomposition techniques can
also construct an orthonormal eigenbasis, onto which the projection of the
data results in separated sources. These techniques include singular value
decomposition (SVD) [29, 30], difference mode decomposition [31] as well as
dynamic mode decomposition (DMD) [32, 33]. In the time-frequency (TF)
domain, Nonnegative Matrix Factorization (NMF) and Nonnegative Tensor
Factorization (NTF) [13] are a natural choice when working on positive fea-
tures such as spectrograms or bi-frequency maps [34]. Although effective in
isolating sequential dynamic behaviors, subspace methods fall short when
the underlying signals do not have orthogonal spectra, as the embedding no
longer represents the true sources, but their common characteristics. More-
over, these techniques lack a mechanism to force the representation to lie in
a binary space as expected in a multi-label classification problem.

To remedy this limitation, semi-binary NMF forces the representation to
be binary [10]. Setting aside partially supervised implementations, popular
in energy disaggregation [10], binarity can be enforced through means of reg-
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ularization [11] or directly using a coupled factorization method and relaxed
alternating least squares (ALS) [35]. The nonnegative requirement imposes
the use of nonlinear transforms and hence phase removal.

An alternative consists in learning a shift-invariant dictionary based on
the convolution operator [36]. Convolutional sparse coding strategies learn a
sparse representation as its convolution with temporal patterns. Traditional
techniques include the shift-invariant sparse coding model from Grosse et
al. [37] and variants [38]. These models either use prior knowledge on the
source signals (pre-computed dictionary with source responses), or learn the
dictionary along with the representation [39]. Sub-dictionaries containing
time shifted copies of the initial dictionary were recently proposed by Wang
et al. [40], although this discrete approximation fails to capture events lying
off-grid.

At last, the mentioned techniques require the number of sources to be
known. For dimensionality reduction, this number can be approximated [15],
yet this often boils down to rank estimation [41]. Noisy data may induce a
large Pareto front though. This makes rank estimation highly imprecise.
Another possible cause of error in rank estimation is the use of nonlinear
transforms. Proposals have been made in previous work to decompose signals
with an accurate estimation of the number of sources, either using tracking
for non-stationary cases [42] or matrix factorization [43].

To the best of the authors’ knowledge, to date there is no matrix fac-
torization method in the literature capable of recovering the exact activation
sequences from a mixed signal under the constraints considered in this paper:
fully unsupervised underdetermined blind source separation with unknown
number of sources, applied to additive, potentially correlated, periodic, er-
godic and quasi-stationary source signals with arbitrary noise distribution
and no prior knowledge, resulting in a complex dictionary with a binary
representation. Our main contribution is twofold, (i) we propose a novel
formulation circumventing the pitfalls arising in semi-binary matrix factor-
ization in a complex vector space, and (ii) a greedy algorithm to learn both
the dictionary and the sparse representation.

The remainder of this paper is set out as follows. After formally describing
the particular underdetermined blind source separation problem this paper
is concerned with in Section 2.1, a clustering-based two-step algorithm is
proposed. In Section 2.3, we show that the exact recovery of source acti-
vation sequences from non-intrusive sensor data is intrinsically tied to the
presence of problematic phase shifts, the causes of which are detailed. A so-
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lution to the complex semi-binary matrix decomposition problem is found in
Section 2.4 by carefully resynchronizing the sources. This method is finally
verified on synthetic data and compared to existing methods in Section 3.1.
Experimental validation is undertaken in Section 3.2, in which we introduce
the CAFFEINE dataset [44]. Limitations and perspectives are discussed in
Section 4, before concluding.

2. Methods

2.1. Problem formulation
A production process is a sequence of operations. Each of these involves a

collection of actuators. Operations are therefore successive and cannot over-
lap. An actuator comprehends all the elements of a connected power chain,
actionable simultaneously and controlled as a whole. These actuators pro-
duce source signals when aggregated by a sensor, resulting in a time series
of sequential mixed signals. An actuator is a source s, switched on (1) and
off (0) according to its activation sequence ACTs(t) over time. Let C denote
the alphabet of all distinct operations in data, each operation involving si-
multaneous sources. An operation is a group of sources c ∈ C, later denoted
cluster. It is attributed an activation status OPSc(t).

The short time Fourier transform (STFT) is used in this paper, as it is well
suited to the study of piecewise stationary signals. Its definition is recalled
for a signal x of finite support, uniformly sampled over time with frequency
fs. The STFT can be viewed as a sliding discrete Fourier transform (DFT)
applied to partially overlapping windows with hop size H, using an analysis
window w with size W , indexed by discrete time step m, and frequency bin
index k associated with discretized pulse ω, with ∀k ∈ J0,W − 1K, ωk =

2πk
W

:

STFT{x}[m, k] =
W−1∑
n=0

x[n]w[n−m]e−ȷ 2πk
W

n (1)

The time-shift theorem of the DFT is used to shift the signal in time
while remaining in the frequency domain. The time-shift operator S∆ for a
time difference ∆ is defined as:

S∆ = diag
((

e−ȷ 2πk
W

∆
)
0≤k<W

)
(2)
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Let X ∈ RT ′ denote a univariate time series representing T ′ sensor mea-
surements sampled at frequency fs. X is produced by S actuators sequen-
tially activated, in use in Nops distinct operations, with Nops ≥ S. From time
series X, the feature matrix Z ∈ CW×T is computed using the STFT, where
W is the number of frequency bins (and window size) and T is the number
of feature samples (time windows) in the TF domain, with T ′ ≥ T .

The retrieval of the sources’ descriptors and activation sequences can be
sought as the optimal solution to an underdetermined semi-binary matrix
decomposition problem [11]. Here, S sources are mixed over a single chan-
nel. Undetermined blind source separation is an inverse problem, ill-posed
in that the matrix factorization (regardless the formulation) does not admit
a unique stable solution. This issue is often overcome through regulariza-
tion and constraints on the dictionary, the representation or both. A classic
formulation is as a sparse dictionary learning problem [11, 12, 34, 40]:

argmin
D ∈ D,R

R≥0

T∑
m=1

(
Ψ(Zm −DRm) +Rsparse(Rm) +Rbinary(Rm)

)
(3)

where D ∈ RW×N and R ∈ RN×T are the dictionary and representation
(multi-labels over time) to be learnt. Rsparse is a sparsity-promoting penalty,
typically the Least Absolute Shrinkage and Selection Operator (LASSO).
Binary solutions are enforced either using a regularizer Rbinary [45] or an
alternative to the least-squares functional [11]. D is a set of constraints
on D, necessary to prevent the penalties on R from being compensated
by larger elements in D due to the coupled functional, as both are jointly
optimized. Labels are constrained to positive values for convenience. Indeed,
allowing signed labels would result in implicitly defined actuators, i.e., as the
presence of a collection of actuators (positive labels) while excluding some
others (negative labels).

The signals produced by the sources are assumed to be quasi-stationary
and ergodic. Stationarity is a strong assumption, here its weak form is pre-
ferred, in which only the mean and the covariance of the process must be
time-invariant and finite [46]. In other words, for each operation, the steady
state lasts long enough for the transient response to have a negligible impact
on the mean and variance of its descriptor.

Input signal is thus piecewise consistent and there exists a dictionary
C ∈ CW×N of atoms [C1, ...,CN ], also called centroids or descriptors, prop-
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erly describing the stationary state of each operation. In a complex vector
space, phase shifts occur and a single operation may be present in more than
one configuration, i.e., the sources’ time shifts may differ from a realization to
another. Hence N ≥ Nops. A subset C̃ ∈ CW×S of these centroids describes
the actuators isolated from all others. It is here assumed that each actuator
is seen at least once alone in the dataset.

Similarly, the operation the underlying system is in at each time step
is represented by the one-hot encoded label matrix L̆ ∈ {0, 1}Nops×T , or
L ∈ {0, 1}N×T to distinguish all configurations. Let ∥.∥0 denote the ℓ0
norm, ∀m ∈ J0, T − 1K, ∥Lm∥0 = 1. Whereas the activation statuses of
a system’s actuators over time are gathered in a multi-hot encoded matrix
L̃ ∈ {0, 1}S×T , with ∥L̃m∥0 ≥ 1. Thus the time series Lc and L̃s indicate
whether the system is in operation c and uses actuator s at each time step.
Matrix superscripts and subscripts represent vectors lying in the row and
column spaces respectively.

Here we lay out the assumptions, humorously coined the ten plagues
of unsupervised complex semi-binary matrix factorization, which arise from
the blind source separation problem and from the application, recovering
actuator activation statuses in an industrial environment from non-intrusive
sensors and without supervision.

P 1. Fully unsupervised

P 2. Unknown number of sources

P 3. Underdetermined (S < N)

P 4. Periodic source signals

P 5. Potentially correlated sources

P 6. Quasi-stationary source signals

P 7. No prior knowledge on sources

P 8. Any noise distribution

P 9. Complex dictionary and binary representation

P 10. Each sensor measures an extensive property

The above-described problem uses a dictionary, each atom involving a
group of sources. Due to binarity, the decomposition result only makes sense
if each atom in the minimal set C̃ represents exactly one source tied to an
actuator. In the method proposed in this paper, this property is ensured
using time series clustering in conjunction with P11.

P 11. Each source appears alone at least once in data
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The proposed method and associated matrix notations are summarized
in Figure 1.

Figure 1: Source activation recovery steps

2.2. Clustering data into successive operations
A first step of the proposed method consists in segmenting the signal into

successive operations. Clustering techniques prove useful in addressing this
problem, by breaking down data into groups of similar objects [47]. In this
context, clustering is applied to multivariate time series, and boils down to
grouping timestamps according to a similarity measure between sample vec-
tors. In hard clustering, each data point belongs to a single partition, whereas
soft clustering allows for partial membership to different clusters. Time series
clustering has been extensively tackled in the literature, and widely applied
to structural health monitoring in particular, from fault detection [48, 49] to
dynamic load identification [50].

Despite its simplicity, the k-means algorithm is considered here as a suit-
able candidate to segment the data when the number of operations N is
known. Otherwise N is estimated from a dendrogram or by maximizing a
criterion. Alternatives in which the number of clusters is not required exist
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in the literature, yet it is often replaced by other hyperparameters. For in-
stance, clustering techniques such as DBSCAN or its variant OPTICS [14]
may be better suited in this setting.

In the proposed approach, clusters are sought using any relevant feature,
obtained through linear or nonlinear transforms, so long as it exhibits piece-
wise stationarity. This paper focuses on periodic signals, for which phase-
invariant spectral descriptors are well suited to clustering tasks (e.g., spec-
trogram, STFT magnitude, first four statistical moments applied to sliding
windows, or any alternative suitable for stationary periodic signals).

Eventually, the one-hot encoded operation labels L̆ are obtained. The
centroids associated with these labels, cluster-wise average features, are of
little use though. Indeed, nonlinear transformations were introduced, making
the centroids lose their additive property (P11). That is, the centroid of a
superimposed state must be equal to the sum of the centroids of its states.
An operator is hence introduced in Section 2.3 to deduce consistent centroids
suitable for the decomposition part.

2.3. Computing consistent complex centroids despite phase shifts
In this section, centroids are computed with a view to later expressing

each operation as the sum of other operations. We seek a transform (applied
to signal X) such that (i) stationarity assumption P6 is preserved in the
feature space, and (ii) the additive property of the signal (P10) is kept
throughout the transform. To that end, we propose a modified time-shifted
STFT operator, denoted δSTFT{.}[m, k]. The proposed linear operator
leaves the phase unchanged across windows operating on the same signal.

Indeed, when expressing the input signal as a sum of sources, we notice
that phase shifts occur from a window to another. Let x be a stationary
signal over a single operation containing S simultaneously active harmonic
sources. Each source s produces a signal with amplitude As, pulse ωs, ref-
erence phase φs and phase shift ξs with respect to this reference. From this
definition, an operation is characterized by source-dependent invariant pa-
rameters θ = {[ωs, φs]}Ss=1 and ρ = [A1, ..., AS]

T . Because an operation starts
as the consequence of an event, the activation or deactivation of a source,
entering an operation resets one of the time shifts ξs. This means that pa-
rameters Ξ = [ξ1, ..., ξS]

T are invariant only throughout one sub-operation,
i.e., one realization of this operation. Parameters ρ, θ,Ξ are unknown. As
illustrated in Figure 2, every time a source is switched off then on again
after a non-integer number of periods, the initial phase of the source signal
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rotates. As a result, the k-th component of the DFT of x over a window of
the STFT, starting at time step m0 and ending at time step m1, indexed by
m ∈ Jm0,m1K has the form:

DFTk{xmH:mH+W−1;ρ,θ,Ξ} =
S∑

s=1

W−1∑
n=0

Ase
ȷ
(
ωsn+φs+ξs−ωkn−ωkmH

)
= A(ρ)eȷφ(m;θ,Ξ)

(4)

Figure 2: Phase discrepancies translated in the time domain

In order to recover one reference DFT for a sub-operation, we estimate
the time lag δ by which the measured DFT should be shifted so the resulting
feature remains constant over Jm0,m1K. Indeed, the event having led to this
sub-operation may have occurred after a non-integer number of hops.

∂

∂m
DFT{xδ+mH:δ+mH+W−1; ρ, θ,Ξ} = 0

⇐⇒ ∂

∂m
Sδ+mHDFT{x0:W−1; ρ, θ,Ξ} = 0

⇐⇒ − (H +
∂δ

∂m
)diag(ω)Sδ+mHDFT{x0:W−1; ρ, θ,Ξ} = 0

(5)
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Then either A(ρ) = 0 and shifting is irrelevant (trivial solution), δ is
time linear, or the phase cancels out. Solving for δ yields its least squares
estimate:

δ =
ωT

ωTω

(
φ(0; θ,Ξ) + (2πp−mH)1T

W

)
(6)

where p ∈ Z and 1
T
W is the one-vector of size W . As expected, δ depends

in turn on θ and Ξ, and δ[m] = δ0(θ,Ξ) − mH. The phase only conveys
noise in the low energy regions of the spectrum though. Since the STFT is
naturally sparse, the least squares solution is a very poor estimator in this
case. Instead, we simply measure the phase φ(m; θ,Ξ)[K] at the maximum
of amplitude — excluding the DC component — to estimate δ̂[m]:

δ̂[m] =
φ(m; θ,Ξ)[K]

ωK

(7)

Alternatively, δ̂[m] can be estimated using Equation 6 on the dominant
frequencies. Or using an optimal state estimator on the successive realiza-
tions of δ[m] in the sub-operation Jm0,m1K, by noticing that δ[m] has strictly
the same linear dynamics (provided that the phase is carefully unwrapped)
and statistical properties as φ(m; θ,Ξ).

A collection of centroids C = [C1, ...,CN ] is obtained by averaging out
the samples in every sub-operation with contiguous samples, with N ≥ Nops.
Each sub-operation j holds sequence- and signal-dependent phase differences
Ξ(j) with respect to the operation’s reference θ. These different configurations
for a single operation cannot be easily untangled, as illustrated on Figure 2.
Decomposition is thus run on these centroids, and the optimization process
proposed in Section 2.4 will naturally recombine these sub-operations using
source resynchronization.

Spectral leakage constitutes yet another cause of error in estimating an
operation’s reference DFT, often due to a non-integer number of periods
present in a window. Energy ends up distributed across the spectrum which
results in undesired frequency components. Choosing an appropriate window
function w alleviates this phenomenon.

A procedure to compute the δSTFT is proposed in Algorithm 1.
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Algorithm 1: proposed δSTFT{.}[m, k]

Input: Time series X ∈ RT ′ ; clustering labels L̆ ∈ {0, 1}Nops×T ;
Result: Piecewise constant DFTs over time δZ ∈ CW×T , and

centroids C ∈ CW×N ;
Step 1: Apply the STFT as Z ∈ CW×T , Z = STFT{X} ;
Step 2: Extract features for decomposition
for 0 ≤ m < T do

Measure the phase at the maximum of magnitude
(excluding the DC component)
φmax = ∠ argmax

z∈{∀k>0,Zk
m}
|z|;

corresponding to the frequency bin with pulse ωmax

and estimated time shift δ̂ = φmax

ωmax

fs
2

;
Time shift the phase accordingly δZm ← Sδ̂Zm;

end
Lift clustering labels as L to represent only contiguous samples;

Step 3: Compute sub-centroids as C = δZLTdiag
((

1
∥Lg∥0

)
1≤g≤N

)
;

Lastly, if present, the vector with the least root mean square (RMS) is
removed from C as it relates to the stand-by operation. This operation
corresponds to background noise or a persistent component detrimental to
the decomposition problem (much like the neutral element of a set). De-
composing centroids instead of samples greatly reduces the computational
complexity, as the matrix factorization no longer depends on the number of
samples but the number of operations. The use of centroids is also more
robust to noise.

2.4. Matrix decomposition as a resynchronization problem
In this section, the goal is to retrieve the actuators’ activation sequences

L̃ ∈ {0, 1}S×T , given the elicited centroids C ∈ CW×N .
In this paper, we propose a convenient parameterization for both the

dictionary and the representation, in which the optimization problem can
be effectively regularized. Indeed, by computing the dictionary as a set of
centroids from the δSTFT , the atoms are forced to retain physical properties.
This dictionary is then parameterized in the time lags ∆ ∈ I∆ required
to optimally reconstruct each operation’s centroid. Since the sources are
periodic, so is the process of resynchronizing each source in a sum. The
optimization could hence be carried out on ∪Nc=1[− T̂ (c)

2
, T̂

(c)

2
[N , where 1

T̂ (c) is
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the estimated fundamental frequency of each atom. Similarly, atoms are
expressed as linear combinations of others. That is, the content of each
operation is stacked in column form in matrix Λ ∈ IΛ, where each column is
a collection of operations meant to be learnt in place of the sources’ activation
sequences. Λ thus constitutes a Rosetta Stone, translating each operation as
its content in terms of other operations, or directly in terms of the underlying
sources when the maximal decomposition is reached. The sought solutions
lie in {0, 1}N×N .

Even under these conditions, decomposition remains challenging. In
particular, source resynchronization is well known to be highly non-convex
and entails a combinatorial number of spurious minimizers [51]. This phe-
nomenon is clearly illustrated on a synthetic use case in Figure 3. Moreover,
the dictionary is redundant down to the time shifts, hence there exists a
myriad of global minimizers for the representation as well [40], albeit only a
handful are relevant.

We thus propose a novel formulation to overcome the outlined difficulties.
Constraints are lifted to begin with. Tikhonov regularization is applied to
the time shifts, allowing for an unconstrained optimization on I∆ = RN×N

directly. This does not prevent the existence of a combinatorial number of
local minima though. The representation suffers from many more causes of
indetermination. Using the regularization approaches in Equation 8, detailed
in Appendix A, the constraint on the representation can be lifted to optimize
on IΛ = RN×N , instead of {0, 1}N×N which is NP-hard.

In the frequency domain, if an operation c with descriptor Cc can be
decomposed as a sum of operations Λc given time-shifts ∆c, then the CSBMF
is formulated as an optimization problem:

inf
∆∈I∆,
Λ∈IΛ,

N∑
c=1

(∥∥∥Cc −
N∑
i=1

S∆i
c
CiΛ

i
c

∥∥∥2
2

+ λLcol(Λc) + ET (Λc) + βB2
(
Λc

)
+ Γ∥∆c∥22

)
+ LLrow(Λ)

(8)

Lcol(Λc) =
∥∥Λc

∥∥
p

(9) T (Λc) =

∥∥Λc

∥∥
p

∥Cc∥22
(10)

Lrow(Λ) =
∥∥ΛT

∥∥
2,p

(11) B2(Λc) =
∥∥1
2
1− |Λc −

1

2
1|
∥∥
2

(12)
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where Lcol, T , B2, ∥∆c∥22 and Lrow denote the penalties associated with
the regularization coefficients λ, E , β, Γ, and L respectively. The least squares
functional is denoted F (∆,Λ). ∥.∥p is the ℓp norm (for 0 < p ≤ 1), and

∥Λ∥2,p =
(∑N

i=1∥Λi∥p2
) 1

p is ℓ2,p matrix norm. 1 is the one vector.
Sparsity is promoted in two ways, column-wise with the ℓp norm to

sparsely decompose each atom, and row-wise with an ℓ2,p penalization to
fight the dictionary’s redundancy. The latter is motivated by the fact that
the ℓ2,p norm is an adequate approximation of the ℓ2,0 norm which is the
exact number of non-empty rows [52]. Here, the number of nonzero rows in
Λ is the estimated number of sources.

A particularity of the proposed method is that the dictionary was built
based on clustering. In compressed sensing, this is the worst choice for a
dictionary since the most sparse solution is actually the one involving all
atoms. That is, the trivial solution Λ = I (identity) corresponds exactly
to the clustering result. For instance, abc = ab + c is more sparse than
abc = a + b + c, yet the latter is sought. The competing objectives Lcol

and Lrow remedy this situation. This calls for a subtle choice for L though,
making Lrow always greater than Lcol, and thus prioritizing the estimation
of the number of sources.

Another unorthodox regularization term T is proposed. This term en-
dows the column-wise sparse regularization parameter with a bias decreasing
as the squared ℓ2 norm of a suspected source increases. This penalty is
crucial in that it avoids a pitfall arising in complex vector spaces: phase
reversal. Indeed, phase resynchronization induces rotations. Hence in a
resynchronized sum, vectors can flip and cancel out other components. As
an example, ab = a+ b could be strictly equivalent (in cardinality and resid-
ual on F (∆,Λ)) to a = ab+ b. An arbitrary rule is required to distinguish
these minima, since these combinations are algebraically equivalent (all sat-
isfy the triangle inequality). Here, T is designed so the energy of the sum is
higher than that of any of its constituents. The physical interpretation of T
corresponds to the assumption that a collection of systems operated concur-
rently cannot draw less power than any of the underlying systems operated
alone. While unlikely, independent sources may damp each other out and
lead to a less energetic sum violating this assumption, as sometimes occurs
in vibration mechanics. If this phenomenon is identified, moving ∥Cc∥22 to
the numerator of T reverses the order.

A binarity penalty B2 is added, similarly to the one proposed by Darabi
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et al. [45]. Sparse regularization leads to a suitable approximation of Λ,
up to a factor since the ℓp norm draws the minimum towards zero. Binary
regularization rectifies this, as well as any noise-originated discrepancy in the
estimation of Λ.

Overall, given a base dictionary C ∈ CW×N and optimal regularization
coefficients, Equation 8 admits non-equivalent minima on RN×N × RN×N .
The optimal representation Λ is meaningful in that it corresponds to the
maximal binary decomposition of each atom. This claim is supported by
the generic example presented in Appendix A, where the regularization
mechanisms and their effect on the minima’s locations are detailed. Source
activation sequences are finally recovered as L̃ = ΛL.

2.5. Practical implementation
Despite the regularization terms introduced in Equation 8, the cost func-

tion is still highly non-convex and entails spurious local minimizers. There are
also multiple hyperparameters on which depends the relevance and accuracy
of the representation. Hyperparameter optimization has been extensively
studied in the literature [53], yet the reliability of these methods remains
limited, especially as the number of parameters to tune grows.

Alternate optimization strategies can aim towards the sought minimum
[54], separately and gradually optimizing for the time shifts ∆ and the rep-
resentation Λ. Convergence cannot be guaranteed though. The effectiveness
of such methods is therefore limited, especially as the time shifts of a com-
bination do not inform on those of another combination.

For these reasons, optimizing with respect to both the time lags and the
combinations at once may be too big a leap to ensure convergence towards
the desired optimum. On an important note, any suboptimal solution to
Equation 8 is completely useless for classification, as composite operations
could be assigned a label distinct from the sources they contain.

Industrial applications come with a silver lining though. Sensors are often
limited to the monitoring of a few systems at a time (which limits the number
of sources), and these systems may not use their actuators in all possible
configurations (which limits the number of operations). We hence advocate
for a greedy algorithm to optimize for Λ. Indeed, the entire parameter space
is known and can be discretely mapped in a tractable way so long as the
number of operations is reasonable (application-specific). That is, for each
possible decomposition of operation c into a group of operations G indexed
by g with g(2) = Λ

(g)
c (notation for an integer expressed in base 2), a residual
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rcg is compared to a threshold τ , an energy bound on additive noise, to accept
or reject the decomposition.

Every element of the residual matrix R ∈ RN×2N is found as the solution
to the resynchronization problem between vectors Cc and {Ci}i∈G:

rcg = inf
{∆i

c}i∈G

∥∥∥Cc −
∑
i∈G

S∆i
c
Ci

∥∥∥2
2

(13)

The Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm [55] is used
to compute these residuals. As a result, the residual matrix R illustrated
in Figure 3 is obtained, each row indicating the possible combinations in
{Λ(g)

c }2
N

g=0 for a given operation with centroid Cc.

Figure 3: Residual matrix (left), after optimal source resynchronization (right)

The parameter space results from the following heuristic. For each oper-
ation c ∈ J1, NK and combination g ∈ J1, 2N − 1K carrying indices G:

• If g = 0, then rcg = ∥Cc∥22 is the squared norm.

• If g(2) = (2k)(2), then rcg = 0 (trivial decomposition).

• If ∥Cc∥2 >
∑

i∈G∥Ci∥2, then exclude g (triangle inequality unsatisfied).

• If ∥Cc∥22 < max
i∈G
∥Ci∥22, then exclude g (energy-based ordering).

In the absence of the sparsity regularizers, multiple admissible combina-
tions may be found. These minimizers bear different residuals due to noise
and other sources of uncertainty, albeit centroids are naturally resilient in
that respect. For this reason, the decomposition returned by the proposed
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technique corresponds to the minimum number of sources to begin with, and
only then the lowest residual is sought.

At last, the proposed CSBMF algorithm to retrieve the activation se-
quences is presented in Figure 4.

Figure 4: Flowchart of the CSBMF for source activation sequence retrieval

2.6. Limitations
There are cases in which machines operate at different regimes. For in-

stance, a motor operating at constant speed with different loads, monitored
by an accelerometer, might produce the same signature (same power spec-
trum), varying only by a scaling factor. Then recombining these sources dur-
ing post-processing is straightforward. Should the actuator produce different
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signatures under these regimes (different speeds in the previous example),
recombination is not possible with the proposed technique.

Another practical issue is when distinct actuators produce the exact same
signature. If run concurrently, this case is no different from a single device
operated at different regimes. An indetermination hence remains between
both cases. In the greedy algorithm, multiplicity can be taken into account
by expressing the parameter space in base b, with b the maximum multi-
plicity, instead of base 2. The final complexity of this algorithm is O(NbN),
times the optimizer’s complexity as regards residual calculation. This re-
mains acceptable for monitoring small dedicated systems.

3. Results

3.1. Numerical experiments
We verify our method against synthetic signals to begin with. A repre-

sentative scenario was selected here among our numerical experiments. A
piecewise stationary univariate signal x is produced as the sequence of all
possible sums of sources from an alphabet C, containing a square wave a
(frequency 70Hz, amplitude 1u, zero-centered), a triangle wave b (frequency
50Hz, amplitude 1u, zero-centered) and a sine wave c (frequency 50Hz, am-
plitude 2u, zero-centered). Signal is supplemented with a zero-mean Gaussian
noise w(t) with standard deviation σ = 0.1u.

In order to shed light on practical limitations of existing methods, we
compare qualitatively the CSMBF to traditional and state-of-the-art tech-
niques tackling similar problems. The results are presented in Figure 5. The
proposed benchmark comprehends semi-binary matrix factorization (SBMF)
[35], alpha-stable convolutional sparse coding (αCSC) [38, 39], as well as
NMF. Sparse coding steps have been performed using the Fast Iterative
Shrinkage-Thresholding Algorithm (FISTA) [56].

The SBMF is limited to the study of real-valued signals. Less ambigu-
ous than NMF, it captures “the direct sum (as opposed to the average) of
community activities” [35]. Albeit similar to the proposed CSBMF, it does
not rely on assumption P11 to build the dictionary and rather uses an SVD-
based initialization. It is hence better at capturing intrinsic characteristics,
yet concerns remain as to the validity of the result and its interpretation,
as will testify the decomposition in Figure 5. Applied to spectrogram data,
the SBMF accurately predicted the presence of the sine wave, but difficulties
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Figure 5: Decomposition of a synthetic signal (70Hz square, 50Hz triangle and 50Hz sine
waves, and their combinations). Six decomposition methods are presented: the CSBMF
(red), dictionary learning techniques (purple) and sparse coding (blue). Non-binary labels
lie in [0, 1] (scale is dictionary-dependent otherwise).

subsist in differentiating the triangle and square waves. We suspect this be-
havior is caused by noise and spectrogram-induced nonlinearity. To put the
emphasis on the nonlinear aspect, the decomposition referred to as guided
FISTA in our experiment uses the optimal dictionary directly (power spec-
tral density of each wave). Projecting the spectrogram onto it, the triangle
wave remains poorly identified.

In our investigations, the αCSC, applied to the time series directly, was
found to excel at retrieving temporal patterns. By taking the DFT of these
patterns to build the dictionary and projecting the STFT onto them, linearity
is preserved. While properly identifying the waves alone, resynchronization
is absent from this process, and indeed this method fails to retrieve the
combinations.

In comparison to these techniques, the CSBMF reliably finds meaningful
centroids using clustering, and effectively recovers the activation sequences.
In our experiments, source resynchronization allowed to lower the residuals of
the desired decompositions by at least two orders of magnitude with respect
to their countepart computed using the modulus of the atoms. The perfor-
mance of the proposed method is tied to the effectiveness of the clustering
as well as the averaging process, which is affected by transients, outliers and
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noise distributions. We therefore validate the CSBMF on real-world signals.

3.2. Experimental results
As a condensed version of an industrial system, we validate the CSBMF

on the CAFFEINE dataset [44] presented in Figure 6, and more specifically
on the current and vibration signals. This use case consists in an automated
coffee machine, made of four multiphysical actuators: one heating coil, one
vibration pump, one infuser (motor with a worm gear to displace the infuser)
and one grinder (motor with an epicyclic gearing to grind coffee beans). The
relevance of such a system for industrial applications was shown in [57].

Figure 6: Experimental setup of the CAFFEINE dataset [44] using the NI USB-6003 data
acquisition system (16bit, 8channels, 6.25kHz)

The results of the CSBMF applied to current sensor data are presented in
Figure 7. The residual threshold was set to τ = 0.0315. We observed that this
hyperparameter was more sensitive as the sources’ scales were unbalanced.
Here, the heating coil consumes 65 times more than the infuser, and the
infuser’s RMS is only twice that of the background noise. On this dataset, the
activation sequences of the three actuators are well recovered despite slight
nonstationarities and noise. In order to push the boundary of our method,
centroids of background noise and low consumption electronics were kept.
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Figure 7: Decomposition of the current signal, trial 42 of the CAFFEINE dataset

In Figure 8, we apply the CSBMF on accelerometer data. These compo-
nents produce extremely noisy (grinder) and partially nonstationary (infuser)
signals. This behavior breaks the quasi-stationarity assumption, which trans-
lates into inaccurate centroid estimation and leads to incorrect classification.
In spite of these challenging conditions, an alternate use for the CSBMF is to
recombine wrongfully clustered centroids. Indeed, as an intra-cluster variance
minimization algorithm, k−means often performs better when overestimat-
ing the number of clusters. This isolates outliers. In this case, the outliers
and the actuators activated in different operations share similarities, making
it possible to regroup them in a meaningful fashion.
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Figure 8: Decomposition of the accelerometer signal, trial 42 of the CAFFEINE dataset

4. Discussion

In this work, we highlight the importance of keeping data’s extensive
property to recover the activation sequences. Be it through convolutions in
the time domain [36, 39], or phase resynchronization in the TF domain as
proposed here, we qualify the matrix factorization as exact insofar as most
of the signal information has been preserved. Although a phase-preserving
decomposition is interesting, (i) other sources of uncertainty remain, noise
and transients in particular, and (ii) the approach is inherently subject to the
curse of dimensionality. Indeed, retaining the properties of the DFT forces to
represent data in a high dimensional space, thus limiting the discrimination
between centroids or samples. For this reason, using nonlinear transforms, or
even simple standardization, to learn a more discriminating manifold would
be beneficial [58]. This could also help lifting assumption P10 to tackle cases
where the subsystems are coupled, e.g., in series association.

The CSBMF heavily relies on clustering to build a dictionary. Whilst this
is a debatable choice for compressed sensing, its relevance to source identifi-
cation is made clear in this paper. This approach is particularly interesting
as regards (i) computational complexity (decomposing centroids instead of
samples, N ≪ T ), (ii) resilience to noise thanks to the averaging process,
and (iii) estimation of the number of sources. Clustering also constitutes the
method’s Achilles’ heel, as the decomposition is as accurate as the clustering
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technique is. Centroids are also subject to transient-originated outliers, and
their misestimation is detrimental to the factorization process. Robust kernel
smoothing can be used to compute outlier-free centroids though [59].

At last, the CSBMF overlooked the case where a system is operated at
different regimes. Periodic regularization functions could be considered to
extend the representation’s domain to Z (N, ideally) [60], a common practice
in quantization neural networks. Should the signature shift however smoothly
from a regime to another, matrix decomposition is no longer appropriate.
Graph neural networks (GNN) excel at this type of task, therefore making
them good candidate architectures to learn an embedding in which sources
can be easily separated [61]. Tracking could also be used to that effect,
learning trajectories and their principal characteristics instead of centroids
[42]. Overall, the rationale is that a single vector may prove insufficient to
represent a source in multiple configurations.

5. Conclusions and perspective

In this paper, the CSBMF method was proposed to recover source ac-
tivation sequences in mixed stationary periodic signals. This study high-
lighted limitations in traditional methods in challenging conditions, where
the sources may be correlated and their number difficult to estimate. A
formulation to this semi-binary decomposition was proposed as a phase-
preserving bi-variate optimization problem. Although direct solving proved
tedious and convergence could not be guaranteed, the proposed greedy algo-
rithm stems from a meticulous study of this formulation. A novel operator,
coined δSTFT , was introduced in an effort to extract meaningful centroids
in the complex plane, thus keeping the Fourier transform’s linearity. Addi-
tionally, a phase resynchronization mechanism allowed to express centroids
with respect to others, and thus find a minimal basis in which data can
be reconstructed. Finally, due to spurious minimizers — both in dictionary
and representation learning — jeopardizing the optimization process, and
building up on the fact that only a tiny proportion of the representation’s
parameter space is actually relevant, a greedy algorithm was designed.

This work paves the way for interesting prospects. As a trade-off between
effective variants of the NMF and the proposed CSBMF, an efficient param-
eter space reduction and search could be proposed by using a phase-invariant
space as proxy before resynchronization, without loss of generalization. Fu-
ture work will also aim for direct solving of Equation 8 using scalable opti-
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mization techniques and building up a lower dimensional dictionary. That
is, in light of this work, we suspect a more discriminating dictionary could
be learnt appropriately. Although the absence of training is interesting, this
limits the potential for performance gains. We believe deep-learning-based
underdetermined blind source separation techniques will benefit from the
findings presented in this paper, by avoiding phase-shift-induced pitfalls in
particular.

Number of industrial use cases contain transient, non-stationary and
disturbed signals. At present, our method is very sensitive to these non-
stationarities, although experimental validation has shown it performed well
under mild quasi-stationary conditions in a representative use case. Means
to tackle greater levels of non-stationarity and outliers in source signals will
hence be investigated.
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Appendix A. Detailed study of the CSBMF formulation

This section details the mechanisms at play in the CSBMF formulation
(Equation 8). In particular, we highlight the existence of a global minimum,
or at least we show through a generic example that the minimizers are not
equivalent to one another under suitable regularization conditions. Inequal-
ities for some of the regularization parameters are provided. This constrains
the hyperparameters to tune and guarantees the validity of the expected
properties of each penalty.

A simple sequence “a−b−ab” is considered as a synthetic use case, where
a and b are normalized T -periodic triangle and square waves respectively.
Operation ab is the sum of a and b, shifted by T/4 and T/3 respectively. F
denotes the least squares functional of Equation 8 and J is the complete cost
function including all regularizers.

Appendix A.1. Tikhonov regularization on the time shifts
Due to periodicity, there is an infinite number of minimizers enabling the

resynchronization of each atom i to reconstruct another atom c using time
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Figure A.9: No regularization Figure A.10: Tikhonov regularization

Figure A.11: Minimizers of F (∆ab,Λ
opt
ab ) (marked in red, with level curves)

shifts ∆i
c ∈ R. Indeed, the time shift operator is periodic, hence so is the

functional F (∆,Λ). Each time shift is applied to a single atom though,
F (∆,Λ) is hence periodic of period T̂ (i) along each dimension ∆i

c. Given
the desired representation Λ

(opt)
ab = [ea, eb, ea + eb], Figure A.11 shows the

presence of multiple minimizers (T -periodic), with ea, eb, eab the canoni-
cal vectors. Uniqueness of the solution in ∆ is obtained through Tikhonov
regularization (Γ = 10−5).

Appendix A.1.1. Regularization of the representation
Three types of regularizations are implemented for (i) sparsity, (ii) bina-

rity, and (iii) consistency as regards the energy profiles of the decompositions.
Diverse experiments are conducted to study the effect of these regularizers.
The following parameterization is used to represent the cost function in two
dimensions: Λab = c1ea + c2eb (Equation A.1), Λab = ( c1+c2

2
)eab (Equa-

tion A.2), Λb = c1ea + c2eab (Equation A.3) and Λa = c1eab + c2eb (Equa-
tion A.4).
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Figure A.12: None Figure A.13: ℓp Figure A.14: ℓp and ℓ2,p

Figure A.15: Minimizers of Jsparse(∆
(opt)
ab ,Λab) (marked in white, with level curves)

Λ =

1 0 c1
0 1 c1
0 0 c2


(A.1)

Λ =

1 0 0
0 1 0
0 0 c1+c2

2


(A.2)

Λ =

1 c1 0
0 0 0
0 c2 1


(A.3)

Λ =

 0 0 0
c2 1 0
c1 0 1


(A.4)

From this point on, it is assumed that the optimal time shifts ∆opt have
been reached.

Appendix A.1.2. Sparsity regularization
The functional F (∆(opt),Λ) includes a number of minima as regards Λ.

Sparsity regularization usually consists in minimizing the ℓ0 norm of a vector
or an estimator thereof. This produces two noticeable effects: (i) it allows
to reconstruct a sample with a minimal number of relevant atoms, (ii) neg-
ligible coefficients tend to zero. A difficulty in using a dictionary derived
from clustering lies in the fact that the desired decomposition maximizes the
number of relevant components instead of minimizing it. For this reason, the
trivial solution Λ = I always exists and it is the easiest minimum to find.
To remedy this limitation, classic ℓp regularization on the columns of Λ is
coupled with ℓ2,p penalization on ΛT , with p ≤ 1. The latter estimates the
number of nonzero rows in Λ (number of sources). This mechanism is ap-
plied to the synthetic use case in Figure A.15, where Jsparse denotes the cost
function including the functional as well as the column-wise ℓp and row-wise
ℓ2,p sparsity promoting penalties.

As illustrated in Figure A.12, an infinite number of minimizers are con-
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nected through valleys as regards the representation in the absence of regu-
larization. That is, the reconstruction is a weighted sum of several admissible
combinations. When an element of Λ is negative, the corresponding atom
may be flipped as a result of resynchronization (worst case). Figure A.13
shows the effect of column-wise sparsity regularization — pushing Λ towards
the identity —, whereas Figure A.14 is the result of both column- and row-
wise sparsity penalization, — minimizing the number of nonzero rows while
penalizing negligible coefficients —. The scale is lost in the process though.
The discrepancy may be observed on Figure A.14 between the minimum
marked in white and the expected solution in cyan.

The tradeoff between sparse penalties is found by prioritizing the estima-
tion of the number of sources:

N∑
c=1

(
λ+

E
∥Cc∥22

)
∥Λc∥p < L∥ΛT∥2,p (A.5)

which, by maximizing the left hand side (maximum decomposition 1N−1,
given the least energetic centroid µmin = min

c
∥Cc∥22) and minimizing the right

hand side (one source), yields:

L > (λ+
E

µmin

)N∥1N−1∥p (A.6)

Appendix A.1.3. Binary regularization
Binary regularization as it is referred to in this paper is a special case of

quantization. The penalty is zero when Λ is binary. The expected behavior of
this regularizer is to displace the desired minimum towards binary locations.
This effect appears in Figure A.18.
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Figure A.16: Binary regularization only Figure A.17: Binary and sparse penalties

Figure A.18: Minimizers of J(∆(opt)
ab ,Λab) (marked in red, with level curves)

Worth noting, the least penalized location is Λ = 0. This location cor-
responds to the sum of the atoms’ squared norms (all penalties are null).
Hence care must be taken to have a higher cost at the center than at every
minimizer’s location Λ(opt). This condition binds λ, L, E and Γ together
as J(∆(opt), 0) < J(∆(opt),Λ(opt)), where J is the complete cost function, in
which B2 can be considered null.

Appendix A.1.4. Regularization for iso-cardinality combinations
At last, differentiating between combinations with the same cardinality

involving the same atoms is problem-specific. Geometrically, these solutions
are equivalent, albeit the penalty on their respective time shifts may dif-
fer. The regularization term T defined in Equation 10 is proposed to tell
these solutions apart, by prioritizing solutions in which the atom to recon-
struct has the highest energy level. That is, for two minimizers c and j,
if ∥Λ(c)∥p = ∥Λ(j)∥p and ∥Cc∥22 > ∥Cj∥22, then coefficients E and Γ must be
such that J(∆(c),Λ(c)) < J(∆(j),Λ(j)), where Lcol,Lrow cancel out and B2, F
are zero. As shown on A.20, where all regularizers are present but T , without
further consideration iso-cardinality combinations correspond to equivalent
minima.
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Figure A.19: No regularization Figure A.20: Binary and sparse only

Figure A.21: Minimizers of F (∆(opt),Λ) (marked in red, with level curves)

Finally, applying all penalties, a single minimum remains, as illustrated
in Figure A.22. The values used to regularize the problem in this example
are as follows: Γ = 10−5, λ = 0.0225, L = 3.43, β = 0.7, E = 0.1 and p = 0.9.
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Figure A.22: Complete regularization (Equation 8)
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