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Highlights

Highlights

Transcription factors (TF) are proteins that bind DNA specifically thanks to a DNA-binding domain (DBD).

TF DBDs fold into various 3D-structures that contact DNA through different elements (alpha helices,
beta-strands and loops).

The vast diversity of DBD folds in mammalian TF families has been organized hierarchically, into
superclasses and classes, based on their 3D-structure and their mode of interaction with DNA.

Such a classification has been missing for plants whose 56 recognized TF families harbor diverse types of
DBD, many of which are absent in mammals.

The accumulated 3D-structures and recent availability of accurate models for plant TF DBDs open up the
opportunity to organize plants TF families into a higher rank classification.
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Abstract

Transcription factors (TFs) bind DNA at specific sequences to regulate gene expression. This
universal process is achieved thanks to their DNA-binding domain (DBD). In mammals, the vast
diversity of DBD structural conformations and the way they contact DNA has been used to
organize TFs in the TFClass hierarchical classification. However, the numerous DBD types
present in plants and absent from mammal genomes were missing from this classification. We
reviewed DBD 3D-structures and models available for plant TFs to classify most of the 56
recognized plant TF types within the TFClass framework. This extended classification adds
eight new classes and 37 new families corresponding to DBD structures absent in mammals.

Plant-TFClass provides a unique resource for TF comparison across families and organisms.

Towards a universal classification for transcription factors
Transcription factors (TFs) play essential roles in most processes occurring in living organisms.
Thanks to a dedicated DNA binding domain (DBD), these proteins bind DNA at specific

1

I



32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

sequences (called TF binding sites or TFBS) and regulate the expression of associated genes.
Plant (Streptophyta: grouping the land plants — Embryophyta - and their closest algal relatives)
genomes contain a high diversity of TF-encoding genes including a collection of plant-specific
TFs [1-3] that evolved during their history. The initial analysis of arabidopsis (Arabidopsis
thaliana) genome identified 1500 TFs corresponding to 28 gene families of which 45% (16
families) were not found in mammals [4]. Since then, comparative genomic studies identified
additional TFs and putative TF families in plant genomes [2] and various plant TFs
classifications have been proposed, based on the nature of the DBD and other conserved
protein domains [2,5-7]. While some of these classifications mention existing homology
between different families, none of them proposes a hierarchical, higher-rank, organization.
With the increasing number of 3D DBD structures being solved or reliably predicted, it now
becomes possible to propose a hierarchical classification for plant TFs based on the 3D
structure and the DNA binding mode of their DBD. Traditionally, TFs have been classified into
superclasses based on broad structural similarities of their DBDs [8]. These superclasses
should not be regarded as equivalent to phylogenetic classification since it remains uncertain
whether all the diverse DBDs have independently emerged or if some have a shared ancestry.
However, they are useful for grouping TFs based on distinct structural features. In mammals,
the reference structural classification is TFClass [9,10]. This hierarchical classification starts
with nine structurally defined superclasses, further decomposed into classes, families and
subfamilies. It provides a framework for meta-analyses of TF properties and evolution [11], it
facilitates comparisons between organisms and it is the reference classification used by
JASPAR, the open access database for TFBS models [12].

Here we built upon the TFClass framework to classify all plant TF types described to date. The
new framework is referred to as “Plant-TFClass” (Figure 1, online supplemental information
Table S1), illustrated with the DBD folds with or without DNA for each TF family (Figure 2). For
this, we reviewed experimental and predicted data on DBD structures. For each TF type, we
proposed a classification when sufficient evidence exist and we left the remaining ones in a
tenth ‘Yet undefined DNA-binding domains’ superclass as in TFClass. In addition to this manual
construction, we also used an automatic approach based on the pairwise structural alignment
of TF DBDs: this returned a very similar grouping, but with some inconsistencies that highlight
the merits of the manual approach (online supplemental information Figure S1). Compared to

TFClass, Plant-TFClass has additional TFs of two natures: 1) TFs with a DBD type absent from
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mammals. This is the case for eight new classes (LEAFY, RWP-RK, AP2/EREBP, EIL, TCP, ALOG,
SBP and B3) and we explain on which basis these new classes were organized under a given
superclass. Such TFs may have evolved (i) de novo, (ii) from existing DBD by rapid sequence
evolution or (iii) from transposon proteins [13,14]. 2) Another type of plant-specific TFs
corresponds to those possessing a DBD fold that exists in mammals but has diverged
extensively, in particular with the acquisition of auxiliary domains. This usually defines new
families within existing classes (e.g. HD-ZIP, MADS Type Il, AHL).

Among the 56 recognized plants TF types, 50 were classified in one of the nine superclasses
from TFClass (Helix-turn-helix domains, Beta-hairpin exposed by an alpha/beta-scaffold, Other
all-alpha-helical DNA-binding structures, Beta-sheet binding to DNA, Zinc-coordinating DNA-
binding domains, Beta-barrel DNA-binding domains, Basic domains, Alpha-helices exposed by
beta-structures, Immunoglobulin-fold) and the remaining six were added to the “Yet

undefined DBD”.

Helix-turn-helix domains

TFs of the helix-turn-helix (HTH) domains superclass bind specific DNA sequences by inserting
a ‘recognition’ alpha-helix into the major groove. This recognition helix is followed by a turn
and, in most cases, two additional alpha-helices packed nearly perpendicularly against it. HTH
DBDs also often have an additional structure (usually a loop) that projects basic residues in
the DNA minor groove, also contributing to the sequence specificity. TFClass divides the HTH
domains superclass into seven classes, five of which are present in plants: Heat shock factors,
Fork head / winged helix factors, AT-rich interaction domain (ARID), Homeo domain factors
(HD) and Tryptophan cluster factors.

The three first classes are represented by a single family in plants (HSF, E2F and ARID
respectively). The ARID is sometimes associated with a HMG-box domain but models suggest
that ARID-HMG proteins interact with DNA mainly thanks to their ARID domain [15]. Thus, we
classified them within the ARID family.

As for the HD TF, their variety in plants comes from the diversity of adjacent domains including
a leucine zipper in HD-Zip that affect DNA binding by allowing dimerization [16]. 3D structures
of plant HD DBDs are available for WUSCHEL (WOX family) (6RYI) and revealed a canonical HD
fold with loop regions connecting the three alpha-helices that are expanded compared to the

drosophila Engrailed HD protein [17].
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The Tryptophan cluster factors class contains MYB and MYB-related TFs families that are
represented by few members in mammals but greatly expanded in land plants (as R2ZR3-MYB:
MYB genes containing two repeats of the MYB-type HTH domain) to form one of the largest
transcription factor family [18]. A structure of plant MYB DBD in complex with DNA is available
for the R2R3-MYB WEREWOLF (6KKS) and revealed a similar fold as for other eukaryotic MYB
[19]. We have added to the Tryptophan cluster factors class, three plant families absent in
mammals: the GARP, the Trihelix and the Storekeeper (STK) TFs (also known as GeBP). GARP
TFs have a DBD sharing weak sequence similarity with MYB due to common ancestry. These
TFs come in two subfamilies, G2-like and ARR-B, with structures available in complex with DNA
for the G2-like TFs PHR1 (6J4R) [20] and LUX (5LXU) [21] and without DNA for the ARR-B TF
ARR10 (1IRZ) [22]. The Trihelix motif was initially proposed to be evolutionary related to the
C-MYB DBD based on weak sequence similarity [23] and this hypothesis was later confirmed
by a solution structure of arabidopsis GT-1 DBD (2JMW) [24]. STK TFs were included in this
class based on the AlphaFold2 model of their DBD: this model shows similarity to HTH domains
and 3D structure comparisons returns good alignments with members of the Trihelix family,
MYB family and GARP/G2-like subfamily (with root mean square deviation (rmsd) of 3 A on 80
equivalent positions out of 90 residues). All these families harbor conserved tryptophan
residues (three for R2ZR3-MYB WEREWOLF and STK down to one for GARP) within the HTH
domain, justifying their inclusion in this class.

Finally, we added to this HTH domain superclass the plant specific LEAFY (LFY) class. Crystal
structure of LFY DBD in complex with DNA have been solved for arabidopsis (2VY1, 2VY2) and
Physcomitrium patens (4BHK) proteins, revealing the presence of an HTH motif [25]
embedded within a 7-alpha-helices fold, plus a loop that adds base contacts in the DNA minor
groove. LFY bind DNA as a dimer and possess a capacity to higher order assembly thanks to
the presence of a SAM oligomerization domain [26].

We also added RWP-RK or NIN-like Protein (NLP) factors as a new class. These TFs possess
RWP-RK DNA binding domain with a basic region [27] predicted to fold as three short and one
long alpha-helix (AlphaFold2 model from Uniprot). They have been shown to bind DNA as
dimers [28]. 3D-structures comparison revealed significant alignment with the helix-turn-helix
motif of bacterial DNA repair protein Ada (1U8B) (45 equivalent positions out of 132 residues

with an rmsd of 2.1 A).



126

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

Beta-hairpin exposed by an alpha/beta-scaffold

TFs from this superclass have a DBD made of an alpha/beta-structured scaffold with a beta-
hairpin inserting into the DNA major groove and acting as the main DNA contacting element.
In TFClass, this superclass contains the GCM domain factors class represented by a single
mammal-specific family (the GCM family) to which we have added five families found in
plants: the NAC, VOZ, CAMTA, WRKY and FRS/FRF. The determination of DBD/DNA
crystallographic structures of the NAC TF AtANACO019 (3SWP) and the WRKY TF AtWRKY4
(2LEX) revealed that the DNA-interaction mode is analogous to that of GCM (10DH) with good
superimposition of the beta-strand’s amino acids contacting the DNA [29]. We deliberately
chose to include WRKY TFs here and no longer classify them as Zn-coordinating because the
domain coordinated by Zn ions lies outside their DBD. We included the Vascular Plant One-
Zinc-Finger (VOZ) and the calmodulin binding transcription activator (CAMTA) families
because the AlphaFold2 structural predictions of their DBDs align well with NAC DBD (3SWP)
(rmsd of 3 A on 116 equivalent positions out of 171 residues for VOZ and 2.66 A on 94
equivalent positions out of 112 residues for CAMTA). These similarity levels are also found
between WRKY (2LEX) and NAC (3SWP) (55 equivalent positions out of 63 residues with an
rmsd of 3.06 A).

FRS/FRF factors have been linked to WRKY factors based on an iterative PSI-blast search [30].
AlphaFold2-predicted structure of the DBD of the FRS/FRF protein FAR1 revealed a fold similar
to that of WRKY and 3D structures comparisons return significant alignment against AtWRKY4
(2LEX) (60 equivalent positions out of 90 residues with an rmsd of 3.27 A). FRS/FRF factors

were thus added to the GCM class.

We made one more addition to this superclass by including the AP2/EREBP class
corresponding to proteins with the AP2/ERF DBD, absent in mammals [14]. The AP2/EREBP
class was divided into two families: the AP2 and the ERF/DREB. In the AP2 family, DBD/DNA
structures are available for TEM1 (7ET4) and AtERF1 (1GCC). Both structures revealed a beta-
hairpin overhanging the major groove and topped by an alpha-helix [31,32]. In the ERF/DREB
family, the TF/DNA structure of AtERF96 (5WX9) additionally shows an N-terminal alpha-helix

contributing to the DNA interaction by entering the minor groove [33].
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Other all-alpha-helical DNA-binding domains

This superclass gathers TFs possessing a DBD exclusively made of alpha-helices. The structure
of their DBDs and their mode of DNA-binding are different from other DBD made of alpha-
helices (HTH domains and basic domains). It contains the heteromeric CCAAT-binding factors
(also known as nuclear factor Y or NF-Y) and the High-mobility group (HMG) domain factors.
The former class is represented by a single family, present in many eukaryotes including
plants. Heteromeric CCAAT-binding factors bind DNA as trimers made of NF-YB and NF-YC
subunits plus either NF-YA or the viridiplantae-specific CONSTANS (CO) protein. The NF-YB/C
dimer binds to DNA in a non-specific manner acting as a scaffold for the binding of NF-YA or
CO which provide DNA sequence specificity. Despite possessing no high sequence similarity,
NF-YA6 and CO show similar 3D-structures in complex with NF-YB/C and DNA (6R2V, 7CvVQ
respectively) with one long helix interacting with the NF-YB/C dimer and one short helix
entering the DNA minor groove [34,35]. We thus added CO to the heteromeric CCAAT-binding
factors despite that it does not recognize a CCAAT motif.

High-mobility group (HMG) domain factors represent a broad group of proteins present in all
eukaryotes that bind DNA thanks to an HMG-box to remodel chromatin and to regulate gene
transcription. The HMG-box domain forms an L-like structure made of three alpha helices.
Unlike HTH domains factors, they bind DNA in the minor groove, widening the minor groove
and bending the DNA at 90 degrees. In TFClass, this class contains seven families. Plants HMG-
box containing proteins are less diversified than mammals’ and have a TF activity that is either
not demonstrated or achieved via another DBD than the HMG-box (AT-hook or ARID domain)
[36].

We classified the YABBY proteins, absent in mammals but found in several other eukaryotes,
as a new family within the “High-mobility group (HMG) domain factors”. YABBY TFs possess
two highly conserved domains that have been proposed to contribute to DNA binding : the N-
terminal zinc finger domain and the C-terminal YABBY domain [37,38]. The predicted YABBY
domain (39 amino acids long) has a helix-loop-helix domain that superimposes well (39
equivalent positions, rmsd = 2.01 A) with the two N-terminal helices of the HMG domain of
the SRY protein (1HRY), with residues of similar nature potentially contacting DNA. This

superimposition does not exclude a direct DNA binding by the zinc finger domain but
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experiments on the YABBY CRABS CLAW protein showed a more prominent role for the YABBY
domain compared to the zinc finger domain for DNA binding [39].

To this superclass, we also added a new plant-specific class: EIL (standing for Ethylene-
insensitive3 (EIN3)-like factors). The NMR solution structure of arabidopsis EIL3 DBD without
DNA (1W1J) revealed a novel fold made of five alpha-helices with candidate DNA-contacting

residues that remain to be confirmed [40].

Beta-sheet binding to DNA

This superclass contains the AT-hook factors and TATA-binding proteins classes which bind
DNA through single extended strands or beta-sheets, respectively, preferentially in its minor
groove [10]. AT-hook motifs exist in a wide range of eukaryotic nuclear proteins [41]. In
TFClass, the AT-hook factors class contains a single family, the HMGA, that bind DNA at AT-
rich stretches thanks to a central Arg-Gly-Arg core that enters deep in the minor groove
[42,43]. In plants, HMGA proteins contains four AT-hook DNA binding motifs with at least two
required for efficient DNA binding [44]. The overall structure of plant and metazoan HMGA
proteins is thus quite different.

To this class, we added the land plant-specific AT-hook motif nuclear-localized (AHL)
transcription factors, not orthologous to the HMGA and possessing one or two AT-hook
motifs. In addition AHL possess a plant and prokaryote conserved (PPC) domain, involved in
protein-protein interactions [45,46].

Finally, we also added the land plant-specific TCP factors. These TFs have been successively
reported as similar to bHLH based on the presence of a putative bHLH motif [47] and to
Ribbon-Helix-Helix (RHH) based on the crystallographic structure of the DBD of the rice (Oryza
sativa) PCF6 [48]. However, the recent determination of TCP-DNA structures revealed a new
DBD fold (7VP2) where homodimers bind to DNA mainly through anti-parallel beta-strands at
the dimer interface and two flexible loops at the N-terminal side of each monomer [49]. We

have thus added the TCP class / TCP family to the “beta-sheet binding to DNA” superclass.

Zinc-coordinating DNA binding domains

DBDs of TFs from this superclass have a fold organized by one or more zinc ions. The nature
of the Zn coordination and the resulting DBD fold define nine classes in TFClass [10]. Within

this superclass, plants possess two TFs families shared with animals: C2H2 (from the “C2H2
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Zinc finger factors” class) and the C4-GATA-related (from the “Other C4 zinc finger-type
factors” class). In the C2H2 fold, the “zinc finger” is a loop formed between a beta-hairpin and
an alpha-helix and the Zn atom is coordinated by two cysteine and two histidine residues.
Several Zn fingers can wrap around the major groove of the DNA via interactions of the alpha-
helices with the major groove, as shown in figure 2. In plants, the IDD TFs bind DNA thanks to
two C2H2 and two C2CH zinc fingers, with the first C2H2 zinc finger being the most critical for
specific binding [50]. We thus classified IDD TFs as a family within the C2H2 class. The C4-
GATA-related fold is a variant of the C2H2 fold in which the coordination involves four cysteine
residues.

We added five types of plant TFs within this superclass: the Squamosa promoter Binding
Proteins (SBP), the DNA-binding One Zinc Finger (DOF), LATERAL ORGAN BOUNDARIES (LOB)
DOMAIN (LBD), the Arabidopsis LSH1 and Oryza G1 (ALOG) and the Growth-Regulating Factors
(GRF) proteins. SBP TFs possess two zinc-finger like structures where one zinc ion is
coordinated by three cysteine and one histidine residues (or four cysteine residues in some
cases) and the second one is coordinated by two cysteine and two histidine residues. The N-
terminal Zn-finger like structure is the best candidate to contact DNA according to NMR
experiments (performed in the presence or absence of DNA) and DNA docking on the NMR
structure (1UL4) [51]. As the SBP DBD is dissimilar to other known zinc-finger structures it
defines a new class “C3H(C),C2H2 zinc-fingers like factors” in Plant-TFClass. DOF TFs bind DNA
via their highly conserved DOF domain. The DOF domain forms a single zinc-finger motif of
C2C2-type and was thus added to the “Other C4 zinc finger-type factors” class. Their
sequence-specific binding to DNA is supported by several in vitro functional studies [52—-54]
and DBD/DNA structure modelling studies [55,56]. The DOF domain is also able to form
protein-protein interactions with other TFs [52,57-59]. LBD TFs bind DNA thanks to their
dimeric and highly conserved LOB DBD. 3D structural analysis of the LOB domain from the
wheat Ramosa2 protein (TtRa2LD, 5LY0) strongly supports that a C4 zinc finger motif is
responsible for DNA binding while homodimerization is achieved via a C-terminal leucine
zipper-like motif [60]. We thus classified LBD TFs as a new family in the existing Other C4 zinc
finger-type factors class.

With functional roles established in several angiosperms and Marchantia polymorpha, the
ALOG family of proteins, proposed as a novel plant-specific TF family [61], was recently

characterized at the structural level (8P5Q) [62]. These proteins likely originated from a
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recombinase of a retrotransposon in which a zinc ribbon was inserted [63] in the core
tetrahelical structure. The structure of the DBD in complex with DNA revealed a bundle of
alpha helices with a HC3-motif zinc-ribbon contributing to positioning the alpha-helices and
the loop that directly contact DNA. As the zinc ribbon has a HC; motif, we created a new class
(HC3 zinc ribbon factors) in the zinc-coordinating DNA-binding proteins superclass for the
ALOG family.

Plants also encode zinc finger proteins containing a three cysteine and one histidine residues
(C3H) motif, that defines the C3H zinc finger factors class in TFClass. Plant C3H are unrelated
to those found in mammals and the majority of plant C3H motifs bind RNA. The only plant C3H
TFs shown to bind DNA are the Growth-Regulating Factors (GRF family) : their putative DNA-
binding domain WRC (tryptophan, arginine and cysteine) contains a conserved C3H
(CX9CX10CX2H) motif [64]. The WRC domain also plays a role in JMJ28, a negative regulator of
immunity in arabidopsis, by providing target specificity for DNA binding of the RBL/ATX1/2-
COMPASS complex [65]. Until more evidence is provided for the other groups of plant C3H
proteins, only GRFs are considered as a TF, classified within the C3H zinc finger factors class

of TFClass.

Beta-barrel DNA-binding domains

TF from this superclass bind DNA thanks to a beta-barrel of variable number of beta-strands.
It is represented by a single family in mammals (The Dbp family of the Cold-shock domain
factors class). Distant homologs to this family in arabidopsis (CSP1 and CSP3) bind RNA to act
as chaperone but have no known DNA binding activities.

On the other hand and as noted by Wingender et al. [10], the plant-specific B3 domain TFs
have sequence specific DNA binding and belong to this superclass. The B3 domain contains
approximately 110 residues with seven beta-strands and two alpha-helices folded into a
pseudo-barrel. The residues belonging to the loops between the beta-strands 1-2 and 4-5
contact bases in the DNA major groove allowing each B3 family to recognize a specific
sequence [66—68]. B3 domains TFs are present in four families identified as LAV (LEAFY
COTYLEDON2 (LEC2)-ABSCISIC ACID INSENSITIVE-3 (ABI3)-VAL), ABI/VP1-related protein
(RAV), REPRODUCTIVE MERISTEM (REM), and AUXIN RESPONSE FACTOR (ARF) [69]. ARFs and
LAVs have a single B3 domain, whereas REM family proteins have from one to eleven B3

domains [70]. RAVs have an AP2/ERF DNA binding domain in addition to the B3 domain. Most
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ARF TFs possess a PB1 oligomerization domain [71-73] and often bind DNA as dimers with
preference regarding the orientation and the spacing of ARF binding sites [54,74—-76]. In
contrast to the other families, studies performed on VRN1 [77] and REM16 [78] belonging to

the REM family suggest that these TFs do not show sequence-specific DNA binding.

Basic domains

This superclass includes TFs that bind DNA with a basic alpha-helix usually inserted in the DNA
major groove. It contains two classes: the basic leucine zipper (bZIP) and basic helix-loop-helix
(bHLH) TFs that are present in most eukaryotes. Both types are dimeric TFs that pinch DNA
between two basic helices. We have divided the bHLH class into two families: the classical
bHLH and the BES/BZR plant-specific family. BES/BZR TFs slightly differs from classical bHLH.
Indeed, instead of having only the long basic helix interacting with DNA as in classical bHLH,
in BES/BZR DBDs, the loop between the two helices adds contacts with the minor groove and

the second helix involved in dimerization is much shorter.

Alpha-helices exposed by beta-structures

Members of this superclass have an all-alpha-helically folded DBD but contrary to the HTH
domains, the basic domains and the other all-alpha-helical DNA-binding domains
superclasses, the DNA-binding helices are exposed by a scaffold of beta-strands and do not
insert in either DNA groove but are packed against the DNA double helix. This superclass
contains two classes: the SAND domain factors and the MADS box factors. SAND domain
factors are represented by ULTRAPETALA genes in plants and by VARL genes in green algae
but a sequence-specific DNA binding activity has never been demonstrated [79,80]. The MADS
box factors class contains two families in plants (Type | and Type Il) with a DBD/DNA complex
structure only described in animals. The DBD structure of arabidopsis floral organ identity
MADS TF SEPALLATA3 was recently obtained without DNA (7NBO) and did not reveal any

major differences with metazoan proteins [81].

Immunoglobulin-fold

In TFClass, this superclass contains 16 families grouped into six classes that have no homologs

with demonstrated TF activity in plants.

10
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Yet undefined DNA-binding domains

This superclass gathers TFs with functionally well-characterized DBD but awaiting structural
data for a definitive classification. In TFClass, it includes four classes, plus an “uncharacterized”
class gathering six families. Among those families, plants possess NFX1-like proteins whose TF
activity remains to be firmly established [82].

To this superclass, we added nine classes corresponding to plant factor families with well
characterized TF activity but lacking crucial structural clues on the DBD/DNA interaction. For
three classes (the cysteine-rich polycomb-like protein (CPP) [83], the DNA-binding protein
phosphatase (DBP) [84] and the S1Fa-like factors [85]), there is no structural data and
AlphaFold2 predictions of the 3D structure for their DBD were uninformative (low confidence
model or no hit in 3D-structure comparison). Putative classification is discussed below for 3
classes (GRAS, PLATZ and BCP) based on experimental or modeled structures and was

mentioned before for GRF TFs.

The GRAS domain of SCARECROW-LIKE7 from rice was crystallized as a dimer (5HYZ) with each
monomer consisting of a core region made of alpha and beta-structures, topped with an
alpha-helical cap structure. The two cap regions form a candidate DNA-binding groove
containing positives residues and DNA docking in this groove predicted tight protein/DNA
interactions that were validated experimentally [86]. Once validated at the structural level,

such DNA binding mode would likely define a new superclass.

The Archaeplastida-specific PLATZ TFs are zinc-dependent DNA binding proteins. The zinc
finger coordination motif has, in its N-terminal part, a consensus signature C-x2-H-x11-C-x2-
C-x(4-5)-C-x2-C-x(3—7)-H-x2-H which is different from other characterized zinc-binding motifs.
It also has four conserved cysteine residues in its central region [87]. Structural models show
various folds (alpha-helices, a beta-hairpin and a beta-sheet). In the absence of experimental
structure in complex with DNA or extensive modeling, it is not possible to firmly place this

family within the Zinc-coordinating DNA-binding domains superclass.
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The BBR/BPC DBD has a conserved WAR/KHGTN motif required for DNA binding, reminiscent
of the WRKYCGK consensus of WRKY proteins suggesting that it may bind DNA in similar way
[88].

Concluding remarks and future perspectives

TFClass organizes mammalian transcription factors in a hierarchical classification
(Superclasses / Classes / Families) based on the 3D-structure of their DNA-binding domain and
the way it interacts with DNA. Historically, the determination of plant TF DBD structures have
lagged behind that of mammals preventing such classification for plants. The relatively recent
resolution of plant DBD-DNA structures along with breakthrough and massive prediction of
protein structures now enable classifying plant TF families based on the 3D-structures of their
DBD. In this opinion paper, we proposed a classification for plant TFs using the TFClass
framework. Most plant TFs were classified: either assigned to existing mammalian classes or
families or by defining new families or new classes under existing classes and superclasses,
respectively. Until experimental data exist for all types of DBD in complex with DNA, Plant-
TFClass can be subject to updates.

To our knowledge, this is the first comprehensive hierarchical classification of plant TF
families. Other plant TF databases have listed TF families and grouped only those with high
sequence similarity of their DBD. The classification of biological entities is an important step
in understanding how the diversity of life is organized and, the merit of a particular
classification scheme depends on the perspective of the user (see “Outstanding questions”).
Our hierarchical classification is an ideal basis for evolutionary studies. Based on existing
sequence homology for portions of DBD containing the residues contacting the DNA, it is
indeed likely that TF families within a given class derive from a common ancestor. The only
exceptions are families within the “Other C4 zinc finger-type factors” and within the “bHLH”
classes. This work offers the necessary framework to study in details other evolutionary
relationships, for example between the different classes of a given superclass. Plant-TFClass
will also structure meta-analyses of TFs aiming for instance at evaluating whether TF
properties depend on their structural features. Finally, it is the first classification that brings
mammals and plants TFs together under a same umbrella. As new TFs DBD types are reported
in other kingdoms of life, our work is another step towards a universal classification of

transcription factors.
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Figure legend

Figure 1: Color map illustrating the Plant-TFClass structural classification. Colors separate the
eight structurally defined superclasses of transcription factors DNA binding domain with
homologs in plants, plus the “Yet undefined DNA-binding domains”. Gray frame delimits
classes, while the families are framed with a gradient-colored background. Asterisks indicate
TF families and classes absent from TFClass. Asterisks in classes correspond to DBD fold absent
in mammals. TF families within a given class are evolutionary related, at least based on remote
sequence homology for a portion of DBD containing the residues contacting the DNA. The only
exception are families within the “Other C4 zinc finger-type factors” and within the “bHLH"

classes. No evolutionary links are established outside classes.

Figure 2: lllustration of plant TFs DNA binding domains with or without DNA. TFs are classified
in their respective superclasses as in figure 1 (frames follow the superclasses color codes from
Figure 1). Experimentally determined structures are colored in pale cyan (first monomer) and
green cyan (second monomer). The side chains of DNA interacting residues are shown as
sticks. DNA is colored orange when it was crystalized with the TF DBD and grey when it comes
from another experimentally derived TF/DBD structure used in superimposition (example: the
Trihelix superimposed on a MYB crystalized with DNA). When no experimental structure
exists, the superimposed AlphaFold2 computed structure is shown in yellow. In
superimposition the structure that was used as a template is hidden. For the two heteromeric
CCAAT-binding factors, NF-YB and C are colored in deep teal. PyMOL session files are available

at https://github.com/Bioinfo-LPCV-RDF/Plant-TFClass. For source of structures see online

supplemental information Method.
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Method

Experimentally-determined 3D structures were downloaded from the Protein Data Bank. AlphaFold2
[86] computed structure models were downloaded from UniProt. For each model, position of the DBD
was obtained directly from the UniProt “Family and Domains” annotation or identified using CD-search
against the CDD database [87]. Structure predictions at the DBD positions were extracted from the
PDB files using the Gemmi library (https://gemmi.readthedocs.io/en/latest/). Protein 3D structure
comparisons and representation were performed using DALI [88], FATCAT [89] and PyMOL. In the main
article and for the sake of clarity, we colored names of TF classes and families in blue and orange,
respectively.
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Figure S1: Automatic grouping of transcription factor (TF) families based on similarity of their DNA
binding domains (DBDs). A: Dendrogram illustrating the structural distance of DBDs. The dendrogram
is generated through hierarchical clustering using P-values from FATCAT structural alignments.
Superclasses are labeled in black if they are correctly identified, while split superclass classes are in
grey. Blue asterisks indicate placements that are incompatible with our classification in Figure 1. Black
asterisks represent PDBs (Protein Data Bank entries) where protein segments not directly involved in
DNA binding have been removed. B: Superimposition of DBD structural alignments between families
that do not cluster as per our classification (colored as indicated in the legend) and one of the families

with the best alignment in A (using the same color code as in Figure 2).



Table S1. List of plant TFs as organized in Plant-TFClass framework

Common names

ARID/HMG,
ARID/Bright

E2F, E2F-DP, E2F/DP
HSF

HD-DTT

HD-Zip

LD

HD_PHD

HD_PINTOX
HD_PLINC

HD SAWADEE

HD TALE, HD_BEL,
HD_KNOX

HD_WOX

LEAFY, LFY
RWP-RK, NIN like,
AtRKD, RWPRK
GARP, ARR-related,
ARR-B, G2like, G2-like
GARP, ARR-related,
ARR-B, G2like, G2-like
MYB

MYB, MYB-related
GeBP, Storekeeper
Trihelix

AP2

AP2, EREBP, ERF
CAMTA, CAMTA-like
FAR1, FHY3

NAC, NAC/NAM

voz

WRKY

EIL

CONSTANS,CO
CCAAT, HAP3, NF-YB
YABBY, C2C2-YABBY,

C2C2_YABBY
A.T hook, AT hook

SuperClass

Helix-turn-helix domains
Helix-turn-helix domains
Helix-turn-helix domains
Helix-turn-helix domains
Helix-turn-helix domains
Helix-turn-helix domains
Helix-turn-helix domains
Helix-turn-helix domains
Helix-turn-helix domains
Helix-turn-helix domains
Helix-turn-helix domains
Helix-turn-helix domains
Helix-turn-helix domains
Helix-turn-helix domains
Helix-turn-helix domains
Helix-turn-helix domains
Helix-turn-helix domains
Helix-turn-helix domains
Helix-turn-helix domains
Helix-turn-helix domains

Beta-hairpin exposed by an
alpha/beta-scaffold
Beta-hairpin exposed by an
alpha/beta-scaffold
Beta-hairpin exposed by an
alpha/beta-scaffold
Beta-hairpin exposed by an
alpha/beta-scaffold
Beta-hairpin exposed by an
alpha/beta-scaffold
Beta-hairpin exposed by an
alpha/beta-scaffold
Beta-hairpin exposed by an
alpha/beta-scaffold

Other all-alpha-helical DNA-
binding domains

Other all-alpha-helical DNA-
binding domains

Other all-alpha-helical DNA-
binding domains

Other all-alpha-helical DNA-
binding domains

Beta-sheet binding to DNA

Class

ARID

Fork head / winged helix
factors

Heat shock factors
Homeo domain factors
Homeo domain factors
Homeo domain factors
Homeo domain factors
Homeo domain factors
Homeo domain factors
Homeo domain factors
Homeo domain factors
Homeo domain factors
LEAFY

RWP-RK

Tryptophan cluster factors
Tryptophan cluster factors
Tryptophan cluster factors
Tryptophan cluster factors
Tryptophan cluster factors
Tryptophan cluster factors
AP2/EREBP

AP2/EREBP

GCM domain factors
GCM domain factors
GCM domain factors
GCM domain factors
GCM domain factors

EIL

Heteromeric CCAAT-binding

factors

Heteromeric CCAAT-binding

factors

High-mobility group (HMG)

domain factors
A.T hook factors

Family

E2F

HSF

DDT

HD-ZIP

LD

PHD

PINTOX
PLINC
SAWADEE
TALE-type HD

WOX

GARP_ARR-B
GARP_G2-like
MYB
MYB-related
Storekeeper
Trihelix

AP2
ERF/DREB
CAMTA
FRS/FRF
NAC

VOzZ

WRKY

CONSTANS
NF-YA
YABBY

AHL

PDB ID
(used
in fig 2)
1KQQ
2CeY
5D8K
NA
NA
NA
NA
NA
NA
NA
NA
B6RYI
2VY1
AF2
model
Not
shown
5LXU
B6KKS
NA
AF2
model
2JMW
TET4
5WX9
AF2
model
AF2
model
3SWP
AF2
model
2LEX
4ZDS
7CVQ
6R2V

AF2
model



HMGA

TCP, bHLH_TCP
C2H2, C2H2 ZF

IDD

GRF

SBP, SBP-type zinc
finger

ALOG

GATA, Tify

DOF, C2C2-Dof,
C2C2_Dof
AS2/LOB, LOBAS2
ARF

ABI3VP1, ABI3/VP1, B3
RAV

BES/BZR, BES1
bHLH

bZIP

MADS type I, MADS-

Box
MADS type Il, MADS-

Box

BBR/BPC, BBR-BPC
CPP Cysteine-rich
polycomb-like protein
DBP

GRAS

PLATZ

S1Fa1, S1Fa-like

Beta-sheet binding to DNA
Beta-sheet binding to DNA

Zinc-coordinating DNA-binding
domains

Zinc-coordinating DNA-binding
domains

Zinc-coordinating DNA-binding
domains

Zinc-coordinating DNA-binding
domains

Zinc-coordinating DNA-binding
domains

Zinc-coordinating DNA-binding
domains

Zinc-coordinating DNA-binding
domains

Zinc-coordinating DNA-binding
domains

Beta-barrel DNA-binding
domains

Beta-barrel DNA-binding
domains

Beta-barrel DNA-binding
domains

Basic domains

Basic domains
Basic domains

Alpha-helices exposed by beta-
structures

Alpha-helices exposed by beta-
structures

Yet undefined DNA-binding
domains

Yet undefined DNA-binding
domains

Yet undefined DNA-binding
domains

Yet undefined DNA-binding
domains

Yet undefined DNA-binding
domains

Yet undefined DNA-binding
domains

A.T hook factors

TCP

C2H2 zinc finger factors
C2H2 zinc finger factors
C3H zinc finger factors
C3H(C),C2HC zinc fingers-like
factors

HC3 zinc ribbon factors
Other C4 zinc finger-type
factors

Other C4 zinc finger-type
factors

Other C4 zinc finger-type
factors

B3

B3

B3

Basic helix-loop-helix factors
(bHLH)

Basic helix-loop-helix factors
(bHLH)

Basic leucine zipper factors
(bZIP)

MADS box factors

MADS box factors
BBR/BPC

CPP

DBP

GRAS

PLATZ

S1Fa-like

HMGA
TCP
C2H2
IDD

GRF
SBP
ALOG
C4-GATA-related
DOF

LBD

ARF

LAV

RAV
BES/BZR
bHLH
bzIP
Type |

Type 1l

3UXW
VP2
1A1F
NA
AF2
model
1ULS
NA
4HC7
NA
5LY0
6YCQ
6J9C
7TRT6
5ZD4
5GNJ
TINWQ
1SRS
1EGW
NA
NA
NA
NA
NA

NA



