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Abstract
Whilst most of this book has focused on imaging data because of the key role
it plays in cardiology, non-imaging data also has an important role to play.
This chapter reviews some of the most relevant non-imaging data sources
and how they can be used by AI to positively impact patient management.
Electrophysiology data, electrocardiograms and electronic health records are
all discussed in detail and potential and existing applications for artificial
intelligence are discussed with practical examples.

Keywords:
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Learning Objectives:

At the end of this chapter you should be able to:
10.A Explain the potential role of AI in analysis of electrophysiology

data
10.B Describe some applications of AI-based analysis of electrocar-

diograms (ECGs) and outline some of the difficulties and chal-
lenges that must be addressed

10.C Explain how AI can be used in the analysis and automated
production of electronic health records (EHRs)
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Introduction
Imaging data play a central role in cardiology, and much of the recent research
activity in AI for cardiology has focused on cardiac imaging. For this reason,
imaging-based AI has been the main focus of this book. However, there are a
range of other data sources that are of importance in clinical decision making
in cardiology. In this chapter we review the most relevant of these, with a
focus on the ways in which AI has been proposed for use to streamline and
improve clinical workflows.

Electrophysiology
Cardiac electrophysiology deals with the diagnosis and treatment of the elec-
trical function of the heart. In general, it involves the analysis of electrical
phenomena by means of different sources of information such as the ECG,
body surface potential maps (BSPMs), or the more invasive means of in-
tracardiac catheter recordings. Its main area of work is the analysis and
treatment of rhythm disorders (arrhythmias), which are managed by cardiac
electrophysiologists, who acquire and analyze electrophysiology studies that
aim to elucidate symptoms, evaluate abnormal ECGs and assess the risk
of arrhythmias in the present and future. Among the different therapeu-
tic options available for cardiac arrhythmia, we can highlight drug therapy,
surgical implantation (pacemakers, implantable cardioverter-defibrilators or
ICDs), and cardiac ablation (radiofrequency ablation, cryoablation). Due
to the complexity to plan and optimize cardiac therapies, several novel ap-
proaches and technologies have grown in popularity during the last decades
to aid electrophysiologists. Among them, it is worth mentioning precision
cardiology that involves the construction of patient-specific representations
of an individual heart to perform electrical simulations [93] (see Chapter 9,
page 227). In the area of cardiac electrophysiology, the advent of machine
learning is having a major impact at different levels in several applications,
from the automatic interpretation of ECGs to basic research on arrhythmia
mechanisms, both experimental and computational [389, 277, 301].

Precision Cardiology

The goal of precision cardiology is to come up with methods and tools that
allow doctors to develop and provide personalized treatments to each in-
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dividual, taking into account inter-individual variability. It is an innovative
approach that aims at improving risk stratification and at identifying person-
alized management through targeted diagnostic and therapeutic strategies.
This is perfectly represented by the concept of a ‘digital twin’ (see Chap-
ter 9, page 227), which aims to define patient-specific virtual hearts that
dynamically integrate the clinical data acquired over time for an individ-
ual combined with previous observations from experiments and multi-scale
simulations [93]. Such a virtual model can be used to aid doctors to make
diagnoses and prognoses, tailor treatments to individual patients and make
predictions of patient health evolution [340]. Biophysical simulations are
successful at integrating multiscale, multiphysics information with the aim
of uncovering mechanisms that can explain functions [69]. For instance, a
digital twin equipped with physics-based models could be used to predict
the response of a patient to a specific medical device, such as a cardiac pace-
maker, or even to personalize the configuration of the device to its particular
anatomical and functional properties (ventricular wall morphology, location
of coronary veins, presence and location of scar tissue). Although, at first
glance, the relationship between machine learning and multiscale biophysical
simulations does not seem obvious, they can benefit from each other in a
number of applications [21], such as the integration of physics-based knowl-
edge in the form of governing equations (learning the underlying physics),
or constraints to manage ill-posed problems (e.g. electrocardiographic imag-
ing (ECGI) inverse problems) [257] or handle sparse and noisy data [336].
Another important use of machine learning in precision cardiology is the
definition of surrogate models that can predict the response of a complex
biophysical model from a reduced number of clinical inputs. This is possible
due to the ability of machine learning to reveal correlations between different
features that can be exploited by biophysical models to, for instance, classify
or stratify patients. Since creating a personalized model is time consuming
and requires expert input and many different types of data, machine learning
techniques such as transfer learning are good alternatives to make predictions
in a fast and reliable way without the need to create a full detailed model
from scratch [301].

Machine Learning in Cardiac Computational Modeling

Digital twins must include the particular properties of an individual, so that
simulations on the model are able to predict outcome of antiarrhythmia treat-
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ments, or stratify patients. To build a digital twin, the first step is to recon-
struct the patient-specific 3-D anatomy of the patient’s heart. For the case
of the geometry of the atria and ventricles, the use of deep learning based
methods, and the proliferation of some particular models, such as the U-Net
[50] has opened up new possibilities to build detailed models from clinical
data with very little user interaction. However, if one wants to incorporate
other physiological properties into the model to be able to perform biophys-
ical simulations of cardiac electrophysiology, many additional features have
to be extracted from the patient’s clinical records, imaging data, and elec-
trophysiological measurements to personalize the model [243]. For instance,
the underlying organization of cardiac tissue, so-called fiber orientation, that
determines the principal direction of the depolarization wavefront in cardiac
tissue has to be incorporated into the model, but this cannot be obtained in
vivo using imaging techniques. Physics-informed neural networks (PINNs)
have been developed to learn properties such as the fiber orientation from in
vivo anatomical maps (e.g. FiberNet [163]). PINNs are variants of machine
learning based methods that are used to solve inverse problems governed
by partial differential equations, and do not typically need large amounts
of labeled data to make accurate predictions thanks to the incorporation of
physical laws into their loss functions [325]. Other studies have focused on
personalizing parameters of a simplified electrical model, for example acti-
vation onset location and tissue conductivity from patients that presented
premature ventricular contractions, using Kernel Ridge Regression [136]. In
this work, the authors were able to personalize the cardiac electrophysiolog-
ical model and predicted new patient-specific pacing conditions.

Biophysical simulations of the heart have also been used as tools to generate
synthetic datasets that include detailed anatomical and electrical information
to train machine learning systems for different applications [312, 123, 95, 139,
111].

Personalization of models to reproduce the electrical activation sequence of
the heart is also an active area of research. Several sources of data have been
employed to adapt the model to the patient, such as electro-anatomical maps
(EAMs, acquired invasively with a catheter), to BSPMs and ECGs. EAMs
are created sequentially by acquiring random discrete samples from different
heart beats that are scattered all over the heart’s endocardial cavity. As a
result, EAMs often present large errors and inconsistencies that can affect
the decision taken during the radiofrequency ablation intervention. Recently,
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a PINN has been proposed (EikonalNet) to overcome these limitations, im-
posing wave propagation dynamics to the estimated EAM, and adding a
quantification of the uncertainty [336]. This is possible thanks to the current
understanding of the system, which could be used to constrain the design
space using the known underlying wave propagation dynamics. In the same
work, an active learning algorithm was proposed to guide the electrophysiol-
ogist in the data acquisition process during the intervention. Similar works
have used machine learning to estimate the sequence of activation from mo-
tion patterns (using Kernel Ridge Regression) [313], or directly from images
(using least-squares SVM) [312], since there exists a relationship between
the electrical activation and mechanical contraction. Non-invasive ECGI has
also been employed as a source of information to personalize cardiac electro-
physiology models when combined with machine learning algorithms, such as
the Time-Delay Artificial Neural Network (TDANN) [257], transfer learning
[135] or support vector regression (SVR) [176].

Machine Learning in Cardiac Arrhythmia Mechanisms

Biophysical models can provide insight into the heart as a system at a high
level of resolution and precision. They can systematically probe various
pathological conditions and treatments, and they can do this faster, more
cost effectively and go beyond what is experimentally possible. The mas-
sive datasets produced by these simulations are suited to machine learning
analysis to uncover hidden relationships between parameters.

At the cellular level, machine learning has been employed in ion channel
modeling to i) predict functional changes in channels due to mutations [88];
ii) identify the structure/function relationship in voltage potassium chan-
nels [228]; or find relationships between kinetic properties of ion channel
recovery and dynamics of arrhythmias [217]. It is also worth mentioning its
application to investigating drug cardiotoxicity by predicting hERG (ether-
a-go-go-related gene) related cardiotoxicity of a given compound, which is a
surrogate marker of pro-arrhythmic risk [402].

At the organ level, machine learning has been applied to the investigation
of reentrant activity. In particular, Muimani et al. [275] developed a deep
learning method (a CNN, see Chapter 3, page 74) for the detection of un-
broken and broken spiral waves, which are analogs of life-threatening cardiac
arrhythmias, and their efficient elimination by targeted delivery of low am-
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plitude current. Other studies have focused on predicting the effect of the
fibrosis density and entropy on the maintenance of reentrant drivers by using
patient specific computational models of the atria and SVMs with second
degree polynomial kernels [433].

Machine Learning in Therapy Guidance

The combination of machine learning and digital twin technology could also
be a powerful tool for therapy guidance, with a large potential to be trans-
ferred to electrophysiology labs. Currently, most common arrhythmias are
treated by catheter-based ablation, which destroys the ability of cardiac tis-
sue to trigger and conduct electrical signals, and can stop several types of
arrhythmias, such as ventricular tachycardia (VT) or atrial fibrillation (AF).
An important area of study that combines biophysical modeling and machine
learning has focused on predicting the location of arrhythmic sources, such
as ectopic foci or rotor drivers, in the atria and ventricles. In [123] a SVM
classifier was built to determine non-invasively from the virtual BSPM of a
patient, the location (region based) of the ectopic focus that was triggering
the atrial tachycardia, with an accuracy over 90%. Yang et al [424] used
CNNs to detect the exit site of postinfarction VT on the basis of the 12-lead
ECG, which was subsequently validated by computer simulations. In [149],
the use of sequential factorized autoencoders (a type of deep CNN) was pro-
posed to find the location of VT exit sites, taking into account differences
in 12-lead ECG due to patient variability at electrical (source of VT) and
anatomical (heart anatomy) levels.

Regarding ablation of AF, there has been a large number of studies that
aim to predict ablation success or recurrence after ablation based on clinical
recordings, which analyze the 12-lead ECG, patients’ anatomy, or distribu-
tion of fibrosis. Computer simulations on patient-specific geometries includ-
ing fibrosis segmented from LGE-MRI were conducted to pre-operatively
predict recurrence of AF after ablation together with a machine learning
based classifier [352].

Limitations

Although there are big expectations and optimism for the potential applica-
tions of machine learning techniques to physics-based modeling, it is impor-
tant to be aware of its limitations. In general, machine learning techniques
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identify correlations but are agnostic as to causality, while multiscale mod-
eling can find causal mechanisms. Besides, it is very common to see cases
in which machine learning systems do not generalize well, i.e. the system is
not really learning from the samples, but memorizing them (i.e. the model
overfits, see Chapter 2, page 33). In addition, in many studies it is assumed
that the distributions of the training and the test data are the same, which
may be not true. Finally, another recurrent problem in many cases is that
there is class imbalance, i.e. a particular class is over represented compared
to others.

ECG Analysis
Transition to the Digital Era

The electrocardiogram (ECG) is a central tool in the assessment of a patient’s
condition and their follow-up. It is non-invasive and inexpensive compared to
other devices, available in a large variety of clinical environments and used by
a large array of healthcare professionals with varying knowledge on cardiol-
ogy, an important point which can hamper ECG interpretation. Over recent
decades, computational techniques have substantially improved the quantifi-
cation and analysis of ECG signals [368], and the use of machine learning
has further increased the efficiency and robustness of these tasks [130, 166].
As access to data is key to developing high performing machine learning al-
gorithms, the entrance of the field of ECG analysis into the digital era has
clearly boosted the use of machine learning models, as visible from the pub-
lications registries33 and continuously increasing industrial investment.

However, the route to the digital world is not straightforward for ECG data.
Many hospitals still rely on paper-printed ECG records, which requires ad-
dressing a large amount of issues before their computational analysis: digiti-
zation of the printed records, extraction of the signals from the background,
standardization of the traces, etc. Many efforts have been made to properly
standardize the existing data, but still heterogeneity between the proposed
formats hampers the interoperability of analysis tools [58, 391, 35]. Besides,
even for a given data format, many differences can remain in the stored
data, as illustrated in Figure 10.1. For example, the duration and number

33The query “ECG machine learning” in Pubmed returns 350+ papers for 2021 against
around 75 and 20 papers ten and twelve years previously.
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of cardiac cycles considered actually depends on the underlying disease and
the type of acquisition (for example, in 12-lead ECG as opposed to Holter
acquisitions). Given this context, it is evident that despite being 1-D, the
computational analysis of ECG signals is not at all easier compared to 2-D
images.

One also needs to remember that given the scarcity of large standardized
databases of digital ECG signals, such computational analysis started much
before the advent of machine learning with many efforts for community-based
post-processing tools using standard signal processing [368]. Among these,
popular methods largely relied on smart signal analysis (e.g. wavelet-based
methods that are able to represent the multi-scale structure of signals) [259]
and generic-but-relevant decisions (rule- or threshold-based, using relevant
features extracted from the signals). Highly curated databases have now
started to emerge (see database reviews in [248, 166, 366]) to drive the whole
community around data analysis challenges [305], which open the path to
applying machine learning models but also to compare them to common
ground truth data.

Machine learning naturally has the potential to move this automated anal-
ysis forward, with methods better suited to the data under study. In the
following, we will discuss how two main tasks of ECG analysis are handled:
automatic feature extraction and automatic diagnosis. We will pay specific
attention to issues that highly condition the performance of machine learn-
ing, such as the database size, the quality and variability of annotations as
well as the interpretability of the results.

Automatic Quantification

A first task for the computational analysis of ECGs with machine learning
consists of automatic quantification, namely the automatic extraction of fea-
tures of interest in the signals. As discussed in the Clinical Introduction to
Chapter 4 (see page 86), typical measurements from ECG signals consist of
the onset/offset of each cycle, and complementary markers of the cardiac
cycle such as the events of the QRS, P and T waves, and the duration of
the cardiac phases that can be derived from these events, since they are
biomarkers of different cardiac diseases (e.g. enlarged QRS as a surrogate
of electrical dyssynchrony, or elevated ST segment for infarction). From a
machine learning perspective, extracting these events can be formulated as
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Figure 10.1: Variability in the ECG signals from the CPSC2018 database
[238] used in the PhysioNet 2020 challenge [305], consisting of 12-derivation
signals from 6877 subjects. For visualization purposes, all signals were tem-
porally resampled to 100 instants with the beginning and end of the cycle
normalized to 0 and 100%, respectively, and averaged across all the cycles
of a given subject. (a) V1 to V6 derivations (half of the cycle) for the 917
subjects labeled as normal sinus rhythm (the thick black trace corresponds
to the average of all signals). Despite all being “normal”, we observe a large
variability in the QRS complex amplitude, and in the timing and amplitude
of the T wave. (b) Comparison of normal sinus rhythm and atrial fibrillation
subjects based on two features extracted from the ECG signals using stan-
dard signal processing. Two clusters are easily visible, indicating that these
two features may be enough to classify most subjects, but the presence of
some subjects near the other cluster indicates that more advanced features
or signal analyses are required to improve diagnosis. (c) Representative ECG
(average across a subgroup, V6 derivation displayed) for five subgroups for
which specific QRS and T wave changes are visible depending on the sub-
group, motivating the use of a more sophisticated analysis of ECG patterns.239



a supervised problem, where the training labels come from ECG signals in
which the events have been annotated by experts. Naturally, their identi-
fication may be more or less challenging depending on the quality of the
signals, the derivation, and the disease under study. Testing machine learn-
ing models of different complexities and increasing the database size and
richness are ways to prevent this, although the latter may not be possible in
all situations.

Although automatic diagnosis (discussed in the next subsection) attracts
most of the attention in ECG analysis, several works have attempted to
match or exceed the performance of standard ECG quantification methods
by using machine learning. Convolutional neural networks (CNNs, see page
74) are attractive compared to fully-connected networks (FCNs, see page
88), as they use convolutions that both reduce the number of network con-
nections (the number of parameters to optimize) and better take into account
the structure of the input data (the spatial arrangement of pixels for images,
and the temporal sequence of values for signals), as demonstrated on ECG
data by, for example, [365, 62]. Inspired by its success in image segmenta-
tion tasks, a variant of the U-net architecture has been recently adapted for
ECG quantification [178, 179, 274, 383]. Another branch of works has consid-
ered Recurrent Neural Networks (RNNs, see page 88), which are tailored for
analyzing temporal sequences of data, and in particular the long short-term
memory (LSTM) architecture, which partially addresses some computational
issues of RNNs [10, 300].

Automatic Diagnosis

Once the features of interest have been extracted, these can be fed into
subsequent models for the characterization of populations (e.g. examining
statistical differences between two subgroups), or automatic diagnosis. In
theory, as for 2-D images, neural networks may also offer an all-in-one ap-
proach that avoids the need to extract pre-identified (i.e., ‘hand-crafted’)
features from the signals, and instead performs both feature extraction and
diagnosis at once. However, more complex models mean many parameters to
optimize and present the risk of overfitting if not enough data are available,
which can be critical for ECG signals due to their potentially large variability
and the limited amount of well-curated databases for training. Thus, for au-
tomatic diagnosis, the use of a separate feature extraction step can be a way
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to reach more powerful and simplified data representations based on expert
prior knowledge. Given the potential amount of features and their partial
redundancy, feature extraction can be coupled with dimensionality reduction
to reach more robust representations for use by machine learning models for
automatic diagnosis.

Given the abundance of publications on this topic, we refer the interested
reader to reviews of the literature addressing this question [248, 268], includ-
ing some specific to deep learning [366, 116, 297, 166] which mostly rely on
CNN and RNN architectures. We include a brief summary of this body of
work below.

A first group of works focuses on heart beat classification, for which very
high performance (more than 95% accuracy) has been achieved in much of
the recent literature. A second group of works is aimed at automatic di-
agnosis of patients based on complete ECG recordings; the performance of
these methods highly depends on the disease. This is clearly illustrated in
the 2020 PhysioNet challenge [305], which provided 66,405 ECG recordings
(43,101 with labels for training) and evaluated the results from 217 teams
who attempted to automatically classify the ECG signals. Interestingly, the
organizers designed a specific metric to compare the outputs of the competi-
tors, using a reward process that softens some misdiagnoses depending on
the severity of the disease or potentially different labelling of variants of a
disease (e.g. “Complete right bundle branch block” vs. “Right bundle branch
block”). A more recent paper focused on the PTB-XL database [372], which
was part of the 2020 PhysioNet challenge, and provided a complementary
view on deep learning methods for diagnosis on this database, with an inter-
esting hierarchical organization of the diagnostic labels and some insights on
the uncertainty and interpretability of such models.

Current Open Questions

As briefly summarized above, there are reasons to believe that high perform-
ing machine learning-based analysis of ECGs will become a reality for several
applications in the near future, with the proviso that learning to cope with
real-world data may present challenges.

As most of the methods involve supervised learning, the availability of large
datasets with high quality annotations is crucial. The uncertainty in the man-
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ual ECG annotations from a single expert can already be dramatic, and con-
sensus in the annotation of events by different experts may be hard to reach
[173, 385]. In addition, carefully and consistently annotating large series of
signals is not feasible on any local database. The scarcity of well-annotated
databases probably explains why a lot of focus is on the classification of ECG
signals, and much less on delineation and feature extraction. One promis-
ing area for future work lies in the generation of realistic synthetic data,
which by definition comes with ground truth annotations. This strategy has
been successfully demonstrated in computer vision [328] and medical imaging
[161] applications, and has started to be adapted to electrophysiology data
[110, 177].

Developers and users of machine learning tools also need to keep in mind that
1-D (i.e. signals) does not necessarily mean simpler than 2-D (i.e. images).
There exists a lot of variability in the signals due to noise, acquisition fac-
tors, or disease, which makes the detection of subtle events very challenging.
Besides, the temporal dimension contains much of the useful information in
ECG analysis where several cycles are often considered, compared to im-
age analysis where a single image (for static data) or a single cardiac cycle
(for temporal sequence analysis) is generally considered representative of the
patient under study.

Also, although experienced users of neural networks tend to understand the
role of subparts of the network and specific architecture choices, the path to
the decision taken by the network is still hard to interpret. As described in
other parts of this book (see footnote, page 29), interpretability is crucial for
the transfer of these technologies to the clinic and this issue has started to
be addressed by the machine learning community. A simple approach can
be to produce attention maps that highlight the specific regions of the signal
that led to the decision. For ECG analysis, this has been demonstrated on
2-D pictures of ECG signals, therefore borrowing the concept of attention
maps from 2-D CNN and image analysis [394], and on actual 1-D signals
[372].

Despite these issues, the advent of machine learning brings many hopes to the
field of ECG analysis. The role of data analysis challenges will likely play an
important role in realising these hopes, since they provide well-curated large
databases and a specific question to address each year. They also serve to
closely follow the evolution of the state-of-the-art and compare existing meth-
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ods in a standardized manner. In this sense, the annual PhysioNet / Com-
puting in Cardiology challenges have to be commended as they encourage
focus on evaluation of performance specifically for ECG applications. In ad-
dition, their recent versions [305] comply with the good practices highlighted
in recent meta-analyses of health data challenges [255]. This is surprisingly
not the case for a large amount of data analysis competitions, although it
should be of prime importance given the trend to use such public databases
for local training or even for validation purposes. This is especially impor-
tant given the amount of industrial investment in ECG analysis solutions, in
particular for very precise applications such as diagnosing atrial fibrillation
but also widening the spectrum of available signals (e.g. from wearables,
smart watches, etc.), which bring complementary memory and speed issues
that researchers will need to address.

Electronic Health Records
Transition to the Digital Era

Due to the boom of electronic devices and analysis techniques such as AI,
but also the wide adoption of digital technologies within hospitals, the use of
Electronic Health Records (EHR) has drastically increased in the last decade.
They encompass a centralized collection of a patient’s data followed along
time through hospital visits or remote monitoring, and facilitate analyses
and reporting at the scale of an individual patient or at population level
[187].

The transition to digital technologies and big data raises a question that is
not specific to EHRs, but is certainly shared by their users: how to properly
manage this data deluge, a question which covers issues around acquisition,
storage, maintenance, and access to these data.

More specific to the EHR, moving to such data requires a careful digitization
of handwritten notes and voice records, for which a first set of AI methods
from computer vision and speech processing are very relevant. This process
is generally seen as supervised, in the sense that the inputs are mapped or
tagged to given categories or values through classification or regression (for
example, the concept “heart failure” written several times in a report should
be tagged as a single “heart failure” item, which means recognizing the words
“heart” and “failure”, and considering them jointly).
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Natural Language Processing (NLP) is a family of methods that are highly
relevant for examining structured texts and enabling the machine to “under-
tand” them. Among the AI methods it relies on, Recurrent Neural Networks
(RNN) are suited for data that are sequentially ordered (typically, the text
in a written document) as they can include long-range dependencies between
the feature representations (the hidden states of the RNN). As nicely summa-
rized in [356], they should not only address the extraction of single concepts,
but also be able to spot the temporality of these events (namely how to con-
vert a sometimes vague period of time into data that can be analyzed), and
the relations in the text (for example, causes or conditions).

One important issue is that the huge amount of information contained in
EHRs is currently insufficiently standardized across hospitals, clinicians, dis-
eases, several visits, etc. The EHR scientific community is progressively
moving towards more standardized formats, as done previously with the DI-
COM format for medical images. For this purpose, public datasets are of high
value as they structure the community around a common task or challenge.
A widely recognized example is the MIMIC-III dataset (Medical Informa-
tion Mart for Intensive Care [180], which consists of deidentified EHRs from
around 60K intensive care unit admissions.

To further structure the contents of these data, the combination of NLP and
ontologies defined a priori can be useful, although these may be challenging
to define. A broader view can also be adopted to better exploit the available
data. For medical images this means, for example, considering both the
image contents and the associated metadata either from the DICOM file or
available in the EHR, as explicitly reviewed in [168].

Disease Perspective

Once the information has been extracted and structured, AI techniques and
in particular machine learning and deep learning are now a “must-have” for
the analysis. As for images and signals, machine learning can be used to
address many challenges related to disease analysis with EHRs [155, 356],
both in a retrospective or a prospective way:

• Detection [83, 235, 215]: for example, diagnosis (supervised) or abnor-
mality detection (which can be unsupervised). See overview in Chapter
5.
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• Prediction [81, 270, 432, 408]: for example, prognosis or evolution of
specific values (either using a single timepoint, or through methods that
explicitly address the temporality of events, such as RNNs or regression
models). See overview in Chapter 6.

• Phenotyping [214, 43] (partially discussed in Chapter 8) to discover
new concepts or confront existing ones with the data, for which un-
supervised learning techniques are interesting as they can aggregate
patients with similar data or conditions (clustering) or highlight the
main characteristics of a dataset.

• Better representing a dataset [388, 82, 84, 211], which encompasses
the previous item, and for which a specific family of representation
learning algorithms exists [358], either using classical machine learning
(manifold learning) or neural networks (autoencoders, see Chapter 4,
page 91, and Chapter 5, page 128). The review in [356] nicely distin-
guishes between the objective of representing a medical concept across
a population, or the data associated to a single patient.

Nonetheless, users should carefully balance the sophistication of the tech-
niques used against the actual gain for the medical application. Indeed, a
recent review [46] analyzed the evolution of an algorithm’s performance in
longitudinal EHR studies, where neural networks did not necessarily bring
a clear gain in the last years. This report has to be tempered against the
potentially increasing complexity of the databases, but the authors remind
us that the difficulty of the medical questions and the variety of outcomes
are clear bottlenecks for computational techniques using EHRs. They also
argue for better standardization and organization in the EHR scientific com-
munity, referring to the good example of the ECG analysis community, which
both structured the data formats, the feature extraction algorithms, and even
databases including yearly data challenges34.

Hospital and Patient Perspective

The wide spectrum of data covered by the EHR and their rather global accep-
tance also opens up new perspectives beyond disease specific studies.

Having patient records in a centralized and somehow standardized format
first benefits the managing of resources by the hospitals. In this context, AI

34http://physionetchallenges.github.io/
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techniques can be very valuable for comparisons and management at the scale
of a whole hospital. When replaced in a temporal perspective, they can go
beyond the prediction of mortality and estimate the length of stay of patients
[46]. Automated reporting techniques are being developed in an attempt to
speed-up the cumbersome processes by clinicians and the hospital staff [263],
which can be seen as the process of generating contents in a structured way,
and therefore encompasses AI generative models.

However, working at the scale of a whole hospital or even a network of hospi-
tals brings additional challenges. Algorithms should target near-to-real-time
access, or at least provide rapid information retrieval tools. Federated learn-
ing (see Chapter 5) is a framework that can be very useful to move beyond
the limited point-of-view of a given hospital [329]: it involves training algo-
rithms across multiple data warehouses without explicitly exchanging data.
In the context of healthcare, this is highly desirable to develop more robust
models with much better generalization ability, avoiding bias to some popu-
lations, and achieving better performance for rare diseases, while being safe
in terms of privacy and security issues.

EHRs still come with many challenges around the standardization and fusion
of many heterogeneous and time-varying data. However, the dynamism of
EHR analysis with AI opens up promising perspectives to better contextu-
alize the patients’ data, including exploitation of external factors that are
available in EHRs but not necessarily included in current analyses, accom-
panied by a much more regular follow-up and traceability that can benefit
both the patient and the clinical institutions.

Closing Remarks
Cardiologists routinely make use of non-imaging data when making clinical
decisions, so it seems inevitable that such data will play an important role in
the future of AI in cardiology. In particular, some types of non-imaging data
are routinely and widely available (i.e. ECGs and EHRs), so if techniques
could be developed to better exploit the richness of these data this would be
very attractive in terms of incorporating AI into current clinical workflows.
However, non-imaging data sources are not immune from the difficulties and
challenges associated with imaging data, such as standardization of formats,
missing/corrupted data and privacy concerns. These issues must be satisfac-
torily addressed before AI techniques based on non-imaging data sources can
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be translated into the clinic. In addition, challenges will likely be faced when
using AI to combine features learnt from imaging and non-imaging data.
Such an approach mimics the way in which cardiologists consider multiple
sources of information when making decisions about patient management,
and so has great potential, but it does increase the complexity of the models
and of the data curation process. These are not concerns to be taken lightly,
and further work is required before AI can truly emulate the way in which
cardiologists are able to deal with such complexity in a seemingly effortless
way.
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