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Abstract

This chapter focuses on how we can best predict the future health of patients,
known as prognosis. This encompasses areas such as risk prediction and
predicting response to treatment. A clinical opinion piece summarises the role
of prognosis in clinical care and highlights the areas where Al has already had
an impact in this area. The technical section summarizes the state-of-the-art
in outcome prediction, focusing on three clinical applications as exemplars:
predicting response to cardiac resynchronization therapy (CRT), predicting
outcome in atrial fibrillation and risk stratification in ventricular arrhythmia.
A practical tutorial reinforces these concepts by taking the reader through
a simple outcome prediction task based on cardiac morphology. The closing
clinical opinion piece highlights areas where Al could impact prognostic tasks
in the future.

Keywords:

prognosis, risk prediction, outcome prediction, cardiac resynchronization ther-
apy, CRT, atrial fibrillation, ventricular arrhythmia, Kaplan-Meier curve

Learning Objectives:

At the end of this chapter you should be able to:

06.A Compare and contrast traditional and Al based methods for
outcome prediction in cardiology

06.B FExplain some ways in which AI models can be used to predict
response to cardiac resynchronization therapy, either using su-
pervised or unsupervised formulations

06.C" Describe how Al can be used to predict outcomes of atrial fib-
rillation

06.D Explain how Al can assist in risk stratification in ventricular
arrhythmia
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Clinical Introduction

Outcome prediction is a critical part of clinical decision making in cardiovas-
cular disease. Accurate assessment of a patient’s risk and timing of future
events informs the choice of evidence-based prevention and treatment [298].
Imaging plays a pivotal role in risk stratification by visualising disease status,
assessing disease trajectory and evaluating response to therapy. An example
is the use of coronary artery calcium scoring (see also Chapter 4, page 100).
as a semi-quantitative test for measuring calcified coronary artery plaque
that can be of value in risk stratifying patients for future cardiovascular dis-
ease endpoints including guiding decisions about statin therapy in selected
groups [146]. Although calcium scoring is a simple and highly reproducible
test it doesn’t account for prognostically important variations in regional dis-
tribution, intensity characteristics, or lesion-specific features [55]. A similar
pattern of limitations emerges when using imaging to identify predisposing
substrates and triggers associated with sudden cardiac death (SCD). Im-
plantable cardioverter-defibrillators (ICD) are the most effective approach to
primary prevention of SCD, and current guidelines regarding device implan-
tation are based on an imaging-derived LV EF <35% [315]. However, the
majority of out-of-hospital cardiac arrests occur in patients with only mild
to moderate dysfunction who might be denied an ICD on current best prac-
tice [371], and so the reliance on single parameter thresholds fails to identify
many of those who would benefit from the intervention [395].

Risk prediction guidelines draw insight from large-scale clinical studies through
linear regression modelling of conventional explanatory variables, but this
approach does not embrace the dynamic physiological complexity of heart
disease [181]. Even objective quantification of heart function by conven-
tional analysis of cardiac imaging relies on crude measures of global contrac-
tion that are only moderately reproducible and insensitive to the underlying
disturbances of cardiovascular physiology [$7]. In routine practice observer-
driven pattern recognition is also used to guide classification introducing
value from expertise but at the expense of objectivity and standardization
[104]. Discretising severity into subjective categories may facilitate inter-
pretability but incurs a loss of predictive power especially when building risk
models [26]. Even consensus guidelines on patient management, for instance
the investigation of stable chest pain, may substantially diverge when differ-
ent assumptions, biases and inferential models drive their design [12].
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The growing abundance of digital medical imaging linked to electronic health
records presents an opportunity to develop prediction models that fully ex-
ploit biologically rich and diverse datasets at scale. Systematic quantification
and evaluation of novel prognostic features could be transformative in the
ambition for delivering “personalized medicine” tailored to individual char-
acteristics including both phenotypic and genotypic profiles [379]. However,
despite the exponential growth of machine learning approaches for prediction
and classification tasks in healthcare [262], the safe and timely translation
into clinically validated and regulated systems has proved to be challenging
[192]. Systematic reviews of machine learning-based cardiovascular risk pre-
diction have revealed inconsistent reporting, study heterogeneity and poor
methodology [203]. In medical imaging applications of machine learning there
are relatively few prospective or randomized trials, and independent exter-
nal validation is scarce, increasing the risk of reporting biased performance
estimates [278, 240].

Coordinated national and international efforts to enhance health interactions
through access to large scale data and advanced analytics are accelerating
the pace of prognostic algorithm development. Examples include commu-
nity studies such as the 500,000 participants of the UK Biobank of whom
20% are being recalled for CMR [237], and the German National Cohort
of 200,000 individuals including 30,000 with imaging [16]. Guidance is also
emerging around the use of open data standards for healthcare informatics
platforms to enable computable biomedical data to be discovered, analysed
and evaluated in a trusted environment [316]. Here there is a growing role for
federated learning architectures, where data are not exchanged, to address
privacy concerns and provide access to heterogenous samples [329]. The most
pressing bottleneck to progress is developing high-quality harmonized medi-
cal image data resources that have a robust ground truth coupled with active
linkages to health events [157]. While the focus of the first wave of radiology
AT applications has been on lesion detection, it is machine learning to guide
risk stratification, assess treatment responses and perform outcome predic-
tion that will be at the forefront of delivering actionable insights into clinical
care [291].

Meaningful risk stratification must inform evidence-based management. For
instance, an attractive target for better outcome prediction is where prognostically-
rich data are not fully exploited by conventional analyses and any re-classification
of risk group leads to a change in management [17]. Such individual-level
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modelling requires clinical studies that capture how disease and treatment
responses vary over time [351]. An advantage over developing sophisticated
new image biomarkers of disease is that outcome prediction is readily inter-
pretable, but it remains crucial to inform clinicians what features were im-
portant in the classification and being able to frame the results with a level
of confidence. Where machine learning is brought closer to clinical decision
making it is also vital to fully understand the role of human factors in such
an unfamiliar cognitive environment — both for medics and patients. While
the majority of patients currently support doctors using Al in the cardiovas-
cular healthcare sector that confidence is easily lost and far more needs to be
done to include stakeholders in setting priorities, ensuring trustworthiness,
and addressing health inequalities [60)].
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Overview

Following Chapter 5 on diagnosis, this section develops another classical
problem in medical data analysis where Al has a strong role to play: out-
come prediction. To help the reader appreciate the impact of Al in this field,
the approaches taken by more traditional outcome prediction methods are
first summarized. It is shown how methods for predicting outcome can be
framed in different ways, and can make use of a wide range of disparate data
sources. In particular, outcome prediction is often presented as a problem
that can be addressed using a supervised learning formulation, given that
in most cases labels can be taken into account (for example, the time to a
negative event such as death or re-hospitalization, or even encompassing pri-
mary and/or secondary endpoints). However, this section also presents how
an unsupervised formulation could help in some exemplar applications. This
point of view is illustrated further in the hands-on tutorial accompanying
this chapter (see page 168).

Current Clinical Methods to Predict Outcome

Outcome prediction models of a disease or its recurrence following treat-
ment are extensively used in clinical practice, medical research and public
health [77]. In this regard, the ability to predict continuous or binary out-
comes in patients with cardiovascular disease (CVD) has the potential for
accurate identification of risk factors, stratification, superior treatment plan-
ning, as well as informed decision making [9%, |. Specifically, modelling
the outcome of arrhythmia-related cardiac diseases (such as atrial fibrilla-
tion, ventricular arrhythmia and heart failure) requires not only the selec-
tion of precise variables to accurately identify the critical predictors, but also
to execute meticulous adjustments for time dependencies among treatments
and responses [103]. Prior to the recent introduction of Al-based prediction
methods, these prediction outcomes were modelled using classical statistical
approaches, which are briefly outlined below along with associated terminol-

ogy.

For cardiac arrhythmia-related conditions, survival data (i.e. the period from
a specific time point to an event of interest [70]) refers to the time from ar-
rhythmia episode or heart failure diagnosis to death or to any time-dependent
phenomenon such as arrhythmia-free survival (i.e. the time until arrhythmia
relapses). To understand arrhythmia-related survival data, one can generate
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Kaplan-Meier estimate of survival function
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Figure 6.1: Kaplan-Meier curve to estimate survival probability (using virtual
data and freely available code in [64])

a Kaplan-Meier (K-M) survival curve by representing time (days, months or
years) on the horizontal axis and the calculated survival probability on the
vertical axis. An example of a K-M curve is illustrated in Figure 6.1 using
virtual data and freely available source code [6]. Explicitly, for each time
corresponding to an event, a new value for the K-M curve is calculated by
dividing the number of events that have occurred by the number of patients
remaining at risk at that time, and then this new value is used to calculate
the survival probability [I11] and confidence interval. The censored data
refers to incomplete data, such as in the case of a patient dropout from the
study during the follow-up time. The so-called ‘risk’ is defined as being the
probability of an event happening over a period of time. Should this risk vary
over time, one can estimate the risk at a particular time point by calculating
a new parameter named ‘hazard’.

Typically, regression models or Cox proportional hazards models are em-
ployed for comprehensive analysis of the survival data. The Cox hazard
model [175] relates the log hazard ratio to a linear predictor of one or multi-
ple explanatory variables and is considered ‘semi-parametric’, meaning that
there is no requirement to parameterise the underlying survival distribution.
Cox regression models have been widely applied to predict the outcome of

146



abnormal heart rhythm conditions, although most of them cannot give in-
formation about when dangerous arrhythmic events might occur (or reoccur
after therapy) within the following 1 year to 10 years. Novel risk prediction
models can express results in a more specific time scale [370]. Although lim-
ited, data-based multi-variable statistical models correlate better with the
actual patient outcomes compared to the predictions given by clinical ex-
perts, especially given the inter-physician variability.

The development of robust tools for primary and secondary outcome pre-
dictions is of great importance for all cardiovascular applications. Let us
consider for instance the case of atrial fibrillation (AF), which is the most
prevalent arrhythmia condition and is associated with life-threatening com-
plications (e.g. embolic stroke, co-existence with heart failure, dementia)
and death [127]. These complications and potentially fatal events lead to
a considerable morbidity and mortality, posing a financial burden on the
healthcare system. Notably, more than 30 million people worldwide suffer
from AF, hence the considerable clinical interest to predict: the outcomes
prior to the intervention; incident or recurrent AF after ablation; and the
progression from sudden/paroxysmal to persistent or permanent AF. De-
spite a relatively high acute success rate of radiofrequency (RF) catheter
ablation therapy, the outcome prediction of long-term AF recurrence during
follow-up remains challenging. Using regression with multiple variables, var-
ious clinical scores can be calculated, such as the APPLE score (using: age,
persistent AF, imPaired eGFR, left atrium LA, ejection fraction) at baseline
with rhythm outcomes documented using 1-week monitoring with Holter de-
vice [202], or the MB-LATER score (using: male gender, bundle branch
block, LA, AF type, early recurrences) 3 months after ablation, although the
predictive ability of these scores may appear modest [311].

Other clinical prediction methods of AF outcome rely on tedious classifica-
tion of signals recorded by the common 12-lead electrocardiogram (ECG)
[212], the amount of atrial fibrosis identified by CMR imaging [75], or CT
imaging-defined atrial shape statistics [1741]. However, the former predictor
requires a substantial amount of dedicated time and resources in order to
process a large number of ECG signals, whereas the latter predictor is lim-
ited by the relatively poor spatial resolution of the data acquired in clinics
and by the fact that most image-based segmentation methods still lack thor-
ough validation. Thus, a consequence of using more sophisticated prognostic
and risk prediction methods for primary or secondary outcome predictions
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is that the number of input variables becomes significant. This leads to
complex regression models, potential bias, and difficulties in assessment of
model performance via calibration and discrimination measures. However,
the utility of using calibration (i.e. overall performance and goodness of fit)
and discrimination (i.e. predictive values, ROC curve) measures is uncertain,
and cannot guarantee the robustness of the prediction model and its overall
contributions to the net benefit and cost effectiveness of the study.

Equally important, it should be underlined that current approaches to predict
outcomes strongly depend on: statistical assumptions of the model employed;
data source and standardization; sample size in large cohorts of patients; mis-
interpretation of scores; cumbersome long-term survival analysis (including
missing data at follow-up and/or unexpected mortality); as well as on multi-
variables in the model (clinical and therapy-related taken at baseline), which
altogether complicate the analysis [77].

Al-based Methods to Predict Outcome

To address the limitations of traditional methods employed for clinical out-
come predictions in CVD patients, recently developed tools using machine
learning concepts either based on agnostic approaches or on data-driven mod-
els empirically optimized have been proposed. These can partially overcome
the issues associated with the traditional regression-based prediction meth-
ods. However, some initial machine learning-based methods (e.g. SVM or
random forests, see Chapter 5, page 121) did not prove to be sufficiently
superior, especially when looking at the ROC curve (more specifically, AUC.
see Chapter 2, page 35) as a criterion for comparisons between the outcome
predicted by these machine learning methods vs. traditional regression meth-
ods [85]. Thus, better approaches are still needed and these should be able to
handle multi-variables input as well as complex relationships between inputs
and output prediction, while being customized for the data specific to a par-
ticular clinical study. In this context, several novel Al-based methods have
been developed to accurately and robustly predict complex clinical outcomes,
as illustrated in this chapter for arrhythmia and dyssynchrony.

Outcome prediction models must be able to forecast a future event based
on the pre-recorded patient’s descriptors. As shown in Figure 6.2, these
descriptors can include: specific image-based biomarkers (e.g. amount of
fibrotic scar or wall thickness, atrial/ventricular shape, indices like ejection
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fraction and strain); physiological ECG signals or blood pressure; as well as
clinical baseline descriptors such as gender, race, phenotype, etc. Based on
these features, the Al-based models are optimised to group the patients into
specific outcome classes. Technically the model can be defined in a similar
way to diagnosis models (see Chapter 5), but the main difference is the
delay between the descriptor registration and the desired endpoints, where
the complexity of the ground truth outcome and the evolution of the clinical
descriptors can be recorded and exploited through time.

The clinical outcome can be complex (depending on the disease and/or ther-
apy of interest) and can include: the acute success rate or response to a
specific therapy; the mid-to-long term survival rate following the therapy;
other events such as intervention-related complications, worsening of already
existing comorbidities, or sudden cardiac death (SCD).

The class output of the prediction model can be defined as binary, based on
the patient’s status at a specific time point, or can be diversified into more
classes to include the status or evolution at each follow up point, for instance
the event/death occurrence in the 1st, 2nd or 3rd year, etc. Furthermore,
while accurate Al-based outcome predictions based on pre-therapy /follow up
descriptors would be beneficial for clinical decision making and therapy plan-
ning, knowledge of the dynamic evolution of these descriptors post-therapy
could provide valuable insights for modelling an optimized response.

Integrating the descriptors at each follow up into the AI outcome model
has potential not only for accurately predicting the patient status at the
next follow up point, but also for a better understanding of the relationship
between descriptor volatility and the eventual clinical outcome.

In the following subsections, we provide three applications of Al-based meth-
ods implemented for modelling outcome predictions for distinct pathological
cases, namely: heart failure; atrial fibrillation; and ventricular arrhythmia.
The scope of this chapter is not intended to be an exhaustive review of all
the Al-based methods for outcome predictions; thus, the methods presented
below are meant to provide representative examples from our field of ex-
pertise and to illustrate how supervised and unsupervised Al approaches
(introduced in Chapters 2 and 5) could be integrated into clinical outcome
prediction pipelines.
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Figure 6.2: Example of generic pipeline for building Al-based models to
predict survival rate or therapy outcome for cardiac applications.

Application: Prediction of Response Following Cardiac
Resynchronization Therapy (CRT)

Cardiac Resynchronization Therapy (CRT) involves the implantation of a
biventricular pacing device in selected patients with mild to severe systolic
heart failure (HF) to address the symptoms of HF and to reduce HF hospi-
talizations. The pacing restores a synchronous beating of the right and left
ventricles, improving the overall biomechanical function of the heart and,
consequently, the ejection fraction (EF). According to American Heart As-
sociation (AHA) and European Society of Cardiology (ESC) guidelines, two
official evidence-based guidelines for HF management, CRT provides a clear-
cut benefit to patients with reduced LV ejection fraction (< 35%), prolonged
QRS duration (> 150ms), left bundle branch block (LBBB) morphology,
and in sinus rhythm, who are still at risk of advanced HF progression despite
receiving optimal medical treatment. Response to CRT corresponds to the
degree of LV remodelling documented in the imaging, usually by quantify-
ing the reduction in the LV end systolic volume. However, the evidence for
positive CRT response becomes less clear when the QRS duration is between
130 — 150ms, non-LBBB morphology or with AF patients, since the recom-

mendations start to deviate between the two guidelines [396]. In addition,
depending on the current selection criteria, between 20% to 30% of patients
who underwent CRT were reported as non-responders [311]. While strate-
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Figure 6.3: Formulation of Al-based model prediction for CRT outcome.

gies to improve CRT response might also involve the improvement of CRT
technology and post-implant care, pacing optimization and patient selection
both still play a major role in limiting unnecessary implants and correctly
assigning patients to appropriate treatment.

Moreover, while the current recommendations are based largely on LV ejec-
tion fraction, QRS duration and morphology, several clinical trials have
demonstrated that patient response to CRT also depends on demographic
and clinical characteristics as well as on the electrical and mechanical function
of the heart [314]. Thus, the interest in CRT patient assessment has started
to shift towards the inclusion of imaging data. This is where AI methods
have made their way into CRT response prediction, thanks to their ability to
integrate and interpret diverse and heterogeneous data involved in treatment
personalization for superior CRT outcome. CRT outcome prediction using
Al-based models can be formulated as a supervised or unsupervised problem,
as shown in Figure 6.3. It should be noted that recent developments suggest
that Al-based models outperform conventional clinical methods [12]. The
following subsections will provide selected application examples of Al-based
models built for CRT outcome prediction. As Al is an emerging technique,
the reader is advised to seek contemporary reviews such as, for instance [12],
for a more comprehensive review of AI methods used in CRT.

Supervised Prediction of CRT Response

Supervised outcome models are trained to predict the endpoint according to
the input descriptors, which, in the context of CRT outcome, can provide
a direct answer as to whether the patient would benefit from the therapy.
To train such models, datasets comprised of the ground truth endpoint are
required. The primary endpoint of CRT clinical trials usually entails ei-
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ther death from any cause or nonfatal HF events. However, such datasets
are usually not publicly available and their acquisition implies large clinical
trials that span over multiple years. In addition, the retrospective nature
of these datasets means that the available clinical descriptors or imaging
data are limited by the study protocol. This can limit researchers’ ability
to investigate novel biomarkers since the required data may not have been
recorded. Therefore, to facilitate these studies, classification tasks are usually
simplified and focused on patient response to CRT. The labels “responder”
or “non-responder” are assigned to the patients who showed significant LV
remodelling as quantified by the reduction in the end systolic volume (be-
tween >= 10% and >= 15%) at 6-month post-operation follow up. This
predictor was shown to be a strong indicator of lower long-term mortality
and HF events [131].

Both machine learning and deep learning methods have been shown to pro-
vide additional predictive value over the metrics used in current clinical guide-
lines (LV ejection fraction, QRS duration and LBBB) [304, , 384, 185].
In addition to these metrics, machine learning methods are able to exploit
detailed cardiac motion data for outcome prediction (i.e. response to CRT)
[304, 185]. For example, a random forest-based machine learning model was
able to achieve a higher AUC score (0.74 compared to the log regression
model 0.67) [185]. Furthermore, owing to their ability to process large mul-
tidimensional input data (i.e. the imaging data), deep learning methods are
capable of making accurate predictions from the LV and RV segmentation
masks of CMR images [317]. Using such masks of heart motion through
the cardiac cycle phases, a deep learning model can learn to predict patient
CRT response without the need for feature extraction or additional clinical
descriptors.

The binary evaluation, “responder” vs. “non-responder”, using a single cut-
off value of the LV end systolic volume, might not accommodate all the possi-
ble outcomes and the subtlety of every patient’s response to CRT. Moreover,
the categorization is even more heavily impacted by the poor reproducibility
of the serial LV end systolic volume measurements. To mitigate this issue, a
“super-responder® class can be considered in the classification model, which
provides information on the patients most likely to gain strong benefit from
the therapy. Given appropriate data for supervised training, machine learn-
ing can be used to predict super-response as well as just response to CRT
[303]. In addition, in studies based on long-term CRT clinical trials , ma-
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chine learning methods can be used to provide more prediction details than
simply response or even super-response. Patient survival through the follow-
up period could also be framed as the model output [334]. In this case, the
output prediction may be split into different classes according to the patient
survival post-CRT therapy, which could provide better insight into the clini-
cal evolution of the pathology, offering potential benefits to decision making
and planning strategy.

An AT classification model usually predicts the output as a value between
0-1 for each class, which is usually regarded as the probability that the in-
puts belong to the specific class. However, most incorrect predictions are
still associated with a high probability. Enforcing the model training to be
uncertainty-aware [101] could provide additional information when analysing
the model output. The integration of uncertainty into model predictions also
allows including the variability of clinical data in the prediction (image and
segmentation quality, incomplete clinical variables, etc.). This variability can
be more prevalent in routine clinical care compared to data from clinical tri-
als. Complementing the model output with uncertainty information could
be extremely useful to ensure clinical adoption of the Al model as a decision
support tool.

Unsupervised Prediction of CRT Response

While supervised models may be bounded by the output class, unsupervised
models do not require any output label for the learning phase. From the
perspective of better characterizing the patient outcome, the main objective
behind this family of methods is to fit the patients (as represented by the
input characteristics) into different archetypal subgroups or phenogroups,
according to the similarity of their characteristics and not based on already
existing labels. These phenogroups can be then interpreted by analysing
their differences in outcome and patient characteristics.

Being agnostic to the potential labels makes an unsupervised approach capa-
ble of identifying two phenogroups of patients based on differences in clinical
characteristics and long-term prognosis [132]. The survival analysis of the
unsupervised phenogroups highlights the distinction in survival rate between
the two populations. The phenogroup analysis can also be related back to
the input characteristics. For example, in [132] one phenogroup was found
to have higher numbers of CRT responders as well as certain input fea-
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tures (apical rocking, septal flash) whereas a second phenogroup featured
signs of advanced HF (RV dysfunction, kidney failure and biventricular di-
lation).

The number of phenogroups in the unsupervised model is not limited to two,
and several profiles can be generated to account for the spectrum of possible
outcomes following therapy. The optimum number of phenogroups can be
calculated independently to the endpoint by maximising the distance of the
phenogroups [132]. This optimum number can also be set to maximise the
statistical significance of the phenogroups to a desired endpoint. Note that
while the number of the phenogroups may be biased toward a ground truth
label, the optimization does not take the label into account and thus the
population is still grouped according to the correlation of the input charac-
teristics. An initial number is chosen for the first training, then the model
is retrained with the new number of phenogroup(s), until the optimum con-
dition is met. Up to 4 phenogroups can be defined based on the primary
endpoint (death or non-fatal HF event), to account for the different levels
of prognosis: the best, the worst and two in-between phenogroups [36]. The
survival analysis of the population in each phenogroup proves the accuracy
of the unsupervised model in grouping the patients likely to benefit or not
from CRT.

Without prior knowledge, the unsupervised model was able to classify the
CRT “responder” vs “non-responder” groups in a statistically significant
manner with better accuracy than each single clinical descriptor alone [$6]. Tt
is also interesting to note that without supervision, the identified phenogroups
actually correspond to specific mechanisms that can condition CRT (non-
Jresponse, previously described by clinicians based on their physiological
knowledge [296]. Although the binary division of patients may appear too
simplistic to accommodate for all the possible patient reactions to therapy
and their long-term prognosis, the unsupervised model allows assigning a
“risk profile” to the patient according to the common clinical descriptors,
which could prove useful in CRT patient selection and clinical decision mak-
ing. An additional benefit of unsupervised learning is the flexibility on the
exploitable data. Although a significant number of known ground truth
outcomes are required for accurate phenogroup analysis or at least better
interpretation, unsupervised training can advantageously, by definition, be
performed on databases with unknown or incomplete outcome labels. The
lack of implicit classification loss during the optimization also limits the over-
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fitting in small datasets compared to supervised methods [113].

Beyond the specific context of CRT, unsupervised phenogrouping approaches
may be useful in the overall context of HF to unravel novel disease entities,
knowing, for instance, that dilated cardiomyopathies are currently poorly
classified. This would in turn allow more personalized patient management
by selecting the drugs or interventions (e.g. CRT) most likely to be effective
for the specific phenogroups.

Application: AI Methods to Predict Atrial Fibrillation
Outcome

Accurate prediction of primary and secondary outcome in case of arrhythmic
events is a critical task for early prevention and selection of the most effective
treatment. Atrial fibrillation (AF) is the most prevalent arrhythmia condi-
tion, which along with its associated comorbidities [209], represents a burden
to healthcare systems and an increased risk of stroke and mortality to the pa-
tient, particularly for the ageing European and North American populations.
Among the most important comorbidities are: coexisting HF, ischemic heart
disease, hypertensive or valvular heart disease, and diabetes. With respect
to AF management, the first line of therapy is anti-arrhythmic medication
(e.g. beta blockers, calcium channel blockers) to control the heart rate, along
with anti-coagulants that prevent blood clots and stroke. However, during
prolonged treatment spanning over years, the anti-arrhythmic drugs are of-
ten associated with side effects (e.g. shortness of breath, dizziness, tiredness,
slow heart rate, low blood pressure) and also affect over time the normal
function of several organs (e.g. liver, kidney, thyroid, lungs). Other therapy
options are cardioversion (to reset aberrant heart rhythms), and catheter ab-
lation (to eliminate the atrial foci generating abnormal electrical impulses).
Notably, among this spectrum of therapies, only catheter ablation is poten-
tially curative. This minimally-invasive procedure is performed under imag-
ing guidance and consists of the elimination of AF foci using thermal energy
(e.g. radiofrequency and cryoablation), via an ablation catheter whose tip
is precisely manoeuvred to destroy only tiny tissue areas harbouring AF
sources. Several predictors of AF risk as well as of the outcomes prior to
and following the therapy of choice have been clinically identified. Among
the key predictors are: ECG signals (recorded in ambulatory, clinics or by
wearable devices: Holter monitors and smart watches); biomarkers extracted
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Figure 6.4: Example of Al-based pipeline to predict AF risk and outcome.

from clinical data (age, race, sex, phenotypes, image-based parameters such
as the amount of fibrosis, atrial shape and size descriptors: surface area,
anteroposterior diameter, biplane area-length volume) and information from
patient electronic health records [100]. As described in more detail below, the
features of these descriptors can be extracted and used by Al-based models
to predict AF risk and important outcomes such as: whether the patients are
free of AF, whether AF reoccurs following ablation but has reduced number
of episodes; complete vs. incomplete pulmonary vein (PV) isolation during
ablation; worsening of comorbidities, embolic complications (e.g. stroke),
and overall mortality (see Figure 6.4).

The most important key descriptor of AF is the noninvasive ECG, a widely
available monitoring measurement of cardiac electrical activity obtained by
means of one or multi-surface electrodes. ECG is an established clinical diag-
nostic biomarker of abnormal heart rhythm (too fast, too slow or with irreg-
ular beats), which can be easily digitized and transferred for interpretation.
The typical components of recorded ECG signals are: P wave (corresponding
to atrial depolarization), QRS wave (ventricle depolarization), and T wave
(ventricular repolarization). The QRS complex is often converted to a Fourier
spectrum in order to observe dominating events and potentially lethal AF in
the 0-20Hz frequency range [390]. Unfortunately, the signature detection of
various types of AF morphologies needed for classifiers that feed traditional
regression models requires experts for interpretation as well as dedicated re-
sources to analyze large datasets, which are difficult to find.

These limitations have prompted research into versatile methods built on
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adaptable deep neural networks that can deal with such large datasets, and
on machine learning methods empowered to have learning abilities. While
promising, the early machine learning-based prediction models used PCA,
SVM or random forest methods, and employed intense preprocessing steps
and noise removal before extracting relevant morphological features from the
ECG signals (e.g. slopes, peaks, amplitude timings, etc.) [248]. However,
modern convolutional neural network-based (CNN, see Chapter 3, page 74)
models have the ability to use feature characteristics extracted directly from
raw ECGs for automated analysis. In contrast to 2-D CNN models that
are suitable to exploit image structure, deep learning-based models using
1-D CNNs are able to segment and classify the heart beats using ECGs.
Each beat is labelled as normal or abnormal, enabling predictions of AF
risk and stroke complications as outcome [121]. Other models use 12-lead
ECGs recorded in sinus rhythm in order to find suitable patterns to predict
incident AF [261], while recently developed CNN models can be trained with
more than 1 million ECGs to accurately predict mortality as a primary AF
outcome [323]. Complementary details on ECG analysis but not necessarily
specific to AF can be found in Chapter 10, page 237.

Lastly, a notable recent breakthrough of Al-based methods for AF outcome
prediction is in the area of remote monitoring technologies, where automatic
AT algorithms have been applied to single-lead ECG traces obtained through
mobile and smart watch-enabled recordings [311, |. Tt is envisioned that
smart Al-based algorithms developed for consumer-or patient-facing applica-
tions (which are massively scalable) will soon completely exceed the capacity
of human readers of ECGs. However, the utilization of these predictive mod-
els for AF risk and outcome is still hampered by the inconsistent quality of
data collected in real-time fashion. This is mainly due to the sporadic poor
quality of tracing and to noisy data, which might introduce bias and error in
the correct interpretation and the model output.

To sum up, integrating complexity into Al-based prognostic models through
multilayer deep learning models can result in rapid identification of ECG sig-
nal features and subtle patterns which are not typically recognizable by the
human eye. Comprehensive and sizeable clinical datasets containing single-
lead or multi-lead digital ECGs are also being linked to electronic health
records (see Chapter 10, page 243), substantially contributing to the devel-
opment and deployment of accurate Al models for AF risk and associated
outcome prediction.
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Application: Risk Stratification in Ventricular Arrhyth-
mia

Ventricular Arrhythmia (VA) is the most frequent event leading up to SCD,
which is among the major causes of death in developed countries. The spec-
trum of therapies includes the delivery of electrical shocks to the heart via
implantable cardioverter defibrillators (ICD) to prevent SCD, and catheter
radiofrequency ablation as the potential curative treatment. Both therapies
involve invasive and risky interventions; thus, the correct identification of
patients at risk as well as the ablation targets (i.e. the discrete myocardial
sites promoting arrhythmia) are crucial to prevent SCD and reduce surgery
complications.

The ICD is an implantable device used to deliver appropriate electrical ther-
apies (antitachycardia pacing or shock) to terminate the VA episode. The
ICD implantation is applied preemptively to subjects identified as being at
risk of developing potentially lethal VA. The objective of the therapy is to
terminate the arrhythmic episode at the occurrence, but not to prevent its
recurrence. The current recommendation for ICD patient selection for pri-
mary prevention relies largely on the LV ejection fraction value, which is a
key clinical index measuring the relative change of LV volume between end
diastole and end systole [19]. Unfortunately, current clinical strategies based
solely on the LV ejection fraction lead to numerous nonessential implants,
due to the fact that up to 3/4 of the selected patients would not receive any
appropriate therapy within 5 years after the implantation [315]. In addition,
the current strategies miss more than 80% of SCD victims whose LV ejection
fraction is not severely altered.

Radiofrequency ablation is an electrophysiology procedure that eliminates
the VA source (known as the ‘substrate’) using an electrical current deliv-
ered by an intracardiac catheter whose tip is maneuvered onto the target.
Ablation is proposed for patients in the advanced stage, who have experi-
enced multiple VA episodes and who often received multiple ICD therapies
that were poorly tolerated. The objective is to modify the myocardial sub-
strate on which arrhythmias occur, in order to prevent their recurrence. The
main limitation of this treatment lies in the correct and exhaustive identifica-
tion of the target. The current diagnosis strategy in the electrophysiology lab
involves dangerous VA induction using a programmed electrical stimulation
[19], which is invasive and time consuming, and suffers from a limited ability
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to successfully induce arrhythmia and inaccessibility to the arrhythmogenic
substrate location.

Therefore, accurate VA risk stratification is crucial for adapting the appro-
priate therapy for SCD prevention. Furthermore, the classification of VA
patients should also be extended to the detection of specific arrhythmogenic
areas for successful curative ablation interventions.

The Machine Learning Approach

The poor performance of LV ejection fraction in patient selection for VA could
be explained by the limitation of a single descriptor to predict a complex
phenomenon such as VA. This further highlights the limitations of classical
statistical analysis, which usually focus on the impact of single descriptors.
In contrast, machine learning provides models that can capture more complex
statistical relationships and integrate more disparate and multidimensional
data.

There is no limit, technically-speaking to the number of variables that can be
used as input to machine learning models. These could consist of demograph-
ics, medical history, medication therapy, laboratory results, and features ex-
tracted from ECG, imaging and clinical notes [12]. Ideally, since the model
would be able to learn by itself to distinguish which inputs are useful or not
through optimization, it is advisable to include all the available descriptors
as input to avoid feature selection bias.

Machine learning-based models could also be used to integrate the evolution
of the input variables in a dynamic way [118]. For example, the RF__SLAM
(Random Forest for Survival, Longitudinal and Multivariate) model allows
the integration of baseline descriptors (pre-ICD implant) and dynamic de-
scriptors (post-implant). The updated clinical descriptors, at each follow up,
such as the serial LV ejection fractions or the number of HF hospitalizations
are integrated to the prediction model to provide new information concern-
ing patients’ biological response to the therapy and their survival rate. Such
a dynamic model provides a better understanding of the relation between
the evolution of the variables, allowing the flexibility needed in personalixed
medicine. Lastly, the patient HF status post-therapy plays an important role
in predicting patients’ survival, while the the serial LV ejection fractions may
not contribute substantially [118].
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However, more input variables lead to more complex models, which would
take longer to train and to run, and be more difficult to interpret. Moreover,
external issues such as missing data or clinical practicality could be legiti-
mate reasons to limit the number of input descriptors. Current statistical
methods to reduce the number of input variables mostly rely on univariate
and multivariate analysis for feature significance, where the variables with
significant p-value (< 0.05) are selected [115]. With machine learning mod-
els, feature importance analysis can also be used for feature selection. First,
the primary model is trained with all the available input variables, and then
the top predictors are extracted to be used as the input to the secondary and
main prediction model [103].

The feature importance analysis of the machine learning model is an analy-
sis of the degree of importance of each input variable to the model decision.
Feature importance algorithms can be model dependent, by inspecting the
weights or coefficients of the trained model, or model independent, for in-
stance using the permutation importance algorithm?®, which looks at the
score decrease when a feature is absent. Understanding the importance of
each input variable allows transparency and interpretability, which are re-
quired to escape from “black-box machine learning models” (see also Chap-
ter 8, page 205, and Chapter 9, page 227), and help increasing trust and
viability of the models in clinical practice. Features such as the presence of
left bundle branch block, serum magnesium, antiarrhythmic drugs, LV scar
size, and LV gray zone have been reported to be among the most influential
clinical descriptors of VA [103, 118].

The integration of multi-modality data allows the machine learning model to
play a vital role in personalized medicine. Understanding the importance of
imaging features in the prediction of outcome, such as LV scar or gray zone,
is also a pivotal step in radiomics, an emerging field that explores a large
variety of quantitative features derived from medical images.

Feature Extraction Before Learning

In VA risk prediction, the cardiac descriptors to be used as input for machine
learning can be extracted from different types of imaging modalities, includ-
ing echocardiography, CMR or CT imaging. Depending on the available

Zhttps://scikit-learn.org/stable/modules/permutation_importance.html#
id2
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imaging data, these descriptors could be static or dynamic. Static features
are extracted from the image captured at a specific moment of the cardiac
cycle, in general end diastole and/or end systole. These can include anatom-
ical features of the heart such as myocardial scar, myocardial thickness, or
LV volume. Dynamic features are the features that define the movement of
the heart and can be extracted from image sequences throughout the cardiac
cycle. Features such as myocardial displacement, strain, or strain rate along
the main anatomical directions of the heart can be extracted.

Feature extraction usually starts with image segmentation and tracking,
which is generally performed fully manually or semi-automatically. From
there, the above-mentioned features can be extracted by image processing.
Deep learning methods can be used for robust automatic segmentation and
even tracking in many cardiac imaging modalities (see Chapter 4, page 92).
This allows fully-automated feature extraction, which is crucial to exploit
large databases where manual extraction on all cases may not be feasible.
Nevertheless, automatic segmentation models still need to be improved for
some tasks on specific imaging modalities, such as LV myocardial scar de-
lineation from late gadolinium enhancement CMR [189, 444]. In this case,
manual segmentation or at least manual corrections on top of an automatic
delineation is highly recommended.

Extracting relevant features from images plays a crucial role in refining the
raw image data, which may not be adapted for a given machine learning-
based outcome prediction model (using classification or regression). This
also serves to obtain features that are more human understandable, thus al-
lowing better interpretability of the prediction, and even more when this is
combined with some feature importance analysis as mentioned above. There
are still some limitations to this approach. First, the extracted features
are usually grouped into regional and global features (namely, by averaging
local values across a given region or the whole myocardium). Regional fea-
tures might allow a certain flexibility into regional heterogeneity compared to
global features, but they do not allow the assessment of finer heterogeneities
within the region. Second, using the extracted features as inputs to a ma-
chine learning-based outcome prediction model does not explicitly provide
spatial information to the machine learning model. The model would have
to learn this spatial or temporal relation between the variables during its
optimization, which represents an unnecessary extra step. In contrast, the
spatiotemporal information would not be lost for CNN models, for instance,
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which allow the direct used of imaging or ECG sequence data as input. Fi-
nally, the limited types of features usually extracted from imaging data can
also lead to selection bias, namely only the same known features are studied,
while other features (still present in the images) are ignored.

Going Further With Deep Learning Models

Deep learning models are capable of predicting outcome without having to
extract specific features from the images, as exemplified in many classifica-
tion problems in computer vision, which fostered the popularity of CNNs.
In healthcare applications, direct diagnosis can be obtained for a large range
of domains including (but not limited to) dermatology, cancer or lesion de-
tection, and fracture detection. Nonetheless, direct VA classification using a
deep learning model working on the raw image data as input has not yet been
reported. A potential reason for this is that it requires considering complex
cardiac data, in 3-D or even 3-D-time, meaning additional complexity of
input data for a classification model.

In the context of VA risk stratification, myocardial scar is considered a sub-
strate leading to the VA mechanism. Electrophysiology assessment has linked
myocardial scar with myocardial fibrosis, a pathological remodelling of the
cardiac muscle [285]. The gold standard technique to visualise scar is late
gadolinium enhanced CMR. The features of LV myocardial scar extracted
from LGE CMR imaging have been shown to be determinant predictors for
VA, already by themselves [195] or combined with other descriptors in a ma-
chine learning prediction model [118]. Although scar segmentation requires
manual segmentation by an expert (until automatic methods reach accept-
able performance on data from clinical routine), these works highlight the
potential of deep learning models to use scar segmentation data for VA risk
stratification.

CT imaging has also proven to be relevant for myocardial scar imaging, in
the form of visualizing wall thinning, which is known to have similar elec-
trophysiological properties as the scar region observed in LGE CMR images
[201]. Thus, for CT imaging, a major objective would be to first quantify LV
wall thinning using segmentation techniques, which would alleviate the extra
task of segmenting scar within the myocardium, which is still challenging in
CMR images. Moreover, compared to CMR images, CT images have better
contrast and resolution, and image acquisition is better standardized across

162



imaging centres and scanner manufacturers. These conditions make the use
of deep learning models for automatic segmentation attractive.

Once the LV myocardium is segmented, the 3-D structure can be further
simplified by calculating myocardial thickness locally and projecting these
values onto a 2-D Bull’s eye representation of the whole LV. The flattening
helps to reduce the dimensionality of the data and therefore the computations
involved during learning. It also limits the effect of (zero) values outside the
myocardium if the 2-D or 3-D data are considered as 2-D or 3-D images.

The Bull’s eye flattening of the LV is inspired by the American Heart Asso-
ciation 17-segment model, which helps physicians to better understand the
distribution of input values across the 3-D LV myocardium. These steps can
be fully automated, meaning that outcome prediction studies can be per-
formed on large datasets. Datasets of C'T images are also easier to construct,
due to the wider availability and inclusiveness of this imaging modality (i.e. it
can be performed on patients with metal implants) compared to CMR imag-
ing, which enhances the feasibility of building large prospective databases in
the near future.

Through their optimization, deep learning models can learn the relationship
between the extent, position, and heterogeneity of the wall thinning region
and the patient’s risk of arrhythmia. These models would have to learn to
filter between pathological and physiological wall thinning, as observed at the
base and apex of the LV, and thickness heterogeneities, which could be caused
by the papillarity muscles and trabeculations. This has been recently shown
to outperform predictions based on the LV ejection fraction [247].

Explainability With Deep Learning Models

With “standard” machine learning models, input features generally involve
previous design by the user and their relative importance can be studied
to interpret the prediction. In contrast, deep learning models stand more
as “black boxes” that transform the input data into a prediction, which
limits human understanding of the model decision (see also Chapter 8, page
205, and Chapter 9, page 227). While their performance might be higher,
the lack of explainability can clearly limit the trust from both physicians
and patients, therefore making the integration of deep learning models in
clinical practice harder to justify. To achieve some transparency with deep
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Figure 6.5: The Ventricular Arrhythmia (VA) prediction output and corre-
sponding attention map [217]. The classification model classified the input
thickness map as VA+ (with the score of 0.97). From the VA+ score, the
GradCAM++ method [74] used gradient back propagation to generate the
attention map, which highlighted the regions most influential to the model
prediction.

learning classification methods, visual explanations of the prediction could
be estimated, in the form of an attention map to answer the question why
did the model predict what it predicted?.

To illustrate this, Figure 6.5 shows the attention map calculated with the
GradCAM++ technique [71] (see Technical Note, below) from a positive VA
prediction [2417]. A trained classification model was used to classify the 2-D
LV thickness map input, which provided two scores for VA+ and VA- (i.e.
presence or absence of VA). Following the GradCAM++ method, the pos-
itive score was backpropagated to the“last”, i.e. the deepest, convolutional
layer to generate the classification attention map. We can observe that the
map highlights the thinning region in the input, which allows clearer under-
standing to the model’s prediction and further confirms the initial hypothesis
that linked myocardial thinning with risk of VA.
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Technical Note

The class activation mapping (CAM) method follows the funda-

mental assumption that Y¢ = > wj ZZAZ., where Y€ is the clas-
i i j

sification score of class ¢, wyf, is the weight for each specific feature
map, A is the feature map of i x j resolution from the last con-
volutional layer of k filters and i and j stand for the row/column
indices of each pixel. In other words, the classification score of class
c can be calculated as a linear multiplication of the global sum of the
last convolutional feature maps Afj and the unknown weights wj, for
each feature map k. The class-specific attention map, for the spatial
location (i, j), can then be calculated using Lg; = ij w,ﬁ.Afj.

The weights wj, can be calculated directly by applying global average
pooling (GAP, see Chapter 4, page 107) on the feature maps A,
although it is imposed that the activation output (softmax or sigmoid
function) is applied directly after the GAP layer, as suggested by the
original CAM method [!12]. However, this method required changes
to the model’s architecture, which in turn required retraining. To
work around this limitation, gradient back propagation methods can
also be used to solve for wf [318, 71]. The back propagation method
does not require architecture modification or model re-training and is
directly applicable to the pretrained network. The formulation based
on the positive gradient, as proposed by [71] in the GradCAM++
method showed higher attention accuracy compared to the previous
GradCAM method [318].

Closing Remarks

This section has provided an overview of some of the key issues in outcome
prediction, as well as reviews of the state-of-the-art in three exemplar ar-
eas. We emphasise that research into outcome prediction is not limited to
these areas. Indeed, some of the most high profile work has come in other
applications. Of particular note, [17] demonstrated how survival prediction
could be performed in pulmonary hypertension patients using only motion
estimated from cine CMR data. Such techniques, as well as those reviewed in
this section, if streamlined and translated into clinical practice, could have a
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major impact on risk stratification and patient management in a wide range
of applications.

Next, after some self-assessment exercises, we proceed to a practical tutorial
on outcome prediction, in which you will have the chance to develop machine
learning models for predicting the outcome of subjects based on their cardiac
shape.
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Exercises

Exercise 1.

What does a Kaplan-Meier curve illustrate? How could you use Kaplan-
Meier curves to evaluate the effect of a treatment or intervention? Could
this approach be applied to evaluate the prediction made by an AI model for
outcome prediction?

Exercise 2.
What types of data sources can typically be exploited in outcome prediction?
How does your answer change when considering traditional and Al-based
approaches?

Exercise 3.
Explain the potential advantages/disadvantages of supervised and unsuper-
vised analysis of data for outcome prediction.

Exercise 4.

As well as the three exemplar applications presented in this book, what
other applications have been studied in terms of the use of Al for outcome
prediction in cardiology? You may wish to perform a brief literature review
to help you answer.
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Tutorial - Outcome Prediction

Tutorial 5.

As for the other notebooks, the contents of this notebook are accessible as
Electronic Supplementary Material.

Overview

In this hands-on tutorial, we aim at predicting the outcome of subjects based
on their cardiac shape (here, mimicking the 2-D LV myocardial contour ex-
tracted from 4-chamber echocardiographic views). We designed synthetic
data (both 2-D shapes and outcome labels) specifically tailored for the pur-
pose of this tutorial.

You will focus on two strategies. First, (supervised) regression with the Par-
tial Least-Squares method, which also performs dimensionality reduction: we
will exploit this for interpretation purposes. Then, an unsupervised approach
that chains two standard algorithms for dimensionality reduction and cluster-
ing (as shown in the figure below), which you will compare to the supervised
approach.
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e Conduct a simple outcome prediction problem using high-dimensional
data as input, with the help of the sckit—-Iearn tools.
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o Understand the differences between supervised and unsupervised ways
of handling this problem.

Computing Requirements

As for the other hands-on tutorials, this notebook starts with a brief “System
setting” section, which imports the necessary packages, installs the poten-
tially missing ones, and imports our own modules.
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Opinion

In the wider health domain deep learning has achieved successes in forecast-
ing survival from high dimensional inputs such as cancer genomic profiles and
gene expression data [130, 80] and in formulating personalized treatment rec-
ommendations [191]. Integrative approaches to risk classification have used
unsupervised clustering of broad clinical variables to identify heart failure
patients with distinct risk profiles [15, | while supervised machine learn-
ing algorithms can diagnose, risk stratify and predict adverse events from
health record and registry data [31, , 27].

However, in an era of machine learning and Al, it is increasingly desirable
that we extract quantitative biomarkers from medical images that inform on
disease detection, characterization, monitoring and assessment of response
to treatment. Quantitation has the potential to provide objective decision
support tools in the management pathway of patients. Despite this, the
quantitative potential of imaging remains under-exploited because of vari-
ability of the measurement, lack of harmonized systems for data acquisition
and analysis, and crucially, a paucity of evidence on how such quantitation
potentially affects clinical decision making and patient outcome. The benefit
of machine learning in primary or secondary care treatment will not have
an impact until a consensus is reached on how algorithmic approaches shape
guideline-driven management in specific conditions and settings. Common
pitfalls that can undermine machine learning-based applications include is-
sues of transparency, reproducibility, ethics, and effectiveness [101]; and there
is a pressing need for strategies to address the risk of bias when reporting
performance [239].

A key challenge remains access to high quality data at scale that reflects
temporal disease dynamics, heterogeneity across diverse populations, and
response to interventions. Trusted research environments (TREs) facilitate
accredited large scale access to health data held to common data standards
which are enabling a “National Grid” of federated learning resources for re-

searchers [100]. Such initiatives are already showing agility in providing a
population-wide resource to support research on COVID-19 and cardiovascu-
lar disease [114], heralding a future where national or trans-national person-

level data are discoverable and accessible to researchers through a single
gateway providing a transformative substrate for outcome analysis.
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The nature of what we consider health data is also being reframed enabling
inferences on cardiovascular disease to be made from diverse sources such as
facial imaging [233], social media activity [362] and smart wearable devices
[11]. There is currently a lack of device standardization and validity testing
but such approaches could offer minimally intrusive approaches for continu-
ous monitoring of population-level trends and individual-level events. This
also invites us to re-evaluate the choice of outcomes we use for risk strati-
fication and study endpoints. Relatively few studies have comprehensively
examined how lifestyle interventions may improve life expectancy free from
the major diseases such as diabetes, cardiovascular disease, and cancer [229].
While a focus of current machine learning research is on disease classification
or mortality prediction a key contribution to real world practice may be pre-
dicting how interventions improve “health-span” to avoid or delay the onset
of multimorbidity.

machine learning itself also offers an alternative to the challenge of person-
alization in the context of interventional trials. More flexible data-driven
approaches to classic randomized control trials may learn the relationships
between the actions, context, and outcomes allowing an estimation of causal
effects from the probability of receiving a treatment conditional on patient
characteristics [188]. However, the goal of digitally-enabled “personalized”
medical care faces serious challenges, many of which cannot be addressed
through algorithmic complexity alone [110]. To learn a causal effect, we need
to estimate not just the most likely outcome in a classical prediction task,
but what would have happened if things had been different - a counterfac-
tual prediction [162]. Endeavours in causal inference and causal discovery
are so far largely unexplored — especially for medical imaging data. In this
context, they could lead to the discovery of new applications for personalized
counterfactual predictions such as what would cardiovascular function have
looked like if the patient had not been exposed to a specific risk factor [65]?
While conventional machine learning approaches identify risk factors asso-
ciated with a future endpoint, reframing this as a counterfactual inference
task improves performance where there are multiple possible causes for an
outcome [327].

How might these advances in Al reshape the delivery of healthcare? Firstly,
this could disrupt the conventional linear pathway of self-referral to primary
care, specialist referral, and investigations eventually leading to a therapeu-
tic intervention. Care could be more pro-active and anticipatory, integrating
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data from multiple sources in the community to guide lifestyle interventions
and primary prevention strategies. While traditional investigations are per-
formed at specialist centres, Al could democratize this workflow by providing
expert-level diagnostics at the point of care by physicians or even through
direct-to-consumer technology. The integration of diverse data sources with
innovative risk modelling could realise the ‘Digital Twin’ ambition of an
individual-level casual framework for precision cardiology [93]. Finally, con-
ventional diagnostic labels could become an irrelevance as we better un-
derstand the high-dimensional space that characterizes dynamic disease pro-
cesses, their associated risks and effect of time-dependent interventions. This
foresees healthcare providers trading discrete diagnostic classifications for im-
proved patient-valued outcomes.
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