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Abstract
This chapter covers the clinical application of diagnosis of cardiovascular
disease. A clinical opinion piece discusses the current clinical standard for
diagnosis tasks and its limitations. The technical review summarizes the
classical machine learning pipeline for medical diagnosis as well as some com-
mon types of traditional machine learning models that have been used for
this application. Following this, some relevant deep learning architectures
for computer-aided diagnosis are discussed. Some example applications of
artificial intelligence based automated diagnosis are introduced and the key
challenges highlighted. The practical tutorial deals with a simple diagnosis
task based on characteristics derived from cardiac MR segmentations and
other patient characteristics. The chapter closes with a clinical opinion piece
that speculates on the future role of AI in cardiac diagnosis.

Keywords:

diagnosis, machine learning, deep learning, artificial intelligence, radiomics,
interpretability

Learning Objectives:

At the end of this chapter you should be able to:
O5.A Explain the classical machine learning pipeline for medical di-

agnosis problems
O5.B Describe the key characteristics of commonly used classical

machine learning models in diagnosis, such as SVMs and de-
cision trees/forests

O5.C List the types of deep learning architecture that can be appli-
cable to diagnosis problems

O5.D Describe some specific applications for machine learning-based
diagnosis in cardiology

O5.E Explain the key challenges involved in the use of machine
learning in cardiac diagnosis
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Clinical Introduction
The use of AI in medicine is gaining traction, with many examples moving
from research into clinical prototypes and products. Examples include medi-
cal record mining [48], predictive clinical decision support systems [299], and,
its widest application, the interpretation of medical imaging to help with im-
proving both diagnosis and prognosis of disease [32, 269]. Because of the
increasing wealth of digital data that is generated, clinicians need to be able
to find more efficient ways of meaningfully combining these data to deliver
precision-based medicine. AI can not only enable routine tasks to be per-
formed more efficiently but also provide new insights into disease processes
that were previously not achievable by manual review and analysis due to
time and labour constraints [91].

Diagnosis and treatment planning of cardiovascular disease is now increas-
ingly reliant on imaging methods such as echocardiography [18], CT [232] and
CMR [226]. These generate large amounts of data and yet clinical decision
making can often come down to a small number of derived parameters such as
the LV EF that use a limited amount of the available acquired imaging infor-
mation. The application of AI methods to better utilize the available imaging
data, overcome challenges with less-than-optimal reproducibility of some of
the key biomarkers and reduce the manual workload and time taken to anal-
yse the data is looking promising. AI methods are now being integrated into
many clinical products particularly in image analysis [18, 232, 226] but also
in image acquisition [232, 226]. Other diagnostic methods such as retinal
scanning are also amenable to AI methods. Researchers are now looking to
combine the power of AI with the non-invasive ease of retinal scanning to ex-
amine the workings of the heart and predict changes in the macrovasculature
based on microvascular features and function [148].

In addition to addressing the variability associated with subjective image
interpretation, AI can address the spatial and temporal pathologic hetero-
geneity of cardiovascular clinical phenotypes by allowing more detailed fea-
ture extraction around regions of interest [335]. This allows clinicians to
use additional quantifiable features that relate more objectively and in more
detail to the underlying clinical condition [425]. By extracting a multitude
of information generated from images and non-imaging data, AI methods
also provide the essential link to uncovering associations between clusters of
patients in a fully automated manner [145].
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Examples of the use of AI clustering in patients with heart failure have shown
that it is possible to identify patient groups with different outcomes, with
for example median 21-month survival of 26% vs 63% in patients with heart
failure with preserved EF [415], and even different responses to treatment in
a larger heart failure cohort [14].

These capabilities will not replace but rather augment the clinical decision
process in a more efficient, user-friendly way, that should translate into im-
proved patient care. Recent applications of AI in medical imaging provides
proof of concept for its utility and on the whole high performance, with an
accuracy paralleling that of human expertise [72, 264].
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Figure 5.1: Classical machine learning pipeline for diagnosis from cardiac
data with the two distinct stages of feature extraction and model learning.

Overview
Over the last decade, AI and machine learning techniques have made signif-
icant advances. In particular, as we have seen in Chapter 3 and elsewhere
in the book, deep learning [222] has emerged as a powerful framework for
solving perceptual tasks across many different application domains, includ-
ing medicine [386]. Often, deep learning can achieve a level of performance
that is comparable to humans (and in some cases even outperforming them)
[120, 117]. In this section we will first introduce some machine learning
approaches that have been proposed for use in the context of automated
medical diagnosis. We begin with classical machine learning approaches be-
fore reviewing deep learning approaches. In the subsequent sections we will
review their application to diagnosis problems in cardiology as well as discuss
challenges for clinical deployment.

Classical Machine Learning Pipeline for Diagnosis
Traditionally, the process of building a system for diagnosis in medicine con-
sists of two stages (see Figure 5.1). In the first stage, information is extracted
from the data (e.g. images, signals or clinical data) and in the second stage
this information is used to build a statistical model that can perform classi-
fication. In machine learning, the information extracted from the data and
that is used as input to the statistical model is typically referred to as the
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features. In the context of clinical decision making, these features are of-
ten referred to as biomarkers which serve as measurable indicators of the
biological state or condition of the patient. For example, left ventricular
myocardial mass or LV EF may be important characteristics when build-
ing a diagnosis system for cardiovascular diseases. Additionally, clinical data
such as laboratory results (creatine kinase, lactate dehydrogenase, troponine,
etc.) or results from other examinations (stress echocardiography, ECG) can
be included. In the following we will briefly review some of the most com-
monly used machine learning models for performing classification using such
features. An overview of their performance can be found in Figure 5.2.

Support Vector Machines: The support vector machine (SVM) [94]
model, which we first mentioned in Chapter 2, is a very popular algorithm
for supervised learning that was first proposed in the early 2000s. It offers
robustness and easy applicability to a wide range of problems, domains and
types of data without the need for expert prior knowledge. SVMs, which can
be used for classification and regression tasks, construct a maximum margin
separator that defines a decision boundary with maximum distance to its
support vectors. Specifically, SVMs construct a so-called soft decision bound-
ary which is less sensitive to outliers in the data than other approaches. The
decision boundary is learned given the training data and assigns classes to
data points based on their position in feature space and with respect to the
maximum margin separator. This approach incorporates ideas from statis-
tical learning theory [397] to address a common practical problem, namely
that for a given dataset (of limited size), there often exist many solutions
that split the training data perfectly. For non-linearly separable data, a so-
called kernel function (see also the Technical Note in Chapter 3, page 72)
can be used to transform data points into a higher-dimensional feature space
where they become linearly separable (this is often referred to as the kernel
trick).

SVMs represent a non-parametric classification method, meaning that no
explicit parameters are learned to define (parametrize) the decision bound-
ary. Instead, a set of data points (the support vectors) is used to construct
the separating hyperplane in a way that maximizes the distance between
the support vectors of the two classes. Of note, the original mathematical
formulation for the SVM is only defined for the binary case, however this
can be easily extended to the multi-class case by performing one-against-rest
classification with multiple binary SVMs [96], albeit at a much increased
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computational cost. For instance, a binary kernel-trick SVM has a worst-
case time complexity of O(n3 ×m) (see Technical Note below), where n is
the number of training examples and m the number of features. This diffi-
culty of scaling SVMs to large datasets and multi-class prediction as well as
the fact that deep neural networks have been shown to outperform SVMs in
most applications has led to a drop in their popularity in the more recent ma-
chine learning literature. Despite this, SVMs can still be an attractive option
for certain use cases (online learning, outlier detection etc.), especially when
only a small or intermediate-sized training dataset is available. Furthermore,
SVM approaches can also be adapted to regression problems.

Technical Note
The notation O(...) seen above is known as “Big-O notation”. It is
commonly used to indicate the computational complexity of a task.
For example, if n is the number of training samples, O(n) means that
the algorithm takes a time that is proportional to n, O(n2) means
that the time increases quadratically with n, etc.

Decision Trees and Forests: Decision trees and forests were also men-
tioned as types of machine learning model in Chapter 2. A decision tree
represents a fundamental data structure that can be used to make predic-
tions. While decision trees are used commonly in machine learning, they are
also used outside of machine learning, e.g. in operations research, and even
in clinical guidelines, to help identify a strategy most likely to reach a goal.
In the context of machine learning [97], a decision tree is a tree in which
each of the internal (or non-leaf) nodes correspond to a split into sub-trees
corresponding to an input feature. Each of the leaf nodes is labelled with a
prediction or a probability distribution over multiple predictions. Depend-
ing on the type of predictions stored at the leaf nodes, one can differentiate
between two types of decision tree. Decision trees where the predicted vari-
able takes continuous values (typically real numbers) are called regression
trees. Decisions trees where the predicted variable takes categorical values
(typically class labels) are called classification trees.

Each of the internal nodes corresponds to a split of the training data accord-
ing to an input feature. Such a split can be thought of as a weak learner
since a single split of the training data is unlikely to produce a very accurate
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prediction. By creating a set of splits that are hierarchically organized (in
the form of a tree) a better prediction can be obtained. Hence, a key step
in creating a good set of hierarchical splits is to determine how to split the
training data at each node. These splits are typically determined in a top-
down fashion by choosing an input feature at each step that “best” splits
the training set. Different criteria such as the Gini impurity or information
gain can be used to determine the optimal split [331], but in general these
approaches aim to measure the homogeneity of the target prediction within
the subsets after the split.

While decision trees are a simple and elegant way of building predictors, the
performance of decision trees is often limited in real world applications. One
way to build stronger predictors is to combine multiple decision trees into
so-called decision forests. Such decision forests belong to the class of so-
called ensemble machine learning methods (see Technical Note, page 95). In
these ensemble methods one can differentiate between different approaches
in constructing ensembles. In random forests, multiple decision trees are
built using a technique called bagging where the training data are repeatedly
resampled using replacement and the final prediction result is obtained by
integrating the prediction across different trees using voting schemes. An
alternative approach is based on a technique called boosting which builds an
ensemble classifier by training each new instance to emphasize the training
instances that were previously misclassified. The different classifiers are then
combined in a weighted voting scheme such as AdaBoost [128].

Deep Learning Approaches for Diagnosis
Deep learning, as introduced in Chapter 3, is based upon the concept of ar-
tificial neural networks and offers several advantages for visual information
processing, including the ability to learn feature representations with mul-
tiple layers of abstraction as well as the ability for end-to-end learning (see
Figure 5.3) [222]. Furthermore, deep learning approaches eliminate the need
for hand-crafted features and classifiers that otherwise have to be tuned by
experts to specific tasks. Instead, it enables end-to-end learning where both
the features and the classifiers are directly learned from the available train-
ing data. This ensures that the features and classifiers are optimally suited
for the task at hand, although this sometimes comes with the cost that the
learnt features are not as meangingful (or interpretable) to end-users, i.e.
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Figure 5.2: Comparison of resulting decision boundaries for different super-
vised classifiers introduced in this chapter.

Figure 5.3: Deep learning pipeline with end-to-end trainable feature learning
and model learning.
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clinicians. Supervised deep learning approaches often employ convolutional
neural networks (CNNs) [129, 223] (see Chapter 3, page 74). As we have
seen, CNNs consist of many layers that transform their input via convolu-
tions with filters that are learned from the data, making them well suited for
images. In contrast, supervised approaches applied to spatio-temporal data
(e.g. audio or text) often use recurrent neural networks (RNNs, see Chapter
4, page 88) or long short-term memory (LSTM) networks [165].

In unsupervised deep learning approaches, neural networks based on autoen-
coders [164] or variational autoencoders [196] are frequently used to reduce
the dimensionality of the data (see Chapter 4, Encoder-decoder Networks,
page 91). In fact autoencoders also often make use of convolutions in their
neural network architecture. Such dimensionality reduction techniques can
“simplify” the representation of the data in a way that renders it more con-
ducive to processing by other algorithms, e.g. by subsequent supervised
learning algorithms. However, the utilization of unsupervised architectures
is not limited to pre-processing, as their output can also be used for diag-
nosis or scientific discovery. For instance, clustering (see Chapter 2, page
27) can clarify underlying subgroups in datasets, such as groups of patients
with similar characteristics, which might, for example, exhibit a common re-
sponse to a certain medication. Another approach to unsupervised learning
is based on generative adversarial networks (GANs, see Chapter 4, page 91)
[143] and its variations [31]. As we discussed in Chapter 4, with GANs two
neural networks (the generator and discriminator) compete with each other
to generate new data with the same statistics as the training set.

In the following sections, we review the most common architectures for deep
learning applied to diagnosis problems in more detail24.

Encoder-decoder networks: Some tasks, such as semantic image segmen-
tation, require dense (pixelwise) predictions. Applying CNN architectures to
such a problem means that the associated computational complexity scales
with the image size. Encoder-decoder networks (EDNs), such as the fully
convolutional network [241], are a much more efficient approach to address-
ing dense prediction tasks. Such networks consist of two parts: the encoder,
in which features are extracted and progressively downsampled, and the de-

24Editors’ note: There is some overlap in content between these descriptions and those
provided in Chapter 4 but we choose to include both as we believe they act as comple-
mentary perspectives on these important concepts.
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coder, in which features (from the encoder) are progressively upsampled to
produce an output at the end of the network with identical shape as the
input. The rationale behind this technique is the progressive distillation of a
large number of complex image features in the encoder and their recombina-
tion to form new features in the decoder. Label targets to train an EDN are
often segmentation masks and hence during training, the network’s output
is compared to the ground truth label map via overlap measures such as the
commonly used Dice coefficient [374]. Parameter updates are then applied
iteratively using a gradient-based optimization method such as stochastic
gradient descent (see Chapter 3, page 61). A fully convolutional network
is such an EDN where only convolutional and pooling layers (see Technical
Note, page 107) are used to extract and process features. A commonly used
EDN architecture for medical image segmentation is the U-net [332], where
skip-connections from encoder to decoder were added to the fully convo-
lutional network architecture, improving the convergence, performance and
robustness of the original architecture.

Generative adversarial networks (GANs): Generative adversarial net-
works (GANs) [143] are a relatively recent neural network architecture and
training paradigm, whereby two competing neural networks (generator and
discriminator) are trained simultaneously to produce a powerful generative
model. More precisely, the generator, conditioned on random noise vectors,
generates artificial data samples while the discriminator tries to determine
whether they are fake or belong to the target population. While in theory,
GANs are capable of approximating any data-generating distribution given
enough training data, the training process of GANs is often unstable and sen-
sitive to the choice of hyperparameters. This can be caused by a multitude
of reasons, but most of them relate to a disparity in the learning progress
of the generator and the discriminator. As a result, countless variations and
improvements of the original implementation have been proposed to tackle
these problems (an overview and applications for medical imaging can be
found in [428]).

Conditional GANs (cGANs), such as the Pix2Pix GAN [172] are a partic-
ularly interesting GAN (re)-formulation, where the generator can be condi-
tioned on additional input information (e.g. images). This more sophisti-
cated sampling method allows them to transfer features from one image to
the other. Conditional GANs can be used for so-called domain adaptation,
whereby, for example, CT images can be transformed into virtual MR im-
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ages. Another potential medical use lies in the generation of training data
in scenarios where data are scarce [252] and/or there are associated privacy
concerns, as GANs can be used to generate realistic looking, yet fake and
thus private medical image data [387]. Additionally, GANs can be used for
classification tasks by using part of either the generator or discriminator as
a feature extractor, or alternatively by using the discriminator as a classifier.
These GAN-based classification approaches have been shown to perform on-
par with supervised neural network architectures, but require much less data
while also potentially limiting the effect of domain overfitting [253].

Autoencoders: As mentioned earlier, an autoencoder [164] is a type of
EDN that transforms (often high dimensional) input data into a lower di-
mensional latent vector representation in an unsupervised fashion. An au-
toencoder learns the optimal latent representation of the training data by
attempting to reconstruct the original input data solely based on the en-
coded latent information. While autoencoders are an excellent dimension-
ality reduction technique, the resultant latent space representation is often
incomplete and not optimally suited for generative sampling purposes. Vari-
ational autoencoders [196] explicitly learn to parametrize a Gaussian distri-
bution from which sampling is performed. This more principled approach
makes VAEs much better suited for generative tasks than conventional au-
toencoders. However, the images produced by VAEs usually look much less
realistic than GAN-produced images, especially when high resolution images
are desired.

Bayesian deep learning: The Bayesian inference framework, based
around Bayes’ theorem (the principled approach that prior assumptions influ-
ence posterior beliefs), offers the most complete approach for reasoning under
uncertainty and is therefore a key component for building real-world systems
in safety-critical applications such as self-driving cars or computer-aided di-
agnosis tools. Quantifying predictive confidence as well as uncertainty-based
human expert referral [225] are thus crucial for establishing and promot-
ing trust in an automated diagnosis system when deployed in a real-world
clinical setting. In practice, traditional (point-estimate) neural networks are
often over-confident about their predictions, thus highlighting the need for a
sound approach to modelling uncertainty in deep learning. In Bayesian neu-
ral networks (BNNs) [8] each parameter is represented using a (posterior)
probability distribution to model uncertainty. The computation of this dis-
tribution is, however, usually intractable due to the requirement to calculate
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high dimensional integrals for its precise specification.

Two main techniques are used to avoid this intractable computation: vari-
ational inference and Markov Chain Monte Carlo (MCMC) [158]. In vari-
ational inference, the posterior distribution is approximated by a simpler
(variational) distribution which is learned during training by optimising the
distributional similarity between the variational distribution and the true
posterior. On the other hand, MCMC methods take a sampling-based ap-
proach to computing the posterior by randomly drawing samples from areas
of the posterior with high probability density. Each of the methods has its
own benefits and drawbacks. In general, it can be stated that variational in-
ference tends to be significantly faster, however it produces a biased estimate
of the posterior distribution. MCMC is capable of exactly representing the
posterior. However, it is both slower and computationally more expensive.
In recent years, these methods have been complemented by newly-proposed
approximate methods, empirically shown to enable reasonable uncertainty
estimates without requiring the utilization of the above-mentioned inference
techniques. For example, Monte Carlo dropoutDropout [131] utilizes a tech-
nique originally proposed for regularization and DeepEnsembles [206] lever-
ages ensembles of neural networks to quantify predictive uncertainty. These
two methods are performant and easy-to-implement approaches to making
any neural network Bayesian.

Machine Learning Applications for Diagnosis
As described above, the computer-aided diagnosis of cardiovascular diseases
plays an increasingly important role in clinical routine. A task that is com-
monly addressed using machine learning approaches is the classification of
different cardiac pathologies. For example, the Automatic Cardiac Diagnosis
Challenge (ACDC) [50], which primarily focuses on cardiac image segmenta-
tion, also proposes to diagnose different diseases with abnormal myocardial
shape, including in addition to normal subjects, (1) patients with systolic
heart failure with infarction, (2) patients with dilated cardiomyopathy, (3)
patients with hypertrophic cardiomyopathy and (4) patients with abnormal
RV. Many machine learning approaches use this dataset as benchmark for
cardiac disease classification [170, 194, 68, 412].

The majority of recent approaches use deep learning for disease classifica-
tion, using information about cardiac morphology as well as cardiac function.
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However, these approaches often do not allow for easy interpretation of the
classification results. In [53], the authors tackle this problem by developing
an interpretable deep learning model for disease classification using cardiac
shape information. They exploit deep generative networks to model a popula-
tion of anatomical shapes through a hierarchy of conditional latent variables.
The approach has been shown to provide high classification accuracy as well
as visualization of both global and regional anatomical features which dis-
criminate between different pathologies. The interpretability of deep learning
approaches is also the focus of the work in [89], in which a CNN model is used
together with a VAE to learn a discriminative latent space for classification.
Using the idea of ‘concept activation vectors’ [195], the latent space is then
visualized in terms of diagnostically meaningful clinical parameters.

In [441] the authors classify different cardiac pathologies by combining fea-
tures derived from segmentations of the cardiac anatomy, their shapes and
motion patterns. A similar approach is pursued in [316] which uses a multi-
modal database of CMR and echocardiography images to learn cardiac mo-
tion patterns. During inference only motion from the echocardiography im-
ages is used to discriminate between normal subjects and patients with di-
lated cardiomyopathy. Other approaches that focus on the analysis of cardiac
function from echocardiography images [292] have gained a lot of attention
due to the wide availability of this modality. However, not all approaches fo-
cus on using image data as the primary source of information. For example,
ECG data is a widely available source of important physiological informa-
tion about cardiac abnormalities and analysis of ECG signals using machine
learning approaches can provide powerful diagnostic tools [22].

Machine Learning Approaches Based on Radiomics
In the context of cardiovascular imaging so-called radiomics approaches also
play an important role for diagnosis. Radiomics approaches aim to extract a
large number of shape- or texture-based features from images that may then
be used as predictor variables in statistical models for diagnosis. Radiomics
has been successfully used in oncology [13] and more recently also in cardi-
ology [68, 324]. The success of radiomics approaches depends heavily on the
type of images used as the reproducibility of the extracted shape and tex-
ture information is critical for the success and reliability of these approaches.
Furthermore, standardization of the imaging data is crucial when data from
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multiple hospitals or imaging centres is used.

Machine Learning Approaches for Large-Scale Popula-
tion Studies
Machine learning approaches also play an important role in discovering quan-
titative and clinically relevant phenotypes from population studies, which can
in turn promote the discovery of novel diagnostic biomarkers. In [37], the
authors used a deep learning pipeline for extracting 82 quantitative pheno-
types of the heart and aorta from CMR from a large population study with
over 25,000 participants from the UK Biobank [307]. They identified 2,617
significant associations between imaging phenotypes and non-imaging phe-
notypes of the participants describing relationships between risk factors and
cardiovascular diseases.

While the large-scale extraction of biomarkers and phenotypes from popula-
tion studies is challenging, it is also important to perform quality control of
the information extracted from such studies. For example, in CMR studies,
the extraction of biomarkers may fail because of poor image quality or image
artefacts (e.g. respiratory motion) or the image analysis pipeline may fail,
and therefore affect the downstream task such as diagnosis. To address this
problem, it is possible to use machine learning techniques to classify whether
the image quality is sufficient for automated analysis [381] or whether the ex-
tracted parameters are likely to be correct [335, 382]. We return to the topic
of automated quality control in cardiac image analysis in Chapter 7.

Challenges
Despite the significant advances in the development of machine learning ap-
proaches in cardiology, there remain a number of challenges. One of the chal-
lenges is that deep learning approaches tend to require significant amounts
of training data. In general, the more data are available for training, the
more accurate and robust the resulting machine learning models become.
The need for large datasets and high quality annotations makes data sharing
even more important, not only for training but also for evaluating machine
learning solutions in multi-institutional/multi-national trials. One solution
to this challenge has been found in the availability of large datasets from
prospective volunteer trials (such as the UK Biobank [373]) or from curated
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clinical databases such as PhysioNET [142]. However, in practice data shar-
ing is often hampered by technical, legal and ethical challenges. In particu-
lar, legal and regulatory requirements represent difficulties for data sharing.
An alternative to data sharing is the use of decentralized machine learning
or federated learning approaches [329, 184]. In contrast to centralized ap-
proaches in which datasets are marshalled in one central location to train
one machine learning model, federated learning uses collaborative training
algorithms that do not require the exchange of the training datasets with a
central instance. It has been shown that these federated learning approaches
can achieve similar performance to conventional centralized approaches and
outperform approaches that are only trained using data from one site.

Another challenge for clinical adoption of machine learning-based approaches
is the perceived black box nature of many of these approaches. This means
that the output of a diagnosis by a machine learning model can be difficult
for humans to understand and interpret. Recent guidelines of the European
Union emphasize the importance of explainability and interpretability of AI-
based approaches, especially if they affect humans directly. However, there
is a lack of consensus as to precisely what explainability and interpretabil-
ity mean in this context. Related to this challenge is also the fairness of
decision-making algorithms. Fairness can be defined as the absence of any
prejudice or bias toward an individual or a group based on a set of protected
characteristics such as race, sex or age. It can be difficult to detect biases and
unfairness in machine learning approaches that learn from data. The source
of such problems is often (but not always) related to biases and/or imbalance
in the data that are used to train the machine learning models. Identifying
these biases is a first step to mitigating for the bias and developing “fair”
machine learning approaches.

Closing Remarks
Whilst techniques for automated machine learning-based diagnosis in cardiac
imaging are less mature than those for measurement and quantification, sig-
nificant progress has been made in recent years, partly due to the availability
of public databases for some cardiac diagnostic tasks. As in most applica-
tions, deep learning models are currently the best performing techniques
in diagnosis in terms of classification accuracy, although classical machine
learning models likely still have a role to play, especially in less complex
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tasks with a limited amount of annotated data. Deep learning models are
seen as being less interpretable than some classical machine learning models,
but researchers have taken note of the need for interpretability in diagnos-
tic tools and have proposed methodological advances to address this issue.
These interpretability techniques need further evaluation on real-world clini-
cal data, and their role in clinical workflows needs to be carefully considered
and their impact well validated. Of particular concern is the possibility for
bias, for example based on the sex or race of the subject: a recent work [319]
has shown the potential for racial bias in diagnosis of heart failure based on
deep learning-derived LV EF measurements made from CMR imaging. Open
and complete reporting of performance across such subgroups is therefore of
paramount importance [283]. In the following tutorial you will gain practical
experience of using deep learning for a simple diagnostic task.
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Exercises

Exercise 1.
Explain the main difference between classical machine learning and deep
learning approaches with regard to the features used for automated diagnosis.

Exercise 2.
Explain what is meant by “end-to-end learning” in the context of deep
learning-based diagnosis.

Exercise 3.
A colleague argues that machine learning-based diagnosis will never be com-
pletely trusted by cardiologists. Therefore, we should consider their use as
decision support tools rather than automated diagnosis tools. Do you agree?
What implications would this have for the design of such tools?

Exercise 4.
What role do you see Bayesian deep learning playing in automated diagnosis?

Exercise 5.
A colleague argues that dealing with possible bias in machine learning-based
diagnosis is less important than optimizing overall performance. Do you
agree?

Exercise 6.
A research group is working with cardiologists to develop a tool for auto-
mated diagnosis of some rare cardiovascular diseases from cine CMR imag-
ing. Advise the group on what type(s) of machine learning approach might
be applicable and what issues they should be aware of.
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Exercise 7.
Supervised machine learning might seem the preferred approach for auto-
mated diagnosis, since the task is to predict a label (diagnosis) given the
available data. What role could unsupervised machine learning have in au-
tomated diagnosis?
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Tutorial - Two-class and Multi-class Diagnosis

Tutorial 4.

As for the other notebooks, the contents of this notebook are accessible as
Electronic Supplementary Material.

Overview

In this hands-on tutorial, you will again use data from the ACDC open
access dataset [1]. this time not for segmentation but for diagnosis, based
on characteristics extracted from the image segmentations and additional
patient characteristics. This corresponds to the task targeted in the second
part of the paper reporting on the ACDC challenge [50].

You will use data from the 100 patients of the training set, which are equally
distributed into 5 (ab)normal subgroups. The tutorial will guide you through
the classification of these subjects, starting from two-class diagnosis (e.g.
normal vs. dilated hearts) and moving to the more complete multi-class di-
agnosis, as illustrated in the figure below. The tutorial lays stress on carefully
examining the performance against the complexity of the machine learning
model, keeping in mind the data used as input.
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Objectives

• Consolidate the knowledge you’ve gained on classification from the
toy examples in the hands-on tutorial from Chapter 3.

• Conduct a proper classification problem on real-life data.
• Get used to a wider variety of scikit-learn models and be critical

about their ouptut.

Computing Requirements

As for the other hands-on tutorials, this notebook starts with a brief “System
setting” section, which imports the necessary packages, installs the poten-
tially missing ones, and imports our own modules.
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Opinion
There are ethical, regulatory and practical challenges that need to be ad-
dressed to ensure reliability, quality of care and safety before wide scale
adoption into clinical prime time [106, 121, 308]. A further challenge is the
difficulty in replicating the performance of often complex models built on
local databases in other clinical settings. The use of federated learning tech-
niques and infrastructure to build models with much wider and varied data
sets across multiple clinical settings and geographies could be a good way
of addressing this [329, 184] (see also Chapter 10, page 246). The infras-
tructure to easily deploy models into a clinical setting for different clinical
service delivery organizations with different IT systems can also be a chal-
lenge that needs to be addressed. Finally, the health economic case will
need to be made for individual applications, alongside their clinical utility,
as pressure on healthcare budgets will otherwise make commercial success
and wide procurement of diagnostic and decision support systems that use
AI difficult.

Nevertheless, the application of AI has the potential for reproducible clinical
assessments through automated measurements, more efficient diagnostic sup-
port, improved phenotyping and better risk stratification through the mining
of large datasets to uncover clinically relevant information [347]. Its appli-
cation to care of patients with cardiovascular disease will be transformative
and bring substantial benefit.
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